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Abstract

We present high angular resolution dust polarization and molecular line observations carried out with the Atacama
Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing
these observations with new polarization observations from the Submillimeter Array (SMA) and archival data from
the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell
Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major
changes in the magnetic field orientation between large (∼0.1 pc) scales—where the magnetic field is oriented
E–W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and
small scales probed by CARMA (∼1000 au resolution), the SMA (∼350 au resolution), and ALMA (∼140 au
resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in
SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low-
velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and
spectral-line observations also reveal a tight (∼130 au) protobinary system in SMM1-b, the eastern component of
which is launching an extremely high-velocity, one-sided jet visible in both = (JCO 2 1) and = (JSiO 5 4);
however, that jet does not appear to be shaping the magnetic field. These observations show that with the
sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar
outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.

Key words: ISM: jets and outflows – ISM: magnetic fields – polarization – stars: formation – stars: magnetic field –
stars: protostars
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1. Introduction

The Serpens Main molecular cloud is an active star-forming
region, and the birthplace of a young cluster (e.g., Eiroa et al.
2008), located at a distance of 436±9 pc (Ortiz-León et al.
2017). The cloud is composed of a complex network of self-
gravitating filaments where star formation is taking place (Lee
et al. 2014; Roccatagliata et al. 2015); there is evidence that a
cloud–cloud collision has triggered or enhanced the recent star
formation in the region (Duarte-Cabral et al. 2010, 2011).

Serpens SMM1,16 a Class 0 protostar, is the brightest
millimeter source in the cloud (Testi et al. 2000; Enoch et al.
2009; Lee et al. 2014), with a luminosity of = L L100bol
(Goicoechea et al. 2012). It powers a compact (∼2000 au),
non-thermal radio jet that is expanding at velocities of
∼200 km s−1, which implies that the radio jet has a dynamical
age of only 60 yr (Rodriguez et al. 1989; Curiel et al. 1993;
Choi et al. 1999; Rodríguez-Kamenetzky et al. 2016); Curiel
et al. (1993) suggest that the radio jet comprises a proto-
Herbig-Haro system. The jet has a well collimated molecular
outflow counterpart (Curiel et al. 1996) that is also detectable in
mid-infrared atomic lines (Dionatos et al. 2010, 2014); the jet
appears to be perturbing the dense molecular gas surrounding
the outflow cavity (Torrelles et al. 1992), producing copious

The Astrophysical Journal, 847:92 (13pp), 2017 October 1 https://doi.org/10.3847/1538-4357/aa7fe9
© 2017. The American Astronomical Society. All rights reserved.

15 Jansky Fellow of the National Radio Astronomy Observatory.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

16 Serpens SMM1 has been known by many names including Serpens FIRS1,
Serp-FIR1, Ser-emb 6, IRAS 18273+0113, S68 FIR, S68 FIRS1, and S68-1b.
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water maser emission (van Kempen et al. 2009). Atacama
Large Millimeter/submillimeter Array (ALMA) observations
from Hull et al. (2016) show that the central source (SMM1-a;
see Table 1) powers an extremely high-velocity (EHV)
molecular jet, which is surrounded by an ionized cavity
detected in free-free emission by the VLA. The cavity is most
likely ionized either by the precessing high-velocity jet or by
UV radiation from the central accreting protostar.

Polarized dust emission can be used as a tracer of magnetic
fields in star-forming regions, as “radiative torques” (Hoang &
Lazarian 2009) tend to align spinning dust grains with their
long axes perpendicular to the ambient magnetic field
(Lazarian 2007; Andersson et al. 2015). Dust polarization
observations with (sub)millimeter interferometers have proven
useful to trace the magnetic field at dense core scales (e.g., Rao
et al. 1998; Girart et al. 1999; Lai et al. 2001; Alves et al. 2011;
Hull et al. 2013, 2014). When a collapsing protostellar core is
threaded by a uniform magnetic field and has low angular
momentum (relative to the magnetic energy; Machida et al.
2005), the magnetic field is expected to exhibit an hourglass
morphology at the core scale, with the magnetic field
orientation along the core’s minor axis (Fiedler & Mouschovias
1993; Galli & Shu 1993; Allen et al. 2003; Gonçalves et al.
2008; Frau et al. 2011). This morphology has been seen in
some low- and high-mass protostars (Lai et al. 2002; Girart
et al. 2006, 2009; Rao et al. 2009; Tang et al. 2009b; Stephens
et al. 2013; Qiu et al. 2014; Li et al. 2015). However, it is
becoming clear that this situation is not universal: in several
cases, the magnetic fields threading the cores exhibit complex
morphologies (e.g., Tang et al. 2009a; Girart et al. 2013; Frau
et al. 2014; Hull et al. 2014, 2017). In addition, recent
observational studies of a large sample of star-forming sources
(Hull et al. 2013, 2014) and analyses of synthetic observations
of magnetohydrodynamic (MHD) simulations at similar
resolution (Lee et al. 2017) show no strong correlation between
the outflow orientation and the core’s magnetic field orientation
at ∼1000 au scales;17 although there are studies that do suggest
non-random alignment of outflows and magnetic fields at
∼10,000 au scales (e.g., Chapman et al. 2013).

In this paper, we present ALMA 343 GHz (Band 7)
polarization observations toward the very embedded

intermediate-mass protostar Serpens SMM1. We complement
these observations with new Submillimeter Array (SMA; Ho
et al. 2004) 345 GHz dust polarization observations as well as
with archival polarization maps obtained with the James Clerk
Maxwell Telescope (JCMT; Davis et al. 2000; Matthews et al.
2009) and the Combined Array for Research in Millimeter-
wave Astronomy (CARMA; Hull et al. 2014). The details of all
four data sets are summarized in Table 2. The ALMA results
we present here are among the first results from the ALMA
full-polarization system, which has already led to publications
on magnetized low- (Hull et al. 2017) and high-mass star
formation (Cortes et al. 2016); quasar polarization (Nagai et al.
2016); and protostellar disk polarization (Kataoka et al. 2016b).
In Section 2, we describe the observations and data

reduction. In Section 3, we present and describe the dust
total-intensity and polarization maps as well as the molecular
line maps. In Section 4, we discuss the changes in magnetic
field as a function of spatial scale and the relationship between
the magnetic field and the outflows, jet, and dense-gas
kinematics. Our conclusions are summarized in Section 5.

2. Observations

2.1. ALMA Observations

The 870 μm ALMA dust polarization observations that we
present were taken on 2015 June 3 and 7, and have a
synthesized beam (resolution element) of ∼0 33, corresp-
onding to a linear resolution of ∼140 au at a distance of 436 pc.
The largest recoverable scale in the data is approximately 5″.
The ALMA polarization data comprise 8 GHz of wide-band
dust continuum, ranging in frequency from ∼336–350 GHz,
with a mean frequency of 343.479 GHz (873 μm). The main
calibration sources such as bandpass, flux, and phase are
selected at run time by querying the ALMA source catalog. The
polarization calibrator was selected by hand to be J1751+0939
because of its high polarization fraction. This source was also
selected by the online system as the bandpass and phase
calibrator. Titan was selected as the flux calibrator. The ALMA
flux accuracy in Band 6 (1.3 mm) and Band 7 (870 μm) is
∼10%, as determined by the observatory flux monitoring
program. The gain calibration uncertainty is ∼5% in Band 6
and ∼10% in Band 7. The accuracy in the bandpass calibration
is 0.2% in amplitude and 0°.5 in phase. For a detailed
discussion of the ALMA polarization system, see Nagai et al.
(2016).
The dust continuum image, most clearly seen in Figure 1(d),

was produced by using the CASA task CLEAN with a Briggs
weighting parameter of robust=1. The image was improved
iteratively by four rounds of phase-only self-calibration using
the total-intensity (Stokes I) image as a model. The Stokes I, Q,
and U maps (where the Q and U maps show the polarized
emission) were each CLEANed independently with an appro-
priate number of CLEAN iterations after the final round of self-
calibration. The rms noise level in the final Stokes I dust map is
s = 0.5I mJy beam−1, whereas the rms noise level in the
Stokes Q and U dust maps is s s s» » = 0.06Q U P

mJy beam−1, where sP is the rms noise in the map of polarized
intensity P (see Equation (1) below). The reason for this
difference is that the total-intensity image is more dynamic-
range-limited than the polarized intensity images. This
difference in noise levels allows one to detect polarized

Table 1
SMM1 Source Properties

Name aJ2000 dJ2000 I870
(mJy beam−1)

SMM1-a 18:29:49.81 +1:15:20.41 800
SMM1-b 18:29:49.67 +1:15:21.15 106
SMM1-c 18:29:49.93 +1:15:22.02 28.1
SMM1-d 18:29:49.99 +1:15:22.97 10.1

Note. Properties of the four continuum sources detected in the ALMA data
(Figure 1(d), grayscale). I870 is the peak intensity of each of the sources in the
870 μm ALMA data.

17 The entire sample of observations from Hull et al. (2014) and the full suite of
synthetic observations from Lee et al. (2017) showed random alignment of
outflows with respect to magnetic fields. However, weak correlations were found
in subsets of the observations and simulations: in Hull et al. (2014), the sources
with low polarization fractions showed a slight tendency to have perpendicular
outflows and magnetic fields; and in Lee et al. (2017), the synthetic observations
from the very strongly magnetized simulation showed a slight tendency to have
aligned outflows and magnetic fields.
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emission in some regions where one cannot reliably detect
continuum dust emission.

The quantities that can be derived from the polarization maps
are the polarized intensity P, the fractional polarization Pfrac,
and the polarization position angle χ:

= + ( )P Q U 12 2

= ( )P
P

I
2frac

c =
⎛
⎝⎜

⎞
⎠⎟ ( )U

Q

1

2
arctan . 3

Note that P has a positive bias because it is always a positive
quantity, even though the Stokes parameters Q and U from
which P is derived can be either positive or negative. This bias
has a particularly significant effect in low-signal-to-noise
measurements. We thus debias the polarized intensity map as
described in Vaillancourt (2006) and Hull & Plambeck (2015).
See Table 3 for the ALMA polarization data.

We also present 1.3 mm (Band 6) ALMA spectral-line data,
which were taken in two different array configurations on 2014
August 18 (∼0 3 angular resolution) and 2015 April 06 (∼1″
resolution). These data include dust continuum as well as

= (JCO 2 1), which we use to image the outflow from
SMM1 (see Figure 2 and Hull et al. 2016); = (JSiO 5 4)
(Figure 3); and DCO+( = J 3 2) (Figure 4).

Finally, we present 1.3 mm ALMA continuum data with
∼0 1 resolution (R. Pokhrel et al. 2017, in preparation),
observed on 2016 September 10, 13, and 2016 October 31.
These data show that SMM1-b is a binary with ∼130 au
separation, and which we use to pinpoint the driving source of
the high-velocity SiO jet (see Section 3.2 and Figure 3).

2.2. SMA Observations

The SMA polarization observations (Figure 1(c)) were taken
on 2012 May 25 (compact configuration) and 2012 September
2 and 3 (extended configuration), and have a synthesized beam
of ∼0 8. In the May observations, the frequency ranges
covered were 332.0–336.0 GHz and 344.0–348.0 GHz in the
lower sideband (LSB) and upper sideband (USB), respectively.
The ranges were slightly different for the September observa-
tions: 332.7–336.7 GHz (LSB) and 344.7–348.7 GHz (USB).
The correlator provided a spectral resolution of about 0.8 MHz,
or 0.7 km s−1 at 345 GHz. The gain calibrator was the quasar
J1751+096. The bandpass calibrator was BL Lac. The absolute

flux scale was determined from observations of Titan. The flux
uncertainty was estimated to be ∼20%. The data were reduced
using the software packages MIR (see Qi & Young 2015 for a
description of how to reduce full-polarization data in MIR) and
MIRIAD (Sault et al. 1995).
The SMA conducts polarimetric observations by cross-

correlating orthogonal circular polarizations (CP). The CP is
produced by inserting quarter wave plates in front of the
receivers, which have native linear polarization. The instru-
mentation techniques and calibration issues are discussed in
detail in Marrone (2006) and Marrone & Rao (2008). The
instrumental polarization (“leakage”) calibrator was chosen to
be BL Lac, which was observed over a parallactic angle range
of ∼60°. We found polarization leakages between 1% and 2%
for the USB, while the LSB leakages were between 2% and
4%. These leakages were measured to an accuracy of 0.1%.
We performed self-calibration using the continuum data and

applied the derived gain solutions to the molecular line data.
We produced maps with natural weighting (robust=2) after
subtracting the dust continuum emission in the visibility space.
Table 4 in the Appendix gives the transitions, frequencies, and
lower energy levels of the molecular lines detected.

2.3. JCMT and CARMA Observations

The archival JCMT SCUBA polarization data (Figure 1(a))
were obtained from supplementary data provided by Matthews
et al. (2009). These data were first published by Davis et al.
(2000); Matthews et al. (2009) performed a fresh reduction of
the original Davis et al. (2000) data with a resulting angular
resolution of ∼20″.
The CARMA polarization data (Figure 1(b)) were taken

between 2011 and 2013 as part of the TADPOL survey (Hull
et al. 2014), the largest high-resolution (∼1000 au) interfero-
metric survey to date of dust polarization in low-mass star-
forming cores. The data were taken using the 1.3 mm
polarization receiver system in the C, D, and E arrays at
CARMA, which correspond to angular resolutions at 1.3 mm
of approximately 1″, 2″, and 4 , respectively. The details of the
CARMA polarization system can be found in Hull & Plambeck
(2015); for descriptions of the observational setup and the data
reduction procedure, see Section 3 of Hull et al. (2014). The
image of the CARMA data in Figure 1 is an improved version
of Figure 27 in Hull et al. (2014), as the data presented here
have been self-calibrated using the Stokes I CLEAN compo-
nents as a model.

Table 2
Observational Details

Telescope λ qres qMRS Ipeak Irms
(″) (Jy beam−1) (mJy beam−1)

ALMA 870 μm 0 35×0 32 5.2 0.80 0.5
SMA 880 μm 0 86×0 75 14.5 1.43 4.0
CARMA 1.3 mm 2 90×2 46 41 1.30 6.2
JCMTa 850 μm 20″ L 4.00 L

Note. λ is the wavelength of the observations. qres is the resolution of the observations, which, in the case of ALMA, the SMA, and CARMA, is the same as the
synthesized beam of the interferometric data. qMRS is the maximum recoverable scale in the interferometric data, calculated using the shortest baseline in each
observation. Ipeak and Irms are the peak total intensity and the rms noise in the total-intensity maps, respectively; the values are calculated as flux density per
synthesized beam qres.
a For a discussion of the single-dish JCMT observations, noise estimates, and peak fluxes, see Matthews et al. (2009; including Figure 56).

3

The Astrophysical Journal, 847:92 (13pp), 2017 October 1 Hull et al.



3. Results

Below we discuss in detail a number of results from our
continuum and spectral-line observations of Serpens SMM1.
We begin by describing Figure 1, which shows the total-
intensity and polarized dust emission toward SMM1 at various
spatial scales using observations from the JCMT, CARMA, the
SMA, and ALMA. We then present molecular emission maps
from ALMA, including = (JCO 2 1) (Figure 2), which
shows how the outflow is shaping the magnetic field; high-
velocity = (JSiO 5 4) (Figure 3, right panel), which reveals
an EHV jet emanating from SMM1-b; and DCO+( = J 3 2)
(Figure 4) and low-velocity = (JSiO 5 4) (Figure 3, left
panel), which trace the dense gas in which the protostars are
embedded.

3.1. Total-intensity and Polarized Dust Emission

Here we present the magnetic field derived from the
polarized dust emission at the different scales as traced by
different telescopes, moving from large to small scales.
JCMT data: The JCMT 850 μm dust polarization map

(Figure 1(a)) covers the whole ∼0.4 pc molecular clump where
the SMM1 and SMM918 dense cores are embedded. Davis
et al. (2000) found that the magnetic field is relatively uniform
and is approximately perpendicular to the major axis of this
clump, oriented E–W with a mean position angle of ∼80°.
These authors found a magnetic field strength of ∼1 mG,

Figure 1. Multi-scale view of the magnetic field around Serpens SMM1. Line segments represent the magnetic field orientation, rotated by 90° from the dust
polarization (the length of the line segments in each panel is identical, and does not represent any other quantity). Grayscale is total-intensity (Stokes I) thermal dust
emission. Panel (a) shows 850 μm JCMT observations (Matthews et al. 2009), (b) shows 1.3 mm CARMA observations (Hull et al. 2014), (c) shows 880 μm SMA
observations, and (d) shows 870 μm ALMA observations. For the 880 μm SMA data, line segments are plotted where the polarized intensity s>P 2 ;P the rms noise
in the polarized intensity map s = 2P mJy beam−1. The dust emission is shown starting at 2×σI, where the rms noise in the Stokes I map s = 4I mJy beam−1. The
peak total intensity in the SMA data is 1.43 Jy beam−1. For the 870 μm ALMA data, line segments are plotted where the polarized intensity s>P 3 ;P the rms noise in
the polarized intensity map s = 60P μJy beam−1. The dust emission is shown starting at 3×σI, where the rms noise in the Stokes I map s = 0.5I mJy beam−1. The
peak polarized and total intensities in the ALMA data are 11.8 mJy beam−1 and 800 mJy beam−1, respectively. The red and blue arrows originating at the central
source (SMM1-a) are the red- and blueshifted lobes of the bipolar outflow from SMM1-a traced in = (JCO 2 1) (see Figure 2). The red arrow originating at
SMM1-b (the source to the west of SMM1-a) is the redshifted EHV = (JSiO 5 4) jet shown in Figure 3. The text below each of the panels on the left indicates the
physical size of the image at the 436 pc distance to the Serpens Main region. The black ellipses in the lower-left corners of the ALMA, SMA, and CARMA maps
represent the synthesized beams (resolution elements). The ALMA beam measures  ´ 0. 35 0. 32 (146 au at a distance of 436 pc) at a position angle of −61°; the
SMA beam measures  ´ 0. 86 0. 75 (350 au) with a position angle of 74°; and the CARMA beam data measures  ´ 2. 90 2. 46 (1165 au) at a position angle of 9°. The
JCMT data have a resolution of 20 (8720 au). Each of the four sources (SMM1-a, b, c, and d) are indicated in panel (d); source properties can be found in Table 1.
The details of all four data sets are summarized in Table 2. The ALMA data used to make the figure in panel (d) are available in the online version of this publication.
The data used to create this figure are available.

18 SMM9 is also known as S68N and Ser-emb8; see Hull et al. (2017).
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estimated using the Davis–Chandrasekhar–Fermi (DCF) tech-
nique (Davis 1951; Chandrasekhar & Fermi 1953).19

While the magnetic field is well ordered in the E–W direction,
there is strong depolarization toward the emission peak of
SMM1. This is the “polarization hole” phenomenon, where the
polarization fraction drops near the dust emission peak. This
phenomenon appears in both high- and low-resolution

observations of star-forming cores (Dotson 1996; Girart et al.
2006; Liu et al. 2013) and simulations (Padoan et al. 2001;
Lazarian 2007; Pelkonen et al. 2009; Lee et al. 2017). One
possible cause of the polarization hole is that the plane-of-sky
magnetic field could have structure on <20″ scales that cannot
be resolved by the JCMT; this plane-of-sky averaging would
reduce the polarization fraction. And indeed, as we zoom into
smaller scales in Figure 1, we see more and more complicated
magnetic field morphology in the higher-resolution CARMA,
SMA, and ALMA maps.
CARMA data: Figure 1(b) shows the 1.3 mm dust emission

and the magnetic field derived from CARMA, with a resolution
of ∼2 5. These are interferometric observations, and thus they
are not sensitive to structures  15 (or ∼6000 au) in extent.
The magnetic field in the center of SMM1, undetected with the
JCMT, is revealed by CARMA to be significantly different
from the overall E–W orientation seen in the JCMT data: in the
interferometric data, the field near the center of the source
appears to be oriented predominantly in the N–S direction.
SMA data: As a comparison, Figure 1(c) shows the 880 μm

SMA map, which has an even higher resolution of ∼0 8. The
magnetic field derived from the SMA and CARMA data are
consistent toward the peak of SMM1. Away from the dust
emission peak, both the SMA and the CARMA data show hints
that some regions of the magnetic field are oriented along the
outflow, consistent with what is seen in the ALMA data (see
Figure 2). Note that the E–W magnetic field component
detected to the east of the source peak in both the CARMA and
the ALMA data is not detected by the SMA, most likely due to
a combination of dynamic range, signal-to-noise, and the scales
recoverable from the higher-resolution SMA data.

Table 3
ALMA Polarization Data

aJ2000 dJ2000 χ dc P I

(°) (°) (°) (°) ( )mJy

beam ( )mJy

beam

277.45868 1.25424 86.5 6.9 0.250 L
277.45862 1.25424 95.7 6.8 0.254 L
277.45857 1.25424 98.3 9.4 0.182 L
277.45868 1.25429 97.9 9.3 0.185 L
277.45862 1.25429 104.6 7.0 0.246 L
277.45857 1.25429 115.5 7.5 0.230 L
277.45673 1.25429 0.7 8.8 0.196 L
277.45612 1.25429 27.4 9.5 0.181 L
277.45896 1.25435 123.1 9.0 0.192 L
277.45873 1.25435 128.0 8.7 0.197 L
277.45718 1.25435 84.3 8.3 0.207 L
277.45712 1.25435 76.9 5.6 0.304 L
277.45707 1.25435 65.7 8.2 0.209 L
277.45634 1.25435 53.8 8.8 0.195 L
277.45896 1.25441 133.4 6.6 0.261 L
277.45840 1.25441 134.4 9.4 0.182 L
277.45712 1.25441 64.9 9.4 0.182 L
277.45696 1.25441 47.4 7.5 0.230 L
277.45896 1.25446 137.6 4.9 0.351 L
277.45890 1.25446 142.4 7.9 0.217 L
277.45846 1.25446 136.7 8.4 0.204 L
277.45840 1.25446 138.7 9.2 0.187 L
277.45834 1.25446 136.5 8.0 0.215 1.664
277.45701 1.25446 15.2 8.9 0.193 L
277.45696 1.25446 30.5 7.4 0.231 L
277.45896 1.25452 142.9 5.9 0.291 L
277.45890 1.25452 143.9 6.0 0.288 L
277.45834 1.25452 140.5 6.9 0.247 2.468
277.45829 1.25452 138.4 9.0 0.192 2.094
277.45707 1.25452 158.2 7.0 0.247 L
277.45701 1.25452 170.5 6.4 0.270 L
277.45696 1.25452 6.3 8.7 0.199 L
277.45896 1.25457 150.3 5.9 0.290 L
277.45890 1.25457 157.5 6.3 0.271 L
277.45884 1.25457 170.9 7.8 0.219 L
277.45829 1.25457 134.5 8.0 0.215 2.933
277.45723 1.25457 101.3 8.4 0.205 L
277.45712 1.25457 131.3 7.3 0.235 L
277.45707 1.25457 134.4 5.0 0.345 L
277.45701 1.25457 143.5 6.1 0.284 L
277.45690 1.25457 175.3 9.4 0.182 L
277.45646 1.25457 135.1 8.5 0.202 L
277.45896 1.25463 149.3 6.8 0.252 L

Note. χ is the orientation of the magnetic field, measured counterclockwise
from north. dc is the uncertainty in the magnetic field orientation. P is the
polarized intensity. I is the total intensity, reported where s>I 3 I . Due to
differences in dynamic range between the images of Stokes I and polarized
intensity, there are cases where P is detectable but I is not.

(This table is available in its entirety in machine-readable form.)

Figure 2. Low-velocity red- and blueshifted = (JCO 2 1) from the ALMA
data (red and blue color scales, respectively), adapted from Hull et al. (2016).
The CO velocity ranges are 2to15 km s−1 (redshifted) and −20to–5 km s−1

(blueshifted) relative to the vLSR of SMM1 of ∼8.5 km s−1 (Lee et al. 2014).
The peaks of the redshifted and blueshifted moment 0 maps are 3.76 and
4.16 Jy beam−1 km s−1, respectively. Line segments represent the inferred
magnetic field orientation, reproduced from Figure 1(d). The solid ellipse
indicates the synthesized beam of the ALMA dust polarization data (see
Figure 1); the larger open ellipse is the beam of the = (JCO 2 1) data,
which measures  ´ 0. 55 0. 45 at a position angle of −53°.

19 If we take into account the calibration correction to the DCF technique
developed by Ostriker et al. (2001), the expected strength would be a factor of
two lower, or ∼0.5 mG (see also Falceta-Gonçalves et al. 2008).
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ALMA data: Finally, we arrive at the 870μm ALMA map,
which can be seen in Figure 1(d) and achieves a resolution of
∼0 33, or ∼140 au. There are two main sources detected in the
ALMA maps. Following Choi (2009), Dionatos et al. (2014), and
Hull et al. (2016), we will refer to the brighter eastern source as
SMM1-a and the fainter source ∼2″ to the WNW as SMM1-b.
There are two compact but weaker sources northeast of SMM1-b,
which we deem SMM1-c and SMM1-d. SMM1-c has a 3.6 cm
counterpart (see Figure 1 from Hull et al. 2016); such long-
wavelength emission cannot be from dust, but rather is tracing
ionized gas, suggesting that this source is an embedded protostellar
object. SMM1-d has no known counterpart at other wavelengths;
however, it appears to be the source driving a low-velocity

= (JSiO 5 4) outflow (see Section 3.2 and Figure 3).
Coordinates and peak intensities of all four of the aforementioned
sources are listed in Table 1, and each source is indicated in
Figure 1(d).

It is immediately apparent that the N–S magnetic field
orientation that dominates the center of the CARMA and SMA
maps is due to the bright, highly polarized emission extending
southward from the peak of SMM1-a. However, the ALMA
data also show a very clear E–W feature in the magnetic field,
extending to the east of SMM1-a; both the N–S and E–W
features are clearly tracing the edge of the low-velocity bipolar
outflow pictured in Figure 2. The E–W feature can be seen in
the CARMA map (Figure 1(b): see the few E–W line segments
to the east of the SMM1-a peak), but at a much lower signal-to-
noise than the N–S feature that otherwise dominates the lower
resolution CARMA and SMA maps because of its much

brighter polarized emission (see Section 4.4 for a discussion of
this issue). However, to the west of SMM1-a, the magnetic
field does not have a preferred orientation and appears
relatively chaotic. Indeed, around SMM1-b the magnetic field
direction is neither parallel nor perpendicular to the fast, highly
collimated jet associated with this source (see Figure 3).
Northeast of SMM1-a, around SMM1-c and SMM1-d, there is
very little polarization detected; dividing the rms noise level in
this region by the detected Stokes I intensity yields upper limits
on the polarization fraction as low as a few ×0.1%.

3.2. Molecular Emission

In order to put into context the magnetic field morphology
with the kinematic properties of the molecular gas, here we
present a selected set of molecular emission maps from ALMA:

= (JCO 2 1) (Figure 2), low- and high-velocity =(JSiO
5 4) (Figure 3), and DCO+( = J 3 2) (Figure 4). The CO

and high-velocity SiO emission trace the molecular outflows/
jets emanating from the protostars; the low-velocity SiO
emission traces extended material experiencing low-velocity
shocks or photodesorption of grains’ ice mantles by UV
radiation; and the DCO+ traces the dense gas in which the
protostars are embedded.
Serpens SMM1 is known to be associated with two high-

velocity molecular jets powered by SMM1-a and SMM1-b (Hull
et al. 2016, and references therein). The outflow from SMM1-a
has a low-velocity component detected in = (JCO 2 1) (see
Figure 2); these results are in agreement with the outflow detected

Figure 3. Left: moment 0 map of = (JSiO 5 4) (green contours) overlaid on ALMA 1.3 mm dust continuum emission (grayscale, from ALMA project 2013.1.00726.S).
The moment 0 map is constructed by integrating emission from −0.6 to 0.8 km s−1 with respect to the vLSR of ∼8.5 km s−1; contours are 3, 5, 7, 9, 15, 20, 28, 50× the rms
noise level of 4.3 mJy beam−1 km s−1. The 1.3 mm emission peaks at 330 mJy beam−1 and has an rms noise level of 0.5 mJy beam−1. Right: same as the left panel but for
moment 0 maps integrated over different velocity bins: 5.5–25.3 km s−1 (orange) and 25.4–39.9 km s−1 (red). Contours are the same as on the left for rms noise values of 30 and
26 mJy beam−1 km s−1 for the orange and red contours, respectively. The arrow indicates that SMM1-d is the origin of the low-velocity, E–Woutflow. The synthesized beam of
the SiO map is  ´ 0. 55 0. 43 at a position angle of 5 . The (smaller) synthesized beam of the dust map is  ´ 0. 37 0. 31 at a position angle of −59°. Right inset: moment 0
map of SiO ( = J 5 4) (red contours) overlaid on ALMA 1.3 mm dust continuum emission (grayscale, from ALMA project 2015.1.00354.S; R. Pokhrel et al. 2017, in
preparation). The map is constructed by integrating emission from 25.4–39.9 km s−1 with respect to the vLSR of∼8.5 km s−1. The contours are 3, 6, 8, 11, 13, 15, 17, 20, 28, 35,
40, 45× the rms noise level of 18 mJy beam−1 km s−1. The continuum emission peaks at 14 mJy beam−1 and has an rms noise level of 140 μJy beam−1. The SiO map was
imaged with robust=–1 weighting. The synthesized beam of the 1.3 mm continuum map is  ´ 0. 11 0. 10 at a position angle of 43 . The synthesized beam of the SiO map is
 ´ 0. 35 0. 31 at a position angle of −5°.
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by CARMA in Hull et al. (2014), and with single-dish
= (JCO 3 2) observations out to ∼1′ scales (Dionatos et al.

2010). The outflow also coincides with the orientation of the radio
jet powered by SMM1 (Curiel et al. 1993).

SMM1-a and SMM1-b both have extremely high velocity,
highly collimated molecular jets. A high-velocity = (JCO 2 1)
jet emanating from SMM1-a was reported in Hull et al. (2016). In
Figure 3, we report a high-velocity = (JSiO 5 4) jet emanating
from SMM1-b, the companion to the west of SMM1-a.
Furthermore, using 1.3mm ALMA dust continuum data with
∼0 1 resolution (R. Pokhrel et al. 2017, in preparation), we show
that SMM1-b is a binary with a separation of∼0 3 (∼130 au), and
that the high-velocity, one-sided SiO jet is driven by the eastern

member of the binary. Highly asymmetric, one-sided outflows
have been seen before (e.g., Pety et al. 2006; Kristensen et al.
2013; Loinard et al. 2013; Codella et al. 2014); the origin of the
asymmetry is unknown, but it may offer important clues about
outflow launching mechanisms or the distribution of ambient
material near the driving source.
Neither the high-velocity = (JCO 2 1) jet (Hull et al.

2016) nor the high-velocity = (JSiO 5 4) jet (Figure 3,
right panel) exhibits an obvious relationship with the magnetic
field in SMM1. However, the redshifted lobe of the low-
velocity = (JCO 2 1) outflow is clearly shaping the
magnetic field morphology (see Figure 2). See Section 4.2
for further discussion.
The low-velocity SiO reveals a new, highly collimated,

redshifted outflow oriented roughly E–W direction (Figure 3).
Its axis points clearly toward the faintest source we detect,
SMM1-d. Thus, SMM1-d is likely to be a previously
undetected low-mass protostar. SMM1-c is the only compact
source in the region that does not show clear outflow activity.
We analyze DCO+( = J 3 2) emission to better under-

stand the kinematics of the dense material in the envelope
surrounding SMM1-a and SMM1-b. DCO+ traces the dense,
∼20–30 K molecular gas20 around the protostars at scales
ranging from a few ×100 au up to a few ×1000 au. The line
emission shows smooth (and seemingly quadrupolar) velocity
gradients of ∼1.0 km s−1 within a scale of ∼1000 au. However,
the gradients, while relatively ordered, have little correlation
with the magnetic field or outflow orientations.
Finally, we analyze extended = (JSiO 5 4) emission

near the systemic velocity of SMM1. Narrow-line-width SiO
emission at systemic velocities has been detected toward very
dense regions around protostars (e.g., Girart et al. 2016). This
type of emission may be due to the presence of low-velocity
shocks (Jiménez-Serra et al. 2010; Nguyen-Lu’o’ng et al.
2013); however, extended SiO emission near the systemic
velocity can also be caused by photodesorption of SiO from
dust grains’ icy mantles by UV radiation (see Appendix B of
Coutens et al. 2013, and references therein). The low-velocity
SiO emission toward SMM1 is patchy, and is spread out across
the field of view. While the strongest emission is associated
with the E–W SiO outflow mentioned above, the SiO that is
spatially coincident with the dust emission has a distinctive
∼3000 au arc-like ridge that passes through the lower density
region between SMM1-a and SMM1-b. This emission is
located in a region with significant depolarization in some
places, and a chaotic magnetic field in the regions where
polarization is detected. Assuming the emission comes from
low-velocity shocks, this suggests that the magnetic field may
have been perturbed by a bow-shock front that is crossing the
dense core. The large scale of this front suggests an external
origin, e.g., from large-scale turbulence; this is consistent with
the complex dynamics of Serpens Main (Lee et al. 2014),
which may have formed in a cloud–cloud collision (Duarte-
Cabral et al. 2011).
For channel maps and a brief discussion of other dense

molecular tracers detected toward SMM1 by the SMA, see the
Appendix.

Figure 4. Moment 1 DCO+( = J 3 2) map (color scale) with overlaid map
of ALMA 1.3 mm dust emission (gray contours). The moment 1 map is
constructed from DCO+ spectra integrated from −2 to 2 km s−1 with respect to
the vLSR of ∼8.5 km s−1, and was imaged using uv-distances <400 kλ in order
to increase the sensitivity to the larger scales. Pixels below 2× the rms noise
level of 5.7 mJy beam−1 are masked. The diverging color scale has been set
such that the white color represents the vLSR. White contours are 4, 12, 26, and
124× the rms noise level in the 1.3 mm dust continuum map of
0.5 mJy beam−1. The synthesized beam of the DCO+ map is  ´ 0. 67 0. 59
at a position angle of −65°. The (smaller) synthesized beam of the dust map is
 ´ 0. 37 0. 31 at a position angle of −59°.

Table 4
Molecular Lines Detected by the SMA

Molecular ν El

transition (GHz) (K)

HDCO 51,4–41,3 335.09678 40.17

HC15N (4–3)a 344.20011 24.78
H13CN (4–3) 345.33976 24.86
CO (3–2) 345.79599 16.60
SO (98–87) 346.52848 62.14
H13CO+ (4–3) 346.99835 24.98
SiO (8–7) 347.33082 58.35

Note.
a Observed only in the compact configuration on 2012 May 25.

20 In order for DCO+ to be present, the temperature must be cold enough for
deuterium chemistry to be active, but not so cold that CO is depleted onto dust
grains. See Jørgensen et al. (2011).
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4. Discussion

4.1. Magnetic Fields at Different Spatial Scales

Optical polarization and (sub)millimeter observations have
revealed that magnetic fields at large (1 pc) scales tend to be
relatively uniform and correlated with the molecular cloud
morphology (Pereyra & Magalhães 2004; Li et al. 2006; Alves
et al. 2008; Goldsmith et al. 2008; Franco et al. 2010;
Palmeirim et al. 2013; Fissel et al. 2016). The magnetic fields
seem to have a bimodal behavior, where the field is either
parallel or perpendicular to the major axis of the cloud (Li et al.
2009, 2013; Soler et al. 2013; Planck Collaboration et al.
2016a, 2016b). This orderliness and bimodality of the magnetic
fields is also observed at the 0.1–0.01 pc protostellar core scale
(Koch et al. 2014; Zhang et al. 2014). In addition, recent
studies in the NGC 6334 cloud show that the mean magnetic
field orientation does not change significantly between 100 pc
and ∼0.01 pc scales (Li et al. 2015). These observational
results agree with simulations of magnetically regulated
evolution of molecular clouds (Kudoh et al. 2007; Nakamura
& Li 2008; Tomisaka 2014).

In Serpens SMM1 at 0.1 pc scales, near-infrared and
submillimeter polarization maps show that the magnetic field is
perpendicular to the filamentary structure seen in the dust
emission (Davis et al. 1999, 2000; Matthews et al. 2009;
Sugitani et al. 2010), as observed in many other regions, such
as some of those listed above. However, Figure 1 shows that
within the core, the magnetic field as traced by CARMA and
the SMA appears significantly perturbed, especially compared
with the larger-scale component. The dramatic change in the
magnetic field configuration between 0.1 and 0.01 pc does not
fit with the aforementioned properties of magnetic fields in
molecular clouds and cores.

This change in magnetic field orientation from 0.1–0.01 pc
scales is not unique, and is seen in both high-mass sources
(e.g., DR21(OH); see Girart et al. 2013) and many low-mass
sources (Hull et al. 2014). Specifically, our SMM1 results can be
compared with the ALMA polarization observations of Ser-emb 8,
another Class 0 protostellar source in the Serpens Main cloud (Hull
et al. 2017). After analyzing the observations in concert with
high-resolution MHD simulations, Hull et al. argued that the
inconsistency of the magnetic field orientation across several orders
of magnitude in spatial scale in Ser-emb 8 may be because
the source formed in a highly turbulent, weakly magnetized
environment. This may be true for SMM1 as well; however, unlike
Ser-emb 8, SMM1 shows clear evidence that the outflow has
shaped the field at the small scales observable by ALMA. Below
we discuss this and other effects that can help us understand the
changes in the magnetic field orientation across multiple spatial
scales in SMM1.

4.2. Shaping of the Magnetic Field by the Wide-angle,
Low-velocity Outflow from SMMI-a

It is clear from Figure 2 that the magnetic field to the SE of
SMM1-a is being shaped by the wide-angle, low velocity

= (JCO 2 1) outflow. In fact, the magnetic field also
appears to trace the base of the blueshifted outflow lobe,
although there are many fewer independent detections of
polarization on that (NW) side of the source (see Section 3.2).
However, while the low-velocity CO outflow corresponds well
with the magnetic field morphology toward SMM1, the high-
velocity jet components do not. Hull et al. (2016) studied the

EHV CO jet emanating to the SE of SMM1-a, which seems to
bisect the ∼90° opening created by the low-velocity outflow,
but does not obviously shape the magnetic field lying along
either cavity wall. Furthermore, in Figure 3 we show redshifted
EHV SiO emission from SMM1-b, which does not obviously
shape the magnetic field toward that source.
Why the magnetic field in SMM1 is shaped by the low-

velocity outflow but not the high-velocity jet is an open
question. In the case of SMM1-a, the wide-angle cavity has
probably been excavated by the low-velocity outflow, leaving
little material with which the narrow, high-velocity CO jet can
interact. At the same time, the pressure from the outflow
increases the column density (and possibly compresses the
magnetic field) along the edges of the cavity; this allows us to
detect the effects of the outflow on the magnetic field pattern
because the column density (and thus the brightness of the
optically thin polarized and unpolarized dust emission) is
highest at the cavity edge. However, in the case of SMM1-b,
which has no wide-angle outflow, the narrow SiO jet (and the
corresponding EHV CO jet from Hull et al. 2016) still does not
have an obvious effect on the magnetic field, suggesting that
perhaps the solid angle of material being affected by the jet is
simply too small to be seen in the ALMA polarization maps.
Note that we may see more prominent sculpting of the

magnetic field toward SMM1-a because it may be more
evolved than SMM1-b, and thus has a wider outflow cavity.
Some studies have found a correlation between outflow
opening angle and protostellar age, where older sources have
wider outflows (Arce & Sargent 2006). However, more recent
infrared scattered-light studies have come to a variety of
conclusions, suggesting that the relationship between outflow
opening angle and age is not yet certain (Seale & Looney 2008;
Velusamy et al. 2014; Booker et al. 2017; Hsieh et al. 2017).

4.3. Energetics Estimates

While it seems reasonable to assume that the outflow has
shaped the magnetic field in SMM1-a, it is nonetheless prudent
to compare the importance of the three main effects that can
shape the magnetic field at the small spatial scales we are
probing with the ALMA observations: namely, the outflow, the
magnetic field, and gravity. One motivation for making these
comparisons is that the magnetic field within the inner ∼500 au
of the source (as revealed by the ALMA data in Figure 1(d))
does seem to resemble a small hourglass with its axis along the
outflow axis (see the discussion of hourglass-shaped fields in
Section 1). A comparison of the magnetic versus outflow
energy can shed light on whether this hourglass-shaped
magnetic field immediately surrounding SMM1-a is part of a
strongly magnetized preexisting envelope that has shaped the
outflow; or whether, as we assume above, that the outflow has
shaped the magnetic field and the hourglass shape is simply
tracing the base of the outflow cavity.

4.3.1. Gravitational Potential Energy

To estimate the gravitational potential energy, we must first
estimate the mass of the dust measured by ALMA toward
SMM1. The ALMA map pictured in Figure 1(d) has a total of
343 GHz Stokes I flux density ~nS 4.6 Jy within a circle of
radius 4″, or ∼1700 au, centered on the peak of SMM1-a.
However, the dust nearest to SMM1-a and SMM1-b is likely to
be significantly warmer. Thus, we separate the map into three
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regions: (1) a region immediately surrounding SMM1-a with a
flux of ∼2.2 Jy, (2) a region immediately surrounding SMM1-b
with a flux of ∼0.3 Jy, and (3) the rest of the region, with a flux
of 2.1 Jy. We assume dust temperatures ~T 50d K for the dust
near SMM1-a and b, and ~T 20d K for the remainder of the
dust.21

We convert the flux nS contained within the area under
consideration into a corresponding gas mass estimate using the
following relation:

k
= n

n n ( )
( )M

S d

B T
. 4gas

2

d

n ( )B Td is the Planck function at the frequency of the
observations. Using a distance d=436 pc and an opacity k =n
2 cm g2 (Ossenkopf & Henning 1994), and assuming a gas-to-
dust ratio of 100, we obtain a combined gas mass in all three
regions of » M M3.8gas .22 Using a radius of 1700 au, this
quantity can be converted into a mean gas volume density r ~
´ - -1 10 g cm16 3 and mean gas number density ~ ´n 2.9

-10 cm7 3 (assuming a mean molecular mass of 2.3).
To calculate the mass of SMM1-a, the most massive

protostar in the system, we use mass–luminosity relations for
pre-main-sequence stars (Yorke & Sonnhalter 2002) and find
that a protostar with the luminosity of SMM1-a ( ~ L L100 )
has a mass of ∼3Me.

Using a total mass of 6.8 M and a radius of 1700 au, we
calculate a gravitational potential energy of ~ ´E 4.8 10grav

44 erg.

4.3.2. Magnetic Field Energy

Our calculations for the magnetic field strength follow the
procedure outlined in Houde et al. (2016). Specifically, we
calculate the dispersion in polarization angles from the ALMA
polarization map using the function - á DF ñ[ ( )]ℓ1 cos , where
the quantity ℓ is the distance between a pair of polarization
orientations. The dispersion due to the turbulent component of the
magnetic field is isolated by removing the large-scale component,
which comprises a constant term and a second-order term (in ℓ);
this yields a turbulence correlation length of d  0. 3. The
effective thickness of the cloud is assumed to be similar to its
extent on the sky and is estimated from the width of the
autocorrelation function of the polarized flux (D¢  0. 44). The
combination of δ andD¢ with the width of the ALMA synthesized
beam implies that, on average, approximately one turbulent cell is
contained in the column of gas probed by the telescope beam. The
resulting turbulent-to-total magnetic energy ratio á ñ á ñ =B Bt

2 2

0.25 (Hildebrand et al. 2009; Houde et al. 2009, 2016).
This quantity is then used with both the mean volume density
ρ calculated above as well as the one-dimensional turbulent
velocity dispersion s ~ -( )v 0.8 km s 1 (from our unpublished
13 = ( )vCS 0, 5 4 ALMA data toward this source) to calculate
a magnetic field strength of ∼5.7mG (plane-of-the-sky comp-
onent)with the Davis–Chandrasekhar–Fermi equation (Davis 1951;

Chandrasekhar & Fermi 1953):

pr s
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Given the energy density of the magnetic field pB 82 and a
radius of 1700 au, we calculate the magnetic energy in the
material surrounding SMM1 to be ~ ´E 9 10B

43 erg.

4.3.3. Outflow Energy

Following the methods outlined in Zhang et al. (2001, 2005), we
calculate the energy in the redshifted lobe of the = (JCO 2 1)
outflow launched by SMM1 using both the ALMA data presented
here as well as the CARMA data presented in Figure 27 of Hull
et al. (2014). We assume a distance of 436 pc, a temperature of
20K, and optically thin emission. We do not correct for the
inclination of the outflow. Analysis of the CARMA data yields a
total redshifted outflow mass = M M0.03out , momentum =Pout
0.29 M km s−1, and energy = E M1.53out (km s−1)2. The
ALMA values are = M M0.006out , =P 0.021out M km s−1,
and = E M0.061out (km s−1)2. The values calculated from
the ALMA data are significantly lower because ALMA is unable
to recover a substantial fraction of the large-scale emission from the
outflow. It is worth noting that the values calculated from
the CARMA data are comparable to the results obtained by Davis
et al. (1999), who used JCMT (single-dish) data to measure the
energetics for the aggregate sample of outflows in the Serpens
Main region. Thus, for the purposes of this energetics analysis,
we adopt the CARMA value of = E M1.53out (km s−1)2, or
´3 1043 erg.

4.3.4. Energy Comparison

The redshifted lobe of the outflow pictured in Figure 2 has an
opening angle of approximately 90° in the region of interest, and
thus occupies ~ 1

7
of the volume of the sphere surrounding

SMM1-a that we use in the magnetic and gravitational energy
estimates above. Scaling the magnetic and gravitational energies
down by a factor of seven to compare with the outflow
energy ~ ´E 3 10out

43 erg, we find ~ ´E 1.3 10B
43 erg and

~ ´E 6.9 10grav
43 erg.

In summary, the gravitational, magnetic, and outflow energies
are all comparable. There is substantial uncertainty in several of
the parameters that go into the above estimates: the outflow
energy derived from the CARMA data is a lower limit on
the true value because of the interferometer’s inability to
recover emission at all spatial scales; the dust temperature and
optical depth at high resolution are not well constrained;
and 13CS( = J 5 4) may or may not be the best species to
use to estimate the turbulent line width for the DCF magnetic
field estimate. Consequently, while the numbers do not allow us
to make a strong claim that either the outflow or the magnetic
field is dominant in SMM1, we nonetheless find our assumption
—that the outflow may have shaped the magnetic field—to be
reasonable.

4.4. Biased Polarization Images Due to Beam Smearing

Figures 1 and 2 show that the magnetic field follows the
edge of the outflow cavity traced by the low-velocity,
redshifted CO emission emanating to the SE of SMM1-a.
However, the intensity of the polarized emission is very
different on the two sides of the cavity: the E–W component is

21 The ∼20 K value for the dust not in the immediate vicinity of the protostars
is based on an estimate provided by K. Lee (2015, private communication).
That value was from a dust temperature map of Serpens that was derived from
spectral energy distribution (SED) fits to Herschel maps; the same method was
used by Storm et al. (2016) to estimate temperatures in the L1451 star-forming
region, and is described in Section 7.1 of that publication. In all cases, the
Herschel zero-point fluxes had been corrected using Planck maps, as described
in Meisner & Finkbeiner (2015).
22 Note that we assume that all of the dust is optically thin; this may not be true
very close to SMM1-a, which would result in an underestimate of the gas mass.
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several times weaker than the N–S component. With ALMA,
we are able to resolve the two components fully; however,
previous observations by CARMA and the SMA (see Figure 1)
had 5–10 times lower resolution, which led these two
components to be blended together, with the N–S component
clearly dominating.

In Figure 5, we show polarized intensity maps from both
CARMA and ALMA. The CARMA data are at their original
resolution (Figure 5(b)), whereas the ALMA data are tapered
and smoothed to produce a map with the same resolution
(Figure 5(c)). The similarity is striking: when the ALMA data
are smoothed to CARMA resolution, the E–W component is
dwarfed by the much brighter N–S component. It is thus clear
that we must proceed with caution when revisiting low-
resolution polarization maps, as plane-of-sky beam smearing
biases the maps in favor of the material with the brightest
polarized emission.

4.5. Gravitational Infall or Dust Scattering

In the region immediately surrounding SMM1 (within a few
×100 au; see the inner few resolution elements of Figure 1(d)),
the magnetic field orientation looks somewhat radial, which
could indicate that the field lines are being dragged in
by gravitational collapse, similar to the radial magnetic
field configuration that was seen in SMA observations of the

high-mass star-forming core W51e2 (Tang et al. 2009b). A
radial magnetic field pattern is derived from an azimuthal
polarization pattern, assuming that the polarization arises from
magnetically aligned dust grains (i.e., the magnetic field
orientations are perpendicular to the polarization orientations,
as was assumed in Figures 1 and 2 and described in Section 1).
However, an azimuthal polarization pattern can also arise from
self-scattering of dust emission from a face-on (or slightly
inclined) protoplanetary disk: recent theoretical work has
shown that, depending on the combination of dust density,
dust-grain growth, optical depth, disk inclination, and resolu-
tion of observations, polarization from scattering in disks could
contribute to the polarized emission at millimeter wavelengths,
perhaps even eclipsing the signal from magnetically aligned
dust grains (Kataoka et al. 2015, 2016a; Pohl et al. 2016; Yang
et al. 2016a, 2016b, 2017). There is now potential evidence for
this dust scattering effect from ALMA observations (Kataoka
et al. 2016b); other high-resolution polarization observations
by CARMA and the Karl G. Jansky Very Large Array (VLA;
Stephens et al. 2014; Cox et al. 2015; Fernández-López et al.
2016) may also be consistent with self-scattered dust emission.
However, while intriguing, our current data do not allow us to
resolve the disk sufficiently well to differentiate between the
two scenarios described above. We will further investigate
this question of magnetic fields versus scattering with

Figure 5. Maps of the polarized intensity toward SMM1. Panel (a) shows the ALMA 870 μm image of polarized dust emission at the native resolution of 0. 3. While
the peak polarized intensity of the ALMA image is 11.8 mJy beam−1, the color scales in all panels have been saturated to enhance the low-level structure (hence the
reason why the color bar maximum is ∼3.6mJy beam−1). Panel (b) shows the smoothed ALMA data, where the image was produced by tapering the uv data and
smoothing the image to match the ∼2 5 native resolution of the CARMA image, shown in panel (c). Note that the ALMA map in panel (b) looks much smoother than
the CARMA map simply because the pixel size is smaller.
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higher-resolution ALMA polarization observations of SMM1
(C. L. H. Hull et al. 2017, in preparation).

Note that in order for scattering of dust emission to be
efficient at (sub)millimeter wavelengths, the grains must be of
the order of a few ×100 μm (Kataoka et al. 2015). While
scattering may be important toward the very center of SMM1,
it is highly unlikely that scattering is the dominant effect at
scales of 100 au, where grains are expected to be a few
microns in size. Therefore, nearly all of the polarized emission
in all panels of Figure 1 are likely to be produced by
magnetically aligned dust grains, especially if the emitting
grains reside in a rapidly infalling envelope (as opposed to a
rotationally supported disk), where grains are unlikely to grow
to hundreds of microns because of the short dynamical
timescale and relatively low density of the material.

5. Conclusions

We have analyzed the magnetic field morphology toward the
Class 0 protostar Serpens SMM1 using new ALMA and SMA
polarization data as well as archival CARMA and JCMT
polarization data; the combination of these multiple data sets
has allowed us to probe spatial scales from ∼80,000 down to
∼140 au. We examine the magnetic field morphology in
concert with molecular line observations from ALMA and
come to the following conclusions.

1. Dramatic changes in the magnetic field morphology
occur between the “core” scale of a few ×0.1 pc probed
by the JCMT and the much smaller “envelope” scales
probed by the CARMA, SMA, and ALMA interferom-
eters. These changes are inconsistent with models of
strongly magnetized star formation, which predict that the
magnetic field orientation should be preserved across
many orders of magnitude in spatial scale.

2. Other sources such as Ser-emb8 (Hull et al. 2017) have
shown this multi-scale inconsistency in magnetic field
morphology. However, unlike Ser-emb8, SMM1 shows
a magnetic field morphology that has clearly been
affected by its bipolar outflow: the redshifted lobe of
the low-velocity = (JCO 2 1) outflow has excavated a
wide-angle cavity, compressing the magnetic field along
the cavity edges.

3. Conversely, the highly collimated, extremely high-
velocity CO and SiO jets emanating from SMM1-a and
its nearby companion SMM1-b are not obviously shaping
the magnetic field. This suggests that narrow jets do not
perturb a large enough fraction of the envelope to have a
detectable effect on the magnetic field morphology.
Perhaps SMM1-a is more evolved than sources like
SMM1-b or Ser-emb8, and has entered an evolutionary
phase where the magnetic field morphology is shaped by
the wider, low-velocity outflow.

4. Outside of the region where the magnetic field is shaped
by the low-velocity = (JCO 2 1) outflow emanating
from SMM1-a, there appears to be significant depolariza-
tion in some places, and a chaotic magnetic field in the
regions where polarization is detected. This may be due
to the presence of a large-scale bow shock crossing the
envelope and disturbing the magnetic field morphology.

5. Using ∼0 1 resolution ALMA continuum observations,
we report that the source SMM1-b is a protobinary with
∼130 au separation. The eastern component of the binary

is powering the extremely high-velocity, one-sided SiO
jet mentioned in point 3.

These observations show that with the sensitivity and
resolution of ALMA, we can now begin to understand the
role that outflow feedback plays in shaping the magnetic field
in very young, star-forming sources like SMM1. Future high-
resolution, high-sensitivity ALMA surveys will be necessary to
better understand the impact of outflows on the magnetic fields
in star-forming cores—in particular, how often protostellar
feedback obviously shapes the magnetic field in the natal core,
and whether there are correlations between outflow-shaped
magnetic fields and source environment, mass, or evolutionary
stage.
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Appendix
SMA Observations of Dense Molecular Tracers

toward SMM1

Table 4 shows the list of the molecular lines detected by the
SMA toward SMM1, including a number of dense molecular
tracers. Figure 6 shows the channel maps of the molecules
tracing the dense molecular core. The HDCO, H13CN, and
H13CO+ lines trace mostly the region north of the SMM1 peak.
The emission peaks at ∼8 km s−1, which is slightly lower than
the ∼8.5 km s−1 velocity of the clump surrounding the cores
(Lee et al. 2014). The dust peak appears to be mostly devoid of
emission from these three lines; this has also been observed in
other cores, which are usually hot or warm (e.g., Rao et al.
2009; Girart et al. 2013). The emission is mainly detected only
in the 7–9 km s−1 velocity range, suggesting that the gas is
relatively quiescent. In contrast, the SO emission appears to
have a significantly broader emission, spanning over 5 km s−1,
and being brighter at the dust emission peak of SMM1-a. This
suggests that SO is a good tracer of the warmer and denser
molecular environment around SMM1-a or, alternatively, that
it has been excited by shocks in the outflow.
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