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ABSTRACT
In an informal way, some dilemmas in connection with hypothesis testing in contingency tables are dis-
cussed. The body of the article concerns the numerical evaluation of Cochran’s Rule about the minimum
expected value in r × c contingency tables with fixed margins when testing independence with Pearson’s
X2 statistic using the χ 2 distribution.

1. Introduction

This article uses an example to challenge statisticians, in an
informal way, to reflect on their belief in statistics and to ask
themselves whether they practice what they preach. This exam-
ple serves as an introduction to a numerical investigation into
the quality of Cochran’s well-known rule of thumb about the
minimum expected value needed for using the χ2 distribution
as an adequate approximation to that of Pearson’s X2 statistic
when testing independence in a contingency table. The article
will conclude with some advice on what to do if a contingency
table has many expected values smaller than 5.

2. A Dilemma for theWell-Meaning Statistician

Imagine you are at the doctor’s and she is breaking some bad
news to you, telling you that you suffer from a rare, serious ill-
ness. She recommends surgery which will probably cure the dis-
ease. However, there are two types of surgery (A and B), and as
a good statistician you naturally wonder whether there is any
information available that will help you come to a largely ratio-
nal decision.

“Well,” says the doctor, “We don’t have much experience of
this illness yet and there have only been 12 previous cases. All
we know about the results of the treatment is here in Table 1.”
The doctor adds that, on the basis of the data, her advice is for
you to undergo surgery, in particularMethodA.As ameticulous
statistician, you wonder whetherMethodA really is the better of
the two.

The answer to this question comes down to determining
which treatment has the highest chance of success. The implicit
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assumption in looking exclusively at this chance is that no other
argument will influence your decision other than whether you
will survive the surgery (or lack of it). In that case, there is not
much point for someone suffering from the illness in selecting a
significance level or carrying out a test for independence of Type
of surgery and Patient’s state.

After all, it is no great loss if the patient makes a Type I error and
wrongly concludes that Type of surgery and Patient’s state are inter-
dependent. In such a case, the surgery will be futile, but aside from
the cost this will not influence the patient’s survival chances (the null
hypothesis is true after all). If the patient still wants to carry out the
test of independence, wrongly concluding that there is independence
would be a more serious error (a Type II error). The patient would
then come to the conclusion that the choice of treatment method is
immaterial, whereas it is not. [From the review report to the earlier
Dutch version of this paper.]

If you really do not like doctors cutting into your body, there
is a different kind of problem. In that case you would only want
to undergo surgery if it offered clear advantages over doing noth-
ing, and it then becomes worth finding out if there is a relation-
ship between Type of surgery and Patient’s state, because in case
of independence you will choose not to have any surgery.

At least two problems with testing present themselves. First
of all, what was the sampling design in this study, and secondly,
once we know this, how do we test the null hypothesis of inde-
pendence between the Type of surgery and the Patient’s state?

2.1. Sampling Design

With respect to the sampling design there are two serious
possibilities. The first is that the doctors randomly allocated the
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Table . Results of the treatment of patients with the illness.

Type of surgery

Patient’s state None A B Total

Still alive    
Passed away    
Total    

patients to one of the three surgery categories and the uneven
distribution across these categories is accidental. In this case,
we are dealing with a multinomial experimental design with
N = 12, so that a multinomial test is appropriate. In the sec-
ond option, the doctors distributed the patients systematically
across categories andwe are dealingwith a product-multinomial
design with the product of three multinomial (here: binomial)
distributions with n1 = 3, n2 = 6, and n3 = 3.

There is an ongoing debate about how one should test in
these sorts of situations, that is, whether a multinomial distri-
bution (fixed N), a product-multinomial distribution (one fixed
marginal), or a (generalized) hypergeometric distribution (two
fixedmarginals) should be used. For a discussion and references
about this debate, see Agresti (1992, pp. 146–148) or Verbeek
and Kroonenberg (1993, Appendix B.2). From our discussion, it
becomes clear that we prefer to work with two fixed marginals,
which is what we will do here. However, there are others who are
not keen on fixed marginals and for them this article will have
little to offer.

2.2. Correct Test

Given fixed margins, the distribution for the observations is a
hypergeometric distribution, and a different hypergeometric for
each set of fixed margins, which makes it virtually impossible
to tabulate the distribution in any sensible way. Not only is the
distribution itself discrete, but obviously any statistic defined on
the contingency table has a discrete distribution as well. Given
the margins, only a limited number of values are possible for
any particular statistic S. The number of possible values for the
statistic S depends directly on the marginal totals. The standard
solution when we test independence is to use asymptotic argu-
ments, and approximate the discrete distribution with a contin-
uous one which can be tabulated, in particular the χ2 distribu-
tion with (r − 1) × (c − 1) degrees of freedom. Of course, the
quality of the approximation of the continuous distribution to
the discrete distribution of a particular statistic determines its
usefulness, and will be different for each statistic. The literature
on evaluating this quality is extensive, if not daunting. The best
references are probably Cochran (1952, 1954), Yarnold (1970),
Larntz (1978), Fienberg (1979), Koehler andLarntz (1980), Yates
(1984); Koehler (1986); several of these authors also treat more
complicated situations, such as loglinear models. A more recent
thorough review and discussion of the literature can be found in
Agresti (2001).

2.3. Tests for Independence

The standard test for independence against an unspecified
alternative is Pearson’s (1900) X2 test [ = �(observed -
expected)2/expected] which asymptotically approaches a χ2

distribution. This test is usually, and in our opinion incorrectly,
named the “χ2-test.” Incorrectly, because X2 is the test statistic
and there are many tests that have an asymptotic χ2 distribution
(for example the log-likelihood ratio test, Kruskal–Wallis’ test,
etc.). Note that it is common practice to use the χ2 distribution
in all three sampling designs mentioned above. Most people are
not too worried about the sampling situation, because asymp-
totically the different sampling situations lead to the same test.
In other words, when X2 is used as test statistic in conjunction
with the χ2 distribution, regardless of the sampling situation,
this will always lead to the same result.

2.4. Small Expected Values

Let us return to our starting point about what to do now that it
has been established that you have the illness. As X2 is the stan-
dard test for independence, it is rather irksome that after per-
forming this test with a standard software package, one is often
warned in the output that a number of cells have an expected
value smaller than 5, without any indication as to how to eval-
uate this and what, if anything, should be done about it. At
present, the message in for instance ibm spss for our Table 1 is:
“6 cells (100.0%) have expected count less than 5. Theminimum
expected count is 1.50.” (Output from the Crosstabs procedure,
IBM SPSS Statistics, Version 23).

Suddenly, you remember something from your statistics text-
book along the lines of: “The X2 test should only be used if the
expected values are larger than 5” or something to that effect. It
is interesting how little is explained about that ”should.” Should
in this case means using the test in a way that minimizes the
risk of making the wrong decision. It so happens that the pχ2
value [Prχ2(X2�X2

obs)] of the X2 test does not necessarily have
the same value as the correct exact pX2 value [PrX2 (X2�X2

obs)]
of the Exact test, that is, the p value based on the distribution of
X2 itself. In other words, it is possible that the X2 test using the
χ2 distribution might lead to the rejection of the null hypothe-
sis, whereas the exact test would come to a different conclusion
and vice versa. However, for an exact test the exact distribution
is not identical in the three sampling situations mentioned. If
one decides to condition on the margins as we have done in this
paper, the (generalized) hypergeometric distribution is used in
all situations and there is once again one test for all sampling sit-
uations. By the way, sometimes the exact test is seen in an incor-
rect light, as in the remark “Note that Fisher’s exact test does not
have a ‘test statistic’, but computes the p value directly.”1 Thus,
the fact is overlooked that X2 itself is the test statistic being eval-
uated using its own distribution rather than the χ2 one.

On the basis of the information in Table 1, should you
accept Method A as superior, or could you just as well roll a
three-sided die? The X2 in Table l is 6.0, which is larger than
the critical χ2 value ( = 5.991, if α = 0.05 with df = 2; pχ2 =
.0498), so we can conclude on formal grounds that, given the
significance, we can reject the null hypothesis of independence
– even with such a small number of observations. If in Table 2
we look at the normalized residuals we see that there are a
larger number of survivors of the treatment A (Haberman’s
(1973) adjusted residuals; see also Verbeek and Kroonenberg,

 http://www.ats.ucla.edu/stat/stata/whatstat/whatstat.htm
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Figure . This figure shows themean,mean± standard deviation,minimumandmaximum for fixed n, r, and c, of p= pX 2 (X
>χ 

df [.]; vertical axis) for all r× cCochran
tables for each value of n. The solid horizontal lines indicate the [.–.] extended Cochran boundaries, and the light dashed horizontal lines the [.–.] boundaries
specified by Cochran.

Table . Normalized Haberman Residuals for Table .

Operation method

Patient’s condition None A B

Still alive − . . − .
Passed away . − . .

NOTE: The normalized residuals, rn , are defined as rn = (observed value – expected
value)/ estimated standard deviation); asymptotically they are normally dis-
tributed, so that they can be compared (roughly, for small numbers) to the critical
values of the standard normal distribution.

1990, 1993, section 9.1). So the doctor’s choice for surgery, in
particular Method A, seems justified.

2.5. Exact Test and Algorithms

But can the pχ2 be trusted in this situation? After all, all the
expected values are smaller than 5. The solution is clear: we will
have to use the Exact test. The essence of this test is that, given
the marginals, we determine all possible tables, calculate both
theX2 and the hypergeometric probability for the table and then
add up the probabilities for all the tables that have an X2 value
that is larger than or equal to the observed X2 value. This prob-
lem, simple in concept, has led many to try and design an algo-
rithm to solve it (for an overview, see Verbeek andKroonenberg,
1985). The trick is, of course, to do this as efficiently as pos-
sible, because when one is dealing with large tables and many
observations the calculations can easily get out of hand. As far
as we know, the champion exact p-value calculator is Mehta and
Patel’s (1983, 1986a, 1986b, 1991) network algorithm. In 1993,
Clarkson et al., stated “The network algorithm of Mehta and
Patel [1986] is currently the best general algorithm for com-
puting exact probabilities in r × c contingency tables with fixed
marginals,” but in their article they suggested several improve-
ments to Mehta and Patel’s algorithm. The fisher enumeration
algorithm (Verbeek and Kroonenberg, 1985, 1990, 1993) does
not do too badly either.

Agresti (1992, p. 144) remarked in this respect that “Among
themost popular and versatile programs in the past decade have
been ones using the network algorithm […] applied to several

problems in a series of papers by Cyrus Mehta, Nitin Patel and
some co-workers.” No explicit comparative studies have been
published as far as we are aware. However, for specific cases such
as stratified 2 × 2 tables, mostly light improvements to Mehta
and Patel’s algorithms have been proposed. In a similar vein,
Shan notes in his 2016 book (p. 47) that “The existing network-
based algorithm is a general approach, and it may not be the
best algorithm for a particular problem. The improved algo-
rithm developed by Engels can potentially be used to motivate
the research in this area for the problems, such as reliability test-
ing, and homogeneity testing among strata.” Some alternatives
have been explored by simulations using bootstrap analyses on
asymptotic χ2 and exact X2 tests; see Lin, Chang and Pal (2015).

2.6. Programs for Exact Tests

Mehta and Patel’s algorithm has been implemented in their
StatXact–Cytel Software Corporation2. It can handle many
situations which benefit from exact tests and has a nice user
interface. At the moment, many large statistical program suites
such as IBM SPSS, SAS, and STATA have exact tests as an option
for many statistics, complemented by a Monte Carlo version for
too time-consuming exact calculations, in case of large numbers
of possible tables with the same margins as the one observed.
Each of these program suites uses the network algorithm of
Mehta and Patel; the R-package fisher.test3 is also based on
this algorithm; another R-package is aylmer.test4; which is
specifically geared to handling tables with structural zeroes
and uses enumeration of “boards” of possible tables (West and
Hankin 2008). There are several other related R packages which
can be found via the R search site.5 Our FORTRAN program
FISHER was initially designed within a DOS environment and
is now being converted to a Windows version; information
can be obtained from The Three-Mode Company6. Agresti

 http://www.cytel.com/software/statxact
 https://stat.ethz.ch/R-manual/R-devel/library/stats/html/fisher.test.html
 http://finzi.psych.upenn.edu/R/library/aylmer/html/aylmer-package.html
 http://finzi.psych.upenn.edu/search.html
 http://three-mode.leidenuniv.nl

http://www.cytel.com/software/statxact
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/fisher.test.html
http://finzi.psych.upenn.edu/R/library/aylmer/html/aylmer-package.html
http://finzi.psych.upenn.edu/search.html
http://three-mode.leidenuniv.nl
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Figure . All ×  tables for which n= , ,  or . Pr(X >χ 
 [.] (= .) against smallest expected value; p value truncated at .; maximum value was ..

The vertical dashed lines indicate the minimum expected value of . The data used to create this figure are available as a supplementary file.

(2001) provided a review of the then current state of affairs on
exact tests in contingency tables, and many technical issues are
treated in the books by Hirji (2006) and Shan (2016).

2.7. Practical Value of Testing

In your precarious state of health you discover that the exact
test produces a pX2 of 0.12, in other words, the test for indepen-
dence cannot be rejected. What do you do now? Have a go at
rolling that three-sided die, or just not have the surgery? Or per-
haps become a Bayesian? This last optionwill probably notmake
much of a difference, because the necessary a priori information
ismissingwhichwouldmeanputting yourself in the hands of the
Dirichlet distribution instead of the exact or χ2 distributions.
Good advice is not just hard to come by, it is simply not available.
As a reviewer remarked, just one new observation could throw
a completely new light on the results, as could one misclassi-
fied case (see also Figure 3). But the problem is that you yourself
are this new observation. Other statistical problems spring up
as well, such as: How was the research that produced Table 1
carried out? Was randomization applied? In addition, there are
somemoremundane problems, such as: Is information available
about the risks of surgery quite aside from the illness, about the
competence and experience of your doctor, and about the qual-
ity of life with and without surgery etc.?

Tomake the decision evenmore difficult, youmight consider
in any case doing something, because letting the illness run its
course and waiting until other patients decide to have treatment
or not seems a bit too scary. The table about the choice between
two types of surgery (supposing that we could test indepen-
dently of the previous test) has an X2 of 2.25, with pX2 = 0.46
and pχ2 = 0.13 In this case, you technically do not know which
type of surgery you would choose, although we think that most
people would prefer Method A.

We will leave you to wrestle with your problem. We have
given all the statistical information we could offer. Quite aside
from this specific context, this example confronts us with the
important question: “How strong is your belief in hypothesis
testing when it really matters?,” while at the same time showing
how many choices need to be made, and howmuch depends on
the circumstances in which the data have been collected.

3. Cochran’s Rule

Above, we loosely cited a random textbook about the applica-
bility of the X2 test in the case of small expected values. Aside
from a few precursors, it was Cochran (1952, 1954) who gave
a precise formulation about the minimum expected values in a
contingency table for which the asymptotic χ2 test would still
be accurate enough. In these two papers, Cochran described his
famous ‘working rule’ for contingency tables with fixed margins
as follows:

Contingency tables with more than 1 d.f. If relatively few expectations
are less than 5 (say in 1 cell out of 5 or more, or 2 cells out of 10 or
more), a minimum expectation of 1 is allowable in computing X2.
(Cochran 1954, p. 420).
In the earlier article, Cochran indicated what he meant by

‘allowable’:

A disturbance [i.e. a difference between the exact and tabulated P]
is regarded as unimportant if when the P is 0.05 in the χ2 table,
the exact P lies between 0.04 and 0.06, and if when the tabular P
is 0.01, the exact P lies between 0.007 and 0.015. (Cochran, 1952,
pp. 328, 329).

If we define aCochran table as a contingency table or a pair of
margins with df � 2, all expected values � 1, and 80% or more
of all cells � 5, then Cochran’s Rule can be formulated as

For Cochran tables 0.04 <pX20.05. < 0.06 and 0.007
<pX20.01. <0.015.
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Figure . All  ×  tables for which n = . Pr(X >χ 
 [.] ( = .) against minimum expected value. Some families of tables with the same column margins are

connected. The horizontal lines indicate the extended Cochran boundaries of . and ..

Cochran’s Rule is often quoted in a washed-down version,
such as “For tables with more than a single degree of freedom, a
minimum expected frequency of 5 can be regarded as adequate,
although when there is only a single degree of freedom a min-
imum expected frequency of 10 is much safer” (Hays, 1973, p.
736). On the other hand, other authors, such as Bradley et al.
(1979) gave a precise and correct formulation of Cochran’s rule.
Note howpreciseCochran’s rule is, and how remarkable this pre-
cision is in those pre-computer days. Regrettably, in his papers
Cochran does not give any indication of the basis for his rule
and its precise formulation.

It should be pointed out that Cochran’s Rule was notmeant to
apply to 2 × 2 tables, and that his recommendation only applies
in case of conditioning on the margins, even though this is not
mentioned in the quote above. Actually, Cochran also made a
specific recommendation for 2 × 2 tables:

The 2 × 2 table. Use Fisher’s exact test (i) if the total N of the table
< 20, (ii) if 20 < N < 40 and the smallest expectation is less than
5. [..]. If N > 40 use X2, corrected for continuity. (Cochran 1952,
p. 334; Cochran 1954, p. 420).

That this is not always appreciated is evident for instance
from a paper by Rayson et al. (2004) who seem to imply that
Cochran’s Rule also applies to 2 × 2 tables.

Many authors have looked into the accuracy of Cochran’s
rule, and tried to improve on it, either by proposing corrections
to X² or to the asymptotic χ ² distribution. Note that the first
approach is a bit awkward because the statistic itself is modified
(turned into a different statistic) to bring its critical region into
agreement with that of the asymptotic distribution, rather than
vice versa. One such attempt wasmade by Yates (1934) who pro-
posed a correction especially for the case of 2× 2 tables. The per-
formances of this and other corrections have always been either
unsuccessful or uncertain.

4. Quality of Cochran’s Rule

It is remarkable, but not surprising, that little research has gone
into an evaluation of how sharp the Cochran boundaries are
and whether they could be improved. The difficulty with such

an evaluation is that for all possible margins given n, one needs
to establish whether a table is a Cochran table and subsequently
establish the exact p value for that table by generating the exact
distribution of the test statistic. In the literature most effort has
gone into comparing asymptotic p values with exact values, and
adjusting the asymptotic p values so that they approximate the
exact value more closely; see the paper by Agresti (2001) and
the books by Hirji (2006) and Shan (2006) for overviews and
detailed technical treatments.

In order to find the exact distribution of a test statistic such
as X² given a set of margins, it is necessary to enumerate the iso-
marginal family, that is, all possible contingency tables given a
specific pair of margins. In 1934, Fisher (Section 21.02) was the
first to describe such an exact test for 2 × 2 tables, and he must
have realized that exact testing is also possible in tables with
more degrees of freedom. Yates (1934) was probably the first to
publish an application of this.

4.1. Quality of Cochran’s Rule for Tables with df�2

The main purpose in this part of our paper is to give an indi-
cation of how well Cochran’s rule of thumb works in four sets
of Cochran Tables. To give an overall impression of this kind of
table: 2 × 3, 2 × 4, and 2 × 5 Cochran tables never have more
than one expected value smaller than 5. To be a Cochran table
a 2 × 3 table must have at least 30 observations. In fact, for n =
30 there is only one; all cells are equal to 5 and it is indicated in
Figure 1. For a 2 × 3 table one needs at least 66 observations to
get a Cochran table with an expected value of l.

Figure l gives an overview of the quality of Cochran’s rule of
thumb for all 2 × 3 Cochran tables with an n smaller than or
equal to 125, and all 2× 4, 2× 5, and 3× 3 Cochran tables with
n � 72. In total, this adds up to 1.3 million tables. The vertical
axis in the figure represents the probability in the exact distribu-
tion of X2 being larger than or equal to the χ2 value associated
with p = 0.05. Thus, the vertical deviations in the plot indicate
the size and direction of the differences between the exact and
the asymptotic p values. Rather than showing the exact p value
for each Cochran table, we have marked by dots the maximum
and minimum exact p value given n, the averaged exact p value,
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and the intervals of −1 to +1 standard deviation: see the exam-
ple of all 2 × 3 Cochran tables for which n = 100.

In Figure 1, a wider interval [0.03–0.07] is shown, as well as
the [0.04–0.06] proposed by Cochran, in order to properly eval-
uate the exact p values. For 2× 3 tables, we can see that thewider
boundaries are the “correct” ones, as there are only 73 violations
in around 1million tables whenwe use the wider interval, where
a table is a violation if its exact p value lies outside the designated
boundaries. The figure shows that the p values formost Cochran
tables fall between 0.03 and 0.07. The table with the largest vio-
lation, that is, whose p-value even falls outside the 0.07 bound-
ary, can be seen in the top left-hand corner; it has an n of 44.
Note that all its marginal frequencies are proportional and mul-
tiples of 11 (see further remarks below). The smallest p-value
falls below the 0.03 boundary and is found for a 2× 3 table with
n = 124. Problems with tables with p values < 0.03 only start at
n = 100.

For the 2 × 4 and 2 × 5 tables we see that Cochran bound-
aries are the “correct” ones and for the 3 × 3 tables the bound-
aries are even tighter. It is interesting to note that for each size
of table n bears very little relation to the size of the boundaries,
the standard deviation, and only slightlymore to the average. All
in all, the quality of Cochran’s Rule (except for 2 × 3 tables) is
impressive, especially considering the fact that Cochran had vir-
tually no equipment to help himwith the calculations.We could,
however, say that 2× 3 Cochran tables do not behave according
to Cochran’s rule and, unless we are prepared to use the wider
boundaries, the asymptotic results cannot be trusted in this case
and only exact tests are acceptable.

A final remark about the tables that cause the violations. It
turns out that especially tables that have equal and/or propor-
tional marginals, as our example in the first section of this arti-
cle, lead to many larger exact p-values than the 0.05 using the
χ2 distribution. The primary reason for this seems to be that in
the case of equal or proportionalmarginals there aremanymore
tableswith equalX2 values, in otherwords, the exact distribution
of X2 becomes more discrete so that there are larger jumps in its
probability distribution (see also Figure 3 and the Appendix).
Therefore, in such situations it is very important whether the
observed X2 value is larger or smaller than the critical value for
the chosen α. For 2 × 3 tables, the asymptotic critical value is
χ2

α = .05 = 5.991, a little under a whole number. With propor-
tional marginals such whole numbers occur quite frequently; in
our opening example X2

obs = 6.0 and the margins are (6,3,3)
and (6,6). This makes the situation unstable around the critical
value. Having equal marginals is obviously not dependent on n.
Agresti (1992, p. 132) already remarked that “the sample size n
often has less relevance than the discreteness of the sampling dis-
tribution.” So, even when n is large there can be tables with large
discrepancies between the exact and asymptotic critical values.
This finding suggests that in studies with discrete response vari-
ables it may be better to have a slightly unbalanced design with
an unequal number of people in the experimental and the con-
trol group.

4.2. Quality of “Cochran’s Rule” for Tables with df= 1

In Figure 2, the vertical axis is again represents the probability
in the exact distribution that X2 larger than the χ2 value for p =
0.05 (here: 3.8461). The points in the figure represent the exact

p-value of a table with fixed margins for the n indicated. Due
to the single degree of freedom, switching the row and col-
umn margins produces the same table with the same distribu-
tion; therefore, in order to avoid counting the same table several
times, we have set the first column marginal c1 at � n/2 and the
first row margin, r1 � c1.

In the upper left-hand corner we see that many of the tables
for which n = 32 have exact p values, not only way beyond the
[0.04–0.06] interval, but beyond the [0.03–0.07] interval as well.
The points at the far right are those with the highest minimum
expected values. For the n shown they occur if all marginals are
equal to n/2. These highest minimum expected values are 8 for
n= 32, 16 for n= 64, 32 for n= 128, and 64 for n= 256, respec-
tively. Note that given a fixed row margin, say ri, the expected
values ej|i are exactly linear with the column margin, as ej|i = cj
× [ri/n] for cj = 1,..n/2, and vice versa.

If we keep to the wider boundaries for 2 × 2 tables, the min-
imum expected value would have to be something in the order
of 10–15 (Figure 2; dashed vertical lines), but referring to the
boundaries proposed by Cochran it is only if n = 256 and the
minimum expected values are larger than 45–50 that the exact
p values stay more or less within the Cochran boundaries. On
the upside, the calculations for the exact test for 2× 2 tables can
very easily be done, even on a programmable pocket calculator.
Luckily most large statistical packages, such as IBM SPSS, SAS,
and STATA now provide the required exact p values for contin-
gency tables in general.

It is instructive to explore the results presented in Figure 2
in more detail and we will use the graph in the upper left-hand
corner with n = 32 to do this. In Figure 3, we show an enlarged
and embellished version of this graph. The tables represented
by the points are characterized by their 1st column (c1) and 1st
row margin (r1), thus (16,15) is a table with column margins
[16,16] and row margins [15,17]. The legend on the top right
indicates the two columnmarginals. In the figure, all tables with
the same column margins have the same marker and some of
the sets of such tables have been connected. This reveals clearly
how sensitive the p-value is for small misclassifications. In fact,
for tables with the same columnmargin a shift of one in the row
margin may change the p-value from above 0.05 to below 0.05
and vice versa, for example, as shown in Figure 3, the p-value of
(16,15)= 0.032, while that of (16,14)= 0.073 and that of (16,13)
is 0.029. This zig-zag pattern can be seen all through the graph.
A more detailed analysis of the shapes in Figure 2 is not directly
central for themain thrust of our article but some further insight
is provided in the Appendix.

Campbell (2007) discussed 2 × 2 tables in more detail and
suggested that a modification of the Karl Pearson X2 statistics
proposed by his son Egon Pearson (1947), that is, using (N −
1)/N ∗ X2, is more accurate in case of conditioning on only one
of themargins, but this involves changing the test statistic. How-
ever, he also states that in the case of two fixed margins “there is
no dispute that the Fisher–Irwin test (or Yates’s approximation
to it) should be used. This last research design is rarely used and
will not be discussed in detail.” (p. 3662). Unfortunately, the dis-
cussion for 2 × 2 tables is somewhat muddled in the sense that
some authors discuss and evaluate theX2 test conditional on the
margins, while others condition on only onemargin or not at all,
i.e., they are using different sampling designs; see, for instance,
Bradley et al. (1979, p. 1291), who indicated that in their Monte
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Carlo studies to “evaluate the Type I error rate of the chi-square
test of independence in R × C contingency tables”[…] “nei-
ther the row nor columnmarginal frequencies were fixed..” Our
results as displayed in Figure 2 only apply to the case of condi-
tional testing on bothmargins, in line with our discussion of the
tables with more degrees of freedom.

5. Conclusion

Besides our example, what can we now say in general about the
question in the title of this article? Below we list a number of
recommendations, not all of them from the present text, but
largely based on research we did in the past. Note that, as indi-
cated above, we look only at conditional tests with fixed mar-
gins. Rules of thumb are per definition always wrong and should
never be followed blindly. A general point is that programs with
exact tests are not too time-consuming. In the cases where they
might be, usually a Monte Carlo estimate of the exact p-value
is given first, so that on the basis of that outcome the user can
decide to do a more time-consuming exact test instead.

First, with respect to 2 × 2 tables with fixed margins, the
smallest expected valuemust be at least 15 in order to staywithin
the extended Cochran limits (see Figure 2). However, the time
involved in an exact test is sominimal thatwemight aswell carry
out the exact test. The Yates correction is unnecessarily conser-
vative (see, for an example, the Appendix).

Second, Figure 1 shows that in 2 × 3 Cochran tables with
fixed margins the deviation from the Cochran limits can be
rather large, in fact larger than the Cochran bounds; which
means it is advisable to do the exact test for all 2 × 3 tables.

Third, for Cochran tables withmore than two degrees of free-
dom, the asymptotic critical value is very reliable and it can gen-
erally be used with impunity. However, it is necessary to take
care when dealing with equal or proportional marginals. More-
over, for non-Cochran tableswithmore than twodegrees of free-
dom an exact test is advisable.

Finally, given the quality of the χ2 approach for the distribu-
tion of X2 in the case of two fixed margins, it is rarely necessary
to use exact tests when either one or neither margin is fixed (see
Verbeek and Kroonenberg, 1993, Appendix B.2).7

Appendix: p-Value Patterns in 2× 2 Tables

In all panels of Figure 2, we see patterns akin to peacock feathers.
This Appendix sheds some light on these patterns. To do this, we
present a simplified and shortened version (Figure A1) of the right-
hand top graph with n = 64.

In Figure A1, we see that the peacock feathers arise from fami-
lies of tables with the same row margin and with the other margin
running from 3 to n/2. In the present case, there are four subfam-
ilies. Given a subfamily, as the minimum expected value increases
the X2 decreases so that the exact p value, [PrX2 (X2� χ2

1 [0.95])]
becomes larger. Up to the point that X2 becomes larger than 3.846,
which leads the p-value to drop to a very low value. This is the same
zig-zag patterns mentioned in the body of the paper. The last points
of 0.000 indicate that the null hypothesis cannot be rejected given
these margins. Thus, the exact p-value is only piecewise highly cor-
related with the smallest minimum expected value and at certain
points the p-value changes drastically. It only requires a single point
or misclassification to do this.

From the columns “Points not in critical region” we see that the
Yates correction is more conservative than the Pearson X2 test as
it always has an equal or larger number of tables not in the critical
region.
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Table A.. Results for the family of tables with r =  and r =  and � c � .

Plot number Rowmargin Columnmargin Points not in critical region Exact p value X Minimum expected value

First r Second r First c Second c Smallest X � . Statistic= X Statistic= Yates

     .   0.136 .
     .   0.179 .
     .   0.014 .
     .   0.021 .
     .   0.030 .
     .   0.039 .
     .   0.050 .
     .   0.061 .
     .   0.074 .
     .   0.088 .
     .   0.102 .
     .   0.009 .
     .   0.011 .
     .   0.013 .
     .   0.016 .
     .   0.020 .
     .   0.023 .
     .   0.027 .
     .   0.032 .
     .   0.037 .
     .   0.043 .
     .   0.049 .
     .   0.055 .
     .   0.062 .
     .   0.070 .
     .   0.079 .
     .#   0.088# .
     .#   0.097# .
     .#   0.107# .
     .#   0.238# .

NOTE: The plot numbers correspond with those in Figure A. In the column labeled “X � .” the first X larger than . is given. The # in that column indicated that no
X � . and the closest value smaller than . is listed. In all cases, the isomarginal family has a size of . The column “Points not in critical region” shows how many
members of the isomarginal family do not have an X � ., both for X and for the Yates corrected version. A “” indicates that the null hypothesis of independence
can never be rejected given the marginals.
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