

The synthesis and biological applications of photo-activated ruthenium anticancer drugs

Lameijer, L.N.

Citation

Lameijer, L. N. (2017, December 14). *The synthesis and biological applications of photoactivated ruthenium anticancer drugs*. Retrieved from https://hdl.handle.net/1887/58398

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/58398

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/58398</u> holds various files of this Leiden University dissertation.

Author: Lameijer, L.N. Title: The synthesis and biological applications of photo-activated ruthenium anticancer drugs Issue Date: 2017-12-14

Chapter 2:

The synthesis of O-1 to O-6 substituted positional isomers of Dglucose-thioether ligands and their ruthenium polypyridyl conjugates

This chapter will be submitted for publication: L. N. Lameijer, S. Bonnet.; *Manuscript in preparation.*

2.1 Introduction

Carbohydrates are a class of biomolecules ubiquitously present in nature, comprising monosaccharides, oligosaccharides and polysaccharides, of which monosaccharides cannot be hydrolyzed further into smaller units. These molecules are recognized as important building blocks in the cell wall of bacteria (peptidoglycan),^[1] in plants (pectins),^[2] in the exoskeleton of insects (chitin),^[3] in cell recognition processes (lectins),^[4] or in the backbone of RNA and DNA.^[5] Among them, D-glucose is is the most well-known monosaccharide as it serves as the primary source of chemical energy in eukaryotic cells for the production of ATP.^[6] Otto Warburg found that cancer cells have an increased glycolysis rate for the production of ATP compared to normal cells.^[7] As a consequence, glucose transporters (GLUTs) 1 and 3 are overexpressed in cancer cells.^[8] In recent years there has been a growing interest in using this effect to selectively deliver molecules of interest to cancer cells. In the field of diagnostic imaging the well-known radiotracer 2deoxy-2-[¹⁸F]fluoroglucose (2-FDG) selectively accumulates in cancer cells since its metabolic breakdown is hampered by the replacement of a hydroxyl group on the 2position of D-glucose by fluoride.^[9] This clinically approved agent allows PET imaging of tumors anywhere in the whole body. In the field of medicinal chemistry, glufosfamide has shown some success as a safer alternative for ifosfamide, an alkylating agent used in cancer treatment. The therapeutic efficiency of glufosfamide is thought to be higher due to its increased water solubility and preferred uptake in malignant cells versus normal cells.^[10] Recently Palay et. al. have demonstrated that a series of glucose conjugates of platinum-based medicines are taken up via GLUT1.^[11] This result is in contrast to the observation of Schubiger, who found that none of their radiodiagnostic glycoconjugates based on ^{99m}Tc were taken up via glucose transporters.^[12] For ruthenium(II) polypyridylbased drugs this effect has not been thoroughly investigated. We have therefore designed a series of glycoconjugates of every positional isomers of D-glucose, containing different lengths of ethylene glycol-based spacers bearing one or two coordinating methylthioether groups. New routes towards these positional isomers were developed that are compatible with sulfur based ligands, since the existing routes use palladium-based catalysts that are deactivated by donor atoms.^[13] As traces of palladium also often interfere with the biological activity of pharmaceuticals,^[14] we herein describe a palladium-free synthesis for every PEGylated positional isomer of D-glucose-thioether ligands, and their coordination to ruthenium(II) polypyridyl complexes to afford eleven ruthenium-glycoconjugates (see structures in Figure 2.1) aimed at studying the structure-uptake relationship in cancer cells.

Figure 2.1. Schematic overview of O-1 to O-6 positional D-glucose ruthenium(II) polypyridyl conjugates presented in this study.

2.2 Results and discussion

2.2.1 1-O substitution

Five hydroxyl groups are available for modification in D-glucose, of which the 1-*O* position is modified *via* chemical glycosylation.^[15] Recently Patra *et. al.* have demonstrated that the spacer length exerts influence over GLUT mediated uptake of platinum complexes in cells,^[11] however there is currently no established understanding of this effect in cationic ruthenium(II) polypyridyl compounds. Therefore oligoethyleneglycol spacers $[OCH_2CH_2]_n$ with varying length (n = 0 – 3) were introduced in glycoconjugates $[1](PF_6)_2 - [5](PF_6)_2$ (Figure 2.1). The first complex in this series ($[1](PF_6)_2$) was synthesized starting from precursor **12** (Scheme 2.1).^[16] This building block and NaSMe were used in a S_N2 reaction ensuring the installment of the thioether group, affording **13**. This ligand was then reacted with [Ru(tpy)(bpy)Cl]Cl, affording glycoconjugate [**1**](PF_6)_2.

Scheme 2.1. a). *i*. NaSMe in DMF, rt, 16 h *ii*. NaOMe in MeOH, 66% over two steps; b). [Ru(tpy)(bpy)Cl]Cl in H_2O , 80 °C, 16 h, 39%.

For complex $[2](PF_6)_{2,}$ a three-step one-pot synthesis starting from *per*-acetylated glucose (14) was adapted from Valerio *et. al.*,^[17] which afforded the *trans* glucopyranoside as the only diastereoisomer. Treatment of this compound with sodium methoxide in methanol afforded fully deprotected 15 in 55% overall yield. Subsequent reaction of this ligand with [Ru(tpy)(bpy)Cl]Cl then gave [2](PF_6).

A different approach was employed for the installment of the ethylene glycol-based linkers (n = 1 - 3) for complexes $[3](PF_6)_2-[5](PF_6)_2$ and $[11](PF_6)_2$ (Scheme 2.3). The disarmed Schmidt donor 20 (Scheme 2.3) was chosen due to its straightforward synthesis and robustness. The benzoyl protecting group in this building block was favored over the more common acetyl group, due to the lower reactivity – and therefore higher stability – of the benzoyl imidate.^[18] Furthermore, the benzoyl group was chosen to reduce the possible formation of orthoesters, a common side reaction when using acetyl-bearing donors.^[19] Commercially available 2-(methylthio)ethanol was used as acceptor and condensed with donor 20 (Scheme 2.3), affording 21 which after de-O-benzoylation acquired deprotected 24. Compounds 25, 26 and 28 were acquired in a similar fashion using acceptor 18, 19 and 1,3-bis(methylthio)propan-2-ol respectively. The synthesis of their ruthenium complexes was found to be straightforward, by reacting excess ligand with the ruthenium species [Ru(tpy)(bpy)Cl]Cl or [Ru(bpy)₂Cl₂]. Their purification however, was found arduous due to the increased water-solubility of these compounds. Although hydrophilicity is a highly desired property in medicinal chemistry, it also decreases the number of available work-up techniques. Common workup methods for metal complexes such as extraction and precipitation were not applicable, since both the ligand and product are water-soluble. Also, the lability of these compounds on C-18 columns prevented reverse-phase chromatographic purification. The most reproducible approach was by purification over silica using a mixture of acetone, water and aqueous KPF_{6} , followed by a methanol Sephadex LH-20 size exclusion purification to remove excess salt

and minor impurities. This method afforded ruthenium polypyridyl derivatives $[3](PF_6)_2$ - $[5](PF_6)_2$ and $[11]Cl_2$ in moderate to good yield (28 – 66%).

Park and coworkers have demonstrated that glucose bioprobes with a formal charge of +1 are taken up preferentially over neutral and negatively charged probes.^[20] To allow future study of the effect on the overall charge for ruthenium(II) polypyridyl drugs on uptake and toxicity, a derivative of [Ru(tpy)(bpy)Cl]Cl bearing a negative charge on the spectator terpyridine ligand was also synthesized. Compound **31** (Scheme 2.4) was prepared starting from thione **29**,^[21] which was oxidized using *in situ* generated per-acetic acid followed by hydrogenation using 10% palladium on carbon to reverse partial overoxidation to its *N*-oxide, affording ligand **30**. A one-pot synthesis using (*p*-cymene)ruthenium(II) chloride dimer, **30** and bpy provided complex **31**. Reaction of ligand **26** (Scheme 2.3) with this complex then gave complex [**10**](PF₆)₂.

Scheme 2.4. a). *i*. H_2O_2 in AcOH, 70 °C, 6 hr.; *ii*. H_2 , Pd/C, 40 °C, overnight, 24% over two steps; b). bpy in MeOH, 60 °C, 72%; c). **25**, in H_2O , 80 °C, 16 h, 38%.

2.2.2 2-O substitution

Demonstrations of the covalent modification of the 2-O position of D-glucose with an alkyl-based linker have been given by Dumas *et. al* and Patray and coworkers.^[11, 22] Both groups chose a similar approach starting from methyl 3,5,6-*tri-O*-benzyl- α/β -D-glucofuranoside followed by installment of the linker and subsequent deprotection of the protection groups using dihydrogen and palladium on carbon. Sulfur based linkers however, poisoned the palladium catalysts which made removal of the benzyl protecting groups impossible following this approach.^[13, 23] Other methods to remove benzyl groups, such as Birch reductions, have been reported to cleave thioethers.^[24] Therefore all described approaches for the functionalization of the *O*-2 position in D-glucose with a metal-binding moiety, including the glucofuranoside approach described by Schubiger or Lippard, or the approach *via* a benzylorthoacetate intermediate described by Miao *et. al.*^[25] were found unsuitable for thioether-containing compounds.

We therefore devised a new protecting group strategy improving the 10-step, 5% yield procedure published by Lippard et al,^[11] and employing the α -oxirane method developed by the group of Danishefsky^[26] and attempted by Dumas *et. al* (Scheme 2.5).^[22] Using this method, D-glucal was protected using the *p*-methoxy benzyl (PMB) group, affording **34**. Treatment of this compound with freshly prepared dimethyldioxirane (DMDO) afforded its corresponding 1,2-anhydrosugar which was then condensed with *p*-methoxy benzyl alcohol (PMB-OH) in the presence of anhydrous $ZnCl_2$ in THF, afforded β -substituted 35 while simultaneously liberating the 2-O position. This compound was then treated with tosylate 32 (Scheme 2.5) for the installment of the thioether moiety. This conversion proceeded smoothly, which is in contrast to the observation of Schubiger et al who had to divert to the furanoside approach due to difficulties encountered during the installment of their iminodiacetic acid based spacer.^[22] With compound **36** in hand, a recently described method^[27] a catalytic employing amount of 37% hydrochloric acid in hexafluoroisopropanol (HFIP) was used to remove all four PMB groups simultaneously. After quenching the reaction using Et_3N an intermediate species was observed (m/z = 463.4 found, 463.2 calculated) corresponding to the desired product H37 and a PMB group. This same intermediate was also observed in the presence of a mild reducing agent such as Et₃SiH. However, when this intermediate was treated with MeNH₂ in MeOH, ^[28] the methyl thioether could be liberated, acquiring hemiacetal H37 in five steps (18% overall yield). After reaction of this compound with $[Ru(tpy)(bpy)(H_2O)](PF_6)_2$ glycoconjugate $[Ru(tpy)(bpy)(37)]PF_6$, ([6]PF₆) was acquired instead of $[Ru(tpy)(bpy)(H37)](PF_6)_2$. This is most likely due to the relatively protic nature of the anomeric proton, resulting in deprotonation during purification on Sephadex and replacement of one of the PF₆ counterions by the 'charged' deprotonated glucose species as interpreted by elemental analysis. On mass however, only the +2 species is observed, indicating that reprotonation occurs in solution. This behavior was observed for all hemiacetal glucose derivatives.

Scheme 2.5. a). 19, TsCl, Et₃N in DCM, 0 °C to rt, 16 h, 92%; b). PMB-Cl, NaH in DMF, 0°C to rt, 16 h, 84%; c). *i*. DMDO (0.088M in acetone) in DCM, 0 °C to rt, 3 h; *ii*. PMB-OH, ZnCl₂ in THF, -78 °C to rt, 16 h, 39% over two steps; d). **32**, NaH in DMF, 0 °C to rt, 6 h, 80%; e). *i*. cat. HCl in HFIP/DCM, 5 min; *ii*. MeNH₂ in MeOH/H₂O, 60 °C, 30 min, 67%; f). [Ru(tpy)(bpy)(H₂O)](PF₆)₂ in acetone/H₂O, 80 °C, 24 h, 36%.

2.2.3 3-O substitution

The most straightforward thioether functionalization in these series of ligands was the modification of the 3-*O* position of D-glucose. Starting from diacetone glucose **38** (Scheme 2.6),^[29] the thioether moiety was installed using **32** (Scheme 2.5), affording compound **39**, which was subsequently hydrolyzed using Amberlite[®] IR-120 H⁺, affording **H40** in 42% overall yield. Glycoconjugation of **H40** with [Ru(tpy)(bpy)Cl]Cl gave [Ru(tpy)(bpy)(40)]PF₆ ([**7**]PF₆).

Scheme 2.6. a). **32**, NaH in DMF, 0 °C to rt, 16 h, 91%; b). Amberlite IR-120 H^{+} in H₂O, 60 °C, 24 h, 46% ; c). [Ru(tpy)(bpy)Cl]Cl in H₂O, 80 °C, 16 h, 37%.

2.2.4 4-O substitution

The 4-*O* position of D-glucose was modified starting from acetobromo- α -D-glucose **40** (Scheme 2.7). Using a procedure first described by Kaji et. al., this building block was converted *in situ* to its anomeric iodide, followed by a Koenigs-Knorr type glycosylation with *p*-methoxy benzyl alcohol as an acceptor and Ag₂CO₃ as a base.^[30] De-*O*-acetylation furnished intermediate **41**, followed by 4,6-*O*-benzylidenation and installment of PMB groups affording fully protected **43**. With this building block in hand, a reductive opening using NaCNBH₃ and TFA, liberated the 4-*O* position, which could then be alkylated *via* a Williamson etherification using **32** described in the previous sections, affording **45**. Global deprotection was achieved by treatment with HFIP/HCl, which gave thioether ligand **H46** in 11% overall yield. The subsequent reaction of **H46** with [Ru(tpy)(bpy)(H₂O)](PF₆)₂, afforded glycoconjugate [Ru(tpy)(bpy)(46)]PF₆ ([**8**]PF₆). The synthesis of **H46** was also attempted via an alternative approach using α -methyl glucose following a similar protecting group strategy. However, this proved to be unsuccessful due to the inertness of the anomeric methyl acetal towards acid.

Scheme 2.7. a). *i*. PMB-OH, I₂, Ag₂CO₃ in Et₂O, rt, 24 h,; *ii*. NaOMe in MeOH, rt, 4 h, 72% over two steps; b). α , α , 4-Trimethoxytoluene, cat. *p*-TsOH.H₂O in DMF, 60 °C, 16 h, 89%; c). PMB-Cl, NaH in DMF, 0 °C to rt, 78%; d). NaCNBH₃, TFA in DMF, 0 °C to rt, 16 h, 95%; e). **32**, NaH in DMF, 0 °C to rt, 6 h, 78%; f). cat. HCl in HFIP/DCM, 30 min, 29%; g). [Ru(tpy)(bpy)Cl]Cl in H₂O, 80 °C, 64%.

2.2.5 6-O substitution

Finally, the 6-*O* position of D-glucose was easily modified starting from dimethyl glucose **48** (Scheme 2.8),^[31] which could be converted to **49** using a Williamson etherification with tosylate **32**, followed by acid hydrolysis using dilute hydrochloric acid affording methyl thioether **H50** in 55% over two steps. Glycoconjugation with [Ru(tpy)(bpy)Cl]Cl afforded [Ru(tpy)(bpy)(50)]PF₆ ([**9**]PF₆).

Scheme 2.8. a). 31, NaH in DMF, 0 °C to rt, 3 h, 78%; b). 2M HCl in H₂O, 60 °C, 1 h, 70%; c). [Ru(tpy)(bpy)Cl]Cl in H₂O, 80 °C, 16 h, 17%.

2.3 Conclusion

In this work, we have presented efficient and robust routes to all positional isomers of Dglucose bearing a thioether ligand bound to a light-cleavable ruthenium(II) polypyridyl complex. The general protecting-deprotecting group strategy presented in this work is compatible with compounds bearing donor atoms such as sulfur, as no transition metals catalysts were used until final coordination to the functional ruthenium compound. These routes could possibly be extended to application with other functionalized ligands, such as carboxylates, amines, or pyridines. The study of this library of ruthenium(II) glycoconjugates might shed light on the influence of the stereochemistry of glucose functionalization on GLUT-mediated uptake and the metabolism of the ruthenium-glucose conjugates by enzymes such as hexokinase II.

2.4 Experimental

2.4.1 General

Reagents were purchased from Sigma-Aldrich and used without further purification. 2,2':6',2"-Terpyridine (tpy) was ordered from ABCR GmbH & Co. Dry solvents were collected from a Pure Solve MD5 solvent dispenser from Demaco. For all inorganic reactions solvents were deoxygenated by bubbling dinitrogen through the solution for 30 minutes. All organic reactions were carried out under a diniotrogen atmosphere at rt. Flash chromatography was performed on silica gel (Screening devices B.V.) with a particle size of 40 - 64 μM and a pore size of 60 Å. TLC analysis was conducted on TLC aluminium foils with silica gel matrix (Supelco, silica gel 60, 56524) with detection by UV-absorption (254 nm), by spraying with 10% H₂SO₄ in ethanol or with a solution of NH₄Mo₇O₂₄.4H₂O 25 g/L, NH₄CeSO₄.H₂O 10 g/L, 10% H₂SO₄ in H₂O, followed by charring at ~250 °C on a heating plate. Optical rotation measurements were performed on a Propol automated polarimeter (sodium D-line, λ = 589 nm) with a concentration of 10 mg/mL (c = 1) unless stated otherwise. Infrared spectra were recorded on a Perkin Elmer UATR (Single Reflection Diamond) Spectrum Two device (4000-700 cm⁻¹; resolution 4 cm⁻¹). ¹H NMR and ¹³C NMR were recorded in CD₃OD and CDCl₃ with chemical shift (δ) relative to the solvent peak on a Bruker AV 400 or AV 500. High resolution mass spectra were recorded by direct injection (2 μ l of 2 μ M solution in water/acetonitrile; 50/50; v/v and 0.1% formic acid) in a mass spectrometer (Thermo Finnigan LTQ Orbitrap) equipped with an electrospray 250 °C) with resolution R = 60,000 at m/z 400 (mass range m/z = 150 - 2000) and dioctylphtalate (m/z = 391.28428) as a lock mass. The high-resolution mass spectrometer was calibrated prior to measurements with a calibration mixture (Thermo Finnigan). Combustion analysis for glycoconjugates $[1](PF_6)_2$ - $[5](PF_6)_2$, $[6]PF_6$ - $[10]PF_6$, and $[11](PF_6)_2$ was performed at Mikrolab Kolbe Germany.

(2-Methylthio)ethyl- α -D-glucopyranoside, 13: 2,3,4,6-Tetra-O-acetyl-(2-bromo)ethyl- α -D-glucopyranoside^[16] (135 mg, 0.297 mmol) was dissolved in dry DMF (3 mL) and to this solution was added fresh NaSMe (23 mg, 0.33 mmol). The reaction was stirred overnight after which it was diluted with

EtOAc (25 mL), washed with water (2x), aq. NaHCO₃ (2x), and dried (Na₂SO₄). Concentration *in vacuo* was followed by purification of the residue by silica column chromatography (10% MeOH in DCM), affording the title compound (50.0 mg, 0.197 mmol, 66% over two steps) as a colorless oil. R_f = 0.84 (20% MeOH in DCM); IR (neat): 3350, 2918, 1639, 1426, 1018; ¹H NMR (400 MHz, CD₃OD) δ = 4.80 (d, *J* = 3.8 Hz, 1H, H-1), 3.91 – 3.75 (m, 2H, CHH H-6, CHH OCH₂), 3.69 – 3.58 (m, 4H, H-4, H-5, CHH H-6, CHH OCH₂), 3.37 (dd, *J* = 9.7, 3.8 Hz, 1H, H-2), 3.25 (d, *J* = 9.3 Hz, 1H, H-3), 2.73 (td, *J* = 6.9, 1.8 Hz, 2H, OCH₂SMe), 2.12 (s, 3H, OCH₂SMe). ¹³C NMR (101 MHz, CD₃OD) δ = 100.3 (C-1),

75.1 (C-4), 73.9 (C-5), 73.5 (C-2), 71.8 (C-3), 68.4 (OCH₂), 62.7 (C-6), 34.3 (OCH₂SMe), 15.8 (OCH₂SMe); HRMS: m/z calcd for $[C_9H_{18}O_6S + Na]^+$: 277.07163; found: 277.07108.

Methylthio-β-D-glucopyranoside, 15: α/β -D-Glucose pentaacetate (4.99 g, HO O S 12.4 mmol) was dissolved in anhydrous DCM (20 mL) and to this solution was added I₂ (4.84 g, 19.0 mmol) and Et₃SiH (2.90 mL, 18.2 mmol) this mixture was allowed to stir for 10 minutes after which it was diluted with DCM (100 mL) and washed with aqueous saturated $Na_2S_2O_3$ (1x) and Na_2CO_3 (1x). Layers were separated, the organic layer was dried (Na₂SO₄) and concentrated *in vacuo*. The crude was coevaporated with toluene (3x) and redissolved in dry MeCN (20 mL), followed by the addition of thiourea (1.46 g, 19.2 mmol). The mixture was then heated for 30 minutes at 80 °C, concentrated in vacuo, followed by purification of the residu over silica (0 to 50% Et₂O in PE) yielding methyl 2,3,4,6-tetra-O-acetyl-1-thio- β -D-glucopyranoside as a yellow foam (2.71 g, 7.24 mmol). This compound was then dissolved in dry MeOH (70 mL) followed by the addition of a catalytic amount of NaOMe, which after stirring overnight was quenched upon the addition of Amberlite IR-120 H⁺. Filtration was followed by concentration in vacuo, yielding the title compound as a colourless oil (1.48 g, 7.04 mmol, 57% over four steps). R_f = 0.63 (20% MeOH in DCM); IR (neat): 3336, 2923, 2881, 1425, 1017; ¹H NMR (400 MHz, CD_3OD) δ = 4.35 (d, J = 9.6 Hz, 1H, H-1), 3.93 (d, J = 11.8 Hz, 1H, CHH H-6), 3.77 – 3.68 (m, 1H, CHH H-6), 3.48 – 3.35 (m, 3H, H-3, H-4, H-5), 3.31 (t, J = 9.1 Hz, 1H, H-2), 2.26 (s, 3H, SMe). ¹³C NMR (101 MHz, CD₃OD) δ = 87.1 (C-1), 81.8 (C-3), 79.3 (C-4), 73.5 (C-2), 71.3 (C-5), 62.7 (C-6), 12.0 (SMe). HRMS: m/z calcd for [C₇H₁₄O₅S + Na]⁺: 233.04542; found: 233.04442.

2-(Methylthio)ethoxy)ethanol, 18: To a flame-dried round-bottom flask was added freshly prepared NaSMe^[32] (1.21 g, 15.5 mmol) under argon. Deoxygenated THF (50 mL) was added, followed by the addition of 2-(2-(2-chloroethoxy)ethanol (1.50 mL, 14.2 mmol). This solution was heated at 60 °C for 6 h, after which it was allowed to cool to room temperature. The mixture was diluted with EtOAc (100 mL) and washed with aqueous NaHCO₃ (2x) and water (1x). Layers were separated, the organic layer was dried (Na₂SO₄) and concentrated *in vacuo* affording a slightly yellowish oil (1.89 g, 13.9 mmol, 89%). IR (neat): 3480, 2907, 2866, 1611, 1512; ¹H NMR (400 MHz, CDCl₃) δ = 3.68 (m, 2H, CH₂), 3.62 (t, *J* = 6.7 Hz, 2H, CH₂), 3.54 (d, *J* = 5.1 Hz, 2H, CH₂), 2.94 – 2.81 (s, 1H, OH), 2.66 (t, *J* = 6.6 Hz, 2H, -SCH₂), 2.10 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ = 72.1 (CH₂), 69.9 (CH₂), 61.5 (CH₂), 33.6 (SCH₂), 15.8 (SCH₃); HRMS: m/z calcd for [C₅H₁₂O₂S + Na]⁺: 159.04502; found: 159.04566.

S^OO^{OH} **2-[2-(2-(Methylthio)ethoxy)ethoxy]ethanol, 19:** The procedure was followed as described for **18** using NaSMe^[32] (4.23 g, 60.4 mmol) and 2-(2-(2-chloroethoxy)ethoxy)ethanol (10.0 g, 59.3 mmol). **19** was afforded as a colourless oil (9.25

g, 51.0 mmol, 85%). IR (neat): 3427, 2915, 2869, 1105, 1063; ¹H NMR: (400 MHz, CDCl₃) δ = 3.61 – 3.42 (m, 10H, 5 x CH₂), 3.09 (s, 1H, -OH), 2.60 – 2.50 (m, 2H, 1 x CH₂), 2.03 – 1.94 (s, 3H, CH₃). ¹³C NMR: (100 MHz, CDCl₃) δ = 72.4 (-CH₂), 70.2 (CH₂), 70.1 (CH₂), 70.0 (CH₂), 61.3 (CH₂) 33.13 (-SCH₂), 15.7 (-SCH₃). HRMS: m/z calcd for [C₇H₁₆O₃S + Na]⁺: 203.07124; found: 203.07134.

(2-Methylthio)ethyl 2,3,4,6-tetra-*O*-benzoyl- β -D-glucopyranoside, 21: 2,3,4,6-Tetra-*O*-benzoyl- β -D-glucopyranosyl trichloroacetimidate^[33] (370 mg, 0.364 mmol) and 2-(methylthio)ethanol (100 μ L, 1.15 mmol) were coevaporated three times with anhydrous toluene after which they were

dissolved in anhydrous DCM (36 mL). Freshly activated 4 Å molsieves were added, and the mixture was allowed to stir for 15 minutes after which a catalytic amount of TMSOTf (20.0 μ L, 111 μ mol) was added. After stirring for 4 h at room temperature, the reaction was quenched upon the addition of Et₃N (100 μ L, 0.714 mmol) and concentrated in vacuo followed by purification of the residue over silica (10% to 50% EtOAc in PE), affording the title compound as a clear oil (270 mg, 0.410 mmol, 81%). $R_f = 0.74$ (30% EtOAc in PE); IR (neat): 3064, 2922, 2853, 1720, 1258; ¹H NMR (400 MHz, $CDCl_3$) δ = 8.07 – 8.02 (m, 2H, H_{arom}), 8.00 – 7.96 (m, 2H, H_{arom}), 7.94 – 7.90 (m, 2H, H_{arom}), 7.87 – 7.81 (m, 2H, H_{arom}), 7.60 - 7.25 (m, 12H, H_{arom}), 5.93 (t, J = 9.7 Hz, 1H, H-3), 5.70 (t, J = 9.7 Hz, 1H, H-4), 5.56 (dd, J = 9.8, 7.8 Hz, 1H, H-2), 4.93 (d, J = 7.8 Hz, 1H, H-1), 4.67 (dd, J = 12.2, 3.2 Hz, 1H, CHH H-6), 4.52 (dd, J = 12.1, 5.4 Hz, 1H, CHH H-6), 4.19 (ddd, J = 8.6, 5.4, 3.2 Hz, 1H, H-5), 4.09 (dt, J = 10.2, 6.7 Hz, 1H, CHH OCH₂), 3.78 (dt, J = 10.3, 7.3 Hz, 1H, CHH OCH₂), 2.67 (t, J = 6.9 Hz, 2H, CH₂SMe), 2.01 (s, 3H, CH₂SMe). ¹³C NMR (101 MHz, CDCl₃) δ = 166.2 (C=O Bz), 165.9 (C=O Bz), 165.3 (C=O Bz), 165.2 (C=O Bz), 133.6 (C_H Arom), 133.4 (C_H Arom), 133.3 (C_H Arom), 129.9 (C_H Arom), 129.9 (C_H Arom), 129.9 (C_H Arom), 129.8 (C_H Arom), 129.7 (C_a Arom), 129.4 (C_q Arom), 128.9 (C_q Arom), 128.8 (C_q Arom), 128.5 (C_H Arom), 128.5 (C_H Arom), 128.5 (C_H Arom), 128.4 (C_H Arom), 101.4 (C-1), 73.0 (C-3), 72.4 (C-5), 71.9 (C-2), 69.8 (C-4), 69.8 (OCH₂) 63.2 (C-6), 33.4 (CH₂SMe), 16.1 (CH₂SMe); HRMS: m/z calcd for $[C_{37}H_{34}O_{10}S + NH_4]^+$: 688.22109; found: 688.22223.

 $\begin{array}{l} \begin{array}{l} B_{2O}^{\mathsf{B}_{2O}} \\ B_{2O}^{\mathsf{B}_{2O}} \\ B_{2O}^{\mathsf{B}_{2O}} \\ B_{2O}^{\mathsf{B}_{2O}} \\ B_{2O}^{\mathsf{B}_{2O}} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \left[2-(2-(\mathsf{Methylthio})\mathsf{ethoxy}) \right] \mathsf{ethyl} \\ \mathsf{glucopyranoside, 22: The general procedure described for 21 was followed, with 2,3,4,6-tetra-O-benzoyl-\beta-D-glucopyranosyl trichloroacetimidate (6.00 g, 8.14 mmol) and 2-(2-(methylthio)\mathsf{ethoxy})\mathsf{ethanol} (1.24 g, 9.10 mmol). Purification of the residue by silica column purification (0 - 25\% EtOAc in PE) afforded the title compound as a clear oil (3.86 g, 5.40 mmol, 66\%). R_f = 0.34 (33\% EtOAc in PE) afforded the title compound as a clear oil (3.86 g, 5.40 mmol, 66\%). R_f = 0.34 (33\% EtOAc in PE) (m, 2H, H_{arom}), 8.00 - 7.96 (m, 2H, H_{arom}), 7.93 - 7.88 (m, 2H, H_{arom}), 7.86 - 7.81 (m, 2H, H_{arom}), 7.58 - 7.24 (m, 12H, H_{arom}), 5.92 (t, J = 9.7 Hz, 1H, H-3), 5.69 (t, J = 9.7 Hz, 1H, H-4), 5.54 (dd, J = 9.9, 7.7 Hz, 1H, H-2), 4.99 (d, J = 7.8 Hz, 1H, H-1), 4.65 (dd, J = 12.1, 3.2 Hz, 1H, H-2) \\ \end{array}$

CHH H-6), 4.51 (dd, J = 12.1, 5.1 Hz, 1H, CHH H-6), 4.18 (ddd, J = 10.1, 5.2, 3.1 Hz, 1H, H-5), 4.00 (dt, J = 11.4, 4.1 Hz, 1H, CHH OCH₂), 3.81 (ddd, J = 11.1, 6.9, 3.8 Hz, 1H, CHH OCH₂), 3.58 (dt, J = 6.7, 3.7 Hz, 2H, OCH₂), 3.48 (t, J = 6.7 Hz, 2H, OCH₂), 2.44 (t, J = 6.7 Hz, 2H, CH₂SMe), 2.03 (s, 3H, CH₂SMe). ¹³C NMR (101 MHz, CDCl₃) $\delta = 166.3$ (C=O Bz), 165.9 (C=O Bz), 165.3 (C=O Bz), 165.2 (C=O Bz), 133.6 (C_H Arom), 133.4 (C_H Arom), 133.3 (C_H Arom), 129.9 (C_H Arom), 129.9 (C_H Arom), 129.9 (C_H Arom), 129.9 (C_H Arom), 129.7 (C_q Arom), 129.4 (C_q Arom), 128.9 (C_q Arom), 128.9 (C_q Arom), 128.5 (C_H Arom), 128.5 (C_H Arom), 128.4 (C_H Arom), 101.4 (C-1), 73.0 (C-3), 72.3 (C-5), 72.0 (C-2), 70.6 (OCH₂), 70.2 (OCH₂), 69.8 (C-4), 69.4 (OCH₂), 63.2 (C-6), 33.5 (CH₂SMe), 16.1 (CH₂SMe); HRMS: m/z calcd for [C₃₉H₃₈O₁₁S+ NH₄]⁺: 732.24731; found: 732.24836.

2-[2-(2-(Methylthio)ethoxy)ethoxy]ethyl 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranoside, 23: The general procedure described for **21** was followed, with *2,3,4,6*-tetra-O-benzoyl-β-D-glucopyranosyl trichloroacetimidate^[33] (2.65 g, 3.58 mmol) and **19** (792 mg, 4.39 mmol).

Purification of the residue over silica (10% to 50% EtOAc in PE) afforded the title compound as a clear oil (2.32 g, 3.06 mmol, 85%). R_f = 0.16 (20% EtOAc in PE); [α] $\frac{20}{n}$ (CHCl₃): +18.0 ; IR (neat): 3063, 2918, 2869, 1722, 1451; ¹H-NMR: (400 MHz, CDCl₃) δ = 8.03 (d, J = 8.6 Hz, 2H, H_{arom}), 7.97 (d, J = 8.6 Hz, 2H, H_{arom}), 7.90 (d, J = 8.7 Hz, 2H, 2H, H_{arom}), 7.83 (d, J = 8.6 Hz, 2H, H_{arom}), 7.58 – 7.43 (m, 3H, H_{arom}), 7.43 – 7.29 (m, 7H, H_{arom}), 7.29 – 7.21 (m, 2H, H_{arom}), 5.93 (t, J = 9.7 Hz, 1H, H-3), 5.70 (t, J = 9.7 Hz, 1H, H-4), 5.55 (dd, J = 9.7, 7.8 Hz, 1H, H-2), 5.01 (d, J = 7.8 Hz, 1H, H-1), 4.66 (dd, J = 12.1, 3.1 Hz, 1H, CHH H-6), 4.51 (dd, J = 12.1, 5.1 Hz, 1H, CHH H-6), 4.20 (ddd, J = 9.9, 5.1, 3.1 Hz, 1H, H-5), 4.03 -3.95 (m, 1H, CHH –OCH₂), 3.83 (m, 1H, CHH –OCH₂), 3.69 – 3.56 (m, 2H, -OCH₂), 3.55 (t, J = 6.9 Hz, 2H, -OCH₂), 3.50 - 3.42 (m, 2H, -OCH₂), 3.37 (t, J = 4.6 Hz, 2H, -OCH₂), 2.64 (t, J = 6.9 Hz, 2H, -CH₂SMe), 2.11 (s, 3H, -SCH₃). ¹³C NMR: (101 MHz, CD₃OD) δ = 166.1 (C=O Bz), 165.8 (C=O Bz), 165.2 (C=O Bz), 165.1 (C=O Bz), 133.5 (CH Arom), 133.3 (CH Arom), 133.2 (CH Arom), 129.8 (CH Arom), 129.8 (CH Arom), 129.6 (C_a Arom), 129.4 (C_a Arom), 128.8 (C_a Arom), 128.4 (CH Arom), 128.4 (CH Arom), 101.3 (C-1), 73.0 (C-3), 72.2 (C-5) 72.0 (C-2), 70.7 (OCH₂), 70.5 (OCH₂), 70.2 (OCH₂), 69.8 (C-4), 69.4 (OCH₂), 63.2 (OCH₂), 33.4 (CH₂SMe), 16.0 (CH₂SMe). HRMS: m/z calcd for $[C_{41}H_{42}O_{12}S + Na]^+$: 781.22892; found: 781.22795.

(2-Methylthio)ethyl-β-D-glucopyranoside, 24: The protected glucoside **23** (240 mg, 0.410 mmol) was dissolved in MeOH (6 mL) after which a catalytic

amount of NaOMe was added. The solution was allowed to stir for 16 h, after which Amberlite IR-120 H⁺ was added, until neutral pH. The resin was filtered off and the mixture was concentrated *in vacuo*. Purification of the residue over silica (0 to 10% MeOH in DCM) afforded the title compound as a colorless oil (80.0 mg, 0.315 mmol, 88%). $R_f = 0.15$ (5% MeOH in DCM); IR (neat): 3351, 2919, 2881, 1072, 1016; ¹H NMR (400 MHz, CD₃OD) $\delta = 4.30$ (d, J = 7.8 Hz, 1H, H-1), 4.03 (dt, J = 10.1, 7.1 Hz, 1H, CHH OCH₂), 3.87 (dd,

 $J = 11.9, 1.8 \text{ Hz}, 1\text{H}, C\text{HH H-6}), 3.74 (dt, J = 10.1, 7.1 \text{ Hz}, 1\text{H}, C\text{HH OCH}_2), 3.69 - 3.64 (m, 1\text{H}, C\text{HH H-6}), 3.39 - 3.33 (m, 1\text{H}, \text{H-4}), 3.29 - 3.26 (m, 2\text{H}, \text{H-3}, \text{H-5}), 3.21 - 3.15 (m, 1\text{H}, \text{H-2}), 2.73 (t, J = 7.1 \text{ Hz}, 2\text{H}, CH_2\text{SMe}), 2.13 (s, 3\text{H}, CH_2\text{SMe}). {}^{13}\text{C}$ NMR (101 MHz, CD₃OD) δ = 104.4 (C-1), 77.9 (C-3), 77.9 (C-4), 75.0 (C-2), 71.6 (C-5), 70.0 (OCH₂), 62.7 (C-6), 34.3 (CH₂SMe), 15.7 (CH₂SMe); HRMS m/z calcd for [C₉H₁₈O₆S + Na]⁺: 277.07136; found: 277.07160.

[2-(2-(Methylthio)ethoxy)]-ethyl-β-D-glucopyranoside, 25: The procedure as described for **24** was followed, using protected glycoside **22** (560 mg, 0.780 mmol) and THF/MeOH (10 mL, 1:1). Purification of the crude over silica (0 to 20% acetone in DCM) afforded the title compound as a white

solid (200 mg, 0.670 mmol, 86%). $R_f = 0.19$ (10% acetone in DCM); IR (neat): 3304, 2919, 1075, 1354, 1028; ¹H NMR (400 MHz, CD₃OD) $\delta = 4.31$ (d, J = 7.8 Hz, 1H, H-1), 4.05 – 3.96 (m, 1H, CHH OCH₂), 3.87 (dd, J = 11.9, 1.8 Hz, 1H, CHH H-6), 3.78 – 3.62 (m, 6H, CHH H-6, CHH OCH₂, 2 x OCH₂), 3.40 – 3.25 (m, 3H, H-3, H-4, H-5), 3.19 (dd, J = 9.3, 7.5 Hz, 1H, H-2), 2.68 (t, J = 6.8 Hz, 2H, CH_2 SMe), 2.13 (s, 3H, CH₂SMe). ¹³C NMR (101 MHz, CD₃OD) $\delta = 104.4$ (C-1), 78.0 (C-3), 78.0 (C-4), 75.1 (C-2), 71.6 (C-5), 71.5 (OCH₂), 71.2 (OCH₂), 69.7 (OCH₂), 62.8 (C-6), 34.2 (CH₂SMe), 15.8 (CH₂SMe). HRMS: m/z calcd for [C₁₁H₂₂O₇S + Na]⁺: 321.09784; found: 321.09760.

2-[2-(2-(Methylthio)ethoxy)ethoxy]ethyl β -D-glucopyranoside, **26:** The protected glucoside **23** (973 mg, 1.28 mmol) was dissolved in MeOH (10 mL) after which a catalytic amount of NaOMe was added. The solution was allowed to stir for 16 h, after which Amberlite IR-120 H⁺ was added,

until reaching neutral pH. The resin was filtered off and the mixture was concentrated *in vacuo*. Purification of the residue over silica (0 - 10% MeOH in DCM) afforded the title compound as a colorless oil (400 mg, 1.17 mmol, 91%). $R_f = 0.29$ (10% MeOH in DCM): $[\alpha] \frac{20}{D}$ (MeOH): -10.0; IR: 3371, 2915, 2874, 1073, 1031; ¹H NMR (400 MHz, CDCl₃) $\delta = 4.35$ (d, J = 7.8 Hz, 1H, H-1), 4.06 (ddd, J = 10.2, 5.0, 3.0 Hz, 1H, CHH OCH₂), 3.90 (dd, J = 11.9, 1.7 Hz, 1H, CHH OCH₂), 3.82 – 3.65 (m, 10H, CHH OCH₂, H-5, H-6, 3 x CH₂ OCH₂), 3.45 – 3.37 (m, 1H, H-3), 3.37 – 3.28 (m, 1H, H-4), 3.24 (dd, J = 9.1, 7.8 Hz, 1H, H-2), 2.72 (t, J = 6.8 Hz, 2H, -OCH₂), 2.17 (s, 3H, -SCH₃). ¹³C NMR (101 MHz, CD₃OD) δ = 104.4 (C-1), 77.9 (C-3), 75.0 (C-4), 71.6 (OCH₂), 71.5 (C-5), 71.5 (2 x OCH₂), 71.1 (OCH₂), 69.6 (OCH₂), 62.7 (C-6), 34.2 (CH₂SMe), 15.9 (CH₂SMe). HRMS m/z calcd for [C₁₃H₃₀O₈S + Na]⁺: 365.12406; found: 365.12376

B^{B2O}_{BZO} B^{B2O}_{BZ} S (1,3-Bis(methylthio)]-propyl-2,3,4,6-tetra-*O*-benzoyl-β-Dglucopyranoside, 27: The general procedure described for 21 was followed, with 2,3,4,6-tetra-*O*-benzoyl-β-D-glucopyranosyl trichloroacetimidate (5.00 g, 6.75 mmol) and 1,3-bis(methylthio)propanol (830 μL, 6.09

mmol). Purification of the residue by silica column purification (0 - 20% EtOAc in PE)afforded the title compound as a clear oil (3.95 g, 5.40 mmol, 90%). $R_f = 0.55$ (20% EtOAc in PE); IR (neat): 2919, 2853, 1722, 1601, 1259; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.07 - 8.00$ (m, 2H, H_{arom}), 7.99 – 7.94 (m, 2H, H_{arom}), 7.91 (d, J = 7.8 Hz, 2H, H_{arom}), 7.85 – 7.79 (m, 2H, H_{arom}), 7.60 – 7.24 (m, 12H, H_{arom}), 5.91 (t, J = 9.7 Hz, 1H, H-3), 5.65 (t, J = 9.7 Hz, 1H, H-4), 5.52 (dd, J = 10.1, 7.7 Hz, 1H, H-2), 5.09 (d, J = 7.9 Hz, 1H, H-1), 4.67 (dd, J = 12.1, 3.1 Hz, 1H, CHH H-6), 4.48 (dd, J = 12.2, 5.6 Hz, 1H, CHH H-6), 4.18 (ddd, J = 9.3, 5.7, 3.0 Hz, 1H, H-5), 4.04 – 3.91 (m, 1H, CH(CH₂SMe)₂), 2.86 (dd, J = 13.8, 4.4 Hz, 1H, CHH CH(CH₂SMe)₂), 2.81 - 2.71 (m, 2H, CH₂ CH(CH₂SMe)₂), 2.61 (td, J = 13.5, 7.4 Hz, 1H, CHH CH(CH₂SMe)₂), 2.06 (s, 3H, SMe), 1.90 (s, 3H, SMe). ¹³C NMR (101 MHz, CDCl₃) δ = 166.2 (C=O Bz), 165.9 (C=O Bz), 165.4 (C=O Bz), 165.3 (C=O Bz), 133.6 (C_H Arom), 133.4 (C_H Arom), 133.4 (C_H Arom), 133.3 (C_H Arom), 130.0 (C_H Arom), 129.9 (C_H Arom), 129.9 (C_H Arom), 129.9 (C_H Arom), 129.6 (C_a Arom), 129.5 (C_a Arom), 128.9 (C_a Arom), 128.8 (C_a Arom), 128.6 (C_H Arom), 128.4 (C_H Arom), 101.7 (C-1), 80.2 (CH(CH₂SMe)₂), 73.0 (C-3), 72.4 (C-5), 72.1 (C-2), 69.9 (C-4), 63.2 (C-6), 38.4 (CH₂ CH(CH₂SMe)₂), 37.8 (CH₂ CH(CH₂SMe)₂), 16.7 (2 x SMe); HRMS m/z calcd for $[C_{39}H_{38}O_{10}S_2 + NH_4]^+$: 748.22446; found: 748.22543.

[1,3-bis(methylthio)]-propyl-β-D-glucopyranoside, 28: The

procedure as described for 22 was followed, using protected

¹ glycoside **27** (3.20 g, 4.38 mmol) and DCM/MeOH (50 mL, 1:50). Purification of the residue over silica (0 to 10% MeOH in DCM) afforded **28** as a white foam (960 mg, 3.05 mmol, 70%). $R_f = 0.24$ (100% EtOAc); IR (neat): 3368, 2916, 1424, 1071, 1016; ¹H NMR (400 MHz, CD₃OD) $\delta = 4.45$ (d, J = 7.8 Hz, 1H, H-1), 4.06 (p, J = 5.8 Hz, 1H, CH(CH₂SMe)₂), 3.90 – 3.83 (m, 1H, CHH H-6), 3.70 – 3.63 (m, 1H, CHH H-6), 3.41 – 3.33 (m, 1H, H-3), 3.33 – 3.26 (m, 2H, H-4, H-5), 3.24 – 3.14 (m, 1H, H-2), 2.94 – 2.83 (m, 3H, CHH, CH₂ CH(CH₂SMe)₂), 2.79 (dd, J = 13.8, 5.6 Hz, 1H, CHH CH(CH₂SMe)₂), 2.15 (s, 6H, 2 x SMe). ¹³C NMR (101 MHz, CD₃OD) $\delta = 104.1$ (C-1), 79.4 (CH(CH₂SMe)₂), 77.9 (C-3), 77.9 (C-4), 75.2 (C-2), 71.5 (C-5), 62.7 (C-6), 39.0 (CH₂ CH(CH₂SMe)₂) 37.9 (CH₂ CH(CH₂SMe)₂), 16.6 (SMe), 16.4 (SMe); HRMS m/z calcd for [C₁₁H₂₂O₆S₂ + Na]⁺: 337.07500; found: 337.07520

[2,2':6',2''-Terpyridine]-4'-sulfonic acid, **30** (HS-tpy): [2,2':6',2''-terpyridine]-4'(1'*H*)-thione^[34] (534 mg, 2.01 mmol) was suspended in acetic acid (6 mL) and to this mixture was added 30% H_2O_2 (1 mL). The resulting purple mixture was heated at 70 °C for 12 h, and concentrated

in vacuo. The crude was then redissolved in H₂O, followed by the addition of 10% Pd/C (32 mg) and purged with H₂ (5 min). After stirring overnight at 40 °C under a H₂ atmosphere, the reaction was filtered over Celite[®], concentrated and purified over silica (0 to 10% MeOH in DCM), affording the title compound as a bright yellow powder. R_f = 0.37 (20% MeOH in DCM); IR (neat): 3391, 3064, 1622, 1398, 1189; ¹H NMR (400 MHz, D₂O) δ = 8.09 (dd, *J* = 4.9, 1.9 Hz, 2H, T₃, T₃"), 7.84 (s, 2H, T₃', T₅'), 7.61 (d, *J* = 7.4 Hz, 2H, T₆, T₆"), 7.54 (td,

 $J = 7.7, 1.9 \text{ Hz}, 2\text{H}, T_4, T_4''), 7.15 \text{ (ddd, } J = 7.4, 5.0, 1.4 \text{ Hz}, 2\text{H}, T_5, T_5''). \ ^{13}\text{C} \text{ NMR} (101 \text{ MHz}, D_2\text{O}) \delta = 154.9 \text{ (C}_q \text{ Arom}), 152.7 \text{ (C}_q \text{ Arom}), 152.7 \text{ (C}_q \text{ Arom}), 148.1 \text{ (T}_3, T_3''), 138.1 \text{ (T}_4, T_4''), 124.9 \text{ (T}_5, T_5''), 121.8 \text{ (T}_6, T_6''), 116.5 \text{ (T}_3, T_3''); \text{ HRMS m/z calcd for } [C_{15}\text{H}_{11}\text{N}_3\text{O}_3\text{S} + \text{H}]^+: 314.05939; \text{ found: } 314.05999.$

[Ru(S-tpy)(bpy)(Cl)], 31: Compound 30 (134 mg, 0.426 mmol) was dissolved in MeOH (10 mL) and to this solution was added 100 mg washed Amberlite[®] Na⁺. After stirring for 5 minutes at rt, the ion exchange resin was filtered off and the filtrate was concentrated *in vacuo*, affording a pinkish solid. This compound was then together

with *p*-cymene dimer, redissolved in deoxygenated MeOH (5 mL) and heated to 60 °C. A solution of bpy in MeOH (2.3 mL) was then added dropwise over 10 minutes from which the color of the solution changed from purple to red. After stirring for 2 h under nitrogen, the solution was allowed to cool to rt, after which Et₂O (20 mL) was added. The resulting precipitate was filtered and washed with Et₂O (3x) affording a brown powder (185 mg, 0.306 mmol, 72%). $R_f = 0.29$ (10% MeOH in DCM); HRMS: m/z calcd for [M]⁺: 605.99351; found: 605.99462.

o_____o___o___o___o___o___ 2-(2-(methylthio)ethoxy)ethoxy)ethyl

methylbenzenesulfonate, 32: Compound **19** (715 mg, 3.97 mmol) was dissolved in dry DCM (40 mL) and cooled to 0 °C. To this solution were added Et₃N (850 ul, 6.09 mmol) and Ts-Cl (1.12 g, 5.87 mmol). The reaction was allowed to stir overnight after which it was diluted with DCM (100 mL) and transferred to a separatory funnel. After washing with water (1x) and brine (1x), layers were separated, the organic layer was dried (Na₂SO₄) and concentrated *in vacuo*. Purification of the residue by silica column chromatography (0 to 50% EtOAc in PE) afforded the title compound as a colorless oil (1.22 g, 3.64 mmol, 92%). R_f = 0.78 (50% EtOAc in PE); IR (neat): 2917, 2868, 1598, 1353, 1174; ¹H NMR (400 MHz, CDCl₃) δ = 7.73 (d, *J* = 8.3 Hz, 2H, H_{arom}), 7.30 (d, *J* = 8.1 Hz, 2H, H_{arom}), 4.18 – 4.02 (m, 2H, CH₂), 3.65 – 3.61 (m, 2H, CH₂), 3.57 (t, *J* = 6.8 Hz, 2H, CH₂), 3.51 (m, 4H, 2 x CH₂), 2.60 (t, *J* = 6.8 Hz, 2H, CH₂), 2.39 (s, 3H, CH₃ Tosyl), 2.07 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ = 144.7 (C_q Arom), 132.7 (C_q Arom), 129.7 (C_H Arom), 127.7 (C_H Arom), 70.5 (CH₂), 70.4 (CH₂), 70.0 (CH₂), 69.2 (CH₂), 6⁴.5 (CH₂), 33.2 (SCH₂), 21.5 (CH₃) Tosyl), 15.8 (SCH₃); HRMS: m/z calcd for [C₁₄H₂₂O₅S₂ + Na]⁺: 357.08009; found: 357.08003.

3,4,6-Tri-O-(4-methoxybenzyl)-D-glucal, 34: To a cooled solution (0 °C) of Dglucal in dry DMF (230 mL) was slowly added NaH (60% dispersion in mineral oil, 3.10 g, 77.5 mmol) followed by the addition of 4-methoxybenzyl chloride (10.1 mL, 74.5 mmol). After stirring overnight under a dinitrogen atmosphere, H₂O (10 mL) was added and the mixture was allowed to stir for another 10 minutes. The mixture was further diluted with EtOAc (200 mL) and transferred to a separatory funnel, washed with

4-

water (3x) and brine (3x). The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. Purification by silica column chromatography (0 to 15% EtOAc in PE) afforded **34** (9.82 g, 19.4 mmol, 84%) as a clear oil that solidified upon standing over a longer time. R_f = 0.66 (10% EtOAc in PE); IR (neat): 2999, 2863, 2907, 1647, 1512; ¹H NMR (400 MHz, CDCl₃) δ = 7.16 (d, *J* = 8.3 Hz, 4H, H_{arom}), 7.04 (d, *J* = 8.5 Hz, 2H, H_{arom}), 6.75 (dd, *J* = 11.9, 8.1 Hz, 6H, H_{arom}), 6.31 (d, *J* = 6.2 Hz, 1H, H-1), 4.74 (dd, *J* = 6.2, 3.2 Hz, 1H, H-2), 4.64 (d, *J* = 10.9 Hz, 1H, CHH PMB), 4.52 – 4.35 (m, 5H, CHH PMB, 2 x CH₂ PMB), 4.07 (dd, *J* = 6.5, 2.2 Hz, 1H, H-3), 3.92 (dt, *J* = 8.6, 4.1 Hz, 1H, H-5), 3.70 (s, 3H, CH₃ PMB), 3.69 (s, 4H, CH₃ PMB, H-4), 3.69 (s, 3H, CH₃ PMB), 3.66 – 3.58 (m, 2H, CH₂ H-6). ¹³C NMR (101 MHz, CDCl₃) δ = 159.3 (C_H Arom), 159.3 (C_H Arom), 159.3 (C_H Arom), 129.5 (C_H Arom), 130.4 (C_q Arom), 130.1 (C_q Arom), 129.7 (C_H Arom), 129.6 (C_H Arom), 129.5 (C_H Arom), 113.9 (C_H Arom), 100.2 (C-2), 76.9 (C-5), 75.6 (C-2), 74.2 (C-4), 73.5 (CH₂ PMB), 73.2 (CH₂ PMB), 70.3 (CH₂ PMB), 68.3 (C-6), 55.4 (3 x CH₃ PMB); HRMS m/z calcd for [C₃₀H₃₄O₇ + NH₄]⁺: 524.26428; found: 524.26551

(4-Methoxybenzyl)-3,4,6-Tri-O-(4-methoxybenzyl)-β-d-OPMB glucopyranoside, 35: To a solution of protected glycoside 35 (821 mg, 1.62 mmol) in dry DCM (8 mL) under a dinitrogen atmosphere, were added freshly activated 4Å molsieves. After stirring for 15 minutes, the mixture was allowed to cool to 0 °C and freshly prepared dimethyldioxirane in acetone (20 mL, 88 mM) was slowly added. The mixture was stirred for 3 h and allowed to reach rt, after which it was filtered over Celite[®] and concentrated *in vacuo*. The crude was then, together with 4-methoxyl benzyl alcohol (335 mg, 2.42 mmol) redissolved in dry THF under a dinitrogen atmosphere, followed by the addition of freshly activated 4Å molsieves. After stirring for 15 minutes, the mixture was cooled down to -78 °C and a cooled solution (10 °C) of ZnCl₂ in THF (2.43 mL, 1M) was added dropwise over ten minutes. The mixture was allowed to stir overnight at rt after which it was filtered over Celite®, concentrated in vacuo and purified by silica column chromatography (0 to 20% EtOAc in PE) to afford 35 (413 mg, 0.625 mmol, 39% over two steps) as a colorless oil. $R_f = 0.48$ (40% EtOAc in PE); IR (neat): 3480, 3000, 2907, 1611, 1511; ¹H NMR (400 MHz, CDCl₃) δ = 7.30 (dd, J = 8.5, 4.8 Hz, 6H, H_{arom}), 7.08 (d, J = 8.6 Hz, 2H, H_{arom}), 6.98 – 6.77 (m, 8H, H_{arom}), 4.87 (dd, J = 15.4, 11.2 Hz, 2H, CH₂ PMB), 4.76 (dd, J = 10.7, 6.4 Hz, 2H, CH₂ PMB), 4.63 – 4.42 (m, 4H, 2 x CH₂ PMB), 4.32 (d, J = 7.3 Hz, 1H, H-1), 3.80 (s, 6H, 2 x CH₃ PMB), 3.79 (s, 3H, CH₃ PMB), 3.79 (s, 3H, CH₃ PMB), 3.70 (m, 2H, H-6), 3.62 – 3.50 (m, 3H, H-2, H-3, H-4), 3.45 (dd, J = 9.9, 4.1 Hz, 1H, H-5), 2.41 (s, 1H, OH). ¹³C NMR (101 MHz, CDCl₃) δ = 159.5 (C_a Arom), 159.3 (C_a Arom), 159.3 (C_a Arom), 130.9 (C_a Arom), 130.4 (C_a Arom), 130.3 (C_a Arom), 130.0 (C_H Arom), 129.7 (C_H Arom), 129.7 (C_H Arom), 129.6 (C_H Arom), 129.3 (C_a Arom), 114.0 (C_H Arom), 113.9 (C_H Arom), 113.9 (C_H Arom), 101.5 (C-1), 84.3 (C-2), 77.4 (C-3), 75.3 (C-4), 74.9 (CH₂ PMB), 74.7 (C-5), 73.2 (CH₂ PMB), 70.8 (CH₂ PMB), 68.5 (C-6), 55.4 (4 x CH₃ PMB); HRMS m/z calcd for $[C_{38}H_{44}O_{10} + NH_4]^+$: 678.32727; found: 678.33019.

(4-Methoxybenzyl)-2-O-(2-[2-(2-(methylthio)ethoxy)ethoxy]ethyl)-3,4,6-Tetra-O-(4-methoxybenzyl)-β-D-glucopyranoside, 36: Glycoside **35** (333 mg, 0.504 mmol) was dissolved in dry DMF (5 mL) and cooled to 0 °C. To this solution was added NaH (60% dispersion in mineral

oil, 26 mg, 0.65 mmol) portionwise followed by the addition of tosylate **31** (185 mg, 0.554 mmol). After stirring for 6 h at rt under a dry atmosphere, MeOH was added (1 mL). The mixture was then diluted with EtOAc (50 mL), transferred to a separatory funnel and washed with water (3x) and brine (3x). The organic layer was dried (Na_2SO_4) and concentrated in vacuo. Purification of the residue by column chromatography (0 to 30% EtOAc in PE) afforded the title compound **36** as milky oil (334 mg, 0.405 mmol, 80%). R_f = 0.39 (40% EtOAc in PE); IR (neat): 2999, 2864, 2835, 1612, 1512; ¹H NMR (400 MHz, CDCl₃) δ = 7.39 – 7.18 (m, 6H, H_{arom}), 7.07 (dd, J = 8.7, 4.8 Hz, 2H, H_{arom}), 6.92 – 6.75 (m, 8H, H_{arom}), 4.96 – 4.80 (m, 2H, CH₂ PMB), 4.78 – 4.66 (m, 2H, CH₂ PMB), 4.62 – 4.37 (m, 5H, CH₂ PMB, H-1), 4.06 (dt, J = 9.9, 4.6 Hz, 1H, CHH OCH₂), 3.85 (q, J = 5.2 Hz, 1H, CHH OCH₂), 3.81 (s, 3H, CH₃ PMB), 3.80 (s, 3H, CH₃ PMB), 3.79 (s, 3H, CH₃ PMB), 3.79 (s, 3H, CH₃ PMB), 3.74 - 3.66 (m, 2H, H-6), 3.66 - 3.53 (m, 9H, H-3, 4 x OCH₂), 3.49 (t, J = 9.2 Hz, 1H, H-4), 3.40 (ddd, J = 9.7, 5.1, 2.2 Hz, 1H, H-5), 3.29 (t, J = 8.3 Hz, 1H, H-2), 2.62 (t, J = 7.0 Hz, 2H, CH_2SMe), 2.10 (s, 3H, CH_2SMe). ¹³C NMR (101 MHz, $CDCl_3$) δ = 159.3 (C_a arom), 159.3 (C_a arom), 159.3 (C_a arom), 159.3 (C_a arom), 131.1 (C_a arom), 130.5 (C_a arom), 130.4 (C_a arom), 129.8 (C_H arom), 129.7 (C_H arom), 129.7 (C_H arom), 129.6 (C_H arom), 113.8 (C_H arom), 102.1 (C-1), 84.4 (C-4), 83.3 (C-2), 77.6 (C-4), 75.3 (CH₂ PMB), 74.9 (C-5), 74.7 (CH₂ PMB), 73.2 (CH₂ PMB), 72.1 (OCH₂), 70.9 (OCH₂), 70.9 (CH₂ PMB), 70.6 (OCH₂), 70.5 (OCH2), 70.4 (OCH2), 68.7 (C-6), 55.4 (4 x CH₃ PMB), 33.4 (CH₂SMe), 16.1 (CH₂SMe); HRMS m/z calcd for $[C_{45}H_{58}O_{12}S + NH_4]^+$: 840.39872; found: 840.40019.

2-O-(2-[2-(2-(methylthio)ethoxy)ethoxy]ethyl)- α /β-D-glucopyranoside, H37: Compound 36 (241 mg, 0.293 mmol) was dissolved in a mixture of DCM/HFIP (3 mL) and to this solution were added 5 drops of 37% HCl in H₂O. The color immediately changed to dark red, and after stirring for 5

minutes the mixture was quenched upon the addition of Et₃N (500 uL, 3.57 mmol). The mixture was then concentrated *in vacuo* and redissolved in H₂O (5.8 mL), followed by the addition of a solution of MeNH₂ in MeOH (145 μ L, 2M). After heating the reaction mixture for 30 minutes at 60 °C, solvents were removed under reduced pressure and the resulting residue was purified by silica column chromatography (0 to 20% MeOH in DCM) to afford fully deprotected hemiacetal **H37** (67 mg, 0.196 mmol, 67%) as a clear oil. $R_f = 0.54$ (25% MeOH in DCM); IR (neat): 3411, 2917, 2865, 1115, 1042; ¹H NMR (400 MHz, CD₃OD) $\delta = 5.29$ (d, J = 3.5 Hz, 1H, H-1 α), 4.53 (d, J = 7.8 Hz, 1H, H-1 β), 4.04 (dt, J = 11.3, 4.4 Hz, 1H, C/HH H-6), 3.89 – 3.70 (m, 8H), 3.70 – 3.59 (m, 19H), 3.42 – 3.32 (m, 1H, H-3 β), 3.30 – 3.20 (m, 2H), 3.03 – 2.86 (m, 1H, H-2 β), 2.68 (t, J = 6.8 Hz, 4H, 2 x CH_2 SMe), 2.13 (s, 6H, 2 x

CH₂SMe). ¹³C NMR (101 MHz, CD₃OD) δ = 98.1 (C-1 β), 91.8 (C-1 α), 85.1 (C-1 β), 82.4, 77.9, 77.5, 73.9, 72.8, 72.6, 71.9, 71.6, 71.6, 71.5, 71.5, 71.4, 71.2, 71.1, 71.0, 62.8 (C-6 α), 62.7 (C-6 β), 34.2 (2 x CH₂SMe), 15.9 (2 x CH₂SMe); HRMS m/z calcd for [C₁₃H₂₆O₈S + Na]⁺: 365.12406; found: 365.12513.

1,2:5,6-di-O-isopropylidene-3-O-(2-[2-(2-(methylthio)ethoxy)ethoxy]ethyl)-α-D-glucofuranose, **38**: To a cooled solution of diacetone glucose (200 mg, 0.768 mmol) in dry DMF (8 mL) was added 60% NaH in mineral oil (80.0 mg, 2.00 mmol). After stirring for 5 min, tosylate **32** was added and the mixture was overnight. After

quenching the reaction with MeOH (1 mL), Et_2O (50 mL) was added and the reaction was transferred to a separatory funnel. After washing with water (1x), aq. NaHCO₃ (1x) and layers were separated and the organic layer was dried (Na₂SO₄) and brine (1x), concentrated in vacuo. Purification of the residue over silica (0 -50% EtOAc in PE) gave 38 as a clear oil. (294 mg, 0.700 mmol, 91%). R_f = 0.73 (50% EtOAc in PE); IR (neat): 2985, 2871, 1456, 1371, 1058; ¹H NMR (400 MHz, CDCl₃) δ = 5.87 (d, J = 3.8 Hz, 1H, H-1), 4.57 (d, J = 3.6 Hz, 1H, H-2), 4.31 (dt, J = 7.8, 5.9 Hz, 1H, H-5), 4.14 – 4.10 (m, 1H, H-3), 4.09 – 4.05 (m, 1H, CHH H-6), 3.99 (dd, J = 8.6, 5.8 Hz, 1H, CHH H-6), 3.92 (d, J = 3.1 Hz, 1H, H-4), 3.79 - 3.71 (m, 2H, OCH₂), 3.68 - 3.60 (m, 8H, 4 x OCH₂), 2.69 (t, J = 6.9 Hz, 2H, CH₂SMe), 2.14 (s, 3H, CH₂SMe), 1.49 (d, J = 2.7 Hz, 3H, CH₃ isopropylidene), 1.42 (s, 3H, CH₃ isopropylidene), 1.34 (s, 3H, CH_3 isopropylidene), 1.31 (d, J = 3.6 Hz, 3H, CH_3 isopropylidene). ¹³C NMR (101 MHz, CDCl₃) δ = 111.9 (C_a isopropylidene), 109.0 (C_a isopropylidene), 105.4 (C-1), 82.8 (C-2), 82.7 (C-4), 81.2 (C-3), 72.7 (C-5), 70.8 (OCH₂), 70.7 (OCH₂), 70.6 (OCH₂), 70.5 (OCH₂), 70.28, 67.3 (C-6), 33.5 (CH₂SMe), 27.0 (CH₃ isopropylidene), 27.0 (CH₃ isopropylidene), 26.4 (CH₃ isopropylidene), 25.6 (CH₃ isopropylidene), 16.2 (CH₂SMe); HRMS m/z calcd for $[C_{19}H_{34}O_8S + NH_4]^+$: 440.23126; found: 440.23203.

3-O-(2-[2-(2-(methylthio)ethoxy)ethoxy]ethyl)- α/β -D-

glucopyranoside, H40: To a suspension of compound **38** in H₂O, was added Amberlite[®] IR-120 H⁺ and this mixture was stirred for 24 h at 60 °C after which it was filtered and concentrated *in vacuo*. Purification

of the residue over silica (0 to 10% MeOH in DCM) afforded the title compound **H40** as a clear oil ($\alpha/\beta = 1:1$, 81 mg, 0.24 mmol, 46%). $R_f = 0.32$ (10% MeOH in DCM); IR (neat): 3369, 2918, 2873, 1104, 1077; ¹H NMR (400 MHz, CD₃OD) $\delta = 5.08$ (d, J = 3.6 Hz, 1H, H-1 α), 4.47 (d, J = 7.7 Hz, 1H, H-1 β), 4.24 – 3.13 (m, 40H), 2.67 (t, J = 6.9 Hz, 4H, 2 x CH₂SMe), 2.11 (s, 6H, 2 x CH₂SMe). ¹³C NMR (101 MHz, CD₃OD) $\delta = 98.1$ (C-1 β), 94.0 (C-1 α), 87.6, 84.5, 77.8, 76.1, 73.7, 73.1, 73.0, 72.2, 72.1, 71.6, 71.4, 71.3, 71.1, 62.8 (C-6 β), 62.6 (C-6 α), 34.2 (2x OCH₂SMe), 15.9 (2x OCH₂SMe); HRMS m/z calcd for [C₁₃H₂₆O₈S + Na]⁺: 365.12406; found: 365.12434.

(4-Methoxybenzyl)-β-D-glucopyranoside, 41: To a solution of 2,3,4,6-OPMB tetra-O-acetyl- α -D-glucopyranosyl bromide (3.00 g, 7.30 mmol) and 4methoxybenzyl alcohol (5.04 g, 36.5 mmol) in dry Et₂O (75 mL) were added freshly activated 4Å molsieves. The resulting mixture was allowed to stir for ten minutes, after which Ag₂CO₃ (6.00 g, 21.8 mmol) and I₂ (1.85 g, 7.30 mmol) were added. After stirring an additional 24 h under a dinitrogen atmosphere at rt in the dark, the reaction mixture was filtered over Celite[®], diluted with EtOAc (200 mL), washed with 1M Na₂S₂O₃ (3x), aq. NaHCO₃ (3x) and brine (3x). The organic layer was dried (Na₂SO₄) and concentrated in vacuo. Purification of the residue by silica column chromatography (20% EtOAc in DCM) afforded (4-methoxybenzyl)-2,3,4,6-tetra-O-acetyl- β -D-glucopyranoside (2.39 g), which was then redissolved in dry MeOH (70 mL) followed by the addition of a catalytic amount of NaOMe. The resulting mixture was allowed to stir for 4 h, after which Amberlite® IR-120 H^{\dagger} was added until neutral pH, filtered and concentrated in vacuo, affording the title compound **41** as a clear oil (1.57 g, 5.23 mmol, 72% over two steps). $R_f = 0.57$ (20% MeOH in DCM); IR (neat): 3335, 2924, 1612, 1027, 819; ¹H NMR (400 MHz, CD₃OD) δ = 7.32 (d, J = 8.6 Hz, 2H, H_{arom}), 6.95 – 6.71 (m, 2H, H_{arom}), 4.85 (d, J = 18.0 Hz, 1H, CHH PMB), 4.58 (d, J = 11.3 Hz, 1H, CHH PMB), 4.31 (d, J = 7.8 Hz, 1H, H-1), 3.89 (dd, J = 12.0, 2.2 Hz, 1H, CHH H-6), 3.68 (dd, J = 12.0, 5.5 Hz, 1H, CHH H-6), 3.42 – 3.14 (m, 4H, H-2, H-3, H-4, H-5). ¹³C NMR (101 MHz, CD₃OD) δ = 160.8 (C_a Arom), 130.9 (C_H Arom), 130.9 (C_a Arom), 114.6 (C_H Arom), 102.9 (C-1), 78.0 (C-3), 78.0 (C-4), 75.1 (C-2), 71.7 (C-5), 71.4 (CH₂ PMB), 62.8 (C-6), 55.7 $(CH_3 PMB)$. HRMS m/z calcd for $[C_{14}H_{20}O_7 + Na]^+$: 365.12406; found: 365.12513.

(4-Methoxybenzyl)-4,6-O-(4-methoxybenzylidene)-β-D-OPMB glucopyranoside, 42: To a solution of 41 (309 mg, 1.03 mmol) in dry DMF (5 mL) were added 4-methoxybenzaldehyde dimethyl acetal (135 uL, 0.793 mmol) and p-TsOH.H₂O (10 mg, 0.05 mmol). The resulting reaction mixture was heated at 60 °C for 16, after which it was concentrated *in vacuo*. Saturated aqueous NaHCO₃ (50 mL) was added, and the mixture was further diluted with EtOAc (200 mL) and transferred to a separatory funnel. After washing with aq. NaHCO₃ (3x), water (3x) and brine (3x), layers were separated, the organic layer was dried (Na₂SO₄) and concentrated in vacuo. Compound 43 (382 mg, 0.910 mmol, 89%) was obtained after silica column chromatography (0 to 10% MeOH in DCM) as a white powder. $R_f = 0.48$ (10% MeOH in DCM); IR (neat): 3480, 2869, 1612, 1516, 1244; ¹H NMR (400 MHz, CD₃CN) δ = 7.39 (d, J = 8.8 Hz, 2H, H_{arom}), 7.31 (d, J = 8.7 Hz, 2H, H_{arom}), 7.00 – 6.86 (m, 4H, H_{arom}), 5.50 (s, 1H, CH PMB acetal), 4.76 (d, J = 11.5 Hz, 1H, CHH PMB), 4.55 (d, J = 11.5 Hz, 1H, CHH PMB), 4.43 (d, J = 7.8 Hz, 1H, H-1), 4.24 (dd, J = 10.3, 4.6 Hz, 1H, CHH H-6), 3.78 (s, 6H, 2 x CH₃ OMe) 3.72 (t, J = 9.9 Hz, 1H, CHH H-6), 3.62 - 3.50 (m, 1H, H-3), 3.49 - 3.33 (m, 2H, H-4, H-5), 3.26 (td, J = 8.1, 3.7 Hz, 1H, H-2). ¹³C NMR (101 MHz, CD₃CN) δ = 161.1 (C_a Arom), 160.4 (C_a Arom), 131.3 (C_a Arom), 130.7 (C_H Arom), 128.6 (C_H Arom), 114.6 (C_H Arom), 114.4 (C_H Arom), 103.4 (C-1), 102.1 (CH PMB acetal), 81.6 (C-4), 75.6 (C-2), 74.3 (C-3), 71.4 (CH₂ PMB), 69.3 (C-6), 67.2 (C-5), 55.9 (2 x CH₃ PMB). HRMS m/z calcd for $[C_{22}H_{26}O_8 + H]^+$: 419.17004; found: 419.17101.

(4-Methoxybenzyl)-2,3-di-O-(4-methoxybenzyl)-4,6-O-(4-OPMB methoxybenzylidene)-β-D-glucopyranoside, 43: To a cooled solution (0 °C) of p-methoxy benzylidene protected 42 (377 mg, 0.900 mmol) in dry DMF (9 mL) was slowly added NaH (60% dispersion in mineral oil, 80.0 mg, 2.00 mmol) followed by the addition of 4-methoxybenzyl chloride (255 μ L, 1.89 mmol). After stirring for 5 h under a dinitrogen atmosphere, the reaction was quenched upon the addition of MeOH (3 mL). The mixture was further diluted with Et_2O (200 mL) and transferred to a separatory funnel, washed with water (1x), aq. NaHCO₃ (1x) and brine (1x). The organic layer was dried over Na₂SO₄ and concentrated in vacuo. Purification by silica column chromatography (0 to 20% EtOAc in PE) yielded the title compound 43 as a clear oil (447 mg, 0.680 mmol, 76%). R_f = 0.74 (40% EtOAc in PE); IR (neat): 3480, 2869, 1612, 1516, 1244; ¹H NMR (400 MHz, CDCl₃) δ = 7.43 (d, J = 8.9 Hz, 2H, H_{arom}), 7.36 – 7.18 (m, 5H, H_{arom}), 7.00 – 6.78 (m, 6H, H_{arom}), 5.54 (s, 1H, CH benzylidene), 4.89 (d, J = 11.4 Hz, 1H, CHH PMB), 4.82 (dd, J = 10.8, 5.6 Hz, 2H, CH₂ PMB), 4.71 (dd, J = 16.0, 10.7 Hz, 2H, CH₂ PMB), 4.65 – 4.57 (m, 2H, CHH PMB, H-1), 4.37 (dd, J = 10.5, 5.0 Hz, 1H, CHH H-6), 3.82 (s, 6H, 2 x CH₃ PMB), 3.82 (s, 3H, CH₃ PMB), 3.80 (s, 3H, CH₃ PMB), 3.69 (p, J = 9.1 Hz, 2H, H-3, H-4), 3.49 (t, J = 7.9 Hz, 1H, H-2), 3.40 (td, J = 9.5, 5.0 Hz, 1H, H-5). 13 C NMR (101 MHz, CDCl₃) δ = 160.1 (C_a Arom), 159.5 (C_a Arom), 159.3 (C_a Arom), 159.3 (C_a Arom), 130.8 (C_a Arom), 130.6 (C_a Arom), 129.9 (C_H Arom), 129.8 (C_H Arom), 129.8 (C_H Arom), 129.3 (C_a Arom), 127.4 (C_H Arom), 113.9 (C_H Arom), 113.8 (C_H Arom), 113.7 (C_H Arom), 103.0 (C-1), 101.2 (CH PMB acetal), 81.9 (C-2), 81.5 (C-3), 80.7 (C-4), 75.1 (CH₂ PMB), 74.9 (CH₂ PMB), 71.4 (CH₂ PMB), 68.9 (C-6), 66.2 (C-5), 55.4 (3 x CH₃ PMB), 55.3 (CH₃ PMB acetal); HRMS m/z calcd for $[C_{38}H_{42}O_{10} + Na]^+$: 681.26702; found: 681.26706.

(4-Methoxybenzyl)-2,3,6-tri-*O***-(4-methoxybenzyl)-***β***-***D***-PMBO PMBO glucopyranoside, 44:** Fully protected glycoside **43** (400 mg, 0.610 mmol) was dissolved in DMF (12 mL) and to this solution were added freshly activated 4Å molsieves and fresh NaCNBH₃ (385 mg, 6.13 mmol). After stirring for 15 minutes the solution was cooled to 0 °C and a precooled solution (0 °C) of trifluoroacetic acid (1.2 mL) in DMF (3 mL) on 4Å molsieves was then added dropwise over 15 minutes. The reaction mixture was maintained at rt for 48 h at rt and filtered over Celite[®], diluted with EtOAc (100 mL) and transferred to a separatory funnel. After washing with water (1x), aq. NaHCO₃ (1x) and brine (1x), the organic layer was dried (Na₂SO₄) and concentrated *in vacuo*. Purification of the residue by column chromatography over silica (0 to 30% EtOAc in PE) afforded **44** (385 mg, 0.580 mmol, 95%) as a clear oil. R_f = 0.48 (40% EtOAc in PE); IR (neat): 3480, 3000, 2907, 1612, 1512; ¹H NMR (400 MHz, CD₃Cl₃) δ = 7.42 – 7.16 (m, 8H, H_{arom}), 6.87 (tdd, *J* = 8.9, 4.7, 2.6 Hz, 8H, H_{arom}), 4.92 – 4.82 (m, 3H, CHH PMB, CH₂ PMB),

4.67 – 4.53 (m, 5H, CHH PMB, 2 x CH₂ PMB), 4.49 (d, J = 7.2 Hz, 1H, H-1), 3.82 (s, 3H, CH₃ PMB), 3.81 (s, 3H, CH₃ PMB), 3.81 (s, 3H, CH₃ PMB), 3.80 (s, 3H, CH₃ PMB), 3.79 – 3.66 (m, 2H, H-6), 3.59 – 3.51 (m, 1H, H-5), 3.48 – 3.36 (m, 3H, H-2, H-3, H-4). ¹³C NMR (101 MHz, CDCl₃) δ = 159.4 (C_q Arom), 152.7 (C_q Arom), 152.5 (C_q Arom), 130.7 (C_H Arom), 130.0 (C_H Arom), 129.9 (C_H Arom), 129.8 (C_H Arom), 129.5 (C_H Arom), 114.1 (C_H Arom), 113.9 (C_H Arom), 102.5 (C-1), 83.8 (C-4), 81.6 (C-2), 75.0 (CH₂ PMB), 74.5 (CH₂ PMB), 74.2 (C-3), 73.4 (CH₂ PMB), 71.7 (C-5), 71.1 (CH₂ PMB), 70.2 (C-6), 55.4 (4 x CH₃ PMB); HRMS m/z calcd for [C₃₈H₄₄O₁₀ + NH₄]⁺: 678.32727; found: 678.33206.

(4-Methoxybenzyl)-2-O-(2-[2-(2-

(methylthio)ethoxy)ethoxy]ethyl)-3,6-tri-O-(4-methoxybenzyl)-

β-D-glucopyranoside, 45: Compound 44 (300 mg, 0.454 mmol) OPMB was dissolved in dry DMF and cooled to (0 °C) after which 60% NaH in mineral oil (31 mg, 0.77 mmol) was added. This mixture was allowed to stir for 5 min, after which tosylate 32 (177 mg, 0.530 mmol) was added dropwise. The reaction was allowed to stir for 6 h, after which it was quenched upon the addition of MeOH (2 mL), diluted with Et₂O and transferred to a separatory funnel. After washing with aq. $NaHCO_3$ (1x), water (1x) and brine (1x), layers were separated, the organic layer dried (Na₂SO₄) and concentrated in vacuo. Purification of the residue by column chromatography (0 to 40% EtOAc in PE) afforded the title compound 45 as a clear oil (291 mg, 0.354 mmol, 78%). $R_f = 0.38$ (40% EtOAc in PE); IR (neat): 2998, 2907, 2836, 1612, 1513; ¹H NMR (400 MHz, CDCl₃) δ = 7.36 – 7.18 (m, 8H, H_{arom}), 6.94 – 6.79 (m, 8H, H_{arom}), 4.97 – 4.50 (m, 8H, 4 x CH₂ PMB), 4.46 (d, J = 7.8 Hz, 1H, H-1), 3.95 (dt, J = 9.8, 4.5 Hz, 1H, CHH OCH₂), 3.81 - 3.74 (m, 1H, CHH H-6), 3.76 - 3.63 (m, 3H, CHH H-6, 2 x CHH OCH₂), 3.65 - 3.50 (m, 8H, H-5, CHH OCH₂, 3 x OCH₂), 3.46 – 3.38 (m, 3H, H-2, H-3, H-4), 2.66 (t, J = 6.9 Hz, 2H, CH₂SMe), 2.12 (s, 3H, CH₂SMe). 13 C NMR (101 MHz, CDCl₃) δ = 159.7 (C_q Arom), 159.4 (C_q Arom), 131.1 (C_q Arom), 130.8 (C_q Arom), 130.8 (C_q Arom), 130.8 (C_q Arom), 130.8 (C_q Arom)) Arom), 130.6 (C_q Arom), 130.0 (C_H Arom), 129.8 (C_H Arom), 129.5 (C_H Arom), 113.9 (C_H Arom), 113.8 (C_H Arom), 102.5 (C-1), 84.3 (C-5), 82.0 (C-2), 78.7 (C-3), 75.4 (CH₂ PMB), 75.0 (C-4), 74.6 (CH₂ PMB), 73.2 (CH₂ PMB), 72.2 (OCH₂), 71.0 (CH₂ PMB), 70.9 (OCH₂), 70.7 (OCH₂), 70.6 (OCH₂), 70.4 (CH₂SMe), 68.8 (C-6), 33.5 (4 x CH₃ PMB), 16.2 (CH₂SMe). HRMS m/z calcd for $[C_{45}H_{58}O_{12}S + NH_4]^+$: 840.39872; found: 840.40276.

4-O-(2-[2-(2-(methylthio)ethoxy)ethoxy]ethyl)-α/β-D-

glucopyranoside, H46: Compound 45 (108 mg, 0.131 mmol) was

 $OH^{+}OH^{-}$ dissolved in a mixture of DCM/HFIP (1:1, 2 mL) and to this solution was added a catalytic amount of 37% HCl (4 drops). The mixture slowly turned red to deep purple in 30 minutes, after which it was quenched with Et₃N (0.5 mL) and concentrated *in vacuo*. The crude was redissolved in MeOH, Amberlite IR-120 H⁺ was added and the mixture was stirred for 5 minutes, filtered and concentrated. Purification of the resulting residue over silica (0 to 15% MeOH in DCM) afforded the title compound **H46** as a clear oil (13 mg, 0.038 mmol, 29%). $R_f = 0.57$ (20% MeOH in DCM); IR (neat): 3370, 2918, 2873, 1104, 1077; ¹H NMR (400 MHz, CD₃OD) $\delta = 5.09$ (d, J = 3.7 Hz, 1H, H-1 α), 4.45 (d, J = 7.7 Hz, 1H, H-1 β), 4.02 – 3.58 (m, 28H), 3.47 (t, J = 8.9 Hz, 1H, H-3 β), 3.29 – 3.19 (m, 2H), 3.13 (dd, J = 9.2, 7.9 Hz, 1H, H-2 β), 2.68 (t, J = 6.8 Hz, 4H, 2 x OCH₂SMe), 2.13 (s, 6H, 2 x OCH₂SMe). ¹³C NMR (100 MHz, CD₃OD) $\delta = 98.2$ (C-1 β), 93.9 (C-1 α), 80.5, 80.3, 78.2, 77.0, 76.3, 75.0, 73.9, 72.9, 72.0, 71.7, 71.5, 71.2, 62.5 (C-1 β), 62.4 (C-1 α), 34.3 (2x OCH₂SMe), 15.9 (OCH₂SMe); HRMS m/z calcd for [C₁₃H₂₆O₈S + Na]⁺: 365.12406; found: 365.12513.

1,2:3,5-bis(O-methylidene)-6-*O*-(2-[2-(2-

(methylthio)ethoxy)ethoxy]ethyl)α-D-glucofuranose, 49: To a cooled (0 °C) solution of 1,2:3,5-bis(*O*-methylidene)-α-D-glucofuranose (206 mg, 1.00 mmol) in dry DMF (10 mL) was added 60% NaH in mineral oil (57

mg, 1.42 mmol). After 10 minutes, 19 (385 mg, 1.15 mmol) was added dropwise and the resulting mixture was stirred for 3 hr at rt, after which it was quenched upon the addition of MeOH (2 mL). The reaction mixture was extracted with Et₂O (50 mL), washed with aq. NaHCO₃ (2x), water (2x) and brine (2x). Layers were separated, the organic layer was dried (Na₂SO₄) and concentrated in vacuo. The resulting residue was then purified by silica column chromatography (0 to 60% EtOAc in PE) affording 49 as a colorless oil. $R_f = 0.57$ (50% EtOAc in PE); IR (neat): 2867, 1455, 1082, 1184, 1058; ¹H NMR (400 MHz, CDCl₃) δ = 6.03 (d, J = 3.8 Hz, 1H, H-1), 5.12 (d, J = 5.9 Hz, 1H, CHH methylene), 5.08 (s, 1H, CH₂ methylene), 5.03 (s, 1H, CH₂ methylene), 4.78 (d, J = 6.0 Hz, 1H, CHH methylene), 4.46 (d, J = 3.9 Hz, 1H, H-2), 4.37 (d, J = 3.0 Hz, 1H, H-3), 4.14 (t, J = 4.4 Hz, 1H, H-5), 4.03 (d, J = 2.7 Hz, 1H, H-4), 3.85 (dd, J = 10.5, 3.9 Hz, 1H, CHH H-6), 3.75 (dd, J = 10.5, 4.8 Hz, 1H, CHH H-6), 3.64 (dd, J = 11.8, 5.6 Hz, 10H, 4 x OCH₂), 2.69 (t, J = 6.9 Hz, 2H, CH₂SMe), 2.14 (s, 3H, CH₂SMe). ¹³C NMR (101 MHz, CDCl₃) δ = 104.4 (C-1), 96.6 (CH₂ methylene), 88.2 (CH₂ methylene), 83.9 (C-2), 76.8 (C-3), 76.1 (C-4), 72.5 (C-6), 71.6 (C-5), 71.0 (OCH₂), 70.7(OCH2), 70.7 (OCH2), 70.7 (OCH2), 70.4 (OCH2), 33.5 (OCH2SMe), 16.2 (OCH2SMe). HRMS m/z calcd for $[C_{15}H_{26}O_8S + H]^+$: 367.14211; found: 367.14295.

HO O OH OH

6-O-(2-[2-(2-(methylthio)ethoxy)ethoxy]ethyl)- α/β -D-

glucopyranoside, **H50**: Compound **49** was dissolved in 2M HCl (5 mL) and this mixture was heated at 100 °C for 1 h after which the reaction was neutralized with 1M NaOH (10 mL) and concentrated in vacuo.

Purification of the residu by silica column chromatography (0 to 20% MeOH in DCM) afforded **H50** as a colorless oil (101 mg, 0.295 mmol, 70%). $R_f = 0.50$ (20% MeOH in DCM); IR (neat): 3368, 2917, 2874, 1427, 1078; ¹H NMR (500 MHz, CD₃OD) $\delta = 5.13$ (d, J = 3.7 Hz, 1H, H-1 α), 4.52 (d, J = 7.7 Hz, 1H, H-1 β), 4.06 – 3.94 (m, 4H), 3.91 – 3.87 (m, 1H, CHH H- $6\alpha/\beta$), 3.86 – 3.77 (m, 2H), 3.75 – 3.64 (m, 20H, 10 x OCH₂), 3.49 – 3.38 (m, 3H), 3.41 (ddd, J = 9.8, 8.8, 6.0 Hz, 2H), 3.34 – 3.30 (m, 1H), 3.25 – 3.22 (m, 2H), 2.72 (t, J = 6.8 Hz, 4H, 2 x CH₂SMe), 2.16 (s, 6H, 2 x CH₂SMe). ¹³C NMR (126 MHz, CD₃OD) δ = 98.1 (C-1 β), 94.0 (C-

1 α), 87.6, 84.4, 77.8, 76.1, 73.6, 73.0 (OCH₂), 73.0 (OCH₂), 73.0, 72.1 (OCH₂), 72.1 (OCH₂), 71.6 (OCH₂), 71.6 (OCH₂), 71.4 (OCH₂), 71.4 (OCH₂), 71.3, 71.1 (OCH₂), 71.1 (OCH₂), 62.8 (C- $6\alpha/\beta$), 62.7 (C- $6\alpha/\beta$), 34.2 (2 x CH₂SMe), 15.9 (2 x CH₂SMe). HRMS m/z calcd for [C₁₃H₂₆O₈S + Na]⁺: 365.12406; found: 365.12519.

[Ru(tpy)(bpy)(13)](PF₆)₂, [1](PF₆)₂: [Ru(tpy)(bpy)Cl]Cl (63 mg, 0.112 mmol) and 13 (93 mg, 0.366 mmol) were dissolved in deoxygenated H₂O (18 mL) and this mixture was heated at 80 °C for 16 h, after which it was concentrated *in vacuo*. Purification of the residue by silica column chromatography (100/0/0 to 100/80/20 aceton/water/aq. KPF₆), followed by purification over Sephadex LH-20 (MeOH), afforded the title compound as a

red solid (44 mg, 42.4 umol, 39%). R_f = 0.69 (100/80/20 aceton/water/aq. KPF₆); ¹H NMR (400 MHz, CD₃OD) δ = 9.85 (d, *J* = 5.7 Hz, 1H, 1), 8.81 (d, *J* = 8.0 Hz, 1H, 4), 8.77 (d, *J* = 8.2 Hz, 2H, T₃', T₅'), 8.62 (d, *J* = 8.1 Hz, 2H, T₆', T₆''), 8.58 (d, *J* = 7.8 Hz, 1H, 10), 8.44 – 8.34 (m, 2H, T₄', 3), 8.18 – 8.04 (m, 3H, T₅, T₅'', 2), 7.92 (td, *J* = 7.8, 1.6 Hz, 1H, 9), 7.79 (d, *J* = 5.6 Hz, 2H, T₃, T₃''), 7.45 (ddd, *J* = 7.3, 5.6, 1.4 Hz, 2H, T₄, T₄''), 7.34 – 7.26 (m, 1H, 7), 7.23 (ddd, *J* = 7.3, 5.7, 1.3 Hz, 1H, 8), 4.69 (d, *J* = 3.7 Hz, 1H, H-1), 3.79 – 3.68 (m, 2H, CHH H-6, CHH OCH₂), 3.64 – 3.34 (m, 5H, CHH H-6, CHH OCH₂, H-2, H-3, H-5), 3.29 – 3.20 (m, 1H, H-4), 2.12 – 1.91 (m, 2H, *CH*₂SMe), 1.39 (s, 3H, CH₂SMe). ¹³C NMR (101 MHz, CD₃OD) δ = 159.3 (C_q Arom), 158.7 (C_q Arom), 158.1 (C_q Arom), 157.9 (C_q Arom), 154.3 (C_H T₃, T₃''), 153.5 (C_H 1), 150.8 (C_H 7), 140.1 (C_H T₅, T₅''), 139.4 (C_H T₄'), 139.3 (C_H 9), 138.3 (C_H 3), 129.8 (C_H T₄''), 129.4 (C_H 2), 128.4 (C_H 8), 126.2 (C_H T₆), 126.2 (C_H T₆''), 125.9 (C_H 4), 125.5 (C_H T₃', T₅'), 125.1 (C_H 10), 100.2 (C-1), 75.1 (C-5), 74.3 (C-3), 73.1 (C-2), 71.7 (C-4), 64.8 (OCH₂), 62.8 (C-6), 35.9 (CH₂SMe), 14.8 (CH₂SMe); HRMS m/z calcd for [M]²⁺: 372.57485; found: 372.57558; Elemental analysis calcd (%) for [1](PF₆)₂.2MeOH: C, 39.35; H, 4.13; N, 6.37; found: 41.45; H, 4.18; N, 6.35.

[Ru(tpy)(bpy)(15)](PF₆)₂, **[2](PF**₆)₂: The title compound was synthesized analogous according to the procedure described for $[1](PF_6)_2$ using [Ru(tpy)(bpy)Cl)]Cl (200 mg, 0.357 mmol) and **15** (100 mg, 0.476 mmol) in H₂O (60 mL) affording **[2]**(PF₆)₂, as an orange powder (98.4 mg, 99.3 µmol, 28%). R_f = 0.15 (100/80/20 acetone/water/aq. KPF₆); ¹H NMR (400 MHz, CD₃OD) δ = 10.01 (d, J = 4.1 Hz, 1H, 1), 8.82 (dt, J = 8.2, 1.1 Hz, 1H, 4), 8.76 (ddd, J = 8.2,

4.3, 0.9 Hz, 2H, T_3' , T_5'), 8.66 – 8.56 (m, 3H, T_6 , T_6'' , 10), 8.43 – 8.36 (m, 2H, T_4' , 3), 8.13 – 8.02 (m, 3H, T_5 , T_5'' , 2), 7.93 (ddd, *J* = 8.2, 7.0, 2.1 Hz, 1H, 9), 7.86 (ddd, *J* = 5.5, 1.5, 0.7 Hz, 1H, T_3), 7.80 (ddd, *J* = 5.5, 1.5, 0.7 Hz, 1H, T_3''), 7.44 (ddt, *J* = 7.8, 5.5, 1.3 Hz, 2H, T_4 , T_4''), 7.27 – 7.18 (m, 2H, 7, 8), 3.52 (d, *J* = 9.1 Hz, 1H, H-1), 3.43 (t, *J* = 3.6 Hz, 2H, H-6), 3.02 – 2.90 (m, 3H, H-2, H-3, H-4), 2.48 (d, *J* = 8.7 Hz, 1H, H-5), 1.39 (s, 3H, *SMe*). ¹³C NMR (101

MHz, CD₃OD) δ = 163.4 (C_q Arom), 160.7 (C_q Arom), 160.0 (C_q Arom), 159.8 (C_q Arom), 158.9 (C_q Arom), 158.2 (C_q Arom), 158.0 (C_q Arom), 154.5 (C_H T₃), 154.3 (C_H T₃"), 153.8 (C_H 1), 150.4 (C_H 7), 140.2 (C_H T₅), 140.1 (C_H T₅"), 139.6 (C_H T₄'), 139.5 (C_H 9), 138.2 (C_H 3), 129.7 (C_H T₄), 129.6 (C_H T₄"), 129.0 (C_H 2), 128.5 (C_H 8), 126.1 (C_H 4), 126.0 (C_H T₆), 125.9 (C_H T₆") 125.3 (C_H T₃', T₅'), 125.1 (C_H 10), 85.7 (C-1), 82.7 (C-5), 78.6 (C-2), 71.3 (C-3), 70.0 (C-4), 61.8 (C-6), 9.0 (SMe). HRMS m/z calcd for [M]²⁺: 350.56175; found: 350.56289. Elemental analysis calcd (%) for [**2**](PF₆)₂: C, 38.18; H, 3.30; N, 6.96; found: 38.93; H, 3.39; N, 7.19.

[Ru(tpy)(bpy)(24)](PF₆)₂, [3](PF₆)₂: The title compound was synthesized analogous according to the procedure described for [**1**](PF₆)₂ using [Ru(tpy)(bpy)Cl)]Cl (101 mg, 0.180 mmol) and **24** (75.7 mg, 0.298 mmol) in H₂O (30 mL) affording the title compound as a hygroscopic orange powder (73.3 mg, 70.7 µmol, 39%). R_f = 0.36 (100/10/20 aceton/water/aq. KPF₆); ¹H NMR (500 MHz, CD₃OD) δ = 9.85 (dd, *J* = 5.6, 0.7 Hz,

1H, 1), 8.81 (dd, J = 17.9, 8.2 Hz, 3H, 4, T_3' , T_5'), 8.63 (d, J = 8.1 Hz, 2H, T_6 , T_6''), 8.59 (d, J = 8.2 Hz, 1H, 10), 8.45 – 8.36 (m, 2H, T_4' , 3), 8.14 – 8.04 (m, 3H, T_5 , T_5'' , 2), 7.93 (td, J = 7.8, 1.5 Hz, 1H, 9), 7.80 (td, J = 5.4, 0.8 Hz, 2H, T_3 , T_3''), 7.45 (ddd, J = 7.6, 5.5, 1.3 Hz, 2H, T_4 , T_4''), 7.30 (ddd, J = 5.7, 1.5, 0.7 Hz, 1H, 7), 7.23 (ddd, J = 7.2, 5.7, 1.3 Hz, 1H, 8), 4.15 (d, J = 7.8 Hz, 1H, H-1), 3.88 – 3.76 (m, 2H, *CH*H H-6, *CH*H OCH₂), 3.57 (ddd, J = 12.7, 11.5, 5.6 Hz, 2H, *CH*H H-6, *CH*H OCH₂), 3.26 (m, 1H, H-3), 3.23 – 3.17 (m, 2H, H-2, H-4), 3.09 (dd, J = 9.2, 7.8 Hz, 1H, H-5), 1.98 (t, J = 5.6 Hz, 2H, *CH*₂SMe), 1.39 (s, 3H, CH₂SMe). ¹³C NMR (126 MHz, CD₃OD) $\delta = 159.3$ (C_q Arom), = 159.3 (C_q Arom), 158.8 (C_q Arom), 158.2 (C_q Arom), 158.0 (C_q Arom), 154.4 (C_H T₃), 154.4 (C_H T₃''), 153.6 (C_H 1), 150.8 (C_H 7), 140.1 (C_H T₅, T₅''), 139.5 (T₄'), 139.4 (C_H 9), 138.3 (C_H 3), 129.8 (C_H 2 $_4$, T₄''), 129.2 (C_H 2), 128.4 (C_H 8), 126.2 (T₆, T₆''), 125.9 (C_H 4), 125.5 (T₃', T₅'), 125.1 (C_H 10), 104.2 (C-1), 78.2 (C-3), 78.1 (C-4), 74.9 (C-2), 71.5 (C-5), 66.6 (OCH₂), 62.6 (C-6), 35.8 (CH₂SMe), 14.8 (CH₂SMe). HRMS m/z calcd for [M]²⁺: 372.57485; found: 372.57581; Elemental analysis calcd (%) for [**3**](PF₆)₂: C, 39.47; H, 3.60; N, 6.77; found: 40.57; H, 3.53; N, 7.00.

[Ru(tpy)(bpy)(25)](PF₆)₂, [4](PF₆)₂: The title compound was synthesized analogous according to the procedure described for [1](PF₆)₂ using [Ru(tpy)(bpy)Cl)]Cl (94.2 mg, 0.168 mmol) and **25** (71.0 mg, 0.238 mmol) in H₂O (28 mL) affording the title compound as a hygroscopic orange powder (120 mg, 111 µmol, 66%). R_f = 0.56 (50/30/20 acetone/water/aq. KPF₆); ¹H NMR (400 MHz, CD₃OD) δ = 9.83 (d, *J* = 5.7 Hz, 1H, 1), 8.79

(dd, J = 14.9, 8.1 Hz, 3H, 4, T₃', T₅'), 8.60 (dd, J = 16.6, 8.1 Hz, 2H, T₆, T₆"), 8.43 – 8.34 (m, 2H, T₄', 3), 8.10 (m, 3H, T₅, T₅", 2), 7.91 (td, J = 7.8, 1.5 Hz, 1H, 9), 7.80 (d, J = 4.7 Hz, 1H, T₃, T₃"), 7.51 – 7.41 (m, 2H, T₄, T₄"), 7.32 – 7.27 (m, 1H, 7), 7.23 (ddd, J = 7.2, 5.7, 1.3 Hz, 1H,

8), 4.27 (d, J = 7.8 Hz, 1H, H-1), 3.97 – 3.89 (m, 1H, CHH OCH₂), 3.85 (dd, J = 11.8, 1.7 Hz, 1H, CHH H-6), 3.71 – 3.58 (m, 2H, CHH H-6, CHH OCH₂), 3.54 (dd, J = 5.4, 3.8 Hz, 2H, OCH₂), 3.46 (t, J = 5.5 Hz, 2H, OCH₂), 3.35 (m, J = 2.4 Hz, 1H, H-3), 3.28 – 3.22 (m, 3H, H-4, H-5), 3.12 (dd, J = 9.0, 7.8 Hz, 1H,), 1.96 – 1.88 (m, 2H, CH₂SMe), 1.40 (s, 3H, CH₂SMe). ¹³C NMR (101 MHz, CD₃OD) $\delta = 159.3$ (C_q Arom), 158.7 (C_q Arom), 158.1 (C_q Arom), 157.9 (C_q Arom), 154.4 (C_H T₃, T₃"), 153.4 (C_H 1), 150.8 (C_H 7), 140.1 (T₅, T₅"), 139.5 (C_H T₄'), 139.3 (C_H 9), 138.3 (C_H 3), 129.8 (C_H T₄, T₄"), 129.3 (C_H 2), 128.4 (C_H 8), 126.2 (C_H T₆), 125.9 (C_H T₆"), 125.5 (C_H 4), 125.1 (C_H T₃', T₅'), 104.4 (C-1), 78.1 (C-3), 78.0 (C-4), 75.1 (C-2), 71.6 (C-5), 71.4 (OCH₂), 69.7 (OCH₂), 68.2 (OCH₂), 62.7 (C-6), 35.6 (CH₂SMe), 15.2 (CH₂SMe). HRMS m/z calcd for [M]²⁺: 394.58796; found: 394.58870; Elemental analysis calcd (%) for [**4**](PF₆)₂: C, 40.08; H, 3.83; N, 6.49; found: 40.78; H, 3.97; N, 6.34.

[Ru(tpy)(bpy)(26)](PF₆)₂, **[5](PF**₆)₂: The title compound was synthesized analogous according to the procedure described for [**1**](PF₆)₂ using [Ru(tpy)(bpy)Cl)]Cl (102 mg, 0.182 mmol) and **26** (100 mg, 0.292 mmol) in H₂O (30 mL) affording the title compound as a red solid (130 mg, 116 µmol, 65%). R_f = 0.35 (100/80/20 acetone/water/aq. KPF₆); ¹H NMR (400 MHz, CD₃OD) δ = 9.83 (d, *J* = 5.8 Hz, 1H, 1), 8.81 (dd, *J* = 12.6, 7.9 Hz,

3H, 4, T_{3}', T_{5}'), 8.62 (dd, J = 17.9, 8.1 Hz, 3H, T_{6}, T_{6}'' , 10), 8.46 – 8.35 (m, 2H, T_{4}' , 3), 8.10 (t, J = 8.3 Hz, 3H, T_{5}, T_{5}'' , 2), 7.93 (t, J = 7.9 Hz, 1H, 9), 7.80 (d, J = 5.8 Hz, 2H, T_{3}, T_{3}''), 7.47 (t, J = 6.6 Hz, 2H, T_{4}, T_{4}''), 7.30 (d, J = 5.8 Hz, 1H, 7), 7.23 (t, J = 6.6 Hz, 1H, 8), 4.26 (d, J = 7.8 Hz, 1H, H-1), 4.06 – 3.91 (m, 1H, CHH OCH₂), 3.86 (d, J = 11.8 Hz, 1H, CHH H-6), 3.73 – 3.39 (m, 10H, CHH H-6, CHH OCH₂, 4 x OCH₂), 3.35 (m, 1H, H-5), 3.26 (d, J = 6.3 Hz, 2H, H-3, H4), 3.10 (t, J = 8.5 Hz, 1H, H-2), 1.90 (d, J = 5.6 Hz, 2H, OCH₂SMe), 1.41 (s, 3H, OCH₂SMe). ¹³C NMR (101 MHz, CD₃OD) $\delta = 157.9$ (C_q Arom), 157.4 (C_q Arom), 156.8 (C_q Arom), 156.6 (C_q Arom), 153.1 (C_H T₃, T₃''), 152.1 (C_H 1), 149.5 (C_H 7), 138.8 (C_H T₅, T₅''), 138.2 (C_H 9), 138.0 (C_H 4), 124.1 (C_H T₃, T₅'), 123.8 (C_H 10), 103.1 (C-1), 76.6 (C-3, C-5), 73.7 (C-2), 70.3 (C-4), 70.0 (OCH₂), 69.9 (OCH₂), 69.8 (OCH₂), 68.3 (OCH₂), 67.0 (OCH₂), 61.3 (C-6), 34.1 (OCH₂SMe), 14.00 (OCH₂SMe). HRMS: m/z calcd for [M]²⁺: 416.60107; found: 416.60252; Elemental analysis calcd (%) for [**5**](PF₆)₂.3H₂O: C, 38.78; H, 4.37; N, 5.95; found: 39.27; H, 4.68; N, 5.95.

[Ru(tpy)(bpy)(37)]PF₆, **[6]PF**₆: [Ru(tpy)(bpy)(H₂O)](PF₆)₂ (35.9 mg, 45.0 μ mol) and H37 (30.3 mg, 44.7 μ mol) were dissolved in a deoxygenated mixture of acetone/H₂O (4:1, 8 mL) and heated at 50 °C for 16 h, after which the reaction mixture was concentrated *in vacuo* and purified over Sephadex LH-20 (MeOH), affording the title compound as a red solid (18 mg, 18.4 μ mol, 41%). *Rf* = 0.52

(acetone/water/aq. KPF₆ 100/80/20); ¹H NMR (500 MHz, CD₃OD) δ = 9.84 (d, J = 5.6 Hz, 1H, 1), 8.88 – 8.80 (m, 3H, 4, T₃', T₅'), 8.67 (d, J = 7.1 Hz, 2H, T₆, T₆"), 8.62 (d, J = 7.5 Hz, 1H, 10), 8.43 (q, J = 7.9 Hz, 2H, T₄', 3), 8.17 - 8.08 (m, 3H, T₅, T₅", 2), 7.95 (td, J = 7.8, 1.5 Hz, 1H, 9), 7.81 (d, J = 5.5 Hz, 2H, T₃, T₃"), 7.48 (ddd, J = 7.2, 5.5, 1.3 Hz, 2H, T₄, T₄"), 7.36 -7.28 (m, 1H, 7), 7.24 (ddd, J = 7.2, 5.7, 1.3 Hz, 1H, 8), 5.23 (d, J = 3.5 Hz, 0.5H, H-1α), 4.45 $(d, J = 7.8 \text{ Hz}, 0.5\text{H}, \text{H}-1\beta), 3.99 (dt, J = 11.1, 4.6 \text{ Hz}, 0.5\text{H} \text{ CHH OCH}_2 \alpha/\beta), 3.86 (dd, J = 11.8, 1.5)$ 2.3 Hz, 0.5H, CHH H-6α), 3.81 – 3.55 (m, 7.5H, CHH H-6α, CH₂ H-6β, H-3α, H-5α, H-5β, CHH OCH₂ α/β , 1 x OCH₂ α/β , 2 x OCH₂ $\alpha+\beta$), 3.51 – 3.47 (m, 2H, OCH₂), 3.45 (ddd, J = 6.4, 5.2, 1.6 Hz, 2H, OCH₂), 3.30 – 3.20 (m, 1.5H, H-3β, H-4β, H-4α), 3.16 (dd, J = 9.6, 3.5 Hz, 0.5H, H-2 α), 2.91 (dd, J = 8.9, 7.8 Hz, 0.5H, H-2 β), 1.97 – 1.89 (m, 2H, CH₂SMe), 1.43 (s, 1.5H, CH₂SMe α), 1.42 (s, 1.5H, CH₂SMe β). ¹³C NMR (126 MHz, CD₃OD) δ = 159.3 (C_a Arom), 158.8 (C_a Arom), 158.2 (C_a Arom), 158.0 (C_a Arom), 154.4 (C_H T₃, T₃"), 153.4 (C_H 1), 150.8 (C_H 7), 140.2 (C_H T₅, T₅"), 139.6 (C_H T₅, T₅"), 139.4 (C_H T₄', 9), 138.4 (C_H 3), 129.9 (C_H T₄, T₄"), 129.3 (C_H 2), 128.4 (C_H 8), 126.3 (C_H T₆, T₆"), 126.0 (C_H 4), 125.5 (C_H T₃', T₅'), 125.2 (C_H 10), 98.1 (C-1β), 91.8 (C-1α), 85.2 (C-2β), 82.5 (C-2α), 78.0, 77.6, 73.9, 72.9, 72.6, 71.8, 71.8, 71.6, 71.3, 71.3, 71.2, 70.9, 68.4, 68.3, 62.8 (C-6α/β), 62.7 (C-6α/β), 35.7 (CH₂SMe), 35.6 (CH₂SMe), 15.4 (CH₂SMe), 15.4 (CH₂SMe). HRMS: m/z calcd for [M]²⁺: 416.60107; found: 416.60278; Elemental analysis calcd (%) for [6]PF₆.3H₂O: C, 44.27; H, 4.89; N, 6.79; found: 44.70; H, 4.73; N, 6.49.

[Ru(tpy)(bpy)(40)]PF₆, [7]PF₆: The title compound was synthesized analogous according to the procedure described for $[1](PF_6)_2$ using [Ru(tpy)(bpy)Cl)]Cl (59.1 mg, 0.105 mmol) and **H40** (40.0 mg, 0.117 mmol) in H₂O (18 mL) affording the title compound as a red solid (44.2 mg, 39.3 µmol, 37%); R_f = 0.55 (100/80/20 acetone/water/aq. KPF₆); ¹H NMR (500 MHz, CD₃OD) δ = 9.86 (d, *J* = 5.9 Hz, 1H, 1), 8.96 – 8.80 (m, 3H, 4, T₃', T₅'), 8.74 – 8.69 (m, 2H, T₆'', 8.67 – 8.62 (m, 1H, 10), 8.51 – 8.40 (m, 2H,

T₄', 3), 8.15 (dtd, *J* = 9.6, 4.4, 2.4 Hz, 3H, T₅, T₅", 2), 8.01 – 7.93 (m, 1H, 9), 7.87 – 7.79 (m, 2H, T₃, T₃"), 7.55 – 7.46 (m, 2H, T₄, T₄"), 7.36 – 7.32 (m, 1H, 7), 7.27 (ddt, *J* = 7.3, 5.7, 1.5 Hz, 1H, 8), 5.10 (d, *J* = 3.6 Hz, 0.5H, H-1α), 4.51 (d, *J* = 7.6 Hz, 0.5H, H-1β), 4.29 – 3.08 (m, 15H), 1.96 (t, *J* = 5.4 Hz, 2H, 2 x CH₂SMe), 1.45 (s, 3H, 2 x CH₂SMe). ¹³C NMR (126 MHz, CD₃OD) δ = 159.3 (C_q Arom), 158.8 (C_q Arom), 158.2 (C_q Arom), 158.0 (C_q Arom), 154.4 (C_H T₃, T₃"), 153.4 (C_H 1), 150.8 (C_H 7), 140.2 (C_H T₅, T₅"), 139.6 (C_H T₄'), 139.4 (C_H 9), 138.3 (C_H 3), 129.9 (C_H T₄, T₄"), 129.3 (C_H 2), 128.4 (C_H 8), 126.3 (C_H T₆, T₆"), 126.0 (C_H 4), 125.5 (C_H T₃', T₅'), 125.2 (C_H 10), 98.2 (C-1β), 94.0 (C-1α), 87.6, 84.4, 77.8, 76.1, 73.7, 73.0, 73.0, 72.0, 72.0, 71.6, 71.4, 71.3, 71.2, 71.2, 71.1, 71.1, 68.4, 68.3, 62.6 (C-6α/β), 62.5 (C-6α/β), 35.7 (2 x CH₂SMe), 15.4 (2 x CH₂SMe); HRMS: m/z calcd for [M]²⁺: 416.60107; found: 416.60242; Elemental analysis calcd (%) for [**7**]PF₆.2H₂O: C, 45.02; H, 4.87; N, 6.91; found: C, 44.82; H, 4.61; N, 6.79.

50

[Ru(tpy)(bpy)(46)]PF₆, **[8]PF**₆: [Ru(tpy)(bpy)(H₂O)](PF₆)₂ (25.8 mg, 32.0 μmol) and **H46** (11.0 mg, 32.1 μmol) were dissolved in a deoxygenated mixture of acetone/H₂O (4:1, 6 mL) and heated at 50 °C for 48 h, after which the reaction mixture was concentrated *in vacuo* and purified over Sephadex LH-20 (MeOH), affording the title compound as a red solid (23 mg, 23.5 μmol, 73%). R_f = 0.61 (100/80/20 acetone/water/aq. KPF₆); ¹H NMR (500 MHz, CD₃OD) δ = 9.85 (dd, *J* = 5.5, 1.1 Hz,

1H, 1), 8.86 (d, J = 8.3 Hz, 1H, 4), 8.83 (d, J = 8.1 Hz, 2H, T₃', T₅'), 8.69 – 8.66 (m, 2H, T₆, T₆"), 8.63 (dt, J = 8.2, 1.1 Hz, 1H, 10), 8.47 – 8.41 (m, 2H, T₄', 3), 8.13 (td, J = 7.8, 1.5 Hz, 3H, T₅, T₅", 2), 7.96 (td, J = 7.9, 1.5 Hz, 1H, 9), 7.82 (dd, J = 5.7, 1.6 Hz, 2H, T₃, T₃"), 7.49 (ddt, J = 7.3, 5.4, 1.8 Hz, 2H, T₄, T₄"), 7.31 (ddd, J = 5.7, 1.6, 0.8 Hz, 1H, 7), 7.25 (ddd, J = 7.2, 5.7, 1.3 Hz, 1H, 8), 5.11 (d, J = 3.7 Hz, 0.5H, H-1 α), 4.44 (d, J = 7.8 Hz, 0.5H, H-1 β), 3.98 – 3.05 (m, 15H), 1.95 (t, J = 5.5 Hz, 2H, 2 x CH₂SMe), 1.43 (s, 1.5H, CH₂SMe), 1.43 (s, 1.5H, CH₂SMe). ¹³C NMR (126 MHz, CD₃OD) $\delta = 159.3$ (C_q Arom), 158.8 (C_q Arom), 158.2 (C_q Arom), 158.0 (C_q Arom), 154.4 (C_H T₃), 154.4 (C_H T₃'), 153.4 (C_H 1), 150.8 (C_H 7), 140.2 (C_H T₅, T₅"), 139.6 (C_H T₄'), 139.4 (C_H 9), 138.3 (C_H 3), 129.9 (C_H T₄, T₄"), 129.3 (C-1 β), 93.9 (C-1 α), 80.6, 80.4, 78.1, 77.0, 76.3, 74.9, 73.8, 72.8, 72.0, 71.9, 71.3, 71.2, 71.2, 68.4, 68.4, 62.5 (C-6 α/β), 62.4 (C-6 α/β), 35.7 (CH₂SMe), 35.6 (CH₂SMe), 15.3 (2x CH₂SMe); HRMS: m/z calcd for [M]²⁺: 416.60107; found: 416.60261; Elemental analysis calcd (%) for [**8**]PF₆.2.5H₂O: C, 44.62; H, 4.93; N, 6.85; found: 45.17; H, 5.16; N, 6.55.

PF₆

[Ru(tpy)(bpy)(50)]PF₆, [9]PF₆: The title compound was synthesized analogous according to the procedure described for [1](PF₆)₂ using [Ru(tpy)(bpy)Cl)]Cl (58.8 mg, 0.105 mmol) and H50 (42.0 mg, 123 μ mol) in H₂O (18 mL) affording the title compound as a red solid (23.5 mg, 24.1 μ mol, 23%). R_f = 0.36 (16/4/1 acetone/water/1M HCl); ¹H NMR (500 MHz, CD₃OD) δ = 9.86 (ddd, *J* = 5.6, 1.5, 0.7 Hz, 1H, 1), 8.89 – 8.87 (m, 1H, 4),

8.85 (d, J = 8.2 Hz, 2H, T_3' , T_5'), 8.69 (dd, J = 8.2, 1.2 Hz, 2H, T_6 , T_6''), 8.67 – 8.62 (m, 1H, 10), 8.50 – 8.41 (m, 2H, T_4' , 3), 8.16 – 8.10 (m, 3H, T_5 , T_5'' , 2), 7.97 (td, J = 7.8, 1.5 Hz, 1H, 9), 7.84 (ddd, J = 5.6, 1.5, 0.7 Hz, 2H, T_3 , T_3''), 7.50 (ddd, J = 7.2, 5.6, 1.4 Hz, 2H, T_4 , T_4''), 7.33 (dq, J = 5.9, 0.9 Hz, 1H, 7), 7.26 (ddd, J = 7.2, 5.7, 1.3 Hz, 1H, 8), 5.10 (d, J = 3.6 Hz, 0.5H, H-1 α), 4.50 (d, J = 7.6 Hz, 0.5H, H-1 β), 3.99 – 3.08 (m, 15H), 1.96 (t, J = 5.5 Hz, 2H, 2 x CH_2 SMe), 1.44 (s, 3H, 2 x CH₂SMe). ¹³C NMR (126 MHz, CD₃OD) $\delta = 159.3$ (C_q Arom), 158.8 (C_q Arom), 158.2 (C_q Arom), 158.0 (C_q Arom), 154.4 (C_H T₃'), 153.4 (C_H 1), 150.8 (C_H 7), 140.2 (C_H T₅, T₅''), 139.6 (C_H T₄'), 139.4 (C_H 9), 138.3 (C_H 3), 129.9 (C_H T₄, T₄''), 129.3 (C_H 2), 128.4 (C_H 8), 126.3 (C_H T₆, T₆''), 126.0 (C_H 4), 125.6 (C_H T₃'), 125.5 (C_H T₅'), 125.1 (C_H 10), 98.2 (C-1 β), 94.0 (C-1 α), 87.6, 84.4, 77.8, 76.1, 73.7, 73.0, 73.0, 73.0, 72.0, 72.0, 71.3, 71.3, 71.2, 71.2, 71.1, 68.4, 68.3, 62.6 (C-6α/β), 62.5 (C-6α/β), 35.7 (2 x CH₂SMe), 15.4 (2 x CH₂SMe); HRMS: m/z calcd for $[M]^{2+}$: 416.60107; found: 416.60264; Elemental analysis calcd (%) for [**9**]PF₆.2H₂O: C, 45.02; H, 4.87; N, 6.91; found: C, 44.88; H, 4.59; N, 6.78.

[Ru(S-tpy)(bpy)(26)]PF₆, [10]PF₆: A deoxygenated solution of 31 (40.0 mg, 0.0661 mmol) and 26 (48.0 mg, 0.140 mmol) in H_2O (11 mL) was heated at 80 °C for 16 h after which it was concentrated *in vacuo*. The resulting residue was then purified over silica (100/0/0 to 100/95/5 in acetone/water/aq. KPF₆), followed by purification over Sephadex LH-20 (MeOH) to afford the title compound as a red microcrystalline solid (18 mg, 24.4

 μ mol, 37%). *R*_f = 0.46 (100/80/20 acetone/water/aq. KPF₆); ¹H NMR (500 MHz, CD₃OD) δ = 9.84 (d, J = 5.9 Hz, 1H, 1), 9.03 (s, 2H, T₃', T₅'), 8.81 (d, J = 8.2 Hz, 1H, 4), 8.73 (d, J = 8.1 Hz, 2H, T₆, T₆"), 8.58 (d, J = 8.2 Hz, 1H, 10), 8.43 (t, J = 7.9 Hz, 1H, 3), 8.13 (dt, J = 13.2, 7.4 Hz, 3H, 2, T₄, T₄"), 7.95 (t, J = 7.7 Hz, 1H, 9), 7.81 (d, J = 5.9 Hz, 2H, T₃, T₃"), 7.60 – 7.43 (m, 2H, T₅, T₅"), 7.25 (dt, J = 12.7, 6.0 Hz, 2H, 8, 7), 4.30 (d, J = 7.8 Hz, 1H, H-1), 4.00 (dd, J = 10.6, 5.3 Hz, 1H, CHH OCH₂), 3.86 (d, J = 12.0 Hz, 1H, CHH H-6), 3.67 (m, 4H, CHH H-6, CHH OCH₂) 2 x OCH₂), 3.57 (dd, J = 5.7, 3.4 Hz, 2H, OCH₂), 3.48 (dd, J = 5.8, 3.4 Hz, 2H, OCH₂), 3.44 (t, J = 5.5 Hz, 2H, OCH₂), 3.41 - 3.36 (m, 1H, H-3), 3.29 (m, 2H, H-4, H-5), 3.14 (t, J = 8.5 Hz, 1H, H-2), 1.91 (t, J = 5.5 Hz, 2H, CH_2 SMe), 1.41 (s, 3H, CH_2SMe). ¹³C NMR (126 MHz, CD_3OD) $\delta =$ 159.2 (C_q Arom), 158.7 (C_q Arom), 157.9 (C_q Arom), 157.7 (C_q Arom), 154.8 (C_q Arom), 154.2 (C_H T₃, T₃"), 153.2 (C_H 1), 150.6 (C_H 7), 140.4 (C_H T₄, T₄"), 139.8 (C_H 3), 139.6 (C_H 9), 130.2 (C_H T₅, T₅"), 129.3 (C_H 8) 128.5 (C_H 2), 126.7 (C_H T₆, T₆"), 125.9 (C_H 4), 125.1 (C_H 10), 121.7 (CH T₃', T₅'), 104.2 (C-1), 77.8 (C-3, C-5), 74.9 (C-2), 71.4 (C-5), 71.1 (OCH₂), 71.0 (OCH₂), 69.7 (OCH₂), 68.0 (OCH₂), 62.5 (C-6), 35.2 (CH₂SMe), 15.2 (CH₂SMe). HRMS: m/z calcd for [M]⁺: 912.15167; found: 912.15427; Elemental analysis calcd (%) for [10] PF₆.0.5KPF₆.5H₂O: C, 36.84; H, 4.39; N, 5.65; found: 36.83; H, 4.40; N, 5.36.

Δ/Λ-[Ru(tpy)(bpy)(28)](PF₆)₂, [11]Cl₂: [Ru(bpy₂)Cl₂] (73.0 mg, 0.151 mmol) and **28** (46.0 mg, 0.146 mmol) were dissolved in deoxygenated H₂O (10 mL) and this mixture was heated at 80 °C for 16 h, after which the mixture was concentrated in *vacuo*. Purification by Sephadex LH-20 (MeOH) afforded the title compound as an inseparable mixture of diastereomers (69.0 mg, 0.0864 mmol, 59%). $R_f = 0.28$ (16/4/1 acetone/water/1M HCl); ¹H NMR (500 MHz, CD₃OD) $\delta = 10.02$

(dd, *J* = 5.7, 1.4 Hz, 1H), 9.86 (dd, *J* = 5.7, 1.4 Hz, 1H), 9.50 (dd, *J* = 5.7, 1.4 Hz, 1H), 9.42 (dd, *J* = 5.7, 1.3 Hz, 1H), 8.81 (d, *J* = 8.2 Hz, 2H), 8.79 – 8.76 (m, 2H), 8.69 – 8.62 (m, 4H), 8.45 – 8.36 (m, 4H), 8.12 (tt, *J* = 8.0, 1.8 Hz, 4H), 8.06 (dddd, *J* = 13.5, 7.3, 5.6, 1.4 Hz, 5H), 7.63 (td, *J* = 5.7, 1.4 Hz, 2H), 7.57 (ddd, *J* = 7.5, 5.7, 1.4 Hz, 2H), 7.49 – 7.42 (m, 4H), 4.65 (d, *J* =

7.8 Hz, 1H), 4.58 (d, J = 7.8 Hz, 1H), 3.92 (ddd, J = 19.8, 11.8, 1.9 Hz, 2H), 3.78 – 3.70 (m, 1H), 3.62 (dd, J = 11.9, 6.4 Hz, 1H), 3.50 – 3.35 (m, 10H), 3.30 (t, J = 8.2 Hz, 1H), 3.27 – 3.20 (m, 2H), 3.13 (dd, J = 14.0, 6.4 Hz, 1H), 3.02 (dd, J = 13.9, 7.1 Hz, 1H), 2.92 (dd, J = 13.1, 2.1 Hz, 1H), 2.80 (dd, J = 13.1, 1.7 Hz, 1H), 1.53 (s, 3H), 1.50 (s, 3H), 1.25 (s, 3H), 1.23 (s, 3H). ¹³C NMR (126 MHz, CD₃OD) $\delta = 159.1$, 159.1, 159.0, 158.9, 158.1, 158.0, 157.9, 155.4, 155.0, 154.9, 154.8, 152.0, 152.0, 151.9, 151.9, 140.3, 140.2, 130.8, 130.0, 129.9, 129.5, 129.3, 129.0, 129.0, 128.9, 126.2, 126.1, 126.0, 125.6, 125.6, 125.5, 125.4, 104.2, 103.6, 78.4, 78.3, 78.3, 78.2, 75.3, 75.2, 71.6, 71.6, 62.7, 40.5, 38.6, 38.4, 37.4, 18.5, 18. 1, 16.1, 16.0; HRMS: m/z calcd for [M]²⁺: 364.06326; found: 364.06459; Elemental analysis calcd (%) for [**11**]Cl₂.3H₂O: C, 43.66; H, 5.20; N, 6.57; found: 43.34; H, 5.35; N, 6.29.

References

- [1] K. H. Schleifer, O. Kandler, *Bacteriol Rev* **1972**, *36*, 407-477.
- [2] K. H. Caffall, D. Mohnen, *Carbohyd Res* **2009**, *344*, 1879-1900.
- [3] H. Merzendorfer, L. Zimoch, *J Exp Biol* **2003**, *206*, 4393-4412.
- [4] B. K. Brandley, R. L. Schnaar, *J Leukocyte Biol* **1986**, *40*, 97-111.
- [5] J. D. Watson, F. H. Crick, *Nature* **1953**, *171*, 737-738.
- [6] S. Tornroth-Horsefield, R. Neutze, *P Natl Acad Sci USA* **2008**, *105*, 19565-19566.
- [7] M. G. Vander Heiden, L. C. Cantley, C. B. Thompson, Science 2009, 324, 1029-1033.
- [8] L. Szablewski, *Biochim Biophys Acta* **2013**, *1835*, 164-169.
- [9] J. S. Fowler, T. Ido, *Semin Nucl Med* **2002**, *32*, 6-12.
- [10] E. C. Calvaresi, P. J. Hergenrother, *Chem Sci* **2013**, *4*, 2319-2333.
- [11] M. Patra, S. G. Awuah, S. J. Lippard, *J Am Chem Soc* **2016**, *138*, 12541-12551.
- [12] J. Petrig, R. Schibli, C. Dumas, R. Alberto, P. A. Schubiger, Chem Eur J 2001, 7, 1868-1873.
- [13] N. T. Kulishkin, A. V. Mashkina, *React Kinet Catal L* **1991**, *45*, 41-47.
- [14] J. C. Hermann, Y. Chen, C. Wartchow, J. Menke, L. Gao, S. K. Gleason, N. E. Haynes, N. Scott, A. Petersen, S. Gabriel, B. Vu, K. M. George, A. Narayanan, S. H. Li, H. Qian, N. Beatini, L. Niu, Q. F. Gan, ACS Med Chem Lett 2013, 4, 197-200.
- [15] S. van der Vorm, T. Hansen, H. S. Overkleeft, G. A. van der Marel, J. D. C. Codee, *Chem Sci* 2017, *8*, 1867-1875.
- [16] B. G. Davis, M. A. T. Maughan, M. P. Green, A. Ullman, J. B. Jones, *Tetrahedron: Asymmetry* **2000**, *11*, 245-262.
- [17] S. Valerio, A. Iadonisi, M. Adinolfi, A. Ravida, *J Org Chem* **2007**, *72*, 6097-6106.
- [18] B. Fraser-Reid, Z. Wu, U. E. Udodong, H. Ottosson, J Org Chem 1990, 55, 6068-6070.
- [19] Z. Yang, W. Lin, B. Yu, *Carbohyd Res* **2000**, *329*, 879-884.
- [20] J. Park, J. I. Um, A. Jo, J. Lee, D. W. Jung, D. R. Williams, S. B. Park, Chem Commun 2014, 50, 9251-9254.

- [21] C. W. Machan, M. Adelhardt, A. A. Sarjeant, C. L. Stern, J. Sutter, K. Meyer, C. A. Mirkin, J Am Chem Soc 2012, 134, 16921-16924.
- [22] C. Dumas, R. Schibli, P. A. Schubiger, J Org Chem 2003, 68, 512-518.
- [23] Y. Li, G. Manickam, A. Ghoshal, P. Subramaniam, *Synth Commun* **2006**, *36*, 925-928.
- [24] G. Grue-Sørensen, E. Kelstrup, A. Kjær, J. Ø. Madsen, J Chem Soc, Perkin Trans 1 1984, 1091-1097.
- [25] Y. Miao, C. Rousseau, A. Mortreux, P. Martin, P. Zinck, *Polymer* 2011, *52*, 5018-5026.
- [26] a). J. Gervay, S. Danishefsky, J Org Chem 1991, 56, 5448-5451; b). R. L. Halcomb,
 S. J. Danishefsky, J Am Chem Soc 1989, 111, 6661-6666.
- [27] A. G. Volbeda, H. A. Kistemaker, H. S. Overkleeft, G. A. van der Marel, D. V. Filippov, J. D. C. Codee, *J Org Chem* 2015, *80*, 8796-8806.
- [28] J. T. Doi, G. W. Luehr, *Tetrahedron Lett* **1985**, *26*, 6143-6146.
- [29] a). F. Hu, Z. Chen, L. Zhang, Y. Shen, L. Wei, W. Min, *Angew Chem Int Ed* 2015, *54*, 9821-9825; b). X. Xue, Z. Yin, X. Meng, Z. Li, *J Org Chem* 2013, *78*, 9354-9365; c). T. K. M. Shing, Y. L. Zhong, *Tetrahedron* 2001, *57*, 1573-1579.
- [30] E. Kaji, F. W. Lichtenthaler, Y. Osa, K. Takahashi, S. Zen, *Bull Chem Soc Jpn* **1995**, *68*, 2401-2408.
- [31] C. Morin, L. Ogier, *Carbohydr Res* **1998**, *310*, 277-282.
- [32] T. A. Wark, D. W. Stephan, *Organometallics* **1989**, *8*, 2836-2843.
- [33] U. Muhlhausen, R. Schirrmacher, M. Piel, B. Lecher, M. Briegert, A. Piee-Staffa, B. Kaina, F. Rosch, *J Med Chem* **2006**, *49*, 263-272.
- [34] Q. Wang, P. Day, J. P. Griffiths, H. Nie, J. D. Wallis, New J Chem 2006, 30, 1790-1800.