
BLOCK TIME STEP STORAGE SCHEME FOR ASTROPHYSICAL N-BODY SIMULATIONS

Maxwell Xu Cai (蔡栩)1,2, Yohai Meiron (林友海)2,1, M. B. N. Kouwenhoven (柯文采)2, Paulina Assmann3,1,4, and
Rainer Spurzem1,2,5

1 National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, China; maxwell@nao.cas.cn
2 Kavli Institute for Astronomy and Astrophysics, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China

3 Departamento de Astronomía, Universidad de Chile, Camino El observatorio 1515, Las Condes, Santiago, Chile
4 Departamento de Astronomía, Universidad de Concépcion, Casilla 160-C, Concépcion, Chile

5 Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, D-69120 Heidelberg, Germany
Received 2014 December 9; accepted 2015 June 23; published 2015 August 18

ABSTRACT

Astrophysical research in recent decades has made significant progress thanks to the availability of various N-body
simulation techniques. With the rapid development of high-performance computing technologies, modern
simulations have been able to use the computing power of massively parallel clusters with more than 105 GPU
cores. While unprecedented accuracy and dynamical scales have been achieved, the enormous amount of data
being generated continuously poses great challenges for the subsequent procedures of data analysis and archiving.
In this paper, we propose an adaptive storage scheme for simulation data, inspired by the block time step (BTS)
integration scheme found in a number of direct N-body integrators available nowadays, as an urgent response to
these challenges. The proposed scheme, namely, the BTS storage scheme, works by minimizing the data
redundancy by assigning individual output frequencies to the data as required by the researcher. As demonstrated
by benchmarks, the proposed scheme is applicable to a wide variety of simulations. Despite the main focus of
developing a solution for direct N-body simulation data, the methodology is transferable for grid-based or tree-
based simulations where hierarchical time stepping is used.

Key words: globular clusters: general – methods: data analysis – methods: numerical – virtual observatory tools

1. INTRODUCTION

The gravitational N-body problem has posed a challenge
ever since it was mathematically formulated in the 17th century
by Isaac Newton. This problem of using initial conditions to
determine the future motion of N-bodies interacting gravita-
tionally among themselves continues to be relevant in modern
day astronomy and is investigated in the context of planetary
systems, star clusters, galaxies, and the universe. Mathemati-
cally, it is posed as N3 coupled nonlinear second-order
ordinary differential equations. The solution consists of the
phase-space paths of all particles as functions of time, which
generally cannot be expressed by algebraic expressions or
integrals.

Gravitational N-body simulations are currently the preferred
approach for finding these solutions. They use particles to
represent gravitating objects and propagate the initial condi-
tions in time by calculating the force acting on each particle,
and advancing it in time in small steps.

With advances in technology, simulations have become
elaborate enough to take full advantage of computing
capabilities. In particular, the availability of highly parallelized
computing facilities, some using hardware accelerators (such as
GRAPE, Makino & Taiji 19986; FPGA7 boards, Berczik
et al. 2007; and more recently GPUs8) have contributed to
recent progress in the field. Simulations are carried out with
more particles than ever before, and for longer integration
times. Modern simulations are also characterized by the
inclusion of more detailed physical processes and requirements
for higher numerical accuracy.

While powerful modern hardware has brought astrophysical
simulations to unprecedented accuracy, complexities arise with
the problem of storing the results, which is done by writing to
the hard disk some or all of the properties of some or all of the
particles at some pre-specified times; this is often called “taking
a snapshot.” The snapshot files can later be processed to learn
about the evolution of the system. The storage requirement is
determined by four factors: (1) the number of particles, (2) the
size of the data record per particle, (3) the output frequency,
and (4) the total integration time. In order to capture the
detailed physical processes, high time-resolution of output is
often necessary. Hence, there is a tradeoff between time-
resolution and output size (or the availability of storage space
and post-processing capabilities).
To illustrate this, consider some large cosmological simula-

tions from the previous decade. The Millennium Simulation
(Springel et al. 2005) followed about 1010 particles for nearly a
Hubble time and produced only 64 snapshots of about 300 GB
each. Similarly, the MareNostrum simulation (Gottloeber
et al. 2006) used 2 × 109 particles and saved 135 snapshots
of 64 GB each (running for a similar physical time). Even
almost a decade later, this data volume still poses a challenge
for storage, and more crucially for transport over a network and
for analysis. Thus, there is a gap between computing power and
data processing and management capabilities.
Direct summation techniques are often preferred when

studying a system in which accurate orbital integration is
needed and encounters are important, and/or physical assump-
tions have to be minimized, such as globular clusters and
planetary systems. In cosmological simulations where the
primary interest is to study the evolution of the large-scale
structure, one often uses Tree methods (Barnes & Hut 1986) or
the Fast Multipole Method (Greengard & Rokhlin 1987),
which are generally much faster (for large N) but introduce an

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August doi:10.1088/0067-0049/219/2/31
© 2015. The American Astronomical Society. All rights reserved.

6 GRAPE: GRAvity piPEline.
7 FPGA: Field Programmable Gate Array.
8 GPU: Graphics Processing Unit.

1

mailto:maxwell@nao.cas.cn
http://dx.doi.org/10.1088/0067-0049/219/2/31

approximation to the force contributions from very distant
particles. Direct N-body simulations thus generally use a much
smaller number of particles, today rarely more than N 106= .

Big data management has so far been in the domain of
cosmological collisionless simulations due to the large number
of particles. Despite the relatively small number of particles in
direct N-body simulations, data output can be a challenge for
this kind of simulations as well. The key challenge is that they
attempt to follow accurately phenomena which happen on
vastly different timescales: from white dwarf binaries, which
have orbital periods of less than one hour (Brown et al. 2011),
to stars orbiting in the outskirts of the cluster, which can take
millions of years to complete one orbit. Calculating the
evolution of the entire cluster based on the smallest time step
or timescale is completely impractical (see an estimation in
Section 3), and so most productive codes employ individual or
hierarchical time step schemes like the Hermite scheme
(Aarseth 2003). Saving the output, however, is usually done
using snapshots in much the same way as for the large
cosmological simulations.

The main problem with the snapshot approach is that no
information is stored about what happens between snapshots.
Interpolating will not always yield useful information if the
process of interest occurs on a much shorter timescale than the
snapshot interval. Examples of this are close encounters that
may create hypervelocity stars (e.g., Yu & Tremaine 2003),
resonances such as Kozai oscillations (e.g., Katz et al. 2011),
the evolution of planetary systems (e.g., Hao et al. 2013), or
supernova explosions. Those phenomena may be captured by
the program and recorded separately, but there is no
standardized way of doing so. For the same reason, it is
difficult to make a smooth visualization of an energetically
active subsystem. On the other hand, there might be redundant
data for the dynamically inactive particles. For this reason, Farr
et al. (2012) proposed an adaptive approach to data output in
which only data that had recently changed during the last
output interval will be written to files. They also proposed the
Particle Stream Data Format (PSDF), yet another Markup
Language (YAML)9-based structured text format to ensure
machine-independence and flexibility for most simulation data.

Traditionally, snapshot files are simple ASCII files containing
a table in which rows represent the particles and columns
represent their properties; a header may have some additional
information such as the snapshot time. This format is used, for
example, by the phiGRAPE code (Harfst et al. 2007). While
this scheme has some advantages, i.e., it is easy to process,
human readable, and machine-independent, it is not native to
the machine representation of data and usually requires
auxiliary information to build the structure, thus resulting in
much less efficient storage and longer parsing time compared to
binary formats. In contrast, binary formats store the same
information in a more compact way using some common
representation of numerical data (such as the IEEE754
floating-point specification), and are preferred when large
volumes of data are expected (e.g., the OUT3 file of NBODY6,
see Aarseth 1999a). There are, however, many binary formats
for particle data, differing in how the data are arranged in the
file and how they are described by the metadata (see
Section 5.1). Different binary formats generally produce files
of similar sizes (especially when the data volume is large) and

with little statistical redundancy, and therefore cannot be
further reduced in size by data compression algorithms.
Big data must be written efficiently to the storage medium

without interrupting or significantly slowing down the simula-
tion process itself, thus dedicated nodes or processors are often
used just to write the data to the disk, while the others continue
the integration (asynchronous output). Some high-performance
I/O libraries, such as MPI-IO, allow multiple nodes or
processors to write to the same file in parallel. Beside the
writing, some ways to deal with big data in this context are
utilized as needed. If the data are sorted in a certain way, then
this could make a snapshot file smaller by not saving the
particle ID. Alternatively, if the output of a tree code makes use
of the space-filling (Hilbert) curve, it is easier to rapidly access
spatial sub-volumes of the data (Springel et al. 2005). Another
way is to more frequently output a subset of particles of interest
(POIs), such as black holes (Berczik et al. 2005, 2006). Most
importantly, to reduce the amount of data that needs to be
saved, at least part of the analysis is carried out “on the fly.”
Despite efforts toward designing highly efficient data struc-
tures, some data processing on the fly may in fact be necessary.
An example of such analysis is the calculation of Lagrange
radii in NBODY6 (Aarseth 1999a) and the saving of image files
of the system in PKDGRAV (Jetley et al. 2008).
In this paper, we propose a scalable storage scheme for N-

body simulation data using the HDF5 high-performance data
format because of its hierarchical nature which allows us to
store time-evolving hierarchical systems such as globular
clusters. This paper is organized as follows. Section 2 describes
the mode of operation of a direct N-body code. An adaptive
storage scheme inspired by Farr et al. (2012) for direct N-body
simulation data and an analysis of the data rate is presented in
Section 3. Other possible approaches for data scaling are
presented are presented in Section 4. Technical concerns and
benchmarks of the proposed scheme are presented in Section 5.
Finally, applications of the proposed storage scheme are
presented in Section 6.

2. DIRECT N-BODY SIMULATIONS

In the direct N-body scheme, the equation of motion for a
particle of index i in a system containing N particles takes the
form (Aarseth 2003)

r
r r

r r
G

m ()
, (1)i

j

j i

N
j j

j1

i

i
3å= -

-

-=
¹

̈
∣ ∣

where mj are the masses of the other particles, N is the total
number of particles, r are the positions, and G is the gravity
constant. Full calculation of the mutual gravitational forces for a
system of N particles corresponds to N 2~ terms. The positions
and velocities are subsequently updated by assuming that the
evaluated force exerted on the particle is constant or can be
interpolated with a polynomial during a certain time step tD (see
more information about the integrator below). When the time
step tD is shared among all of the particles and the total
simulation time is Ttotal, the number of force calculations is

S N N
T

t

1

2
(1) . (2)total= -

D
The choice of tD varies among different integration

algorithms. Employing higher-order algorithms allows faster9 http://www.yaml.org/

2

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August Cai et al.

http://www.yaml.org/

convergence but requires additional computational effort to
calculate the high-order terms (Hut & Makino 2003). The
fourth-order Hermite integrator was demonstrated to be
successful in achieving an acceptable balance between
accuracy and speed (Aarseth 1999b). Nevertheless, in the
dense central regions of galaxies or star clusters where close
encounters may occur frequently, very small integration time
steps still have to be taken in order to ensure accuracy, which
will dramatically slow down the simulation. Close encounters
will eventually cause tight binary systems to form: such
systems require permanent treatment with extremely small time
steps. In this almost inevitable scenario, should all integration
points be saved, the sizes of the resulting data files would be
overwhelming. For instance, in a globular cluster with
N 105= , if the system is to be evolved for 1000 Hénon time
units10 with t 10 4D = - (which is relatively large; see
histogram in Figure 1), more than 1018 bytes (1 exabyte) of
data would be generated in total. This would pose great
challenges even for modern storage arrays and data analysis.

As direct computation of the N()2 algorithm is expensive,
optimization schemes such as individual time step (ITS) and
the Ahmad-Cohen neighbor scheme (ACS; Ahmad & Cohen
1973) were developed to dramatically reduce the computa-
tional costs (Aarseth 2003). Almost all modern N-body
integrators now employ the ITS scheme. The basic idea is
that since gravity follows an inverse-square law, particles from
regions of different density experience different magnitudes of
force. The density profiles of globular clusters can be roughly
approximated by a power law, such as the Plummer model
(Plummer 1911) or the King model (King 1966). Stars in the
outskirts of star clusters usually move relatively unperturbed
for timescales comparable to hundreds of times the correspond-
ing timescales of the central particles, and hence long time

steps can be used for their integration. Stars in the central
regions, however, frequently experience violent interactions
(close encounters) with their neighbors and therefore require
much smaller integration time steps. Integration of a particle
with index i is therefore carried out using a time step tiD , which
is often taken to be (e.g., Aarseth 2003)

a a a

a a a
t

˙

˙
, (3)i

i i i

i i i

(2) 2

(3) (2) 2
hD =

+

+

∣ ∣∣ ∣ ∣ ∣
∣ ∣∣ ∣ ∣ ∣

where ai is the acceleration of particle i (the total force acting

on it divided by its mass), and ȧi, ai
(2), and ai

(3) are the first,
second, and third derivatives of the acceleration. The parameter
η controls the accuracy of the integration and a commonly used
value is 0.02h = (Aarseth 2003). Depending on different
density profiles, the ITS scheme reduces the computational
complexity from N()2 to N()4 3 , and a larger gain can be
achieved with centrally concentrated systems (Makino &
Hut 1988). Here, a particle is considered as active if its state
is changed significantly on timescales comparable to the
integrator time step. Figure 1 shows a time step distribution of
time steps for systems with N 8k, 32k= , and 128k (in this
paper k 2 102410= =).
According to Equation (3), the time step tiD of particle i can

get an arbitrary value. In practice, however, in order to divide
particles into groups according to their time steps, the block
time step (BTS) scheme is often employed, permitting particles
in the same time step group to be advanced at the same time
(Hayli 1967, 1974; McMillan 1986). Figure 2 illustrates how
particles are advanced in the BTS scheme. For instance, in the
hierarchical scheme used by NBODY6 and its parallel version
NBODY6++11 (Spurzem 1999; Spurzem et al. 2008) as well as

Figure 1. Time step distribution for Plummer model realizations with
N 8k, 32k= and 128k at t = 1 Hénon time unit, simulated with the direct
N-body code NBODY6++. The code employs the Block Time Step (BTS)
integration scheme and a fourth-order Hermite integrator. For some arbitrarily
defined maximum time step tmaxD , all smaller time steps are given by

t t 2n
n

max
1D = D - , where n is called the “depth of integration.” In this figure,

the time steps are in Hénon units. The peaks of the three distributions are
shifted to the left as N increases, illustrating that systems with higher number
density have more close pairs, which lead to smaller time steps on average.

Figure 2. Schematic illustration of a four-particle system integrated with a
block time step (BTS) scheme. Particles i j k l(, , ,) are assigned individual time
steps according to the forces exerted on them. It is assumed here that the total
integration time is 1 (in arbitrary unit) and the minimum integration time is
1 16. At t 1 16= , no particle is scheduled to be integrated, as none have a time
step smaller than t 2 16D = . As the system proceeds to t 2 16= , particle l is
the only particle with a time step short enough to schedule an integration. At
t 4 16= , particles j k l(, ,) are scheduled for integration while particle i is still
outside the list. The full system is integrated at t 8 16= . Since after that
particle j becomes increasingly active, it is integrated every time step starting
from t 12 16= . The BTS scheme assigns time step in a hierarchical fashion
based on Equation (4), and therefore guarantees the commensurability of the
individual time step of all particles.

10 The N-body unit system is referred to here as the Hénon unit system in
honor of Michel Hénon. 11 This paper makes no distinction between NBODY6 and NBODY6++.

3

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August Cai et al.

many other Aarseth-type codes, the time steps are defined as

t t 2 , (4)n
n

max
1D = D -

where n is the level of integration and tmaxD is a predefined
maximum time step (which in practice is often taken as one
Hénon time unit).

The integration itself is often performed using a predictor-
corrector scheme. As an example, the Hermite Scheme
employed by NBODY6++ first predicts the positions x t()i p,

and velocities v t()i p, at some time t:

x x v a at t t
t t t t

() ()
()

2

()

6
˙

(5)

i p i i i i, ,0 0 ,0
0

2

,0
0

3

,0= + - +
-

+
-

v v a at t t
t t

() ()
()

2
˙ , (6)i p i i i, ,0 0 ,0

0
2

,0= + - +
-

where t0 is the starting time and the subscript 0 of the vector
quantities denotes the known value of the quantity at t0. The
acceleration ai and its first derivative ȧi are evaluated at time t
at the predicted position (i.e., by direct summation), and the
two higher-order derivatives of the acceleration can be
evaluated at time t0:

a
a a a a

t t t t
6

()
2

˙ ˙
(7)i

i i i i
,0
(2) ,0

0
2

,0

0
= -

-

-
-

+

-

a
a a a a

t t t t
12

()
6

˙ ˙

()
. (8)i

i i i i
,0
(3) ,0

0
3

,0

0
2

=
-

-
+

+

-

The second and third derivatives can be used to correct the
predicted values to fourth order:

x a at t t t
1

24
()

1

120
() (9)i i i,0

(2)
0

4
,0
(3)

0
5D = - + -

v a at t t t
1

6
()

1

24
() . (10)i i i,0

(2)
0

3
,0
(3)

0
4D = - + -

Finally, the corrected position x t()i and velocity v t()i at the
time t can be expressed as

x x xt t() () (11)i i p i,= + D

v v vt t() () . (12)i i p i,= + D

Therefore, extra terms ai,0 and ȧi,0 need to be stored, and
interpolation also introduces extra computational overhead. For
certain applications, such as visualization, it may not be critical
to compute the corrector terms, and so part of the computa-
tional and storage overhead can be further reduced.

3. BTS STORAGE SCHEME

3.1. Description

Originally inspired by the ITS scheme, Farr et al. (2012)
have shown that the data can actually be significantly
compressed by recording only active particles. Below, we
estimate the data rate of this approach by first considering the
“traditional” snapshot scheme. During one Hénon time unit, the
number of data records produced by the scheme is

NS (S) 2 , (13)IZE NAPSHOTS Rt=

where Rt is the temporal resolution factor, such that in one
Hénon time unit, the output operation is triggered for 2Rt times.
In the BTS scheme,

N N

N N N

(BTS) 2 2

2 2 , (14)

Size
n

R
n

n
R

n R
n

n

R
n

n
R

n

R

n

0

1

0

1

0

1

t

t

t

t

t

t

å å

å å

= +

= +
é

ë
ê
ê -

ù

û
ú
ú

=

-

=

¥

=

-

=

-

where N is the total number of particles and Nn is the number of
particles with time step t 1 2nD = . For a given Rt, particles
with integration time step t 1 2R

i
tD ⩾ are fully resolved in the

sense that output is commensurate with integration. That is,
whenever these particles are integrated (or in the terminology
of the Hermite scheme, corrected), their data are written to the
file; moreover, this happens only when integration is
performed. The rest of the particles, which have t 1 2R

i
tD < ,

are not fully resolved (for particles with time step 1 2n, output
occurs only every 2n Rt- integrations).
In the snapshot scheme, since data from all particles are

written at the same time, particles with integration frequencies
lower than the output frequency have to be extrapolated (or in
the terminology of the Hermite scheme, predicted); this is
redundant, since analysis software can perform this prediction,
which is computationally very cheap. The BTS scheme
compresses the data of the fully resolved particles by
eliminating redundant information, which is lossless. The
BTS scheme compresses the data of particles with integration
frequency higher than the output frequency by skipping a
certain number of integration points, which is lossy.
Figure 3 shows that the BTS file size initially grows

exponentially as a function of Rt (like the snapshot scheme) but
turns over at an output frequency close to the peak of the time
step distribution (in Figure 1) and saturates (so that the file size
remains finite even when the output frequency grows to
infinity, on the left of the figure). This saturation is due to the
small number of particles with very small time steps, as seen in

Figure 3. According to the time step distribution of the N 128k= simulation
in Figure 1 at t = 1, these histograms show the number of output records as a
function of output time step (in Hénon units), using the BTS scheme (solid
blue histogram) and the snapshot scheme (dashed red histogram).

4

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August Cai et al.

Figure 1. Note that for very low output frequencies, the
snapshot and BTS files have similar sizes, converging at
R 0t = (which in this case represents the maximally allowed
time step).

The snapshot scheme is prohibitively expensive if one
intends to resolve the most rapidly varying particles, but this is
feasible due to the convergence property of the BTS scheme.
On the other hand, for low output frequencies, the methods are
equivalent in terms of the number of records. The snapshot
scheme might even be preferable in this case since the extra
particle attributes a0 and ȧ0 need not be stored.

3.2. Example

Consider as an example the four-particle system illustrated in
Figure 2 where the system is integrated for one Hénon time unit
with a minimum integration time step of t 1 16D = ; a temporal
resolution factor of Rt = 3 is adopted, which means that
2 8Rt = output operations are scheduled within this one Hénon
time unit. The first output (not including t= 0) is triggered at
t 1 8= when particle l is the only particle in the output list; at
t 2 8= , however, particles j k l(, ,) are active and eligible for
output. At t 11 16= , although particle j is integrated, no
output occurs as it is not a product of the output time step 2 Rt-

and an integer, and therefore the information is lost here. It is
instead included in the output list at t 12 16 6 8= = alone
with particle l, and only the latest data at t 12 16= will be
written. At t 8 16= and t 1 8= , the system receives a full
output.

The number of particles in the output list will not exceed the
total number of particles at any time. Consider again the above
example when Rt = 2: more particles will be collected at the
output points but the output interval is longer. Recall that for a
full snapshot output, according to Equation (13) the size of the
output is proportional to N and the output size of this scheme is
a linear function of N. The statistics of the active particle

fractions for simulations carried out with NBODY6++ are
presented in Figure 4. The linear property of the BTS scheme
makes the scheme suitable for very large systems, as long as
the detailed evolution of the highly active particles is not
important. For example, the resulting data sets can be used to
generate visualization data for the overall evolution of star
clusters. The data sets will have sufficient resolution to describe
slow particles in the outskirts of the cluster in detail, allowing
the viewers to observe the evaporation process. Since the
output frequencies of highly active particles have been
truncated to 2Rt, the data sets will only have enough resolution
for these particles if the output resolution Rt is set sufficiently
high (so that the output time step is comparable to the actual
integration of those particles). Even in such a case, the output
size will still converge to a manageable scale, as seen from
Figure 3.

3.3. Interpolation

Analysis or visualization software needs to interpolate the
positions and sometimes velocities and higher derivatives of
the particles between the output points. This is best done using
septic splines, which are seventh degree piecewise polyno-
mials. This method ensures that the interpolated curves exactly
touch at the endpoints (or the spline’s knots) and that the stored
information concerning the previous and next known states is
used. Lower-order interpolation can be used based on the
predictor-corrector scheme (Section 2) or by applying lower-
order splines that would discard some stored information (i.e.,
the known values of ȧ); higher-order interpolation can be
achieved if one uses more than the two nearest points. Let us
define the running variable

t t

t t

t t

t
(15)0

1 0

0t º
-
-

=
-
D

such that 0 1t< < , where t is an arbitrary time in which we
are interested in the particle’s properties, t0 is the last
integration point before time t, and t1 is the next one, and

t t t1 0D º - is the output time step. The interpolated position
of the particle is thus

x p p p p p

p p p

()

, (16)

0 1 2
2

3
3

4
4

5
5

6
6

7
7

t t t t t

t t t

= + + + +

+ + +

where p p0 7¼ are the spline coefficients given in Equations
(17)–(24). The expressions for the velocity and higher
derivatives can be easily determined from the above expression
by derivation. Let the subscripts 0 and 1 represent the values of
the quantities at times t0 and t1, respectively, so that we can
write

p x (17)0 0=

p v t (18)1 0= D

p a t
1

2
(19)2 0

2= D

p a t
1

6
˙ (20)3 0

3= D

() ()

()

p a a a a

v v x x

t t

t

1

6
4˙ ˙

5

2
2

5 4 3 35() (21)

4 0 1
3

0 1
2

0 1 0 1

=- + D - - D

- + D - -

Figure 4. Fraction of active particles averaged over one Hénon time unit.
Plummer systems with N 16k, 64k, 256k= , and 1024k are evolved, and with
each N five different temporal resolutions Rt corresponding to five different
output frequencies are marked with different colored lines. As the output
frequency goes higher, the fraction of active particles declines, and therefore
the BTS storage scheme gains significant reduction of data rates. For the same
output frequency, systems with larger N have higher fractions of active
particles. The two methods converge at Rt = 0, which yields standard
snapshots.

5

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August Cai et al.

() ()

()

p a a a a

v v x x

t t

t

1

2
2˙ ˙ 10 7

3 15 13 84() (22)

5 0 1
3

0 1
2

0 1 0 1

= + D + - D

+ + D + -

() ()

()

p a a a a

v v x x

t t

t

1

6
4˙ 3 ˙

1

2
15 13

2 18 17 70() (23)

6 0 1
3

0 1
2

0 1 0 1

=- + D - - D

- + D - -

()p a a a a

v v x x

t t

t

1

6
˙ ˙ 2()

10() 20(). (24)

7 0 1
3

0 1
2

0 1 0 1

= + D + - D

+ + D + -

Note that the discussion above is per particle and that each
equation represents three vector components, which for the
purpose of the interpolation are completely independent.

4. MODIFIED BTS STORAGE SCHEMES

As shown in Figure 3, the BTS file size converges with
increasing output frequency, and therefore this scheme
becomes mandatory for the storage of simulation data when
very high temporal resolution is required. Nevertheless, BTS
scheme integration data of a very large simulation can still be
too large even for moderately large systems. While Equa-
tion (14) shows that that the data are scalable by specifying an
output frequency Rt, this scaling technique may not provide
sufficient resolution for highly active particles. An alternative
scaling technique is presented in Section 4.1, allowing the user
to define an individual resolution for each particle. While
dynamically active particles are assumed to be interesting
particles, Section 4.2 explores some possible scenarios where
this may not necessarily be the case. Finally, Section 4.3
discusses an even more generic scenario in which the output
may be driven by physical processes other than dynamical
evolution.

4.1. Scaling with Spatial Resolution: Triggered Output
for Significantly Updated Particles

In this scheme, the output is triggered per particle: when an
individual particle has been integrated Rs times, its data become
eligible for output. Since Rs defines the portion of integration
for output, it defines the resolution in a spatial manner: larger
values of Rs correspond to lower spatial resolution, and Rs = 1
corresponds to a full output of all BTS integration data. For
R 1s > , the scheme skips R 1s - integrations right after the
current output until the next one, reducing the data rate by a
factor comparable to Rs (the time steps of all particles are
changing as they move in phase space and therefore it is
unlikely that the reduction factor is exactly Rs). The total output
rate is proportional to the total number of individual time steps,
and the resulting output size grows as N 4 3 (Makino &
Hut 1988).

For instance, consider again the four-particle system
illustrated in Figure 2. Assuming that Rs = 2, the scheme
skips one output right after the current output, and so the
particle i will only be eligible for output at t = 1, particle j is
eligible for output at t 8 16, 12 16, 14 16, 1= , and so on.
With a careful choice of Rs, the scheme yields data sets with
sufficient resolution for highly active particles such as hard
binaries and close encounters, but also reduces the data rate of
slow particles. Full output corresponds to ∼1000 records per
particle orbit (on average); for rendering purposes, it is still

sufficient to reduce this by one order of magnitude, hence
reducing the storage consumption by one order of magnitude.
A comparison of the file sizes for different values of Rs is
presented in Table 1. It is sensible to apply this scheme for
detailed follow-ups of energetic subsystems.

4.2. Dedicated Output for the POIs

Binary and triple black holes in galactic nuclei or star cluster
centers, hypervelocity stars, and the host stars of planetary
systems are particularly interesting objects to investigate in
simulations. The output module of the integrator should
therefore accommodate this need by providing high-resolution
output for the POIs while suppressing the output of uninterest-
ing particles to achieve maximum storage efficiency. POIs can
be dynamically active. For example, a binary black hole system
in a galactic nucleus can be so dynamically active that it will
take a significant fraction of wall-clock time to resolve even
with an advanced regularization technique (e.g., KS regular-
ization). However, the bouns of these computations is that they
keep the data of those active particles constantly up-to-date,
allowing the output module to simply dump the data without
interpolation. On the other hand, it may be interesting to follow
the evolution of hypervelocity binary stars in the outskirts of
the cluster (e.g., Lu et al. 2007). The forces exerted on those
objects change rather slowly, despite their high velocities.
Consequently, the integrator will not integrate those objects
frequently; reliable dynamical data can then be achieved with
interpolation, for example, with the spline method presented in
Section 3.3.

4.3. Event/Attribute-driven Output

The output scenarios previously discussed are all driven by
the dynamical evolution of the simulated system. Output will
be triggered when the coordinates of particles change
significantly. Sometimes, however, it is necessary to have the
output triggered by certain events and/or attributes. For
example, in starburst galaxies, the star formation process is
usually the most interesting process to investigate. Critical
events in stellar evolution may not necessarily correspond to
critical events in the dynamical evolution. Therefore, the output
strategy should instead be driven by the stellar evolution

Table 1
Spatial Output Resolution Rs as a Function of the Number of Records

Rs # of Records (w/ BTS) # of Records (w/o BTS) Efficiency Ratio

50 112128 536870912 4788.0
40 223934 536870912 2343.0
30 272236 536870912 1972.1
20 404532 536870912 1327.1
10 766584 536870912 700.3
1 6953525 536870912 77.2

Note. The simulation was carried out with NBODY6++ for one Hénon time unit
(roughly 1 Myr) and N = 16384 particles, where BTS is employed. Rs = 1
corresponds to the full output of BTS data. The smallest time step of an

N = 16384 Plummer system is of the order of t 2 15D ~ - according to the time
step distribution given by Figure 1. Hence, should there be no BTS scheme, the

total number of record is proportional to N t 5.3 102 8D ~ ´ according to
Equation (2) (shown in column 2). A full output of BTS data already yielded
an efficiency ratio (column 2 divided by column 1) of 77.2, and together with
the Rs parameter the reduction can be promising.

6

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August Cai et al.

process, allowing follow-up data analysis to trace the evolution
of such astrophysical processes.

Gravitational dynamics codes generally provide dynamical
information on the particles such as positions, velocities, and
accelerations. Some codes support the simultaneous simulation
of multiple astrophysical processes. For example, NBODY6++
is able to take the feedback of stellar evolution into account
while handling the dynamical processes of particles. For a
direct N-body code with stellar evolution, the possible assign-
ment of astrophysical quantities for individual particles could
be tabulated as in Table 2; binary systems are very common in
such simulations, which require an auxiliary data structure to
describe their properties as a whole. A possible binary data
structure is presented in Table 3.

5. TECHNICAL CONCERNS AND BENCHMARKS

Even on modern supercomputers, a physically realistic
simulation may take months to run. It is therefore critical to
store the output such that it is accessible for further analysis.
This requires that data be stored in a well-behaved, high-
performance data structure. Generally, a simulation data file
should meet the following requirements:

1. accuracy: correctly recording the relevant quantities;
2. time efficiency: data are written faster than they are

generated, and the simulation is not slowed down
significantly due to data output;

3. space efficiency: redundancy minimized;
4. interchangeability: machine/OS independent;
5. scalability: scalable to simulations big and small, simple

and complicated; and
6. robustness: data loss minimized when the file is

corrupted.

Data sets of N-body simulations are designed to describe a
time-evolving system. Since inactive particles are not recorded,
the interpolation of their data requires knowledge of their

previously active state, making the data set itself time-
dependent. Hence, ensuring data consistency would be another
requirement.

5.1. Choosing a File Format

File formats are roughly divided into two categories: ASCII

files and binary files. ASCII files are generally easier to interpret
and are human readable. For example, tabular data are often
stored as CSV (comma-separated values) files. Since the CSV
data format simply uses one delimiter character (e.g., a comma)
to separate fields and uses a line break to indicate the
termination of a record, it is widely supported and can be
easily imported to an analysis program. More complicated ASCII

or text formats, such as XML12 and YAML13 also have been
developed and standardized, making text files capable of
describing hierarchical data structures. Text files avoid some of
the problems encountered with binary files, such as endianness,
padding bytes, and differences in the number of bytes in a
machine word. However, they are not native to computer
systems. Indeed, representation of numerical values in a text
file is just literal, as these values are merely ASCII sequences and
have to be converted to their intrinsic values before any
computation can be performed. Standardized text formats, such
as XML, structure the data with tags, which contributes to its
low entropy.
In contrast, high I/O throughput are usually achieved with

binary files since they are byte sequences native to the
machines. High-level binary file libraries have been developed
to resolve the problems of endianness, padding bytes, file
headers, metadata storage, block data storage, etc. HDF514

(Hierarchical Data Format, version 5), for example, is an
implementation of a binary file standard dedicated to handling
large volumes of numerical data. It offers rich features such as
compression filters, checksum filters, chunking, partial I/O,
parallel I/O, and caching. It allows the data to be structured in a
hierarchical fashion and accessed using POSIX-like path
syntax. While the HDF5 format is designed for general purpose
numerical data storage, some higher-level application program-
ming interfaces have been developed to fit into special
applications. For example, H5Part (Adelmann et al. 2007)
is a portable high-performance parallel data interface for HDF5,
which is dedicated to the storage of particle-based simulation

Table 2
Astrophysical Quantities of Individual Particles in a Direct

N-body Simulation with Stellar Evolution

Quantity Meaning Category

i Unique identifier of the particle Miscellaneous
name User friendly label (e.g., for visualization) Miscellaneous
t Current time Miscellaneous
td Next time step Miscellaneous
m Mass St. dyn. & evo.
x Position vector Stellar dynamics
ẋ Velocity vector Stellar dynamics
a Acceleration vector Stellar dynamics
ȧ Jerk vector (first derivative of a) Stellar dynamics
ρ Neighbor density Stellar dynamics
ϕ Local potential Stellar dynamics
tEV Stellar evolution age Stellar evolution

kSTAR Type indicator of star Stellar evolution

L Luminosity Stellar evolution
R Radius Stellar evolution
TEFF Effective temperature Stellar evolution

Z Metallicity Stellar evolution
md Mass change during tEV Stellar evolution

mCORE Core mass Stellar evolution

rCORE Core radius Stellar evolution

Table 3
Astrophysical Quantities of Binary Systems in a Direct N-body Simulation

Quantity Meaning

i i,1 2 Unique identifiers of the two particles

P Orbital period
A Semi-major axis
e Eccentricity of the binary orbit
I Orbital inclination

I I,1 2 Inclinations of the spins

xc Position vector of the center of mass
ẋc Velocity vector of the center of mass

Note. Individual properties of each component can be retrieved by referring to
Table 2 with i1 and i2.

12 http://www.w3.org/XML/
13 http://www.yaml.org/
14 http://www.hdfgroup.org/

7

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August Cai et al.

http://www.w3.org/XML/
http://www.yaml.org/
http://www.hdfgroup.org/

data. Other widely used binary file formats in astrophysics
include CDF15 (Common Data Format), NetCDF16 (Network
Common Data Format), and FITS17 (Flexible Image Transport
System). All of these formats are self-describing and machine-
independent, optimized for scientific data. The FITS data is
mainly designed for image data as its name indicates, and the
image metadata is stored in a human readable ASCII head,
allowing an interested user to easily examine the header
information with a simple text editor. CDF and NetCDF are
more general data formats. Originally, they share the same
conceptual model based on a multi-dimensional (array) model,
but the latter has since diverged and is not compatible with the
former. Some data formats are developed and optimized for
more specific applications. For instance, the SDF format
(Warren 2013) is used in the oct-tree-based “Dark Sky”
cosmological simulations (Skillman et al. 2014).

5.2. Benchmarks

We adopt HDF5 as the native output format for the direct N-
body code NBODY6 and NBODY6++, due to the rich features it
offers and especially its interchangeability within the astro-
nomical community. For example, the GADGET218 code
(which was used, among others, in the Millennium Simulation
mentioned above) has the option to output its snapshot data in
HDF5 format; the Low Frequency Array (LOFAR) chose to
use HDF5 to manage astronomical radio data (Anderson
et al. 2011). The internal file layout is structured with the
H5Part scheme (Adelmann et al. 2007). For the purpose of
benchmarks, we also store the data as plain text CSV files, in
which the particle data is described by multiple columns
separated by commas, and each line describes the full data for a
particle. Each floating-point number takes 8 bytes. Since the
CSV format is not hierarchical, the time variable for particles in
the same time group is repeated many times, as shown below:

t1, 1, x1, y1, z1, vx1, vy1, vz1, ...
t1, 2, x2, y2, z2, vx2, vy2, vz2, ...
......
t1, n, xi, yi, zi, vxi, vyi, vzi, ...
......
t2, 1, x1, y1, z1, vx1, vy1, vz1, ...
t2, 2, x2, y2, z2, vx2, vy2, vz2, ...
......
t2, n, xi, yi, zi, vxi, vyi, vzi, ...
......

The output subroutines can be easily integrated into recent
versions of NBODY6 and NBODY6++,19 in which options #46
and #47 of the input file are reserved for controlling the output
file type (HDF5 or CSV) and output frequency, respectively.
Detailed instructions for installation and usage can be found in
Appendix A.

The output file sizes of the binary HDF5 output and text CSV
output are compared in Figure 5, and the corresponding wall-
clock time overheads are shown in Figure 6. It is obvious that
even for very small systems, the performance difference
between HDF5 files and CSV files is well pronounced: the

file sizes of CSV are generally larger than the corresponding file
sizes of HDF5, as more data are repeated as metadata in the
CSV format. As N increases, they also grow faster than HDF5.
The overhead of HDF5 is negligible even for high-frequency
output, but the overhead of CSV is significant. Figure 7 shows
the growth of the file size (a cluster simulation of one Hénon
time unit) as a function of particle number; it also compares the
file size dependency on different output frequencies. It shows
that at lower output frequencies, the data size grows linearly as
a function of N while at high output frequencies (corresponding
to 2 102410 = outputs per hènon time unit), the BTS scheme
saves a significant fraction of the data rate.
With the scheme described in Section 3.2, Figure 7 shows

that the size of the output data scales linearly with the total
number of particles, thus achieving very high space efficiency,
suitable for long-term simulation of very large systems. This
scheme may not be able to provide sufficient resolution for

Figure 5. Size of output data file for one Hénon time unit as a function of total
particle number and temporal resolution (64, 256, 512, and full output of the
BTS data). The solid lines correspond to the output file size of when the output
data are written in HDF5; the dashed lines correspond to the output file size
when the output data are written in CSV format. With the increments of particle
number and output frequency, the CSV file size grows quickly due to its large
redundancy of metadata.

Figure 6. Total wall-clock time as a function of total particle number and
temporal resolution (64, 256, 512, and full output of the BTS data) for evolving
very small systems (N 1k, 2k, 4k, 8k=) for one Hénon time unit. The solid
lines correspond to the output file size of when the output data is written in
HDF5; the dashed lines correspond to the output file size when the output data
are written in CSV format. This measurement is performed on four Intel(R)
Core i7–3630QM CPU cores with the HDF5 library 1.8.11 (without GPU).
Even for such small systems, the performance differences of HDF5 and CSV
are still well pronounced. The overhead caused by the HDF5 output routine is
negligible, while the corresponding overhead caused by the CSV output routine
grows quickly.

15 http://cdf.gsfc.nasa.gov/
16 http://www.unidata.ucar.edu/software/netcdf/
17 http://fits.gsfc.nasa.gov/
18 http://www.mpa-garching.mpg.de/gadget/
19 http://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm

8

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August Cai et al.

http://cdf.gsfc.nasa.gov/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
http://fits.gsfc.nasa.gov/
http://www.mpa-garching.mpg.de/gadget/
http://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm

highly active particles as it treats all particles equally. In fact,
highly active particles can be well resolved by the scheme
described in Section 4.1 where the resolution of less active
particles is sacrificed.

6. APPLICATIONS

As noted in Section 4, a reasonable tradeoff between output
size and loss of information can be achieved by taking the most
interesting astrophysical processes into account and then
adapting Rt or Rs for data scalings, which makes various
applications possible. The resulting data sets can be used for
post-simulation processing such as data visualization or data
mining; they can also be used to store intermediate simulation
data in large-scale simulations.

6.1. Simulation of Planetary Systems in Star Clusters

The BTS scheme opens a new approach for N-body
simulations involving hierarchical architectures. The stability
of planetary systems in star clusters, for example, is of
fundamental importance in understand the early stage of planet
formation. In fact, star clusters are the building blocks of
galaxies (Lada & Lada 2003). Star formation is believed to
occur in clusters as giant molecular clouds collapse. The
collapse will likely result in circumstellar disks, which are the
progenitors of planetary systems. If planetary systems were
formed originally in the star cluster, the at least some of them
would have been stable enough to survive in the star cluster
environment where the densities are normally much higher than
the solar neighbor and close encounters are not rare. The
Kepler mission has been greatly successful in hunting
exoplanets, yet it is worth mentioning that there are only a
few exoplanets discovered in star clusters (e.g., Kepler-66,
Kepler-67; see Meibom et al. 2013). This dichotomy is likely
due to the post-formation disruptions of planetary systems in
star clusters. This problem has been tackled in previous studies
using both direct N-body simulations (e.g., Spurzem et al.
2009) and Monte-Carlo Simulations (e.g., Hao et al. 2013).
Nevertheless, due to the huge range of both dynamical
timescales and spatial scales, it is currently only feasible to
investigate single planetary systems by treating the star-planet
pairs as binaries and employing a regularization technique.

Monte-Carlo simulations could indeed extend the study to the
multiple planetary system domain, yet the results depend
heavily on the quality of close encounter sampling.
With the BTS scheme, it is possible to decouple the

dynamics of the whole system into the planetary and star
cluster parts, and by which separating the integration of each
part. To be specific, the star cluster dynamics can be integrated
using a dedicated code such as NBODY6++. With the resulting
data from that stored with the BTS scheme, one could then read
the stored data, use them to calculate perturbations, and plug
them into the planetary dynamics code.
As an example, we implemented the BTS storage scheme

with the HDF520 file format. The time series data is stored with
the H5Part scheme (Adelmann et al. 2007), as detailed in
Table 4. The simulations of planetary systems are carried out
after star cluster simulation is performed and the results are
stored in the HDF5 file. A certain fraction of stars with similar
mass are assigned planetary systems of identical initial
configurations. Each planetary system is integrated with
MERCURY6. As the simulation progresses, the current time t
is converted into the the Hénon time units, and the
corresponding step in the HDF5 file is thereby located.
Accelerations at the point where each planet is located are
calculated according to the loaded data, and are subsequently
applied as velocity kicks. If t corresponds to the intermediate
state between two adjacent time steps, then interpolation of
x y z(, ,) will be computed according to Equation (17)–(24),
such that the acceleration at timescales comparable to the
typical timescales of planets can be precisely evaluated (as
demonstrated in Figure 8).
Since redundant data is minimized in the BTS storage

scheme, we could adopt a very high output frequency of star
cluster integration data while maintaining reasonable data file
size (as shown in Figure 3). Together with the septic spline
interpolation technique and making full use of all available data
in the two adjacent time steps, the velocity kicks can be
calculated with very high accuracy and temporal resolution.
Furthermore, we parallelize the interpolation on GPUs with
Thrust/CUDA.21 In our simulations, the star cluster has 4000
stars where identical planetary systems are assigned to 1% of
Solar-type stars. Each planetary system contains the four gas
giants in the present-day Solar System. The BTS scheme has a
temporal resolution of Rt = 8, corresponding to 256 outputs per
Hénon time unit, or roughly 104 years per output. On two
Intel Xeon X5650 cores, evolving such a coupled systems
for about 1 Myr takes about 12 hr. The code is not fully
optimized for the purpose of benchmark, and the actual wall-
clock time depends primarily on the frequency of communica-
tion between NBODY6++ and MERCURY6. The communication
of NBODY6++ and MERCURY6 is implemented within the
AMUSE framework (Portegies Zwart et al. 2009, 2013). The
scientific results of this application are presented primarily in
Cai et al. (2015, and follow-up papers).

6.2. Long-term Evolution of A Massive
Globular Cluster with Million Bodies

Simulations of massive globular cluster in the regime of
million bodies and/or million solar masses have been made

Figure 7. Size of output data file by defining temporal resolutions of 8, 16, 32,
64, and 1024 outputs per Hénon time unit. The output data are written in the
HDF5 binary format. This gives a quick estimation of the simulation data size;
for example, following up the evolution of a typical N 100k~ system for
1000 Hénon time units with Rt=3 (i.e., 8 outputs per Hénon time unit)
corresponds to 100 GB of data size, which can be easily managed, even on
personal computers.

20 In particluar, we note that HDF5 is chosen just as an example because it is
very prevalent and flexible; other formats, such as SDF (Warren 2013), exist
and can be used in the same way.
21 http://docs.nvidia.com/cuda/thrust/

9

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August Cai et al.

http://docs.nvidia.com/cuda/thrust/

feasible only in recent years thanks to the exciting evolution of
GPU-based high-performance computing technology. In a
recent study, Wang et al. (2015) evolved a globular cluster
with N 1.05m= (950k single stars and 50k binaries) for
12 Gyr. With a temporal resolution of Rt = 3, 8 outputs were
generated for each Hénon time unit, corresponding to 475MB
of data. According to the time scaling of Hénon time units to
physical time units, the total time of simulation corresponds to
about 104–106 Hénon time units, depending on the total mass
of the cluster. As such, the total data output of the BTS scheme
is roughly 5 TB to 500 TB.

6.3. Applications for Grid-based Simulations

BTS-like storage schemes can also be very useful for grid-
based simulations. Modern adaptive mesh refinement (AMR)
codes, such as Enzo (Bryan et al. 2014) and GAMER (Schive
et al. 2010), adopt ITS integration powered by GPU
acceleration. The total number of refinement levels is typically
around 10, making the evolution time steps of the root level
and the highest refinement level differ by a factor of ∼1000.
Hence, it is impractical to store the entire snapshot at each
sub-step.

For example, in the cosmological simulations of wavelike
dark matter (Schive et al. 2014), the dynamical timescale of the
solitonic core in each dwarf galaxy is only about 50Myr. Thus,
it requires 1.6 104~ ´ data dumps from redshift one to the
present day (assuming 100 dumps per dynamical timescale).
Each full snapshot takes about 80 GB in a 1.5Mpc h−1

comoving box with 1010~ cells in total. The total amount of
data in the snapshot scheme thus consumes ∼1.3 petabytes. For

comparison, if we are mainly interested in the dynamical
evolution of one solitonic core, then we can utilize the BTS-
like storage scheme to output more frequently only the core
data. For a solitonic core with a radius of 1 kpc and a
simulation resolution of 60 pc, it consumes about 160 kilobyte
for one data dump and 2.5 GB in total after redshift one.
Accordingly, the storage requirement can be significantly
reduced by a factor of 5 105~ ´ .

6.4. Data Visualization

Astronomical data take on a multitude of forms: catalogs,
data cubes, images, and simulations (Kent 2013). Because of
their complexity, they are usually explored using data
visualization, which is in fact reorganization of the original
data by graphical means. It is particularly useful to illustrate the
dynamical evolution of N-body systems. Visualization can be
done in various ways, from a simple 2D plot to a realistic visual
reconstruction of complicated multi-scale astrophysical pro-
cesses. This simple idea can become challenging in the context
of astrophysical data because of the wide dynamical range and
large particle number. If the data are stored in a “compact”
fashion such that only active particles are recorded, as
described in Section 4, then the position needs to be
interpolated using (for example) septic splines as presented
in Section 3.3 prior to rendering. Since each particle is
interpolated independently, this problem is “embarrassingly
parallel” and very suitable for GPUs (e.g., programmed in
CUDA or OpenCL). It is common that the total number of
particles exceeds the total number of pixels on the viewport,
and therefore the visualization program should be adjusted to
the user’s interests. Furthermore, because of the large
dynamical ranges, data usually have to be scaled before
rendering. For example, the stellar mass m can range from

M0.1~ to a much as M150~ ; the power P emitted by a star
is a strong function of its temperature T and radius R, as
implied by the Stefan-Boltzmann law P R T2 4µ . If m or P are
rendered directly on the screen, then massive or bright stars are
easily saturated while light or faint stars are difficult to
distinguish.
In practice, it is usually not enough to recreate the evolution

process of an N-body system by plotting only the coordinates.
The velocity vector, mass, size, temperature, and luminosity are
then expected to be rendered as associated properties of the
coordinates, such as color, symbol, or size. As an example, we
adopt the astronomical plotting library vispy for the
visualization of an NBODY6++ simulation as Figure 9 shows;
as another example, we also adopt the open-source scientific
visualization package ParaView to visualize the mass
spectrum of dense globular cluster simulations, as shown in
Figure 10.

Table 4
Internal File Layout of the Star Cluster Time Series Data File

Step# Attributes (scalar) Data (vectors)

0 t N, ,0 0 ¼ x y z x y z x y z x y z m, , , , , , , , , , , , ,0 0 0 0
(1)

0
(1)

0
(1)

0
(2)

0
(2)

0
(2)

0
(3)

0
(3)

0
(3)

0 ¼

1 t N, ,1 1 ¼ x y z x y z x y z x y z m, , , , , , , , , , , , ,1 1 1 1
(1)

1
(1)

1
(1)

1
(2)

1
(2)

1
(2)

1
(3)

1
(3)

1
(3)

1 ¼
2 t N, ,2 2 ¼ x y z x y z x y z x y z m, , , , , , , , , , , , ,2 2 2 2

(1)
2
(1)

2
(1)

2
(2)

2
(2)

2
(2)

2
(3)

2
(3)

2
(3)

2 ¼

...
n t N, ,n n ¼ x y z x y z x y z x y z m, , , , , , , , , , , , ,n n n n n n n n n n n n n

(1) (1) (1) (2) (2) (2) (3) (3) (3) ¼

Note. The time series is organized as HDF5 groups in which vector data and scalar attributes corresponding to a given time step are grouped.

Figure 8. Interpolation of the position of a given star. Without interpolation,
the position of the star is a step-like function of time (shown with dots). With
interpolation, the position is smoothed, allowing velocity kicks to be preciously
evaluated (shown with solid curves).

10

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August Cai et al.

7. CONCLUSION

We present the BTS storage scheme for the data manage-
ment of astrophysical N-body simulations, inspired by the ITS
integration scheme (Makino & Hut 1988). This is an urgent
response to the ever-increasing challenges posed by modern
highly computationally expensive simulations. By adopting the
BTS storage scheme, the growth of data can be dramatically
scaled down from N2 to N 4 3 (for the Plummer model).
Depending on the uses of simulation, it is not necessary for all
integration data to be recorded. Instead, a resolution parameter
can be defined either in the space domain or in the time
domain, which offers the flexibility of data scaling. Apart from
theoretical analysis and predictions, dedicated simulations are
carried out and the results are consistent with the theory. Our
I/O performance benchmark of the binary HDF5 and the ASCII

CSV format shows that binary formats are generally more
preferable to store large, complicated data sets, yet for

lightweight data sets text files exhibit their convenience for
data analysis and portability. A list of astrophysical quantities
for particles with potential user interests is proposed, and some
of these quantities are visualized with open-source packages
and libraries such as ParaView, GLnemo2, and s2plot.
The growth of numerical simulation scales and data rates

implies that not only computations, but also data storage,
visualization, and analysis need to be carried out distributively.
Open source packages currently provide strong support for the
technical implementation of these distributed systems, yet, to
implement them into astrophysics-driven systems, adaptations
need to be made according to the specific astrophysical context.
This paper therefore addresses the concerns and possible
solutions. Typical applications of the proposed scheme to
astrophysical scenarios such as simulations of planetary
systems in star cluster, cosmological grid-based simulations,
long-term evolution of million solar mass globular clusters, and
scientific visualizations are presented as well.
Our discussion is primarily focused on particle-based direct

N-body simulations. The philosophy behind the proposed
scheme is to “apply proper scaling to the simulation data to
provide fine-grain control of the resolution of scientifically
interesting data while suppressed the uninteresting ones.”
Despite the different algorithms used in other kinds of
astrophysical simulations, such as hydrodynamics simulations,
tree codes, AMR codes, Monte-Carlo simulations, and many
other new algorithms under development, the methodology
addressed in this paper is transferable to a wide range of
scenarios.

We thank the anonymous referee for constructive comments
that helped to improve the manuscript considerably. We
acknowledge support by NAOC CAS through the Silk Road
Project and (RS) through the Chinese Academy of Sciences
Visiting Professorship for Senior International Scientists, grant
Number S2009 1 5- . The special GPU accelerated super-
computer laohu at the Center of Information and Computing
at National Astronomical Observatories, Chinese Academy of
Sciences, funded by Ministry of Finance of People’s Republic
of China under grant ZDYZ2008 2- , has been used for some
of the largest simulations. We are grateful for support by
Sonderforschungsbereich SFB 881 “The Milky Way System”

of the German Research Foundation (DFG), through sub-
project Z2 and the GPU cluster Milky Way at FZ Jülich, and
for the support of the visit of M.X.C. in Heidelberg. We thank
Hsi-Yu Schive for the information of cosmological grid-based
simulation. We thank Peter Berczik, Long Wang, Sverre
Aarseth, Marcel Zemp, and Siyi Huang for useful discussions.
M.B.N.K. was supported by the Peter and Patricia Gruber
Foundation through the PPGF fellowship, by the Peking
University One Hundred Talent Fund (985), and by the
National Natural Science Foundation of China (grants
11010237, 11050110414, 11173004). This publication was
made possible through the support of a grant from the John
Templeton Foundation and National Astronomical Observa-
tories of Chinese Academy of Sciences. The opinions
expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the John Templeton
Foundation or National Astronomical Observatories of Chinese
Academy of Sciences. The funds from John Templeton
Foundation were awarded in a grant to The University of
Chicago which also managed the program in conjunction with

Figure 9. Visualization of NBODY6++ snapshot with the vispy library. The
particles are colored according to their temperature, and are sized according to
their luminosity.

Figure 10. Visualization of NBODY6++ simulation data with ParaView. The
figure shows a cluster with N = 5000 particles (King Model, W0 = 6.0, Kroupa
(2001) initial mass function). The upper left panel shows an overview of the
star cluster; the botton left panel shows the trajectories of the particle of interest
(POI), and in this case they are two stellar mass black holes (masses
M M101 = Å and M M202 = Å). The stars are colored with their stellar types.
The corresponding H–R diagram evolving simultaneously with the cluster is
shown on the right panel. The data are written in HDF5 format with the
H5Part scheme, which is supported by ParaView via the built-in
H5PartReader.

11

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August Cai et al.

National Astronomical Observatories, Chinese Academy of
Sciences. P.A. acknowledges the financial support of FONDE-
CYT 3130623 and C.A.S. the Visiting Fellowship for
researchers from developing countries. P.A. was also funded
by Chinese Academy of Sciences President’s International
Fellowship Initiative, grant No. 2014FFJB0018, and C.A.S.
through a grant to the South America Center for Astronomy
(CASSACA) in Santiago, Chile.

APPENDIX A
CUSTOM OUTPUT SUBROUTINES FOR NBODY6

We implemented the HDF5 and CSV custom data format
output subroutines for NBODY6 and NBODY6++, both for
benchmark purpose and the need of long-term data manage-
ment. The subroutines can be downloaded from http://silkroad.
bao.ac.cn/~maxwell/hdf5. The integration is trivial: (1)
compile and install the HDF5 library from the source code,
which can be obtained from http://www.hdfgroup.org/HDF5/
release/obtainsrc.html; (2) copy the custom output subroutines
source code custom_output.f to the Ncode directory of
NBODY6; (3) modify the Makefile to add the custom_out-
put.f file into the list of source files; (4) call the subroutine
by adding one line into the intgrt.f (or intgrt.omp.f
for the GPU2 version); and (5) add a common block to the
“hrplot.f” so that stellar evolution data can also be dumped to
the output. More detailed instruction can be found in the
README file of of the downloaded package. In the NBODY6
input file, option #46 and #47 are used to control the output file
type, respectively, as shown in Table 5.

APPENDIX B
VISUALIZATION TECHNIQUES OF

THE HDF5-BASED BTS DATA

The HDF5 data generated by the custom output subroutines
described in Appendix A can be visualized directly with
ParaView. The H5Part reader is included in the Para-
View 4.x distribution, but it is not activated by default. To
enable it, users may navigate to the main menu and click
“Tools ∣ Manage Plugins,” and then find the H5PartReader
and select “Auto Load.” After that, one will be able to load the
HDF5 simulation data sets from the Open menu. After loading
the file, users may select the X, Y, and Z arrays from the drop-
down list for visualization.

We also implemented a vispy-based visualization script for
the simulation data sets, which can be downloaded from http://
silkroad.bao.ac.cn/~maxwell/hdf5.

REFERENCES

Aarseth, S. J. 1999a, PASP, 111, 1333
Aarseth, S. J. 1999b, CeMDA, 73, 127
Aarseth, S. J. (ed.) 2003, in Gravitational N-Body Simulations (Cambridge:

Cambridge Univ. Press), 430
Adelmann, A., Gsell, A., Oswald, B., et al. 2007, in Particle Accelerator Conf.,

Progress on H5Part: a Portable High Performance Parallel Data Interface for
Electromagnetics Simulations (Piscataway, NJ: IEEE), 3396

Ahmad, A., & Cohen, L. 1973, JCoPh, 12, 389
Anderson, K., Alexov, A., Bähren, L., et al. 2011, adass XX, 442, 53
Barnes, J., & Hut, P. 1986, Natur, 324, 446
Berczik, P., Merritt, D., & Spurzem, R. 2005, ApJ, 633, 680
Berczik, P., Merritt, D., Spurzem, R., & Bischof, H.-P. 2006, ApJL, 642, L21
Berczik, P., Nakasato, N., Berentzen, I., et al. 2007, in SPHERIC—Smoothed

Particle Hydrodynamics European Research Interest Community, Second
International Workshop, ed. A. Crespo et al. (Ourense: SPHERIC), 5

Brown, W. R., Kilic, M., Hermes, J. J., et al. 2011, ApJL, 737, L23
Bryan, G. L., Norman, M. L., O’Shea, B. W., et al. 2014, ApJS, 211, 19
Cai, M. X., Spurzem, R., & Kouwenhoven, M. B. N. 2015, arXiv:1501.01709
Farr, W. M., Ames, J., Hut, P., et al. 2012, Natur, 17, 520
Gottloeber, S., Yepes, G., Wagner, C., & Sevilla, R. 2006, arXiv:astro-ph/

0608289
Greengard, L., & Rokhlin, V. 1987, JCoPh, 73, 325
Hao, W., Kouwenhoven, M. B. N., & Spurzem, R. 2013, MNRAS, 433, 867
Harfst, S., Gualandris, A., Merritt, D., et al. 2007, Natur, 12, 357
Hayli, A. 1967, Les Nouvelles Méthodes de la Dynamique Stellaire

(Paris: CNRS)
Hayli, A. 1974, Numerical Solution of Ordinary Differential Equations (Berlin:

Springer)
Hut, P., & Makino, J. 2003, The Art of Computational Science
Jetley, P., Gioachin, F., Mendes, C., Kale, L. V., & Quinn, T. 2008, in IEEE

Int. Symp. on Parallel and Distributed Processing, IPDPS, Massively
Parallel Cosmological Simulations with ChaNGa (Piscataway, NJ:
IEEE), 1

Katz, B., Dong, S., & Malhotra, R. 2011, PhRvL, 107, 181101
Kent, B. R. 2013, PASP, 125, 731
King, I. R. 1966, AJ, 71, 64
Kroupa, P. 2001, MNRAS, 322, 231
Lada, C. J., & Lada, E. A. 2003, ARA&A, 41, 57
Lu, Y., Yu, Q., & Lin, D. N. C. 2007, ApJL, 666, L89
Makino, J., & Hut, P. 1988, ApJS, 68, 833
Makino, J., & Taiji, M. (ed.) 1998, in Scientific Simulations with Special-

Purpose Computers-the GRAPE Systems (New York: Wiley-VCsH), 248
McMillan, S. L. W. 1986, LNP, 267, 156
Meibom, S., Torres, G., Fressin, F., et al. 2013, Natur, 499, 55
Plummer, H. C. 1911, MNRAS, 71, 460
Portegies Zwart, S., et al. 2013, CoPhC, 183, 456
Portegies Zwart, S., McMillan, S., Harfst, S., et al. 2009, NewA, 14, 369
Schive, H.-Y., Chiueh, T., & Broadhurst, T. 2014, NatPh, 10, 496
Schive, H.-Y., Tsai, Y.-C., & Chiueh, T. 2010, ApJS, 186, 457
Skillman, S. W., Warren, M. S., Turk, M. J., et al. 2014, arXiv:1407.2600
Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Natur, 435, 629
Spurzem, R. 1999, JCoAM, 109, 407
Spurzem, R., Berentzen, I., Berczik, P., et al. 2008, LNP, 760, 377
Spurzem, R., Giersz, M., Heggie, D. C., & Lin, D. N. C. 2009, ApJ,

697, 458
Wang, L., Spurzem, R., Aarseth, S., et al. 2015, MNRAS, 450, 4070
Warren, M. S. 2013, arXiv:1310.4502
Yu, Q., & Tremaine, S. 2003, ApJ, 599, 1129

Table 5
Fine-grain Control of Output Frequency and File Format for NBODY6

Option Meaning

KZ(46)=1 Output BTS data as HDF5 (active particle only)
KZ(46)=3 Output BTS data as HDF5 (all particles)
KZ(46)=2 Output BTS data as HDF5 (active particle only)
KZ(46)=4 Output BTS data as CSV (all particles)
KZ(47)=Rt The output frequency is 2Rt times per Hénon time unit

12

The Astrophysical Journal Supplement Series, 219:31 (12pp), 2015 August Cai et al.

http://silkroad.bao.ac.cn/~maxwell/hdf5
http://silkroad.bao.ac.cn/~maxwell/hdf5
http://silkroad.bao.ac.cn/~maxwell/hdf5
http://silkroad.bao.ac.cn/~maxwell/hdf5
http://www.hdfgroup.org/HDF5/release/obtainsrc.html
http://www.hdfgroup.org/HDF5/release/obtainsrc.html
http://silkroad.bao.ac.cn/~maxwell/hdf5
http://silkroad.bao.ac.cn/~maxwell/hdf5
http://silkroad.bao.ac.cn/~maxwell/hdf5
http://silkroad.bao.ac.cn/~maxwell/hdf5
http://dx.doi.org/10.1086/316455
http://adsabs.harvard.edu/abs/1999PASP..111.1333A
http://dx.doi.org/10.1023/A:1008390828807
http://adsabs.harvard.edu/abs/1999CeMDA..73..127A
http://dx.doi.org/10.1016/0021-9991(73)90160-5
http://adsabs.harvard.edu/abs/1973JCoPh..12..389A
http://adsabs.harvard.edu/abs/2011adass..20...53A
http://dx.doi.org/10.1038/324446a0
http://adsabs.harvard.edu/abs/1986Natur.324..446B
http://dx.doi.org/10.1086/491598
http://adsabs.harvard.edu/abs/2005ApJ...633..680B
http://dx.doi.org/10.1086/504426
http://adsabs.harvard.edu/abs/2006ApJ...642L..21B
http://adsabs.harvard.edu/abs/2007sphe.work....5B
http://dx.doi.org/10.1088/2041-8205/737/1/L23
http://adsabs.harvard.edu/abs/2011ApJ...737L..23B
http://dx.doi.org/10.1088/0067-0049/211/2/19
http://adsabs.harvard.edu/abs/2014ApJS..211...19B
http://arxiv.org/abs/1501.01709
http://arXiv.org/abs/astro-ph/0608289
http://arXiv.org/abs/astro-ph/0608289
http://dx.doi.org/10.1016/0021-9991(87)90140-9
http://adsabs.harvard.edu/abs/1987JCoPh..73..325G
http://dx.doi.org/10.1093/mnras/stt771
http://adsabs.harvard.edu/abs/2013MNRAS.433..867H
http://dx.doi.org/10.1103/PhysRevLett.107.181101
http://adsabs.harvard.edu/abs/2011PhRvL.107r1101K
http://dx.doi.org/10.1086/671412
http://adsabs.harvard.edu/abs/2013PASP..125..731K
http://dx.doi.org/10.1086/109857
http://adsabs.harvard.edu/abs/1966AJ.....71...64K
http://dx.doi.org/10.1046/j.1365-8711.2001.04022.x
http://adsabs.harvard.edu/abs/2001MNRAS.322..231K
http://dx.doi.org/10.1146/annurev.astro.41.011802.094844
http://adsabs.harvard.edu/abs/2003ARA&A..41...57L
http://dx.doi.org/10.1086/521708
http://adsabs.harvard.edu/abs/2007ApJ...666L..89L
http://dx.doi.org/10.1086/191306
http://adsabs.harvard.edu/abs/1988ApJS...68..833M
http://dx.doi.org/10.1007/BFb0116406
http://adsabs.harvard.edu/abs/1986LNP...267..156M
http://dx.doi.org/10.1038/nature12279
http://adsabs.harvard.edu/abs/2013Natur.499...55M
http://dx.doi.org/10.1093/mnras/71.5.460
http://adsabs.harvard.edu/abs/1911MNRAS..71..460P
http://dx.doi.org/10.1016/j.cpc.2012.09.024
http://adsabs.harvard.edu/abs/2013CoPhC.183..456P
http://dx.doi.org/10.1016/j.newast.2008.10.006
http://adsabs.harvard.edu/abs/2009NewA...14..369P
http://dx.doi.org/10.1038/nphys2996
http://adsabs.harvard.edu/abs/2014NatPh..10..496S
http://dx.doi.org/10.1088/0067-0049/186/2/457
http://adsabs.harvard.edu/abs/2010ApJS..186..457S
http://arXiv.org/abs/1407.2600
http://dx.doi.org/10.1038/nature03597
http://adsabs.harvard.edu/abs/2005Natur.435..629S
http://adsabs.harvard.edu/abs/1999JCoAM.109..407S
http://dx.doi.org/10.1007/978-1-4020-8431-7_15
http://adsabs.harvard.edu/abs/2008LNP...760..377S
http://dx.doi.org/10.1088/0004-637X/697/1/458
http://adsabs.harvard.edu/abs/2009ApJ...697..458S
http://adsabs.harvard.edu/abs/2009ApJ...697..458S
http://dx.doi.org/10.1093/mnras/stv817
http://adsabs.harvard.edu/abs/2015MNRAS.450.4070W
http://arXiv.org/abs/1310.4502
http://dx.doi.org/10.1086/379546
http://adsabs.harvard.edu/abs/2003ApJ...599.1129Y

	1. INTRODUCTION
	2. DIRECT N-BODY SIMULATIONS
	3. BTS STORAGE SCHEME
	3.1. Description
	3.2. Example
	3.3. Interpolation

	4. MODIFIED BTS STORAGE SCHEMES
	4.1. Scaling with Spatial Resolution: Triggered Output for Significantly Updated Particles
	4.2. Dedicated Output for the POIs
	4.3. Event/Attribute-driven Output

	5. TECHNICAL CONCERNS AND BENCHMARKS
	5.1. Choosing a File Format
	5.2. Benchmarks

	6. APPLICATIONS
	6.1. Simulation of Planetary Systems in Star Clusters
	6.2. Long-term Evolution of A Massive Globular Cluster with Million Bodies
	6.3. Applications for Grid-based Simulations
	6.4. Data Visualization

	7. CONCLUSION
	APPENDIX ACUSTOM OUTPUT SUBROUTINES FOR NBODY6
	APPENDIX BVISUALIZATION TECHNIQUES OF THE HDF5-BASED BTS DATA
	REFERENCES

