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Abstract

We present new Hubble Space Telescope (HST) Advanced Camera for Surveys observations and detailed models
for a recently discovered edge-on protoplanetary disk around ESO-Hα569 (a low-mass T Tauri star in the Cha I
star-forming region). Using radiative transfer models, we probe the distribution of the grains and overall shape of
the disk (inclination, scale height, dust mass, flaring exponent, and surface/volume density exponent) by model
fitting to multiwavelength (F606W and F814W) HST observations together with a literature-compiled spectral
energy distribution. A new tool set was developed for finding optimal fits of MCFOST radiative transfer models
using the MCMC code emcee to efficiently explore the high-dimensional parameter space. It is able to self-
consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical
properties of a given disk, while also rigorously assessing the uncertainties in those derived properties. We confirm
that ESO-Hα569 is an optically thick nearly edge-on protoplanetary disk. The shape of the disk is well-described
by a flared disk model with an exponentially tapered outer edge, consistent with models previously advocated on
theoretical grounds and supported by millimeter interferometry. The scattered-light images and spectral energy
distribution are best fit by an unusually high total disk mass (gas+dust assuming a ratio of 100:1) with a disk-to-
star mass ratio of 0.16.
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1. Introduction

We seek to understand the initial conditions for planet
formation and the physical processes that contribute to the
assembly of planets by measuring the properties of young
protoplanetary disks. The unique geometry of edge-on
circumstellar disks provides a valuable opportunity to study
the detailed disk structure, as the bright central star is occulted
from view and thus does not pose a contrast problem. The
width of the disk’s dark lane (the vertical extent of the t = 1
surface), outer radius, and degree of flaring can be directly
measured, and the scale height of the disk can be related to the
local disk temperature (Watson et al. 2007). Stapelfeldt (2004)
provides a review of the observational advantages of targeting
edge-on disks. Previous studies of edge-on disks (EODs) have
measured disk inclinations and dust masses from a combination
of scattered-light images and millimeter-continuum maps
(Wolf et al. 2003; Sauter et al. 2009). Additionally, the change
in the dust lane thickness with wavelength allows dust grain
properties to be derived (Cotera et al. 2001; Wood et al. 2008;
Duchêne et al. 2010; McCabe et al. 2011). However, the
sample of edge-on disks with high-resolution observations
remains relatively small.

ESO-Hα569, a young M2.5 star embedded in the
Chameleon I star-forming region (SFR), was imaged as part
of an Hubble Space Telescope (HST) observation program
designed to double the sample of edge-on protoplanetary disks

for which high-resolution scattered-light images have been
obtained. The sample for the survey was chosen from WISE
and Spitzer surveys of nearby SFRs, which allow the
identification of new candidate edge-on disks from their
characteristic double-peaked spectral shape. HST program
12514 in Cycle 19 obtained high-resolution optical imaging
of the top 21 candidates, including the data presented in the
current work (Stapelfeldt et al. 2014).
Several of the targets in this sample of edge-on proto-

planetary disks, including ESO-Hα569, are known members
of the Chameleon I (Cha I) SFR. Distances to Cha I, one of the
nearest SFRs, have been determined in a variety of ways,
including through zero-age main-sequence fitting and Hipparcos
parallaxes of members. Whittet et al. (1997) provide a review of
the results and combine measurements to arrive at a distance of
160±15 pc. Bertout et al. (1999) confirm this distance after
cross-correlating the Herbig & Bell and Hipparcos catalogs.
Belloche et al. (2011, see their Appendix B1) present a more
detailed review of the Cha I distance measurements. Age
estimates for Chamaeleon I range from 1 to 2 Myr (Baraffe
et al. 1998; Chabrier et al. 2000). The Cha I SFR is characterized
by a relatively high extinction with an observed maximum of

~A 10V (Cambresy et al. 1997). Such a high extinction would
suppress the blue side of the spectral energy distribution (SED)
of a young stellar system. The initial mass function for Cha I has
a maximum mass of – M0.1 0.15 (Luhman 2007), while the
total mass of Cha I is ∼1000 Me (Boulanger et al. 1998).
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The remainder of this introduction summarizes prior
observations of ESO-Hα569. In Section 2, we present high-
resolution HST scattered-light observations of the ESO-Hα569
protoplanetary disk and an SED compiled from the literature.
In Section 3, radiative transfer modeling efforts to fit these
observations to a variety of disk properties are discussed. Both
a grid and Monte Carlo Markov Chain (MCMC) approach were
used to explore parameter space, and results are given in
Sections 3.4 and 3.6. Section 4 discusses these results,
including the gravitational stability of the system and places
ESO-Hα569 in context with previous disk observations.
Lastly, Section 5 provides a summary and the conclusions.

1.1. Prior Studies of ESO-Hα569

ESO-Hα569 (2MASS J11111083−7641574) was first
identified as a target of interest in the Comerón et al. (2004)
European Southern Observatory survey of young stars with
strong Hα emission in Cha I SFR. Comerón et al. (2004)
classified the central star as K7 using ground-based spectrosc-
opy. The authors noted that this object is severely under-
luminous for a K7 star (by ∼2 orders of magnitude), which
made it a prime candidate for our edge-on disks survey. The
Luhman (2007) survey of the stellar population in Chamaeleon
obtained an »R 5000 spectrum from 0.6 to 0.9 mm, which
gave a spectral type of M2.5, an effective temperature of
3488 K, and an apparent bolometric luminosity of Lbol
= 0.0030 Le. More recently, broadband spectroscopy with
VLT/X-Shooter provides a spectral type of M1±2 subtypes
(Manara et al. 2017, their Table 3), and confirms that the target
appears underluminous. Because ESO-Hα569 is heavily
extincted by the disk, the apparent luminosity is an unreliable
estimator for the true bolometric luminosity of the central star.
For stars of the same spectral type in the Luhman (2007)
survey, the average bolometric luminosity is  L0.34 0.08 .
The current study adopts this luminosity and a ∼3500 K
effective temperature. Using the theoretical evolutionary
models of Baraffe et al. (1998) for low-mass stars with solar
metallicity gives a mass for the central star of 0.35 Me. The
associated stellar radius is 1.13 Re.

Prior attempts have been made to infer the disk properties
of ESO-Hα 569 based on its SED. Luhman (2007) noted that
the X-ray non-detection of this star indicates an extinction of

A 60K , consistent with obscuration by an edge-on disk,
assuming its X-ray luminosity is that of a typical T Tauri star.
Robberto et al. (2012) combine published 2MASS and
Spitzer photometry, with unresolved HST fluxes to fit
properties of the disk and central star using the online library
of 20,000 models of young circumstellar systems compiled by
Robitaille et al. (2006). These models include the central star,
a diffuse envelope, and an accreting disk (Whitney
et al. 2003a, 2003b, 2004). The authors find that the disk is
best fit by an inclination of ∼87°. 1, =  L L0.8 0.4bol ,

=  M M0.33 0.03star , and =  R R2.5 0.6star , and give an
upper limit for the submillimeter disk mass of M0.005 .
Rodgers-Lee et al. (2014) included Herschel data and found a
best-fit inclination of 81°. 4. More recently, Pascucci et al.
(2016) provided 1.3 mm continuum data, which correspond to
a disk mass estimate of M0.0046 , using an assumed opacity
of k = -2.3 cm g2 1, a gas-to-dust ratio of 100, and a disk
temperature of 20K.

2. Observations

2.1. HST Scattered-light Images

Scattered-light images of the ESO-Hα569 disk were
obtained using the HST Advanced Camera for Surveys
(ACS)/Wide-field Camera (WFC) in both the F814W and
F606W broadband filters on 2012 March 9 as part of program
GO 12514. The total exposure times were 1440 s for F606W
and 960 s for F814, with each filter’s exposure split as two
integrations for cosmic-ray rejection. The reduced and
calibrated data produced by the HST pipeline were retrieved
from the Mikulski Archive for Space Telescopes (MAST).
Figure 1 provides the reduced images, rotated to place the

disk major axis horizontally. The bipolar appearance unequi-
vocally demonstrates the edge-on nature of ESO-Hα569. The
western side is much brighter than the eastern side (by ~ ´20
comparing their peak surface brightnesses) and, along with the
curvature of the nebula, indicates that this side is tilted slightly
toward us. There is no sign of starlight directly peeking through
as an unresolved point source. The position angle of the disk’s
minor axis was evaluated to be 65°±1°. This was computed
as the position angle for which mirroring the image across the
minor axis minimized the flux difference between the left and
right sides. The disk is close to left/right symmetric, although
the southern side (right side as shown in Figure 1) is very
slightly brighter.
The disk is very red (much brighter in F814W than in

F606W). The flux density of the disk was measured in both
filters using a 50 pixel aperture, which corresponds to a spatial
scale of 2″×2″ and was chosen to encompass all disk flux
with surface brightness  s3 above the background noise. The
measured flux density is 0.058±0.001 mJy for F606W and
0.21±0.01 mJy for F814W, which gives a color [F814W] –
[F606W] = 1.4 AB magnitudes.
The disk has an apparent outer radius of 0.80±0 05 which

corresponds to 125±8 au at a distance of 160 pc. Here, the
outer radius is inferred as the offset at which the flux declines to
less than 10% of the peak value for the widest part of the disk.

2.2. HST Jet Outflow Images

The strong Hα emission in the spectrum of this young object
indicates ongoing accretion onto the central star, which is often
associated with the launching of outflow jets. Bally et al.
(2006) suggested that ESO-Hα569 as the possible source for
the Herbig Haro object 919. HH 919 is an arcminute-long
filament with a PA of ∼60°–75° and is located 22 (0.05 pc)
southwest of ESO-Hα569. A jet is visible in the F606W
scattered-light image extending vertically from the disk and is
∼ 0. 25 wide. This is consistent with the emission lines of Hα
and S II as are commonly seen in such outflows. A line
connecting ESO-Hα569 with HH 919 would have a PA of
∼63◦, giving an orientation consistent with the ESO-Hα569
jet serving as the culprit for the HH 919 filament.
Figure 2 presents a wider field of view showing the

interaction of this disk with the surrounding ISM. Diffuse
nebulosity is visible extending outward from the disk. An
image of the jet was created by subtracting the F814W image
(scaled by a factor of 2.5) from the F606W image (Figure 3).
The flux from the jet is difficult to decouple from the disk flux,
but the jet accounts for roughly 50% of the local surface
brightness from the disk. This value is taken from an average of
the flux over 9 pixels with the jet superimposed on the disk and
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compared to the flux in nine neighboring pixels with no jet
signature. The peak surface brightness of the jet is
∼0.19mJy arcsec−2. The ability to measure color variations
in the shape of the disk and width of the dark lane between the
F606W and F814W bands is hindered by the presence of this
bright jet.

2.3. Spectral Energy Distribution

An SED for the disk was compiled from the literature,
including data from HST, 2MASS, Spitzer, WISE, Herschel,
ALMA, and the LABOCA instrument on the APEX telescope
(see Figure 4). Table 1 provides the SED values with
photometric errors and references for each value. The SED
shows the characteristic double-peaked shape of edge-on disks
with contributions from both the scattered light from the central
star peaking at about 1.5 μm and the thermal emission from the
surrounding optically thick disk peaking at roughly 70 μm.
Data at similar wavelengths from different epochs show
variability at the 10%–20% level, consistent with the variability
seen in other young disks (Muzerolle et al. 2009; Espaillat et al.
2011; Flaherty et al. 2012).
ESO-Hα569 was imaged with Herschel as part of the Gould

Belt survey in the PACS 70 and 160 μm bands and the SPIRE
in the 250, 350, and 500 μm bands (Winston et al. 2012). The

Figure 1. HST images of the protoplanetary disk ESO-Hα569. Top: F814W.
Bottom: F606W. Both images show the dark dust lane and asymmetries
between the top and bottom of the disk, while only F606W establishes the
presence of an outflow jet. The 100 au scale bar corresponds to an angular scale
of 0. 625.

Figure 2. A wider F606W filter image displaying the diffuse nebula extending
outward from the disk. The direction of the Hα filament HH 919 is shown by
the arrow. The jet lines up well with the reported position of HH 919,
consistent with ESO-Hα569 being the origin of this outflow. The 500 au scale
bar corresponds to an angular scale of 3. 125.

Figure 3. An image of the jet created by subtracting the F814W image from the
F606W image. Contours are drawn from 0.01 to 0.19 -mJy arcsec 2 in intervals
of 0.03 -mJy arcsec 2 . The 100 au scale bar corresponds to an angular scale
of 0. 625.
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source is barely detected in the PACS bands, hence the large
uncertainties reported by Winston et al. (2012). There seems to
be a very marginally detected point source in the SPIRE bands
(100± 100 mJy at 250 μm and 50± 50 mJy at 350 and 500
μm), but given the coarse angular resolution, it is hard to
exclude contamination from dust emission from the surround-
ing cloud itself. Given the low significance of these detections,
the Herschel fluxes are not included in our SED fits.

An ALMA Band 3 continuum (2.8 mm, 106 GHz)
measurement was obtained by Dunham et al. (2016) with
ALMA in a compact configuration that achieved a ∼2″ beam
and does not resolve the disk. Because the disk is not resolved,
the ALMA continuum flux could be contaminated with flux
from a remnant envelope. However, there cannot be too much
non-disk material present, or it would be too opaque to see the
central disk in scattered light in the visible as we do. This
measurement was published after our initial rounds of disk
SED fitting as described below (the grid fit described in
Sections 3.2–3.3, and the c2-based MCMC fit in Section 3.4.1),
but this data point has been included in our final SED model
fitting (the covariance-based MCMC fit described in
Section 3.4.2).

In addition to the continuum measurement at 0.55 μm
included in Table 1, Robberto et al. (2012) provide fluxes for
ESO-Hα569 in HST WFPC2ʼs F631N, F656N, and F673N
narrowband filters associated with [O I], Hα, and [S II]
emission, respectively. The disk is not resolved and the
measured fluxes are near the detection limits: 0.21±0.15
(F631N), 2.4±0.7 (F656N), and 0.35±0.12 (F673N)
´ -10 16 erg s−1 cm−2 Å−1. These emission lines are all
consistent with the spectrum of Luhman (2007), which shows
strong Hα emission and [S II] emission. Given the large
uncertainties, and the fact that the model is not set up to
simulate line emission, these emission lines were not included
in the SED fits.

3. Model Fitting

The scattered-light images and full SEDs together provide a
comprehensive data set for ESO-Hα569 against which
properties of the central star and surrounding disk can be
tested. The disk geometry can be directly measured from the
images, and the distribution of the dust grains within the disk is

traced by the SED and disk morphology. To characterize this
system, disk models were constructed to explore parameter
space with direct comparisons to the observations. The next
section presents the context and challenges for radiative
transfer modeling of complex disk structures.

3.1. Radiative Transfer Modeling and Model Fitting of
Circumstellar Disks

Circumstellar disks are complex objects: mixtures of gas and
dust, containing solid bodies from the smallest planetisimals to
giant Jovian planets, shaped by many dynamical forces across
evolutionary states from the youngest protoplanetary disks
through transitional regimes to second-generation debris disks.
This complexity can now be probed by powerful observational
capabilities across the entire electromagnetic spectrum, with
especially detailed views provided in the visible by the HST, in
the infrared by 8–10 m telescopes with adaptive optics and
soon by JWST, and in the millimeter and submillimeter by
ALMA and other interferometers. In some cases, a particular
physical property of interest can be directly measured from a
given observation, but more typically forward modeling of the
data must be performed to derive constraints on the underlying
physics. This is particularly necessary for observations of disks
at wavelengths where they are optically thick, which is the case
for observations of protoplanetary disks at visual and near-IR
wavelengths.
The general outline of such inference is well known: start

from a model of the system’s properties and physics with some
number of free parameters. Construct synthetic observables
using that model, for instance through Monte Carlo radiative
transfer (MCRT) calculations. Then compare the synthetic
observables to data in order to constrain the free parameters and
draw conclusions about their most likely values and the ranges
of uncertainty. This process sounds simple enough in theory,
but is often a practical challenge due to several confounding
factors, among them the complexity of the underlying physics
(which inevitably requires simplifications in the models), the
nonetheless high dimensionality of the model parameter space,
and the need to confront heterogeneous and multiwavelength
observations in order to resolve model degeneracies.
The current work makes use of the MCFOST radiative

transfer code (Pinte et al. 2006), one of a broad class of class of
MCRT programs designed to study circumstellar disks (for a
review of radiative transfer codes, see Steinacker et al. 2013).
In short, such a code begins with a numerical model of the
physical properties within the disk, such as the density of dust
in each grid cell, and the mineralogical composition and size
distribution of dust particles. It then computes the temperature
and scattering source function everywhere in the disk via a
Monte Carlo method: photon packets are propagated stochas-
tically through the model volume following the equations of
radiative transfer, and information on their properties is
retained along their path. The radiation field and the quantities
derived from it (for instance, temperature, radiation pressure,
etc.) are obtained by averaging this Monte Carlo information.
Observable quantities (SEDs and images) are then obtained via
a ray-tracing method, which calculates the output intensities by
formally integrating the source function estimated by the
Monte Carlo calculations. This approach naturally allows
simulation of disk images, which are dominated by scattered
starlight, thermal emission from the dust, or a combination
thereof.

Figure 4. Spectral energy distribution for ESO-Hα 569 with upper limits
indicated by triangles. The SED exhibits the double-peaked structure typical of
an optically thick, edge-on disk. The values were compiled from the literature
with more information given in Table 1. The stellar spectrum for an M2.5 star
with =T 3500eff K is overplotted.
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Comparison of the simulated images and SEDs against
observations then allows inference about which ranges of
model parameters are compatible. There are a couple different
approaches to performing such comparisons. One option is to
compute a grid of models spanning the parameter space of
interest (e.g., Robitaille et al. 2006; Pinte et al 2008; Woitke
et al. 2010). Bayesian techniques allow the derivation of
uncertainty ranges around the best-fit grid point (e.g., Chiang
et al. 2012). However, even with hundreds of thousands of
models computed, given the high dimensionality of the
parameter spaces, each parameter must often be quite coarsely
sampled at just a few discrete values, which can limit the
results achieved. The grid technique is also computationally
inefficient because it blindly allocates equal effort to both the
best- and worst-fitting portions of parameter space. As is well
known, the MCMC paradigm improves on this; the MCMC
algorithm allows the efficient exploration of parameter space
and yields detailed information on parameter posterior prob-
ability distributions and correlations.

However, most disk model-fitting efforts to date have
concentrated on fitting either SEDs alone (e.g., Huélamo
et al. 2010; Ribas et al. 2016) or images or interferometric
visibilities alone (e.g., Millar-Blanchaer et al. 2015; Ricci
et al. 2015; Pohl et al. 2017). This is broadly the case
independent of the choice of either grid fitting or MCMC
fitting. But fits to SEDs alone are notoriously degenerate
(Chiang et al. 2001; Woitke 2015), and spatially resolved
image data or interferometric visibilities are required in order to
place robust constraints on many properties of interest. Only a
handful of disk studies have successfully and rigorously fit
models to heterogeneous observables, including SEDs and
images or interferometric visibilities, but when this has been
achieved it has often yielded particularly powerful constraints
and detailed insights into disk structures (e.g., Pinte et al 2008;

Duchêne et al. 2010; Lebreton et al. 2012; Carmona et al. 2014;
Milli et al. 2015; Cleeves et al. 2016).
Such works have most often used the grid-fitting approach

rather than MCMC, perhaps due to the increased technical
complexity of integrating the MCMC framework with hetero-
geneous observables. One detail—but an important one in this
context—is that the MCMC approach necessarily assesses a
single goodness-of-fit metric which must combine both SED
and image data together, such as a sum of c2 values from the
SED and image (or more generally from any combination of
distinct observables). In the case where the best-fitting c2 for
one observable is systematically much higher than that for the
other observable(s), the model fitting will be driven by that first
observable and will likely not deliver an adequate simultaneous
fit to the others. Models must necessarily simplify, and
imperfect models lead to correlated systematic residuals that
increase the minimum c2. Consider, for instance, attempting to
fit a simple axisymmetric model to an eccentric disk. This
problem is generally worse for images than for SEDs, because
the one-dimensional nature of SEDs collapses much of the
parameter space. In other words, the well-known degeneracies
of SEDs can hide disk offsets, eccentricities, spiral arms, and
other asymmetries that are immediately apparent in sufficiently
high-resolution images. As a result, it becomes difficult to
develop a good metric that combines both images and SEDs in
a well-balanced manner for the purposes of a simultaneous
MCMC fit.
To address this difficulty in fitting disk observations, a new

method has been developed that explicitly takes into account
the covariant and correlated residuals in the image fitting.
Czekala et al. (2015) introduced this approach in the context of
1D spectral fitting. That approach has been extended to work
on heterogeneous disk data sets, including two-dimensional
images, and use that to implement an MCMC fitting process
that balances both the image and SED data for ESO-Hα569.

Table 1
Spectral Energy Distribution Photometry and References

l m( )m Flux (mJy) Source Instrument Bandwidth (mm) Angular Resolution Date

0.551 0.030±0.004 Robberto et al. (2012) HST WFPC2 0.14 0. 0996 2009 Apr 27
0.606 0.058±0.001 This work HST ACS 0.27 0. 05 2012 Mar 09
0.814 0.21±0.01 This work HST ACS 0.31 0. 05 2012 Mar 09
1.235 0.66±0.05 Skrutskie et al. (2006) 2MASS 0.16 ∼5″ 2000 Jan 25
1.662 0.97±0.08 Skrutskie et al. (2006) 2MASS 0.25 ∼5″ 2000 Jan 25
2.15 0.98±0.09 Skrutskie et al. (2006) 2MASS 0.26 ∼5″ 2000 Jan 25
3.6 0.58±0.03 Luhman et al. (2008) Spitzer IRAC 0.75 ∼2″ 2004 Jul 04
4.5 0.57±0.05 Luhman et al. (2008) Spitzer IRAC 1.02 ∼2″ 2004 Jul 04
5.8 0.58±0.05 Luhman et al. (2008) Spitzer IRAC 1.43 ∼2″ 2004 Jul 04
8.0 0.67±0.05 Luhman et al. (2008) Spitzer IRAC 2.91 ∼2″ 2004 Jul 04
3.4 0.63±0.02 Cutri et al. (2012) WISE 0.66 6. 1 2010 Feb 13, 20
4.6 0.71±0.02 Cutri et al. (2012) WISE 1.04 6. 4 2010 Feb 13, 20
12 0.65±0.07 Cutri et al. (2012) WISE 5.51 6. 5 2010 Feb 13, 20
22 7.5±0.89 Cutri et al. (2012) WISE 4.10 12. 0 2010 Feb 13, 20
24 8.36±0.77 Luhman et al. (2008) Spitzer MIPS 5.3 6 2004 Apr 08
70 107±10.8 Luhman et al. (2008) Spitzer MIPS 19 18 2004 Apr 08
70 200±100 Winston et al. (2012) Herschel PACS 25 5. 8 2011 Jun 23
160* 200±200 Winston et al. (2012) Herschel PACS 85 12. 0 2011 Jun 23
250* 100±100 Winston et al. (2012) Herschel SPIRE 25 18 2011 Jun 23
350* 50±50 Winston et al. (2012) Herschel SPIRE 25 25 2011 Jun 23
500* 50±50 Winston et al. (2012) Herschel SPIRE 25 37 2011 Jun 23
870 72±14 Belloche et al. (2011) APEX/LABOCA 150 19. 2 2008 May
2830 3.2±0.1 Dunham et al. (2016) ALMA 55 ∼2″ 2013 Nov 29–2014 Mar 08

Note. Photometry at wavelengths marked with an “
*
” represent only upper limits and are not included in the spectral energy distribution modeling.
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3.2. Radiative Transfer Modeling with MCFOST

For this work, the MCFOST radiative transfer code (Pinte
et al. 2006, 2009) was used to construct SEDs and 0.8 mm
scattered-light images for each of the models. The 0.6 mm
scattered-light images were not modelled because the strong jet
signature required masking �50% of the integrated disk flux.

The selected model assumes an axisymmetric disk with a
surface density, Σ, described by a power-law distribution in
radius given byS = S a( )R R0 0 , where α is termed the surface
density exponent and R0 is the reference radius of 100 au. In
this “sharp-edged” model, the disk is abruptly truncated at an
outer radius Rout. In order to achieve a good fit to the diffuse
emission above the disk and the disk mass and inclination
simultaneously, a “tapered-edged” disk model was tested, in
which the density Σ falls off exponentially with some critical
radius Rc of material outside of the disk:10

S = S -
a a+⎛

⎝⎜
⎞
⎠⎟

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )R

R

R

R
exp . 1c

c c

2

For this work, =R Rc out. This exponential taper is predicted by
physical models of viscous accretion disks (Hartmann
et al. 1998), but observations were not sensitive enough to
detect this outer gradual falloff until Hughes et al. (2008) used
this form to model both gas and dust continuum observations in
the millimeter. It is expected that the small dust grains seen in
scattered light should be well-coupled with the gas for young
disks, suggesting that the use of this surface density distribution
is justified here. (See also the recent work by Guidi et al. 2016
and Pohl et al. 2017 for HD 163296 and T Cha, respectively).
The scale height is also defined as a power law in radius by

= b( ) ( )H R H R R0 0 , where β is the flaring exponent describing
the curvature of the disk and again R0 = 100 au.

Several model parameters were held fixed to minimize the
degrees of freedom and to save computation time. Values for
these parameters were either measured directly from the HST
images or taken from the literature. The disk is within
the SFR Cha I; therefore, we fix the distance to the disk at
160 pc (Whittet et al. 1997). From the angular size of the
disk measured above and the distance, we calculate an

outer radius of 125 au. The inner radius was defined
by a conservative estimate of the sublimation radius,

= ~( )R R T T 0.1 ausub star star sub
2.1 , where =T 1600 Ksub

(Robitaille et al. 2006).
The free parameters in the model are inclination (with 90° as

edge-on), scale height, dust mass, maximum dust particle size,
dust porosity, disk vertical flaring exponent (β), surface density
exponent (α), and disk edge type (sharp or tapered). For the
maximum particle size, the grain population is described by a
single species of amorphous dust of olivine composition
(Dorschner et al. 1995) with a particle size distribution
following a −3.5 power law extending from 0.03 μm up to
the free parameter amax. We assume that the dust is well-mixed
with the gas, irrespective of the particle size. This combination
of dust properties (with m=a 100 mmax ) results in a mean
scattering phase function asymmetry factor of g = 0.54. Dust
porosity is modeled simply as a fraction between 0 and 1 of
vacuum that is mixed with the silicates following the Brugge-
man effective mixing rule.

For comparison with the observed 0.8 mm scattered-light
images, each model image was convolved with a Tiny Tim
simulated PSF (Krist 1995). The 0.8 mm observations were
masked to select only the pixels with flux values s3 above the
background noise level. A 2D map of the noise was generated
by converting the observed image to electrons and assigning
s = -Ne for the c2 values. The model images were aligned
with the observations via a cross-correlation and normalized to
the total observed flux. The models were then compared to the
data via an error-weighted pixel-by-pixel c2 calculation. For a
similar work, see Duchêne et al. (2010) and McCabe et al.
(2011). For the SEDs, when fitting each model point, the
foreground extinction is allowed to vary from = -A 0 10V
with =R 3.1V , and the extinction value that minimizes the
observed–model residuals is chosen.
Although the robust treatment of radiative transfer provided

by MCFOST is essential for modeling optically thick disks, it is
computationally intensive. Generating a single model SED
requires ∼three minutes of desktop CPU time, with an
additional ∼minute to generate synthetic images at each
desired wavelength. MCFOST allows the user to parallelize
the computation; however, systematic explorations of para-
meter space can quickly become very time consuming.
This complex parameter space was explored in two stages

using two different techniques. First, a coarse model grid was
computed with a wide range of allowed model parameter
values to get a handle on reasonable regions of parameter
space. Section 3.3 describes the initial exploration of parameter
space via a grid search, with results in Section 3.4. This work
was used to inform a more robust Markov Chain Monte Carlo
exploration for finer sampling of allowed parameter values,
with the methods described in Section 3.5 and the results given
in Section 3.6.

3.3. Initial Exploration of Parameter Space via Grid Search

Our initial modeling used a uniform grid sampling,
with the explored parameter space shown in Table 2. For

Table 2
Modeled Disk Parameters

Parameter Grid Values MCMC Values

Distance (pc) 160 (Fixed) 160 (Fixed)
Outer Radius (au) 125 (Fixed) 125 (Fixed)
Minimum Particle Size (mm) 0.03 (Fixed) 0.03 (Fixed)
Inclination (°) 60–90 65–90
Scale Height (H in au at
R = 100 au)

10, 15, 20, 25 5–25

Dust Mass (M in Me) 10−4, ´ -3 10 4, 10−3 10−5
–10−3

Surface Density (α) −2.0, −1.5, −1.0,
−0.5, 0.0

−2.0 to 0

Flaring Exponent (β) 1.1, 1.2, 1.3, 1.4, 1.5 1.0–1.5
Maximum Grain Sizea (mm) 100, 1000, 3000 100–3000
Weightb L 0.3–0.7
Grain Porosity 0.0, 0.25, 0.5 L
Structure Disk, Tapered-

edge Disk
L

Notes.
a Grain size was kept at a constant value of 100 mm for the covariance-based
MCMC run.
b During the c2-based MCMC run, a weighting term was used to describe the
relative contribution of the image and SED fits to the log-likelihood value of
each model.

10 Note that some authors give this equation using the notation g a= - .
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each set of disk model parameters, 15 disk inclinations were
sampled uniformly in icos between 60° and 90°. This
resulted in a grid of over 200,000 models. Comparison with
data was performed using a custom IDL software. A benefit
of the grid search approach is that multiple goodness-of-fit
metrics may be evaluated across all sampled points. c2 values
were computed separately for the 0.8 mm image and SED for
each model along with the combined total
c c c= +mtot

2
0.8 m
2

SED
2 . Bayesian probabilities are derived

from the likelihood function wherein the c2 value for a
given model with unique parameter values is related to a
probability c-( )exp 22 , and the sum of all probabilities is
normalized to unity (e.g., Pinte et al 2008).

The grid sampling is a simple way to explore the parameter
space initially, but its sampling of parameters proved to be
inadequate for several reasons. First, it is too sparse to provide
clear insight into degeneracies between the various parameters.
Second, the discrete sampling limits the precision with which
best-fit values can be determined, and does not allow a rigorous
computation of uncertainties. These factors motivated the later
development of our MCMC model-fitting toolkit described
below. Nonetheless, the results of the grid search helped clarify
relevant portions of parameter space and informed our
understanding of the disk.

3.4. Results and Conclusions from Grid Search

For the grid search approach, the best-fit model for the disk
was found using a tapered-edged disk with non-porous grains,
an inclination of 75°.5, and a scale height of 20 au at a reference
radius of 100 au. The preferred maximum particle size is 3000
mm, the dust mass is ´ -3 10 4 Me, the flaring exponent β is
1.3, and the surface density exponent α is −0.5. The separate
SED and image fits for the α and β exponents favor opposing
extremes of parameter space, but the combined ctot

2 likelihood
distribution peaks in the middle at physically reasonable
values.

Figure 5 illustrates the likelihood distributions for the
inclination and scale height. The sparse sampling and
disagreement between the model parameters preferred by the
image and SED (most pronounced in the scale height)
demonstrate the limitations of the grid-fitting approach.

3.4.1. Porosity

Porous grains were initially included in the modeling
parameters to provide a better fit to the flux ratio between the
top and bottom disk nebulae. Porous grains are generally more
forward-scattering, which would increase the flux ratio without
needing to increase the line-of-sight inclination. However, the
SED fitting strongly favored non-porous grains. A porosity of
0.5 produced a strong dip in the SED around the 10–20 mm
silicate feature that was not observed for this target. The overall
SED+image fits also favor the non-porous grains, though not
as strongly as the SEDs alone. The flux ratio issue was
subsequently solved by invoking a tapered-edge surface
density model for the disk structure. For subsequent modeling,
only non-porous grains were used.

3.4.2. Disk Structure: Sharp versus Tapered Outer Edge

When modeling the disk with a sharp outer edge, the SED
and image fits preferred very different regions of parameter
space. Specifically, it was difficult to simultaneously fit the flux
ratio between the top and bottom nebulae of the disk, the
diffuse emission above the plane of the disk, and the shape of
the disk. Because the disk is not precisely edge-on, the
scattering angles differ between the upper and lower disk
nebulae. Therefore, changes in the scattering phase function of
the grains will change the peak-to-peak flux ratio. Any
parameter that would increase the flux ratio and emission
above the disk (for example increasing the inclination or
porosity of the grains) caused too much forward-scattering and
allowed too much of the light from the central star to appear in
the peak. Similarly, the diffuse emission above the disk could
not be described well by a low-mass spherical envelope.
The tapered-edged disk did much better in accounting for

both the emission above the disk and matching the flux ratio
between the top and bottom sides of the disk. This is clearly
demonstrated in Figure 6, which compares the observations to
the best-fit tapered-edged disk model and the corresponding
sharp-edged model. The right panel shows the surface bright-
ness profiles through several vertical cuts across the disk for
both the sharp- and tapered-edged models.

3.5. Model Optimization via MCMC

To more efficiently the sample parameter space and gain a
better understanding of the uncertainties, an MCMC approach
was applied to the model optimization. We used the Python
package emcee (Foreman-Mackey et al. 2013) which imple-
ments the Affine Invariant MCMC algorithm by Goodman &
Weare (2010). Specifically, we selected the parallel-tempered
MCMC ensemble sampler designed to improve convergence in
degenerate parameter spaces. The MCMC samples the poster-
ior distribution given by

Q µ Q Q( ∣ ) ( ∣ ) ( ) ( )P D P D P , 2

where D represents the observations and Θ the free parameters
in the model. Here, P(D Q∣ ) is the likelihood of the data given
the model and P(Θ) is the prior distribution. Uniform priors
were adopted for each parameter over the allowable range.
In order to implement this code in conjunction with the

MCFOST radiative transfer code, we developed a suite of
software tools in Python to interact with the observations,
generate models, and calculate goodness-of-fit metrics to
inform the MCMC iterations. The toolkit is general enough

Figure 5. Likelihood distributions from the grid search for the disk inclination
and scale height computed from the model c2 values for the 0.8 μm image
(red), the SED (blue) and for the combined data set (gray). The image and SED
results favor different regions of parameter space. The sampling of the grid
approach is sparse and does not provide an adequate estimate of the
uncertainties.
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to be usable with any disk image, provided a PSF and
uncertainty map are available. By combining the detailed
modeling capabilities of MCFOST with the efficient parameter
space sampling of the emcee package, the goal was to self-
consistently and simultaneously fit a wide variety of obser-
vables in order to place constraints on the physical properties of
a given disk, while also rigorously assessing the uncertainties
in the derived properties. The mcfost-python package is
publicly available on GitHub,11 and the authors encourage its
use by the disk modeling community (Wolff et al. 2017).

The mcfost-python package was designed to be
modular, with different components to read in the observables,
interact with the MCFOST parameter files, generate model
SEDs and images, compare them to data, and set up and control
the overall MCMC run. To validate the functions for
comparing models to data, benchmark cross-checks were
performed to compare the new Python fitting code to existing
c2 routines in IDL and Yorick. Although this code was
originally designed to work with HST data and the MCFOST
modeling package as described in this paper, it has also been

expanded to work with data from different instruments,
including polarimetry data, and can be used with other
radiative transfer modeling codes.

3.5.1. c2-based Log-likelihood Estimation

The mcfost-python package allows the user to choose
between two goodness-of-fit metrics. This section discusses the
first of those, the c2 metric. A simple benchmark comparison
of the c2 and covariance likelihood methods is provided in the
Appendix. At each step in the MCMC iteration, a model image
and SED are created for the chosen parameter values and a c2

value is calculated using the same methodology as the grid
sampling approach. The emcee code requires a log-likelihood
distribution which is computed from the c2 assuming a
multidimensional Gaussian likelihood function:

åp s cQ = - + - -
=

[ ( ∣ )] ( ∣ ∣) ( )P D Nln 0.5 ln 2 ln
1

2
. 3

i

N

i i
1

2

Here, N is the number of data points and σ is our uncertainty.
The MCMC approach inherently requires a single goodness-of-
fit metric, so it is essential to combine the SED and image

Figure 6. Surface brightness profiles for two vertical image cuts through the data (left) and through the sharp-edged (top middle panel) and tapered-edged (bottom
middle panel) disk models. The residuals for the two models are plotted on the same scale (smaller panels at right). The tapered-edge model does a much better job of
fitting the shape of the disk, especially the depth of the disk midplane and the diffuse outer regions.

11 https://github.com/swolff9/mcfost-python
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metrics into a single log-likelihood function for use by emcee.
The log-likelihood distribution is computed separately for the
images and SEDs, and a weighted average is used to determine
the goodness of fit. During initial tests using the c2-based log-
likelihood goodness-of-fit metric, we chose to allow the relative
weighting between the image and SED to vary. The best way to
handle the relative weighting between different types of
observations for a single disk model was not well-understood
and is a nuisance parameter that does not, itself, inform us
about any inherent physical properties of the disk. By
marginalizing over it in this way, the intent was to produce a
best-fit model that was informed by both the SED and image
data without a bias toward one or the other. The weighting was
allowed to vary between 0.3 and 0.7 for a minimum of 30%
weighting to either the image or SED fits. We found that the
image likelihood values were downweighted due to their
systematically higher c2 values, and the MCMC chains worked
to improve the images while largely ignoring the better SED
fits. In our first round of MCMC calculations, the image
reduced c2 values tended to be more than an order of
magnitude above the SED reduced c2 values (best c = 1.3SED

2 ,

c =m 660.8 m
2 ), due to the larger number of measurements in the

images presumably with underestimated uncertainties.

3.5.2. Covariance-based Log-likelihood Estimation

The imbalance between the image and SED c2 values served
as the impetus for the development of the covariance matrix
likelihood estimation method, which ultimately provided a
much better relative weighting of the different observables.
Given that each model image is convolved with an instrumental
PSF, neighboring pixels must be covariant. Furthermore, this
approach lets us correct for the global limitations of the disk
model to fit the data set. Model systematics present as
correlated uncertainties. For a more complete estimate of the
errors in our HST images, we adopt and extend the covariance-
based method for the log-likelihood estimation presented by
Czekala et al. (2015) in the context of 1D spectral fitting. That
approach must be extended to work in the context of 2D
images. In this case, we convert Equation (3), which describes
the likelihood of the data given the model assuming a Gaussian
likelihood distribution, into a matrix formalism in Equation (4):

p

Q =- +

+

-[ ( ∣ )] ( [ ( )]

[ ]) ( )

P D R C R C

N

ln
1

2
ln det

ln 2 , 4

T 1

where R represents the residuals of the observations subtracted
by the model, C is the covariance matrix defined below, and N
is the total number of pixels in the image (not the number of
pixels along a given dimension of the array).

To apply this approach, each 2D image must first be
“unwrapped” into a 1D array. In practice, not all pixels in an
image may have a sufficient signal-to-noise ratio disk detection
to justify fitting. Excluding such pixels from the unwrapping
improves the overall computational efficiency, particularly for
the matrix inversion calculation, at the cost of somewhat more
complex bookkeeping between the 2D and 1D versions of the
image.

The covariance matrix C (of size ´N Npix pix) incorporates
both the noise in each individual pixel and global covariances

between adjacent pixels (represented by KG): =Ci j,

d s + Ki j i j i j
G

, ,
2

, . An example source of global covariance is the
FWHM of a telescope PSF. For a non-zero PSF FWHM,
neighboring pixels cannot be treated as individual measure-
ments of the disk surface brightness. Additionally, any global
limitations of the model to fit the data can be implicitly
included in the covariance structure. For example, when using
a symmetric disk model, any asymmetries in the observed
image of the disk will necessarily lead to higher correlated
residuals even for the best-fitting model parameters. These
residuals will in general be spatially correlated on one or more
scales from the angular resolution to the size of the observed
asymmetry. Incorporating our knowledge of these residuals in
the covariance matrix improves our ability to draw conclusions
given such necessarily imperfect models. Likewise, the choice
of incomplete or simplified parameterizations of the disk
physics/structure in the model can be handled the same way.
For instance, if there exists an additional unmodelled comp-
onent, such as a more vertically extended disk atmosphere or
significant residual jet emission on the top/bottom on the disk,
or if the functional form of the power law adopted for the disk
surface density is an oversimplified description of the true disk
properties, such systematics would lead to correlated residuals
in data–model comparisons. This covariance framework allows
the downweighting of these contributions within the correlated
residuals without masking them altogether.
The field of Gaussian processes has developed several useful

analytic models for convolution kernels that can be used to
parameterize the covariant structure. For instance, Czekala
et al. (2015) adopt the Matérn kernel truncated by a Hann
window function. This kernel has several free parameters,
which can be solved for as nuisance parameters as part of the
MCMC fit. Of course, this increases the dimensionality of the
parameter space that must be explored, which can in practice
increase computation time by an order of magnitude or more.
Czekala et al. (2015) note that, because the best-fit model
parameters are relatively insensitive to the precise values of the
covariance parameters (i.e., a reasonably good but perhaps not
optimal covariance model often suffices), one can first roughly
optimize the covariance model and then perform the MCMC fit
with that model fixed. Given the computational demands of
disk radiative transfer model fitting, a variant of that approach
is adopted here.
The global covariance is estimated empirically by computing

the average autocorrelation of the residuals from a subtraction
of our 0.8mm image and a subset of 1000 randomly chosen
model disk images from a uniform sampling of the parameter
space within the limits of our priors (Figure 7). This provides,
in a computationally tractable way, a reasonable model for the
covariant structure found in residuals for the parameter space of
interest and allows us to hold the covariance model fixed in
subsequent MCMC runs. The 2D autocorrelation is collapsed
along the horizontal axis to generate a 1D autocorrelation
function (Figure 8). The horizontal axis was chosen to generate
the covariance matrix because it provided the most conserva-
tive estimate, with a wider tail similar to the Matérn kernel, and
did not exhibit the anticorrelation found in the vertical axis due
to the dark lane of the disk. For comparison, several n = 3 2
Matérn kernels are shown, following the chosen formalism
from Czekala et al. (2015). To compute the covariance matrix
KG, for each pair of pixels i j, , the distance between them given
by = - + -( ) ( )r x x y yi j i j i j,

2 2 is calculated. For each entry
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of Ki j
G
, , the analytic autocorrelation function is interpolated to

the value for ri j, , with a cutoff outside of 20 pixels to make
computations of Ci j, manageable. The resulting covariance
matrix is shown in Figure 9.

For consistency, the likelihood of each model SED is
computed using the covariance matrix framework from
Equation (4). In this case, the covariance matrix contains only
the individual uncertainties for each point multiplied by an
identity matrix. Any global limitations of the model SEDs to fit
the data set are neglected. Given the low c2 values achieved for
the SED fitting in the grid search described above (lowest SED

c2 ∼1.3), the uncertainties in the SED are presumed to be well-
estimated. For this data set, covariances are not anticipated
between neighboring photometric points, but this formalism
would naturally handle any such correlations and makes it
straightforward to include continuous spectra as part of a
unified fit alongside broadband photometry.
The covariance framework is also capable of including

model terms for additional regions of the locally covariant
structure (KL), as discussed in Czekala et al. (2015). We leave
the application of such local covariances to disk image fitting
for future work, along with the exploration of how best to

Figure 7. Mean of the autocorrelation of the residuals from subtractions between
our 0.8 mm observed image and a randomly selected subset of 1000 model
images spanning the range of the priors. Residuals are most strongly correlated
between pixels that are horizontally adjacent, as expected for an edge-on disk
with its major axis oriented horizontally. The slight anticorrelation in the vertical
direction is likely due to dark lane structure between the two bright lobes.

Figure 8. Slices through the mean autocorrelation shown in Figure 7. Both the
vertical (blue) and horizontal (red) slices along with several Matérn kernels are
presented for comparison. We conservatively adopt the wider correlation scale
from the horizontal axis to generate the global covariance matrix. It is not
unsurprising that the autocorrelation image is more broadly extended in the
horizontal direction, where the disk is elongated, than in the vertical, where the
gradients in the disk are much sharper.

Figure 9. Top: covariance matrix (Ci j, ) used to compute the log likelihood of
the model images given the observations. The matrix combines information
about the noise in the observations, the covariances between adjacent pixels,
and the pixel mask. Bottom: a zoomed-in region illustrating the contribution of
the autocorrelation function between adjacent pixels. To generate this, the 2D
50×50 pixel image is first unwrapped into a 1D 2500 pixel array by stacking
each row horizontally. The diagonal of the covariance matrix gives the
uncertainties associated with each pixel (where i = j). The other elements of
the covariance matrix dictate the covariances between the various pixel pairs
(i j, ), given by the autocorrelation shown in Figure 8 and depending on the
distance between pixels i and j in the 2D detector frame (not in the 1D
unwrapped image).
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explicitly model covariances between the SED and image
portions of the overall fit.

3.5.3. Choice of Parameter Values for MCMC

The allowed parameter ranges were adjusted slightly for the
MCMC modeling compared to the grid fit. The computation
time for the grid modeling depended both on the number of free
parameters and on the size of the allowed parameter ranges,
while the MCMC modeling time depended only on the number
of free parameters. Therefore, we were able to widen the prior
distributions for the MCMC modeling, being careful to widen
allowable ranges for those parameters that were best fit at the
edges of the grid distribution, such as the scale height and disk
mass. Parameter ranges are shown in Table 2, column 3.
During the IDL grid search modeling phase, we found the
image and SED fits both prefer a large maximum grain size. In
order to limit the computation time in the MCMC fits, the
maximum grain size was fixed to be 3000 mm, and as noted
above, the porosity was set at zero.

One downside to the MCMC over the grid search approach
is that the chain does not work well with discrete parameter
distributions. For example, the abrupt distinction between the
tapered- and sharp-edged disk models could not have been
tested using MCMC. Given the strong support for the tapered-
edge disk model as described in Section 3.4.2, we selected an
exponentially tapered outer edge for the MCMC run.

An MCMC run was conducted using the covariance-based
log-likelihood goodness-of-fit metric with two temperatures
with 50 walkers. Uniform prior distributions were used for all
of the parameters (with the dust mass uniformly distributed in
log space). The chain was run for Nsteps=10,000, with an
initial burn-in stage of =N N0.2burn steps. This resulted in a total
of 21,000 models requiring ∼2 weeks of computation time
parallelized over only 10 cores. This was a significant
improvement over the grid search approach, which necessitated
generating ∼200,000 models. As a test of convergence, we
compute the integrated autocorrelation times (tx) for each of
the parameters and use these to estimate the effective sample
size, ESS = t( )N 2 xsamples (a measure of the effective number
of independent samples in the correlated chain). The ESS
varied from 761 to 12,075, with the surface density exponent
being the least well-constrained parameter. The Monte Carlo
standard error for each parameter decreases with increasing
effective sample size as s ESSi , where si is the standard
deviation for the posterior distribution (see the discussion in
Sharma 2017). For example, to measure the 0.025 quantile to
within±0.01 with a probability of 0.95 requires 936
uncorrelated samples (this corresponds to roughly 10% errors
in the best-fit parameter values assuming the tail of the
posterior is well-described by a normal distribution), which is
achieved for all parameters except the surface density
distribution where the 0.025 quantile was only confined to
within roughly±0.0125 (Raftery & Lewis 1992).

3.6. Results and Conclusions from MCMC

The best-fit parameter values are shown in Table 3. The data
are best fit by a tapered-edged disk with an inclination of

-
+83.0 4.8

2.6 degrees, a scale height of -
+16.2 2.0

1.7 au at a reference
radius of 100 au, a disk dust mass of -

+0.00057 0.00022
0.00017 Me

(assuming a gas-to-dust ratio of 100), a surface density
exponent (α) of - -

+1.77 0.14
0.94, and a flaring exponent (β) of

-
+1.19 0.08

0.09. The image and SED combined best-fit model is
illustrated in Figure 10 (single best fit in red, along with an
ensemble of well-fitting models in gray) and together provide a
close fit to the observations. Parameter distributions are shown
in Figure 11. The results for individual parameters are
discussed in more detail below.
The best-fit parameters provide a compromise between the

image and SED fit. Therefore, this combined fit to the SED and
image is not as favorable as if the fits had been performed
separately on each individual data set. For example, the best-fit
model SED underpredicts the flux in the 20–100 μm region of
the SED (by a factor of 20 at 20 μm and 1.5 at 70 μm), while
the best-fit model image underpredicts the flux ratio between
the top and bottom nebulae by a factor of ∼4. Either of these
could have been improved individually if we had only
optimized the fit for that metric alone. Models that best fit
the image tend to overpredict the disk flux at all wavelengths,
while the models that best fit the SED tend to produce images
that have very steep surface density profiles, which remove the
diffuse material on the outer edges of the disk provided by the
tapered edge.
The apparent disagreement is likely a result of some

limitations in the disk model. If the opacity of the dust grains
in the disk was decreased, the optically thick/thin boundary
would move to shorter wavelengths, recovering some of the
flux in the several tens of micron range of the SED. However,
to improve the flux ratio between the top/bottom nebulae in the
modeled image, we would need to move the inclination farther
from edge-on and/or change the scattering properties of the
grains (i.e., increase the forward-scattering or decrease the dust
albedo), which would most likely necessitate an increase in the
dust opacity.

3.7. Dust Mass

The best-fit disk dust mass is -
+

M0.00057 0.00022
0.00017 , which

corresponds to a disk mass of 0.057 Me (assuming the standard
ISM gas-to-dust ratio of 100). This is 16% of the stellar mass
for a 0.35 Me star like ESO-Hα569, a surprisingly high disk-
to-star mass ratio.
In the grid fit and the initial MCMC run using the c2

estimator, the fit to the disk mass relied heavily on the 870 μm
measurement. Given the surprisingly high mass estimate, we
speculated that the 870 μm photometry might be in some way
compromised (for instance, contaminated by excess flux from a
background source). To test the dependence of the derived
mass on this measurement, another MCMC run was tested
excluding this data point, but the overall fit still preferred high
disk masses. Subsequent to these initial MCMC runs, Dunham
et al. (2016) published their ALMA 2.8 mm continuum

Table 3
MCMC Best-fit Parameters

Parameters Best-fit Values

Inclination (°) -
+83.0 4.8

2.6

Scale Height (au) -
+16.2 2.0

1.7

Dust Mass (Me) -
+0.00057 0.00022

0.00017

Surface Density α - -
+1.77 0.14

0.94

Flaring β -
+1.19 0.08

0.09

Note. Best-fit values for the covariance likelihood estimation mode of
the MCMC.
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observations, from which they found a total disk mass (gas
+dust assuming a gas-to-dust ratio of 100) of

 M0.057 0.002 . The excellent agreement between these
independent results (their estimate and our result from fits
without including their 2.8 mm data point) provides increased
confidence in the apparently high mass of this disk. Our final
MCMC fit using the covariance framework included the
2.8 mm measurement as well as the other photometry.

A key aspect here is the assumed dust opacity. The mass
estimate by Dunham et al. (2016) was made under the
assumption that the disk is optically thin, in which case the
mass may be directly computed via + =

k
n

n n
( )

( )
M gas dust F D

B T

2

.
The derived mass thus depends on both the opacity and the disk
temperature. Dunham et al. (2016) assumed a disk average
temperature of T=10 K. Our best-fit MCFOST model yields
the disk internal temperature as a byproduct of the MCMC
radiative transfer calculation, and the results are fairly
consistent: a calculated disk midplane temperature of 10 K at
100 au, increasing inwards to 30 K at 5 au. The larger source of

potential systematic bias in the disk mass is thus the assumed
dust opacity. Dunham et al. (2016) use a dust opacity
characteristic of coagulated dust grains with thin icy mantles
(k = 0.23, cm2 g−1; Ossenkopf & Henning 1994). Our model
uses olivine dust as described in Section 3.2, which yields a
similar opacity at 2.8 mm within a factor of 2. But other results
can easily be obtained. For instance, if we instead adopt the dust
opacity law from Beckwith et al. (1990) (k =n 0.03 cm2 g−1 at
870 μm) and use T=20 K, then that yields an estimated disk
mass + = =

k
n

n n
( )

( )
M Mgas dust 0.0055F D

B T

2

, a factor of 10
lower (again assuming the standard gas-to-dust ratio of 100).
Better constraints on the dust particle properties and thus the
millimeter opacities could help clarify the true mass of this disk.
Some disagreement between predictions from the 2.8 mm and
870 μm continuum measurements may be unsurprising since
derived dust masses from submillimeter data may be biased
downwards in the case of EODs if they begin to become
optically thick at that wavelength. That said, the good agreement
between the Dunham et al. (2016) millimeter-continuum-derived

Figure 10. Results from the covariance-based MCMC. Top: the model image (middle) corresponding to the best-fit parameters given in Table 3 compared to the 0.8 mm
observed image (left). The right panel shows a contour highlighting the shape of the best-fit model disk in red, with contours scaled to the observed 0.8 mm image shown
in blue. One hundred randomly chosen models drawn from the MCMC chain are depicted in gray. Bottom: the SED for the same model as above is shown in red and
compared to the literature values in blue. The gray curves present the same 100 randomly selected models drawn from the chain. While the MCMC results provide a
reasonably good fit to both the image and SED, the compromise between the two data sets, inherent in the covariance framework, lead to imperfect solutions. For
example, the best-fit model underpredicts the flux in the 20–100 mm region. The green and purple lines shown in both the SED and image contours highlight two of the
models that are poor fits to the observations. The purple model overpredicts both the flux in the SED and the surface brightness ratio between the top and bottom nebulae
in the image.
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mass and the result from our fit to the full SED and the HST
scattered-light image seems to indicate that the relative
importance of absorption/emission and scattering of the dust
model (which includes, but is not limited to, the dust albedo)
used here is a reasonable approximation.

Lastly, we note that a reduced gas-to-dust ratio would of
course directly affect the inferred total gas+dust to star mass
ratio, but the available observations do not provide any
evidence toward (or against) such a hypothesis.

3.8. Scale Height

The best-=fit scale height of -
+16.2 2.0

1.7 au (at 100 au) is
consistent with the low mass of the central star. For a disk that
is pressure-supported and vertically isothermal with

temperature, the Gaussian vertical density distribution is
described by Equation (5) (Burrows et al. 1996):

m
=( ) ( ) ( )H r

k T r r

GM m
, 5B

p

3

star

where we assume a reduced mass (μ) of 2.3 If we adopt the
best-fit scale height value of 16.18 au at a reference radius of
100 au and calculate the temperature of the disk at this radius,
we obtain T ∼ 23 K. This disk temperature agrees well with
observations of other edge-on disks (e.g., HH 30; Burrows
et al. 1996).
Additionally, MCFOST is capable of producing the temp-

erature structure within the disk along with the images and

Figure 11. MCMC results using the covariance log-likelihood estimation. The blue crosshairs indicate the best-fit value for each parameter. Shading indicates the
density of the parameter space sampling, while the red contours are drawn at the 1σ–4σ levels. All parameters are well-constrained, except for the surface density
exponent (α). Dashed vertical lines represent the 16th, 50th, and 84th percentiles of the samples in the marginalized distributions.
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SEDs. This can be used as a cross-check on the physical self-
consistency of our best-fit model parameters. The mass-
averaged temperature (across the vertical direction) for our
best-fit model at the reference radius (100 au) is T=29K.
Surface effects that are exacerbated in scattered light could
account for the slight discrepancy between the analytically and
numerically estimated disk temperatures, as the surface gas is
superheated by stellar radiation. The agreement between the
dust scale height inferred from the image and the gas scale
height computed from the model suggests that the dust grains
are well-mixed vertically with very little dust settling, at least
for the small dust particles (10 μm) that dominate the opacity
at visible wavelengths.

3.9. Flaring Exponent

The best-fit flaring exponent was b = -
+1.19 0.08

0.09. Kenyon &
Hartmann (1987) provide an analytical model for the temper-
ature profile of a flared disk wherein the surface layers are
heated by the direct stellar radiation and the energy is re-
radiated thermally. Assuming the gas and dust are well-mixed
vertically, and that the incident angle of the stellar radiation on

the flared surface is small, =
b-( )( ) ( )T R T R R

R0

2 3

0
. We fit the

modeled mass-averaged disk temperature profile to this analytic
solution, revealing that a flaring exponent of b = 1.29 is
preferred. This value is consistent within ∼1σ of the model
preferred value. The best-fit value is slightly shallower than has
been predicted for other young, flared disks with b = –1.3 1.5
(e.g., Chiang & Goldreich 1997). This could be an indication of
early dust settling in the disk, decoupling the dust and gas, and
changing the disk thermal pressure profile. In this model, dust
particles of all sizes are assumed to be evenly distributed
vertically throughout the disk. An investigation into the effect
of settling of larger grains to the disk midplane is left for
future work.

3.10. Surface Density Exponent

The surface density exponent is best fit by a = - -
+1.77 0.14

0.94,
which is near the lower edge of the allowed parameter space.
However, allowing for steeper surface density profiles would
push the models into a highly unphysical range. The SED
favors a very steep surface density profile (also seen for HV
Tau C; Duchêne et al. 2010), while the images favor a shallow
profile with a more gradual taper at the disk edge. It is possible
that the steep best-fit surface density profile is a reaction to the
large disk masses required to fit the millimeter data in the SED,
whereby mass is being concentrated in the center of the disk,
where our data set is poorly equipped to constrain the disk
properties. The SED was not expected to have a strong
dependence on the surface density slope. The disk is presumed
to be very optically thick across most of the IR portion of the
SED. Consequently, the surface density profile would not
impact the location of the disk scattering surface, which is
intercepting and re-radiating light from the central star. It is
possible that a degeneracy between the surface density
exponent and some other star/disk property is influencing this
fit (e.g., stellar luminosity, dust albedo, etc.).

It is unexpected that a disk surface density power law would
be steeper than the a = -1.5 value for the minimum mass
solar nebula (Weidenschilling 1977). Indeed, Andrews &
Williams (2007) conducted a resolved submillimeter conti-
nuum survey of circumstellar disks and find a mean value of

a = -0.5. Instead, this steep profile is probably indicative of
some shortcoming in our model parameterization. Invoking
separate power laws for the inner and outer regions of the disk
may provide a solution, but is beyond the scope of this paper.
Although we have spatially resolved images at optical
wavelengths, the disk is highly optically thick, causing any
effects of radial density gradients to be undetectable.
Characterizing these would require resolved images at
wavelengths where the disk is optically thin (e.g., resolved
millimeter-continuum images, though it is uncertain if the disk
is truly optically thin at these wavelengths). Scattered-light
imaging alone simply does not constrain the surface density
exponent in the innermost regions of the disk. Previous studies
of the radial structure of protoplanetary disks observed in
millimeter continuum find surface density profiles that are
generally shallower than presented here, although there are a
few exceptions (e.g., DG Tau, GM Aur; Guilloteau et al. 2011).
Estimates of the surface density distributions inferred from
resolved millimeter data at different wavelengths vary widely
(Isella et al. 2010), suggesting that these disks are not optically
thin even in the 1–3 mm range.

4. Discussion

4.1. Mass and Stability of the Disk

The best-fit dust mass ( M0.00057 or ÅM190 ) and the
associated total (gas + dust) disk mass ( M60 Jup, assuming a
gas-to-dust ratio of 100) imply a disk mass to star mass ratio
(M MD star) significantly higher than expected for its age and
spectral type. Williams & Cieza (2011) provide a review of
protoplanetary disks and report a relatively flat distribution of
disk masses when spaced logarithmically, with a sharp drop
outside of ∼50 MJup and an average disk mass to host a stellar
mass ratio of 0.01 albeit with a large scatter. The median mass
(assuming a gas-to-dust ratio of 100) of disks around GKM
spectral type hosts is 5MJup (implying a dust mass of ∼16 ÅM ).
This trend of low M MD star mass ratios seems to continue for

low-mass stars. Van der Plas et al. (2016) conducted a survey
of disk masses for low-mass stars with ALMA, finding a range
of masses between 0.1 and 1 ÅM for their eight targets. One
target in their sample, Allers 8 (an M3 star with a mass of 0.34
Me), has similar stellar parameters to ESO-Hα569, but a
significantly lower dust mass of 1.05 ÅM . However, the bulk of
the disks in their sample are located in the Upper Scorpius SFR
(∼10 Myr; David et al. 2016) and are older than our target. The
authors have an additional data set for the younger Taurus SFR,
with preliminary estimates for the dust mass upper limit of 25

ÅM for a sample of stars with an earliest spectral type of M4
(K. Ward-Duong 2017, private communication). Additionally,
Andrews et al. (2013) conduct a survey of the protoplanetary
disks with low-mass hosts (spectral types earlier than M8.5) in
the Taurus SFR and find slightly higher disk masses. The
authors estimate the disk masses from their millimeter-wave
continuum luminosity, and find that the median disk mass to
stellar mass ratio is 0.3%, with very few disks having a ratio of
�10%. Targets in their sample in the M3–M4 spectral type
range have disk dust masses of 2–17 ÅM , with an average of
9 ÅM .
While uncommon, protoplanetary disks with large disk

masses are not unprecedented. Duchêne et al. (2010) model
scattered-light images and SEDs for the HV Tau C system and
find a best-fit dust mass of  -

M M10dust
3 , which gives
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~M M 0.2D star (meaning the disk is 20% of the mass of the
central star), assuming a gas-to-dust ratio of 100. Likewise,
Duchêne et al. (2003) model a millimeter image of the HK Tau
B protoplanetary disk and get a best-fit total disk mass of

´ - M M2 10disk
2 , which gives ~M M 0.04D star (4% of

the stellar mass). Glauser et al. (2008) present an in-depth study
of the IRAS 04158+2805 disk using images in the optical
and NIR, polarization maps in the optical and mid-IR, and
X-ray spectra. The dust mass is constrained to be

= ´ -
–M M1.0 1.75 10dust

4 , which also gives =M MD star
~0.04 (4%). All three disks are in the Taurus SFR and the first
two disks above are in multiple systems. Likewise, all of these
sources are viewed edge-on. It is possible that the large inferred
disk masses could be the result of a selection effect
(observations of edge-on disks are only sensitive to the most
massive disks), or some artifact of our fitting method which
compensates for missing physics by placing more mass in the
disk. The fit for the dust mass is driven by the SED, but the
spectral coverage is poor in the millimeter. The mass estimates
could be reduced by including larger opacities in the
millimeter, for instance by adding amorphous carbon into the
mixture, or by using a more complex, nonuniform particle
distribution.

Throughout this paper, we assumed a gas-to-dust mass ratio
of 100, as is typical of other young disks and the ISM.
However, very recent work by Long et al. (2017) estimate the
gas mass around ESO-Hα 569 from ALMA 13CO line emission
and find only ~ M1.3 Jup of gas mass in the disk, although
optical depth effects and details of the CO freeze-out are likely
to introduce major sources of uncertainty. Combined with our
own dust mass estimate, this gives an uncharacteristically low
gas-to-dust ratio of only ∼2. Although gas depletion in the disk
would lower the unusually high best-fit total disk mass, the
flared appearance strongly confirms this is a young pressure-
supported gas+dust disk. A gas-to-dust ratio of 2:1 is
suggestive of a later evolutionary stage. This disagreement
highlights the challenges of measuring disk masses for EODs,
which are generally optically thick even at millimeter
wavelengths.

The MCMC radiative transfer fit prefers a disk with an
abnormally large disk mass that is ∼16% of the mass of the
central star. We investigate the stability of the disk via the
Toomre Q parameter,

k
p

=
S

( )Q
c

G
, 6s

where cs is the sound speed in the disk, κ is the epicyclic
frequency, and Σ is the surface density profile of the disk.
For a vertically isothermal disk with a Keplerian velocity,

k = W = GM

R
Star
3 and a sound speed =

m
cs

k T

m
B

p
, where a

reduced mass (μ) of 2.3 was assumed. Figure 12 shows the
radial profile of the Toomre Q parameter. It shows that the disk
appears to be stable at all radii.

It is worth noting here that a good constraint is not expected
on the properties of the inner regions of the disk from scattered-
light imaging and the SED alone. Any change in the interior
structure (e.g., an inner wall, spiral structure, or a broken
surface density power law) of the disk would affect stability.
Each of these mechanisms would increase the variability of the
system, possibly accounting for the observed variability in
several of the photometric points included in the SED.

4.2. ESO-Hα569 Compared to Other Cha I Disks

Rodgers-Lee et al. (2014) conducted a survey of disks in Cha
I as identified from IR excesses in the SEDs. For 34 objects,
disk masses were estimated. The median of the distribution of
disk masses is 0.005 Me, which corresponds to 0.5% of the
stellar mass, while the tail of the distribution stretches to 0.1
Me for more massive central stars. ESO-Hα569 is a clear
outlier with 10 times more mass than the median value.
The Luhman (2007) survey of Cha I names six members

as likely edge-on disk candidates because they are under-
luminous for their spectral type and are seen in scattered
light (CHSM 15991, T14A, ISO 225, ESO-Hα 569 and 574,
and Cha J11081938–7731522). One of those objects, Cha
J11081938–7731522, appears extended in their survey with a
butterfly morphology, providing further support that these
targets are all likely edge-on disks. Two members of that list,
ESO-Hα569 and 574, were observed in our HST campaign,
which confirmed that both are edge-on protoplanetary disks.

4.3. A Deficit of Edge-on Disks?

Luhman et al. (2008) use Spitzer colors to estimate the disk
fraction as a function of stellar mass. For stars of spectral type
between K6 and M3.5, the disk fraction in Cha I is 0.64±0.06
disks per star. If we multiply this fraction by the fraction of
disks expected to have inclinations between 75° and 90°,
roughly 17% of stars with young disks should host edge-on
disks. However, a recent survey of 44 YSOs hosting
circumstellar disks detectable with Herschel found only two
edge-on disks (Rodgers-Lee et al. 2014) as classified from the
SEDs. Although the sample size of this survey is small, this
surprising lack of known EODs is a common phenomena seen
for many SFRs (Stapelfeldt et al. 2014) and was one of the key
motivating factors for our HST survey. While that program
doubled the number of known EODs, the increased sample
remains smaller than would be predicted from purely
geometrical grounds. This suggests that many disks must be
near edge-on but with insufficient material and/or vertical
extent to block the direct light of the star. Flatter disks, with
lower H/R values than ESO-Hα569, would only appear edge-
on for a narrower inclination range. For instance, if the
“typical” young disk is flared enough to only occult its star
within 5°, considering a range from 85° to 90° would give an
edge-on disk fraction per star of 4%, more in line with what is
observed.
Alternatively, this could suggest that the “typical” double-

peaked SED assumed for edge-on disks may only be present
for disks with an unusually high disk mass. The targets for this
edge-on disk survey were selected based on the shape of the

Figure 12. Radial profile of the Toomre Q parameter for our best-fit disk. The
disk appears to be stable at all radii.
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SEDs—specifically, targets with a doubled-peaked SED, where
the stellar peak flux was of the same order as the dust peak flux
in the IR. Figure 13 shows the effect of changing dust mass on
the structure of the SED and the scattered-light image for a
fixed inclination. Disk masses shown are for the best-fit disk
mass divided by factors of 3, 10, 30, and 100. After dividing by
a factor of 10 (for a more reasonable ~M M 0.016D ), the
double-peaked structure disappeared, and we did not include
this target in our sample. It is possible that this could account
for the relative lack of known edge-on disks; the selection
metrics used are biased toward detecting only the most massive
disks, as they require fairly large line-of-sight opacities.

It is therefore possible that the edge-on disk detections thus
far are outliers in the population of young disks. Double-
peaked SEDs alone are an insufficient indicator of the edge-on
disk fraction, and images in scattered light or thermal emission
with high spatial resolution are required to determine the true
nature of these objects. Existing surveys of young, nearby
SFRs tend to have selection biases toward more face-on
systems and are dependent on the cloud properties and the
science drivers of the survey. In order to determine the true
edge-on disk fraction and to confirm or deny that the high disk
mass of ESO-Hα569 is indeed representative of the population
of protoplanetary disks, a uniform sample of disk observations
at sufficiently high angular resolution will be required.

5. Summary and Conclusions

We resolved the disk around ESO-Hα569 in scattered light
with HST/ACS and unambiguously confirmed that it is an
optically thick protoplanetary disk viewed nearly edge-on. We
performed radiative transfer modeling using a variety of fitting

techniques to constrain the geometry and grain properties of the
disk. We successfully combine a covariance-based log-like-
lihood estimation with an MCMC framework to simultaneously
fit the scattered-light image and literature-compiled SED for
ESO-Hα569. Our main results are as follows:

1. We find that a tapered-edge disk structure, with an
exponential falloff of material outside of the apparent
outer radius, is necessary to generate the diffuse
scattered-light emission above the disk midplane, the
flux ratio between the top/bottom nebulae of the disk,
and the width of the dark lane simultaneously.

2. The best-fit disk mass of 0.057 Me is abnormally large,
especially considering the small central object, though
multiple millimeter-continuum observations support this
estimate. Assuming a gas-to-dust ratio of 100, the disk
mass is 16% of the mass of the central star, establishing
the ESO-Hα 569 disk as a clear outlier in the Cha I SFR.
Despite the high mass, the disk appears gravitationally
stable at all radii.

3. The vertical structure of the disk as defined by the scale
height and the power-law flaring exponent is well-
constrained. The best-fit model has a mass-averaged disk
temperature of ∼23 K, similar to other disk observations.
The scale height is self-consistent with the modeled
temperature profile, supporting a flared disk model in
which the gas and dust are well-coupled.

A large effort was put into simultaneous and consistent
fitting of the images and the SEDs, resulting in a disk model
that is a good compromise between the two. But naturally, a

Figure 13. Evolution of the shape of the image and SED for different dust masses. Our best-fit model is shown in blue. The other models use the same parameter
values except for the mass, which is some fraction of the best-fit dust mass as indicated in the legend. For a fixed inclination, decreasing the dust mass moves photons
from the thermal peak in the SED to the scattered-light peak. Decreasing the mass by a factor of 10 generates a flat SED without the double-peaked structure.
Likewise, if the dust mass is one-tenth the best-fit value, the double-nebula shape begins to disappear in the scattered-light image and is not seen at all in the

´ -
M1.9 10 5 model.
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separate fit to each individual observable is capable of yielding
a better fit to that one, at the cost of an inferior fit to the other.
This is likely due to (1) limitations in the parameterization of
the ongoing complex physical processes in protoplanetary
disks. In this work, a fairly simple analytic disk structure
formalism with a single grain population was used. (2) The
inability of our data set to constrain some aspects of relevant
physics and processes (e.g., neither the SED nor the scattered-
light image provides much information on the innermost
regions of the disk).

Using a combination of different observables (spectral data,
images in scattered light, and thermal emission, and polari-
metry data to constrain grain properties) helps to break
degeneracies between various model parameters. However,
care must be taken to determine the correct approach for the
relative weighting of observables with different noise proper-
ties and model sensitivities. Now that high-contrast imaging
systems designed to study these circumstellar environments in
greater detail are coming on line, there is a plethora of great
observations for disks that formed under a range of initial
conditions in a wide range of evolutionary stages. We may be
entering an era where we have statistically significant numbers
of circumstellar disk observations to employ population
synthesis techniques. This is an important step if we hope to
understand the inherent physics in the disk and planet
formation processes. The tools we have been developing take
us a step closer to being able to consistently make fits and
measurements to e.g., the entire known sample of edge-on
disks.

To better constrain the ESO-Hα569 disk and stellar
parameters, we would need to incorporate resolved images at
multiple wavelengths. In this work, we chose not to model the
0.6 μm image because of the contamination from the jet.
However, we recently obtained resolved images in the HST
F475W filter and will use this to probe the diffuse scattering
material high up above the disk in a forthcoming paper.
Additionally, an ALMA Cycle 4 program (PI: F. Ménard) was
awarded to map the thermal emission from 15 confirmed edge-
on disks from our HST sample at 870 mm and 2 mm to probe
dust settling, migration, and grain growth. Spatially resolved
millimeter observations should go a long way toward
disentangling many of the outstanding uncertainties regarding
this disk’s structure. Looking forward, with the launch of
JWST, the MIRI MRS integral field spectrograph will provide
spatially and spectrally resolved data across the entire 5–30 μm
range for many disks. This would not only help to constrain the
structure of the disk in a regime where the current SED fit
particularly struggles, but also provide valuable and detailed
information about the dust species within the disk.
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Appendix

Here we provide a simplified disk model-fitting effort
designed to illustrate the effect of the two “goodness-of-fit”
metrics used in the MCMC explorations of parameter space: c2

and covariance log-likelihood-based estimation described in
Sections 3.4.1 and 3.4.2, respectively. Although this demon-
strates the power of the two tools, we recognize that it is not a
comprehensive test of performance. A full benchmarking effort
of the mcfost-python package is beyond the scope of this
paper.
To test the ability of both fitting metrics, we generate an

MCFOST model with known parameter values, add randomly
generated 1σ noise to both the MCFOST-produced image and
SED, and attempt to retrieve the parameters. The model was
randomly drawn from the ESO-Hα569 MCMC chain
described above. We perform a fit to this synthetic data set
using both the c2 and covariance log-likelihood-based estima-
tion. For simplicity, we choose only to fit the scale height and
inclination of our modeled disk. We expect both methods to
recover the known parameter values within the uncertainties.
Parameter values used for the synthetic data set are shown in
Table 4.
To illustrate the power of the covariance framework over the

c2-fitting technique, we perform the same test, but purposefully
input a disk dust mass too low by a factor of 10 into the
MCFOST parameter file. This will test how robust the
covariance framework in the presence of clear limitations in
the model’s ability to fit the data.
In an effort to conduct these tests as close to the MCMC

results reported above, we use the same Parallel Tempered
ensemble sampler with two temperatures and 50 walkers. With
only two free parameters, the chains converged more quickly,
requiring only =Nsteps 10,000 with =N N0.2burn steps. The
allowable parameter ranges for the inclination and scale height
were the same as reported in Table 2.
Figures 14 and 15 present the results for the covariance and

c2-fitting techniques, respectively. Both methods retrieve the
input inclination and scale height within the uncertainties

Table 4
Parameter values for the Synthetic Data Set

Parameters Values Notes

Inclination 71 . 6 Allowed to vary
Scale Height (R = 100 au) 25.6 au Allowed to vary
Dust Mass ´ -

M4.94 10 4 Held constanta

Surface Density α −1.76 Held constant
Flaring β 1.54 Held constant

Note.
a This value was held constant for all runs; however, a value of

´ -
M4.94 10 5 (0.1 times the actual value) was used to test the robustness

of the fitting techniques to systematic model errors.
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when using the correct dust mass. However, when the dust
mass is set to one-tenth the actual value, both fitting methods
struggle to retrieve the correct parameter values. The
covariance run successfully recovered the disk scale height,
though the uncertainties are larger than the correct dust mass
case. The inclination was found to be -

+77.7 2.6
5.1 degrees, which

is only s~2 discrepant from the true value. With the incorrect
disk mass, the c2 run was unable to recover either parameter.
The scale height of the disk is not well-constrained at all,
while the likelihood distribution for the inclination is sharply

peaked at -
+79.8 0.6

1.1 degrees, which is s~14 discrepant from
the true value. It is unsurprising that the covariance
framework is much more robust to global limitations of the
models to fit the data set.
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Figure 14. Left: MCMC results of the covariance log-likelihood estimation fit using a synthetic data set. We fit only the scale height and inclination of the modeled
disk. The blue lines correspond to the known values for each parameter. The correct parameter values were retrieved, and the distributions are sharply peaked. Right:
same as the left panel, but the MCMC run was conducted using an incorrect disk dust mass in the MCFOST parameter files. Even assuming a depleted dust mass, the
scale height of the disk is still recovered, while the best-fit inclination is s~2 discrepant. The covariance framework is less sensitive to any global limitations of the
disk model to fit the given data set.

Figure 15. Same as Figure 15 but the MCMC was run using the c2 log-likelihood-based estimation rather than the covariance framework. Unlike the covariance case,
the c2 fitting metric has a difficult time retrieving any of the correct parameter values when the incorrect disk dust mass was used to generate each MCFOST model.
The disk scale height is not well-constrained at all, and the best-fit inclination is s~14 discrepant.
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