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2
Theory and Experimentals

In this chapter we present a derivation of the optomechanical equations of motions
and connect these to observable quantities. In the second part of this chapter a brief
overview of the experimental set-up and methods is presented. Both the theory and
experimental details form the basis for the following chapters.

2.1 Optomechanical equations of motion

Although the field of cavity optomechanics contains a wide variety of optical and
microwave cavities coupled to an assortment of mechanical oscillators (see Ref. [16]
for an overview), most systems can be represented by the schematic picture in Fig.
2.1. In such a Fabry-Perot cavity, the displacement of the mirror is parametrically1

coupled to the cavity field, leading to intricate dynamics. Since most of the work
presented in this thesis is classical, we will derive the semi-classical equations of mo-
tions because these provide a more intuitive understanding of the physics involved.
The approach presented here is inspired by the work of Schliesser [17] and Rivière
[18]. A more detailed Hamiltonian description is presented in the work of Law [19]
and a quantum mechanical treatment can be found in the works of Marquardt [20]
and Wilson-Rae [21].

2.1.1 Uncoupled equations
As can be seen from Fig. 2.1, the two main ingredients are a harmonic oscillator and
an optical cavity. First we consider the harmonic oscillator and cavity separately. The
motion of the harmonic oscillator is described by the following differential equation:

d2x(t)

dt2
= −Γm

dx(t)

dt
− Ω2

mx(t) +
Fex
m

(2.1)

1A parametric oscillator is an oscillator of which one parameter varies with time. In an optomechanical
system, the cavity field varies with the frequency of the mechanical resonator, leading to a resonant optical
force.
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Optical cavity Harmonic
oscillator

Figure 2.1: Schematic overview of an optomechanical system. In a Fabry-Perot cavity with
one moving end mirror the motion of the harmonic oscillator is parametrically coupled to the
cavity field.

where we have defined the mechanical displacement x(t), the mechanical damping
rate Γm, the mechanical frequency Ωm, the mode mass m and some external force
Fex.

Eq. (2.1) can be solved easily by introducing the Fourier transform
x(ω) =

∫∞
−∞x(t)eiωt dt. The solution can then be written as x(ω) = χxxFex(ω) where

χxx is the mechanical susceptibility defined as:

χxx(ω) = (m(Ω2
m − ω2)− imΓmω)−1. (2.2)

When Γm is small, this equation is well described by a Lorentzian:
χxx(ω) = (mΩm[2(Ωm − ω)− iΓm])−1.

A Fabry-Perot cavity is typically described in terms of the circulating electrical
field Ecirc: [22]2

Ecirc = t1Einc + r1r2e
−2iφEcirc (2.3)

where Einc is the incoming electrical field, t1 the amplitude transmission coefficient
of the entrance mirror, r1 and r2 the amplitude reflection coefficient of both mirrors
and φ the phase acquired after one round-trip through the cavity. This equation is
useful to describe the steady state of an optical cavity. However, we are interested
in the dynamics of the circulating intensity inside the cavity, as will become clear in
the next section. It is therefore useful to describe the field inside the optical cavity in
terms of a complex mode amplitude α(t) which is normalized such that |α(t)|2 is the
photon number or stored energy [23]:

dα(t)

dt
= −κ

2
α(t)− iωcavα(t) +

√
κexσin(t) (2.4)

where we have defined the optical decay rate κ, the cavity frequency ωcav , the exter-
nal optical coupling rate κex and the optical input power σin. An elegant classical

2Equation (2.3) describes only the magnitude of the circulating electrical field. The spatial profile can
be described using Hermite-Gaussian modes. In this thesis only the fundamental Hermite-Gaussian mode
is used.
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derivation of this equation using an LC-circuit as an example is provided by Haus
[23] while a quantum treatment is given by Gardiner and Collet [24].

To solve Eq. (2.4), it is convenient to choose a coordinate frame rotating with the
laser frequency ωL by defining α(t) = a(t)e−iωLt and σin(t) = sin(t)e−iωLt. This
yield the following equation:

da(t)

dt
= (i∆− κ

2
)a(t) +

√
κexsin(t) (2.5)

where the laser detuning ∆ is introduced as the difference between laser and cavity
frequency, ∆ = ωL − ωcav . Typically negative or red detuning is used to indicate a
laser with a frequency lower than the cavity resonance (∆ < 0) and positive or blue
detuning for the case where the laser frequency is higher than the cavity resonance
(∆ > 0).3 The steady state solution to Eq. (2.5) is obtained by assuming a constant
input mode amplitude sin(t) and setting da(t)/dt to zero, resulting in a mean mode
amplitude of:

ā =

√
κexsin

−i∆ + κ/2
. (2.6)

2.1.2 Optomechanical interaction

With the terminology in place, we can turn our attention to the optomechanical inter-
action itself. In particular, we will show how the coupling between the mechanical
motion and the cavity field modifies the response of both the harmonic oscillator (Eq.
(2.2)) and the mode amplitude (Eq. (2.6)). The parametric coupling of the mechanical
motion to the cavity mode modulates the cavity resonance frequency:

ωcav(x) = ωcav + x∂ωcav/∂x (2.7)

where we have assumed the mechanical motion to be small, such that this linear
approximation holds. The expression can be simplified by introducing the optical
frequency per displacement asG = −∂ωcav/∂x. The typical convention is to defineG
in such a way that for x > 0 the cavity length increases, leading to a decrease in ωcav ,
hence the minus sign. For a Fabry-Perot cavity as depicted in Fig. 2.1, G = ωcav/L
with L the cavity length. Due to the displacement of the mirror, the cavity resonance
frequency changes as Gx(t). Therefore the optomechanical equation for the cavity
mode is:

da(t)

dt
=
[
i(∆ +Gx(t))− κ

2

]
a(t) +

√
κexsin(t). (2.8)

The radiation pressure arises from the momentum transfer when a photon re-
flects off the moving mirror. The radiation pressure is therefore proportional to the
number of circulating photons |a(t)|2 and to twice the photon momentum ~k, with
k = ωcav/c the wave vector. Finally, the photon round-trip time, c/2L with c the

3A small warning: In literature the definition of detuning can vary from article to article. In this thesis
terminology and definitions are chosen to be consistent with the work of Aspelmeyer et al. [16]
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speed of light, needs to be taken into account. The radiation pressure force is there-
fore:

Frad =
∆p

∆t

= |a(t)|2 c

2L
2~k = ~G|a(t)|2 (2.9)

where G = ωcav/L is used to simplify the expression. The equation of motion of the
harmonic oscillator becomes:

d2x(t)

dt2
= −Γm

dx(t)

dt
− Ω2

mx(t) +
~G
m
|a(t)|2 +

Fex
m

. (2.10)

Equations (2.8) and (2.10) form the theoretical basis of the work presented in this
thesis. These coupled non-linear equations are difficult to solve. However, with
appropriate assumptions, analytic solutions can still be found. For example, the
motion of the harmonic oscillator can be treated as a small perturbation around some
mean displacement: x(t) = x̄ + δx(t). Similarly, the effect of this motion on the
cavity field can be treated as a perturbation: a(t) = ā + δa(t). Substituting these
assumptions in Eqs. (2.8) and (2.10) yields:

dδa(t)

dt
= (i[∆ +G(x̄+ δx(t))]− κ

2
)(ā+ δa(t)) +

√
κexsin (2.11)

d2δx(t)

dt2
= −Γm

dδx(t)

dt
−Ω2

m(x̄+ δx(t)) +
~G
m

[(ā+ δa(t))(ā∗ + δa∗(t))] +
Fex
m

(2.12)

As with the uncoupled case, a steady state solution can be found by setting δa(t) = 0
and δx(t) = 0:

ā =

√
κexsin

i(∆ +Gx̄)− κ/2
(2.13)

x̄ =
~G
mΩ2

m

|ā|2. (2.14)

Already the steady-state solution shows an interesting effect: the mean photon num-
ber in the cavity depends on the mean displacement. However, the mean photon
number also causes a static radiation pressure force on the mirror, thus changing the
cavity resonance frequency. This in turn influences the mean photon number. Solv-
ing Eqs. (2.13) and (2.14) yields a cubic expression for ā with stable and unstable
solutions [25].

We can also solve for δa(t) and δx(t). Using Eqs. (2.13) and (2.14), dropping
second-order terms and introducing ∆̃ = ∆ +Gx̄ one obtains:4

dδa(t)

dt
=
[
i∆̃− κ

2

]
δa(t) + iGāδx(t) (2.15)

4Note that we have also used ā = ā∗. This is valid since the phase of ā, which follows from the phase
of the incoming beam, can always be set to zero.
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d2δx(t)

dt2
= −Γm

dδx(t)

dt
− Ω2

mδx(t) +
~Gā
m

[δa(t) + δa∗(t)] +
Fex
m

. (2.16)

As for the uncoupled equations, this is best solved by applying the Fourier trans-
form. Besides taking the Fourier transform of the equations above, it is convenient
to also write down the Fourier transform of the complex conjugate of Eq. (2.15) to
obtain the following three equations:5

− iωδa(ω) = (i∆̃− κ

2
)δa(ω) + iGāδx(ω) (2.17)

− iωδa∗(ω) = (−i∆̃− κ

2
)δa∗(ω)− iGāδx(ω) (2.18)

− ω2δx(ω) = +iωΓmδx(ω)− Ω2
mδx(ω) +

~Gā
m

[δa(ω) + δa∗(ω)] +
Fex(ω)

m
. (2.19)

Solving Eqs. (2.17) - (2.18) gives:

δa(ω) =
iGāδx(ω)

κ/2− i(∆̃ + ω)
(2.20)

δa∗(ω) =
−iGāδx(ω)

κ/2 + i(∆̃− ω)
(2.21)

which can readily be used to derive an expression for the radiation pressure force

δFrad(ω) = ~Gā(δa(ω) + δa∗(ω))

= −~G2ā2

(
∆̃ + ω

κ2/4 + (∆̃ + ω)2
+

∆̃− ω
κ2/4 + (∆̃− ω)2

)
δx(ω)

+ i~G2ā2

(
κ/2

κ2/4 + (∆̃ + ω)2
− κ/2

κ2/4 + (∆̃− ω)2

)
δx(ω). (2.22)

In the Fourier domain, the radiation pressure has both a real and imaginary com-
ponent. The real component results in an optical spring effect, while the imaginary
component generates an optical damping force. This can be shown explicitly by in-
serting the result of Eq. (2.22) back in Eq. (2.19). As for the uncoupled case, the
solution can be written as x(ω) = χeff(ω)Fex(ω) with χeff(ω) the effective susceptibil-
ity:

χeff(ω) =

[
m(Ω2

m +
kopt(ω)

m
− ω2)

]
− imω [Γm + Γopt(ω)]

−1
. (2.23)

in which the optical spring constant kopt(ω) and optical damping Γopt(ω) are defined
as:

kopt(ω) =
~G2ā2

m

(
∆̃ + ω

κ2/4 + (∆̃ + ω)2
+

∆̃− ω
κ2/4 + (∆̃− ω)2

)
. (2.24)

5Again we have used the freedom to set the phase in such a way that δx is real.
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Γm

Tenv Toptical

Teff

Environment

Harmonic oscillator

Optical field

Γopt

Figure 2.2: The harmonic oscillator is coupled to the environment with coupling rate Γm and
to the optical field with coupling rate Γopt.

Γopt(ω) =
~G2ā2

mω

(
κ/2

κ2/4 + (∆̃ + ω)2
− κ/2

κ2/4 + (∆̃− ω)2

)
(2.25)

Finally, when the optical spring effect and optical damping are small, the effective
resonance frequency and effective damping rate are given by:6

Ωeff = Ωm + g2

(
∆ + Ωm

κ2/4 + (∆ + Ωm)2
+

∆− Ωm
κ2/4 + (∆− Ωm)2

)
(2.26)

Γeff = Γm + g2

(
κ

κ2/4 + (∆ + Ωm)2
− κ

κ2/4 + (∆− Ωm)2

)
(2.27)

where the multi-photon coupling rate g, defined as g2 = ~G2ā2

2mΩm
is introduced, and

the static radiation pressure is assumed to be small such that ∆̃ ≈ ∆.
Comparing the uncoupled case with the case including optomechanical interac-

tion, one sees that the motion of the harmonic oscillator creates a radiation pressure
force which, when acting back on the mirror, modifies the resonance frequency and
damping rate. The magnitude of this effect, not surprisingly, varies with input laser
power. More importantly, however, for specific laser detunings the radiation pres-
sure causes predominantly an optical spring effect or an optical damping. Further-
more, for positive detunings, anti-damping can occur, leading to a reduction of the
effective damping rate and even driving of the mechanical motion. This phenomena
is explored in detail in chapter 3.

So far we have only discussed the modifications to the mechanical response. The
optical damping however couples the harmonic oscillator to the laser bath. In the
next section the consequence, namely optical cooling, will be discussed together with
methods to measure this effect.

2.1.3 Optical cooling
When deriving the response for the harmonic oscillator in the presence of an optical
field, Γm has only been thought of as a damping rate. However, it also couples the

6The Taylor approximation Ωeff =

√
Ω2
m +

kopt(ω)

m
≈ Ωm + kopt/2mΩm is used.
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oscillator to the environment which is at some temperature Tenv . The fluctuation-
dissipation theorem describes the thermodynamics of such coupled systems [26, 27,
28]. Coupling to a thermal environment (or thermal bath) generates a force which
acts on the oscillator in such a way that, when in equilibrium, the variance of the
displacement is proportional to the environmental temperature Tenv :

E =
1

2
mΩ2

m〈x(t)2〉

E =
1

2
kbTenv

 〈x(t)2〉 =
kbTenv
mΩ2

m

(2.28)

which is the equipartition theorem. In other words: the displacement of a harmonic
oscillator coupled to a thermal bath is such that the mode temperature is equal to
the bath temperature. When now the coupling with the cavity field is included, we
have the situation as depicted in Fig. 2.2. The harmonic oscillator is coupled with
coupling rate Γm to a bath at temperature Tenv , and coupled with coupling rate Γopt
to the optical field. By assuming thermal equilibrium, the effective temperature of
the harmonic oscillator can therefore be written as:

Teff =
TenvΓm + TopticalΓopt

Γopt + Γm
. (2.29)

Although it might be strange to label a coherent optical field with a temperature,
from a noise perspective, a coherent optical field has an effective temperature of zero
[29]. With this, Eq. 2.29 reduces to

Teff = Tenv
Γm

Γopt + Γm
. (2.30)

Note that at sufficiently low effective temperatures, this equation no longer holds
and one has to take the photon shot noise into account as well. For the results pre-
sented in this thesis, the effective temperature is still high enough for Eq. (2.30) to
be valid. With the full quantum theory, one can also show that optical cooling to
the quantum mechanical ground state is possible when κ� Ωm

7. This limit is often
referred to as the side-band resolved limit. Most of the experiments presented in this
thesis operate in the side-band resolved limit.

One can obtain the effective mode temperature by recording x(t), determining
the variance and using the equipartition theorem. A more elegant way would be
to record x(t) and take the Fourier transform to obtain the power spectral density
(PSD) Sxx, because the fluctuation-dissipation theorem relates Sxx to the effective
temperature by:

Sxx(ω) = 2
kbTeff

ω
Imχeff(ω). (2.31)

7The requirement of κ � Ωm only applies when optical side-band cooling is used as the cooling
method. Active feedback cooling [30] and so called ”dissipative” optomechanical coupling [31] do not
require to be side-band resolved. So far, however, only side-band cooling has successfully been used to
reach the quantum mechanical ground-state.
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~Teff

δΩm

Γeff

Sxx

ω

Figure 2.3: A measurement of the power spectral density of the mechanical motion gives
directly the parameters of interest, namely the effective temperature, mechanical linewidth
and resonance frequency.

Integrating Sxx over all frequencies, results in the following:∫ ∞
−∞

Sxx(ω)
dω

2π
=

kbTeff

mΩ2
m

(2.32)

= 〈x(t)2〉

where Eq. (10.4) was used in the last line.
Not only does integrating the mechanical PSD directly give the effective temper-

ature, but the Lorentzian resonance also gives the effective linewidth and frequency
shift, as is shown in Fig. 2.3. Therefore, the full optomechanical interaction is char-
acterized by measuring the PSD of the mechanical motion. But how to measure x(t)
to obtain the mechanical PSD?

We have already seen that due to the movement of the mirror, the cavity reso-
nance frequency changes according to Gx(t). Therefore, any change in cavity reso-
nance frequency is directly proportional to the displacement. There are two methods
for measuring changes in the cavity resonance frequency. In Fig. 2.4(a) the side-of-
fringe method is shown. By placing a laser to the side of the cavity resonance, a
small change in cavity length leads to a change in mode amplitude which can be
measured by monitoring the transmitted intensity. The resulting signal can also be
used to keep a laser locked to a certain frequency with respect to the cavity resonance
(side-of-fringe lock).

The other method is a phase sensitive detection method, as is shown in Fig. 2.4(b).
This method is actually preferred, because the read-out can take place exactly at the
cavity resonance, which is not possible with the side-of-fringe method. Since there
is no optomechanical effect at zero detuning, the motion of the resonator can be
obtained without influencing the system.8 Finally, the phase sensitive method is, to
first order, not sensitive to laser intensity fluctuations.

8Here we consider only the classical case. In the quantum description, the photon shot noise sets
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Figure 2.4: Amplitude (a) and phase response (b) of an optical resonance. The mirror dis-
placement can be measured in two ways: side-of-fringe method as shown in (a) and via a
phase sensitive detection method shown in (b).

2.2 Experimentals

With the basics of the optomechanical interaction discussed, such as optical cooling
and displacement transduction, we turn to the experimental aspects of this thesis.
First, the ”optical bench” containing the cavity and trampoline resonator is briefly
described, before continuing with an overview of the trampoline resonator. Finally,
we introduce the core of the experimental methods used in this thesis, including the
laser scheme.

2.2.1 Optical bench

The optical bench, designed by H. van der Meer, has a compact footprint such that
integration in a cryogenic system is possible. The bench is made from brass and con-
structed around a 5 cm long optical cavity. A length of 5 cm was chosen as a compro-
mise between optical path length and mirror quality. A larger cavity length would
benefit the superposition schemes mentioned in the introductory chapter. However,
a longer cavity requires larger mirrors, which are more difficult to fabricate.

In Fig. 2.5(a) a schematic overview of the bench is shown. The light enters
the system via an optical fiber (Nufern 1060-XP) after which it is collimated using
an aspheric lens (Edmund Optics 15 mm diameter 22.5 mm EFL). Via a periscope
consisting of two adjustable mirrors the light passes through a mode-matching lens
(Thorlabs Best Form LBF254-050-C) and enters the cavity through a 1/2 inch super-
polished mirror with a 5 cm radius of curvature (Advanced Thin Films and Laser
Optik). After passing through the trampoline resonator, the transmitted signal is col-

a lower limit to the measurement precision, leading to the formulation of the standard quantum limit
(SQL).
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Figure 2.5: (a) Schematic overview of the optical bench with the key components indicated.
(b) Beam radius as function of propagation distance along the optical path represented by the
red line in (a) calculated using Gaussian beam optics.

lected via a photo-detector (Hamamatsu G10899-005K, connected to a Femto DHPCA-
100 amplifier) placed behind the cavity. The reflected light is collected by the fiber
that also brings the light to the set-up. The optical components are chosen to ensure
optimal mode-matching to the fundamental cavity mode by using Gaussian beam
theory and ray matrices [32]. The resulting beam radius as function of propagation
distance is shown in Fig. 2.5(b).

The cavity alignment is quite sensitive, requiring sub-micron adjustments. There-
fore, the collimation lens is placed on an Attocube translation stage and both the
large cavity mirror and periscope mirrors are adjustable by Piezoknobs from JPE.
These cryogenic compatible actuators also ensure that the alignment is adjustable to
compensate for the inevitable contraction that occurs when cooling down the set-up.

The entire set-up is placed in a vacuum chamber with passive vibration isola-
tion involving a damped mass-spring system to decouple the set-up from any envi-
ronmental disturbances. For the cryogenic experiments in a cryogen-free cryostat,
a more elaborate vibration isolation stage is developed, which we will discuss in
more detail in chapter 10. All experiments discussed in this thesis are performed
in medium to high vacuum (typically <1×10−3 mbar) to eliminate the effect of gas
damping on the mechanical properties of the trampoline resonator.

2.2.2 Trampoline resonators

The trampoline resonators used throughout this thesis are fabricated by colleagues
at UCSB (B. Pepper, M. Weaver and F. Luna). Here we will highlight the important
fabrication steps of these trampoline resonators, the precise details can be found
elsewhere [33, 34].

High stress silicon nitride (typically 850 MPa) is deposited on a super-polished
silicon wafer. Next, a distributed Bragg reflector (DBR) of alternating layers of Ta2O5

and SiO2 is deposited by Advanced Thin Films and in later stages of this work by
Laser Optik. A DBR mirror is the only way to achieve the reflectivity (R > 0.99997)



2.2 Experimentals 15

Figure 2.6: (a) The four main fabrication steps to make a trampoline resonator. (b) Optical
microscope image of the trampoline resonator. (c) Optical microscope image of a nested tram-
poline resonator.

we need to create a high quality cavity. Using lithography and etching, the silicon ni-
tride is patterned to achieve the desired resonator design. Finally the silicon is etched
away to release the resonator. These steps are schematically indicated in Fig. 2.6(a)
together with an optical microscope image of the finished resonator in Fig. 2.6(b).
Typically the mirror has a diameter between 60 and 130 µm, while the frequency of
the resonator lies between 150 and 350 kHz, with a mode-mass between 100 and 500
ng.

The design with four arms, as shown in Fig. 2.6(b), ensures that higher order me-
chanical modes have a much higher frequencies than the fundamental mechanical
mode and couple poorly to the cavity field. The only mechanical mode that is there-
fore considered in this thesis is the fundamental out-of-plane mode of the trampoline
resonator.

Besides a single resonator, also a nested resonator [35], as shown in Fig. 2.6(c),
was used in parts of this thesis. In chapter 7, we will come back to the necessity for
this modified design. The fabrication process of the nested resonator is essentially
the same as depicted in Fig. 2.6(a).

2.2.3 Aligning the optical bench

The alignment of the optical bench shown in Fig. 2.5(a) has two parts: the coupling
to the cavity mode, and the alignment of the cavity itself. The coupling to the correct
cavity mode is achieved by adjusting the periscope, together with the collimation
lens. If the periscope is set incorrectly, higher order Hermite-Gaussian modes be-
come visible as is shown in Fig. 2.7.

Because of the small mirror on the trampoline resonator, the cavity operates as
a near-hemispherical resonator [22] with the beam waist close to the small mirror.
As a consequence, the size of the cavity mode at the entrance mirror is quite large.
The influence of cavity length on the beam radius9 for both the large entrance mirror
and the small mirror is shown in Fig. 2.8(a) and (b). When the cavity approaches

9The beam radius is defined as the radius at which the intensity drops by 1/e2
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(a) (b) (c) (d)

Figure 2.7: Different Hermite-Gaussian modes exist in the optical cavity, depending on the
settings of the periscope. (a) The fundamental mode (TEM00) considered here in this thesis.
Examples of other possible modes are: (b) TEM11 mode (c) TEM22 and (d) TEM33 mode.
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Figure 2.8: Beam radius as function of distance for (a) the mode at the large entrance mirror
and (b) the mode at the small mirror of the trampoline resonator. (c) The finesse measured as
function of the size of the mode at the small mirror. The red line is the expected finesse based
Eqs. (2.33) and (2.34). For this measurement the diameter of the small mirror is 70 micrometer.
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d0 = 5 cm, the beam size at the large mirror increases rapidly, while the beam size at
the small mirror decreases rapidly. The length can be set such that the beam size is
small enough to fit on the trampoline resonator and not too big to clip on the large
entrance mirror. These clipping losses L, both at the large and small mirror, can be
modeled using the overlap between the size of the mirror and the size of the mode
[36]:

L = 1− exp(−2r2
mirror/w

2) (2.33)

in which rmirror is the radius of the mirror, and w the beam radius at the mirror.
Together with the reflectance defined as R = 1− T − L where T is the mirror trans-
mittance, the finesse for a high quality cavity can be written as:10

F =
π(R1R2)1/4

1− (R1R2)1/2
. (2.34)

The effect of cavity length on the finesse has been investigated experimentally by
measuring the finesse via an optical ring-down together with the beam size at the
small mirror. The size of the beam at the entrance mirror can be calculated using the
beam size at the small mirror. With the total clipping losses calculated via Eq. (2.33),
a prediction for the finesse using Eq. (2.34) is obtained. The results are shown in
Fig. 2.8(c) for a trampoline resonator with mirror radius of 35 micrometer. When the
beam radius at the small mirror is large, clipping losses at the small mirror reduce
the finesse. For small beam sizes, obtained when the cavity length is close to d0 (see
Fig. 2.8 (b)), the dominant loss source is clipping of the beam at the large mirror. In
between a flat region exists where the finesse is limited only by the coating of the
mirrors.

Adjusting the cavity length carefully therefore results in the optimal finesse. Un-
fortunately, due to size constraints of the optical bench, the cavity length can only be
adjusted by moving the entrance mirror, resulting in a misalignment of the periscope.
Only via a non-trivial iterative process is the optimal alignment achieved.

2.2.4 Performing an optomechanical experiment

In section 2.1.3 we have shown how the mechanical motion can optically be reduced
by using a laser with the correct detuning ∆. The laser detuning is indicated with
respect to the cavity resonance. The cavity resonance frequency and laser frequency
might vary over time.11 These variations are eliminated by actively keeping track of
the cavity resonance. For this the Pound-Drever-Hall (PDH) method is used [37, 38].
This is a phase sensitive detection method to keep an oscillator (laser), locked to a
resonator (cavity). There are other phase sensitive methods such as homodyne de-
tection, in which an additional laser beam serves as a phase reference. This, however,

10Finesse is related to optical linewidth viaF = FSR
κ

, where FSR is the free spectral range of the cavity.
The cavity used in this work has an FSR of 3 GHz.

11In practice two types of variations play a role: fast, small scale variations caused by vibrations of the
set-up from external influences and slow drift in environmental temperature. To highlight the sensitivity
of the set-up: when at room temperature, if the temperature changes by 1 mK, the cavity resonance
frequency changes by 5 MHz, many times the optical linewidth (∼ 100 kHz) of the cavity.
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Figure 2.9: (a) PDH open-loop error signal generated by scanning the laser across a cavity
resonance. (b) Open-loop error signal of the optical phase-locked loop generated by scanning
the frequency of one laser while the other laser is free-running. The x-axis displays the differ-
ence frequency f-f0 between the two lasers where f0=3 GHz. The dashed box in both figures
indicate the linear region used for the feedback.

requires that the beat signal between transmitted light and the additional laser can
be measured, which is not possible for our experimental set-up.

In the case of PDH, one carrier and two sidebands created via phase modulation,
are sent to the cavity. Any cavity length change will directly cause a change in phase
of the resonant carrier (see Fig. 2.4(b)), while the off-resonant side-bands are directly
reflected. These side-bands serve as a phase reference when measuring the inter-
ference between carrier and side-bands. In this way, any cavity length changes (or
laser frequency changes) can be measured, including the motion of the trampoline
resonator.

The resulting PDH signal can be used as the error signal for a PID controller
to keep the laser on resonance with the cavity. An example of the open-loop error
signal is shown in Fig. 2.9(a). The PDH method, therefore, serves two purposes in
our experiment: the error signal provides a reference and is used for the read-out of
the mechanical motion. This is only possible when the frequency of the trampoline
resonator is much higher than the feedback bandwidth. If the mechanical resonance
frequency falls within the feedback bandwidth, the motion of the resonator will be
visible in the output of the PID controller.

In addition to a read-out laser, another laser is used to generate the optical force.
Technically, the same laser can be used to generate the optical force as well, but to
avoid any unwanted interference it is easier to use a second laser (when available).
This second laser operates one free spectral range (FSR) of the cavity (∼ 3 GHz)
away from the first laser, again to avoid unwanted interference. Any drift in laser
frequency is resolved by having the second laser follow the first laser via an optical
phase-locked loop (OPPL), which works exactly like a normal phase-locked loop.
The beat signal of the two lasers is mixed with an electrical local oscillator operating
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Figure 2.10: Simplified schematic of the optical set-up. The components displayed are: LO: lo-
cal oscillator, BS: beam splitter, PBS: polarizing beam splitter, EOM: electro-optical modulator,
OI: optical isolator and PI: proportional-integral feedback controller.

at approximately the FSR of 3 GHz.12 The output of the mixer is shown in Fig. 2.9(b).
The dashed box indicates the linear region which can be used as an error signal for a
feedback loop to keep the phase of the beat signal constant with respect to the local
oscillator. If we would like to change the detuning of the second laser, we change
the local oscillator frequency. The frequency of the second laser is then, via a PID
controller, adjusted to keep the phase of the beat the same as the phase of the local
oscillator.

After alignment of the optical bench and placing the whole set-up either in a
vacuum chamber or a cryostat, an optomechanical experiment begins by locking the
first laser via the PDH method to a cavity resonance to provide both the reference
and the read-out of the mechanical motion. Next, the second laser is locked to the
first laser via the OPPL. Finally, the detuning is adjusted to see, for example, optical
cooling by monitoring the mechanical power spectral density.

In Fig. 2.10 a simplified schematic is shown of the optical set-up and we will give
a quick run through of the set-up and components. Laser 1 (Coherent Mephisto S)
is sent through an electro-optical modulator (EOM) to generate the two sidebands
needed for the PDH scheme. The light reflected from the cavity is, via a fiber cir-
culator, picked up with a photodiode. The electrical signal is mixed with the local
oscillator (LO) at 10 MHz that also drives the EOM. The low-frequency part is routed
to a PI controller (VU lock-box with ∼30 kHz bandwidth) to lock the frequency of
laser 1 to a cavity resonance. The high-frequency part is sent to a spectrum ana-
lyzer (Zurich Instruments HF2LI) to record the mechanical thermal noise spectrum
Sxx of the mechanical resonator. To lock laser 2 (Coherent Mephisto) with a variable
frequency difference to laser 1 via an OPLL, the beat signal of laser 1 and 2 is contin-
uously monitored using a fast PIN diode (EOT ET-3500F). This signal is mixed with

12Alternatively, a frequency divider can be used when an appropriate frequency generator is not avail-
able. Using a divider will, however, reduce the phase stability of the OPLL.
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a local oscillator around 3 GHz (Rohde and Schwarz SMA100A) to provide the error
signal for the OPLL, which is directed to a fast PI-controller (VU lock-box with ∼30
kHz bandwidth). By adjusting the frequency of the OPLL LO, laser 2 can be set to a
specific cavity detuning.

The frequency tunable range of the lasers via the piezos is limited to approxi-
mately 10 MHz. However, both lasers are also temperature tunable over a broader
frequency range (∼1 GHz), although with <1 Hz bandwidth. Therefore a slow laser
frequency feedback loop for each laser is implemented based on temperature control
that enables measurements for many hours with a fully automated measurement
protocol.


