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ABSTRACT

We introduce the ALMA Redshift 4 Survey (AR4S), a systematic ALMA survey of all the known galaxies with stellar mass (M∗)
larger than 5 × 1010 M� at 3.5 < z < 4.7 in the GOODS–south, UDS and COSMOS CANDELS fields. The sample we have analyzed
in this paper is composed of 96 galaxies observed with ALMA at 890 µm (180 µm rest-frame) with an on-source integration time of
1.3 min per galaxy. We detected 32% of the sample at more than 3σ significance. Using the stacked ALMA and Herschel photometry,
we derived an average dust temperature of 40 ± 2 K for the whole sample, and extrapolate the LIR and SFR for all our galaxies
based on their ALMA flux. We then used a forward modeling approach to estimate their intrinsic sSFR distribution, deconvolved of
measurement errors and selection effects: we find a linear relation between SFR and M∗, with a median sSFR = 2.8 ± 0.8 Gyr and a
dispersion around that relation of 0.28 ± 0.13 dex. This latter value is consistent with that measured at lower redshifts, which is proof
that the main sequence of star-forming galaxies was already in place at z = 4, at least among massive galaxies. These new constraints
on the properties of the main sequence are in good agreement with the latest predictions from numerical simulations, and suggest that
the bulk of star formation in galaxies is driven by the same mechanism from z = 4 to the present day, that is, over at least 90% of the
cosmic history. We also discuss the consequences of our results on the population of early quiescent galaxies. This paper is part of
a series that will employ these new ALMA observations to explore the star formation and dust properties of the massive end of the
z = 4 galaxy population.
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1. Introduction

It is now well established that galaxies have formed most of
their stars around z = 2 (e.g., Madau & Dickinson 2014, and
references therein) and that the majority of this star-formation
activity happens in galaxies that belong to the main sequence
(MS) of star-forming galaxies, a tight correlation between the
galaxies’ stellar mass (M∗) and star-formation rate (SFR; e.g.,
Noeske et al. 2007; Elbaz et al. 2007, 2011; Daddi et al. 2007;
Pannella et al. 2009; Schreiber et al. 2015). At a given stellar
mass, the typical SFR of galaxies belonging to this sequence has
evolved dramatically though time, continuously going down by
about an order of magnitude from z = 2 to the present day (e.g.,
Daddi et al. 2007). This is can be explained by a progressive de-
pletion of gas reservoirs (e.g., Daddi et al. 2008; Tacconi et al.
2010) together with an additional decline of the star-formation
efficiency over the same time period (e.g., Schreiber et al. 2016).

The situation at z > 2 is less clear. Over the past decade, most
of our knowledge of the early Universe has been based on obser-
vations of the stellar emission in the rest-frame UV-to-optical,
which allow detecting galaxies even beyond the re-ionization
era (e.g., Stark et al. 2009; Bouwens et al. 2012; Salmon et al.
2015; Oesch et al. 2016). But in the absence of direct mid- or

far-IR measurement, accurately correcting for absorption by in-
terstellar dust is challenging. Because of the known correlation
between mass and attenuation (e.g., Pannella et al. 2015), this
is particularly important if one wants to study the massive end
of the galaxy population (e.g., Spitler et al. 2014). While small
in numbers, these massive galaxies (say, more massive than the
Milky Way, with M∗ > 5 × 1010 M�) contribute about half of
the star-formation activity in the Universe at any z ≤ 3 (e.g.,
Schreiber et al. 2015).

To date, observations of distant galaxies in the far-IR or
submillimeter with single dish instruments only allowed the
detection of the brightest objects, that are experiencing ex-
treme star-formation episodes and may not be representative
of the overall population (e.g., Pope et al. 2006; Capak et al.
2011; Riechers et al. 2013). Through stacking of carefully cho-
sen samples, the average SFR and gas mass can be derived (e.g.,
Magdis et al. 2012; Heinis et al. 2014; Pannella et al. 2015;
Schreiber et al. 2015; Béthermin et al. 2015; Tomczak et al.
2016), although these need to be corrected for the effect of source
blending and clustering, which is not trivial. Stacking also allows
determining the scatter of the stacked properties (Schreiber et al.
2015), however this requires higher S/N levels which cannot be
reached beyond z = 3 even with the deepest Herschel images.
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Recently, the deployment of the Atacama Large Millime-
ter Array (ALMA) has allowed us to move forward and detect
(or put stringent constraints on) the dust emission of less ex-
treme galaxies at z = 4 and beyond (e.g., Capak et al. 2015;
Maiolino et al. 2015; Scoville et al. 2016). However, these first
efforts were mostly focused on Lyman break galaxies (LBGs)
which are necessarily blue, less dust-obscured and found prefer-
entially at the lowest masses (e.g., Spitler et al. 2014; Wang et al.
2016). At present, we are still lacking a complete census of the
massive galaxy population at these redshifts, and this is the gap
we intend to fill with this paper.

We therefore introduce here the ALMA Redshift 4 Survey
(AR4S1), a complete survey of massive galaxies in the Hubble
Space Telescope (HST) CANDELS fields at z ∼ 4 with the
ALMA telescope. By probing the rest-frame 180 µm emission,
we can put direct constraints on the infrared luminosity, and
therefore on the SFR, of about a hundred galaxies at these
epochs. We describe the sample in Sect. 2 and the reduction of
the ALMA data in Sect. 3. We stacked the ALMA fluxes and
Herschel images in Sect. 4.1 to measure the average dust tem-
perature in our sample, and use it to extrapolate the SFRs for
all our galaxies. We then discuss the location of our galaxies on
the SFR–M∗ plane in Sect. 4.2, and model their sSFR distribu-
tion in Sects. 4.3 and 4.4 to provide the first robust constraints
on the normalization and scatter of the MS at z = 4. Lastly, we
briefly discuss the existence of quiescent galaxies in our sample
in Sect. 4.5.

In the following, we assume a ΛCDM cosmology with H0 =
70 km s−1 Mpc−1, ΩM = 0.3, ΩΛ = 0.7 and a Salpeter (1955)
initial mass function (IMF), to derive both SFRs and stellar
masses. All magnitudes are quoted in the AB system, such that
mAB = 23.9 − 2.5 log10(Sν [µJy]).

2. Sample selection

2.1. Observed sample

We drew our sample from the CANDELS HST H-band catalogs
in the three fields covered by deep Herschel imaging and accessi-
ble with ALMA, namely GOODS–south (Guo et al. 2013), UDS
(Galametz et al. 2013) and COSMOS (Nayyeri et al., in prep.).
Photometric redshifts and stellar masses for all galaxies in this
parent sample were derived in Schreiber et al. (2015). From
there, our sample is selected purely on stellar mass (M∗ >
5 × 1010 M�) and photometric redshift (3.5 < z < 4.7) to en-
sure the highest completeness, resulting in 110 galaxies. We did
not try to segregate actively star-forming galaxies from quies-
cent ones, since the known selection techniques (e.g., the UV J
selection; Williams et al. 2009) are uncertain at z ≥ 4 (see dis-
cussion in Sect. 4.5). Instead, we targeted all galaxies regardless
of their potential star-formation activity. We added to our target
list 16 lower mass galaxies with a spectroscopic redshift within
3.5 < z < 4.7; these objects are part of a second sample and will
not be discussed further in the present paper.

The median H-band magnitude of our sample is 25.2, mean-
ing that these galaxies are faint but still far above the 5σ point-
source limiting magnitude of H = 27. However, the H-band
probes the rest-frame UV emission at z = 4. Even though the
CANDELS HST images are the deepest available to date, this
implies that our parent sample is very likely biased against the
most heavily obscured galaxies at these redshifts. Indeed, a pop-
ulation of H-dropouts (but Spitzer IRAC bright) galaxies has

1 Read “aras”, which is the French word for macaw birds.

recently been identified in these fields (Wang et al. 2016). If in-
deed at z ∼ 4, these would represent up to 20% of our selected
sample and would therefore only impact our results marginally.
These galaxies are currently being observed as part of another
ALMA program, and will be discussed in a future work (Wang
et al., in prep.). We estimate a similar completeness based on the
samples of ultra-red galaxies missed by HST from Huang et al.
(2011) and Caputi et al. (2012).

2.2. Cleaning the sample

With these short integration times, we chose to include in our
selection all the potential z = 4 massive galaxies, regardless
of the quality of their photometry. While most galaxies in the
sample do have clean measurements in all bands, we identify
14 likely spurious or contaminated sources. Ten sources, the
majority, have their Spitzer IRAC photometry clearly contami-
nated by a bright neighboring source (either a star or an extended
nearby galaxy). Their redshifts and stellar masses are unreliable,
and they are consistently not detected on the ALMA images.
Two sources are each very close (<1′′) to another nearby galaxy
which is also part of our z = 4 sample. Because their redshifts
are consistent with being identical with that of their neighbor,
and because the ALMA emission originates from the barycenter
of the two sources, we choose to consider them as a single ob-
ject and re-measure their UV-near-IR fluxes and stellar mass in
a larger aperture, as described in the next section. Finally, one
source is out the Spitzer IRAC coverage, and another is partially
truncated at the border of the HST H-band image.

Excluding these objects, we ended up with a final sample of
96 good quality z = 4 massive galaxies, which we analyzed in
the following.

2.3. Robustness of the redshift and masses determinations

Since our targets are relatively faint, and because the H band
is tracing the rest-frame UV, it is reasonable to wonder if the
template fitting approach used by CANDELS to extract the pho-
tometry (using TFIT, Laidler et al. 2007) is adequate, and not
missing part of the flux. For example, the well-known z = 4 star-
burst GN20 has a patchy dust geometry (Hodge et al. 2012), and
its rest-UV emission is not representative of the true extent of the
galaxy. As a check, we therefore re-measured the photometry of
all our targets, specifically looking for missing flux outside of
the CANDELS H-band segmentation. We summed the flux on
the UV-to-near-IR images in large apertures of 0.9′′ or more,
depending on the apparent morphology of the galaxy in the var-
ious bands, and indeed find on average an additional 30% flux
in the bluest bands. Since the galaxies are not resolved on the
Spitzer IRAC images, the IRAC fluxes (probing the rest-optical
and constraining the stellar mass) are essentially unaffected. We
re-analyzed this new photometry as in Schreiber et al. (2015) to
obtain redshifts and stellar masses: reassuringly, the photomet-
ric redshifts are not affected in any significant way (10% scatter
in ∆z/(1 + z)), and stellar masses are also globally unchanged
(0.06 dex increase on average, with 0.18 dex scatter). The scat-
ter in these quantities is comparable to the one we observe when
cross-matching our sample to the 3DHST catalogs (Skelton et al.
2014): 9% for the redshifts and 0.2 dex for the masses.

In the following, to avoid adding extra noise to our selection,
we therefore continued to use the original CANDELS photom-
etry except for four galaxies which were clearly missing a large
fraction of their flux because of overly aggressive deblending
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Fig. 1. Examples of ALMA-detected galaxies in our sample. The HST
F160W image is shown in the background, smoothed by a 0.3′′ FWHM
Gaussian to reveal extended features. The white contours show the ex-
tent of the ALMA emission (3, 5, 10 and 17σ) after applying tapering.
The size and orientation of the ALMA clean beam is given with a yel-
low hatched region (FWHM). The CANDELS ID of each target is given
at the top of each cutout, together with the S/N of the integrated ALMA
flux.

(see also previous section). These are ID= 23751 in GOODS–
south, 5128 and 35579 in UDS, and 27853 in COSMOS.

3. ALMA observations and reduction

3.1. Data

Our targets were observed with dedicated ALMA pointings in
band 7, with a central wavelength of ∼890 µm (888.1 µm,
337.8 GHz), integrating 1.3 min on each galaxy for a total ob-
serving time of 6 h. We reduced the data into calibrated visi-
bilities using the CASA pipeline (version 4.3.1), and produce
cleaned continuum images for visual inspection. The achieved
angular resolution varies from one field to the other, ranging
from 0.3 to 0.7 ′′ (FWHM of the minor axis of the beam), that
is, 2 to 5 kpc at z = 4. To measure the effective noise level on
comparable grounds, we tapered the longest baselines to reach
an homogeneous angular resolution of 0.7 ′′ and find an RMS of
0.15 to 0.22 mJy. Examples of clear detections from the tapered
images are given in Fig. 1.

3.2. Flux measurements

We measured the 890 µm flux of all our targets directly in the
(u, v) plane using the uvmodelfit procedure from the CASA
pipeline. The sources were first modeled with an elliptical
Gaussian profile of variable total flux, centroid, width, axis ra-
tio and position angle. When the S/N is too low, the fit becomes
unstable and tends to return large position offsets (>2′′). In these
cases, we discarded the fit and used a simpler model where the
position is frozen to that of the HST counterpart, and the size is
fixed to the median size of the high S/N galaxies. In both cases

the adopted flux uncertainty is the formal uncertainty returned
by uvmodelfit, and the fluxes and uncertainties are corrected
for primary beam attenuation a posteriori.

The fluxes measured with this method are on average 37%
higher than the peak fluxes read from the cleaned images (with
tapering), indicating that most of our targets are resolved by
ALMA (the median half-light radius returned by uvmodelfit
is 0.3′′, or 2 kpc at z = 4). Consequently, the uncertainties are
also larger than the image RMS, with an average of 0.31 mJy.
This corresponds to a 3σ detection limit of SFR ' 294 M�/yr at
z = 4 (see Sect. 4.1 for the conversion to SFR).

We checked the accuracy of these measurements by fitting
fake sources at random positions in the field of view, devoid of
significant detection, and find a mean flux of 0.02 ± 0.02 mJy,
indicating that our fluxes are not biased. The RMS of these fake
measurements is 0.3 mJy, and is therefore fully consistent with
our average flux uncertainty. As a cross-check, we also compared
our flux determination for the galaxy ID = 23751 against the
published value from the ALESS program (Hodge et al. 2013).
These two independent measurements agree on a total flux of
8.0 mJy with uncertainties of 0.4 and 0.6 mJy in our catalog and
that of ALESS, respectively. More details on the reduction and
flux measurements will be provided together with the complete
catalog in a forthcoming paper (Leiton et al., in prep.).

3.3. Properties of the detected and non-detected galaxies

Of all targets in the present sample, we detect 46, 30 and
17 galaxies at >2, 3 and 5σ significance, respectively. The mean
flux of the sample is 1.00 ± 0.04 mJy including non-detections.

Both detected and non-detected galaxies have a similar
redshift distribution; a Kolmogorov-Smirnov (KS) test gives a
probability >99% that they share the same photometric red-
shift distribution. The average redshift is 〈z〉 = 3.99, with a
standard deviation of 0.36. The detections tend to have slightly
fainter H-band magnitudes, although this is barely significant
(the KS probability of same distribution is still 30%). However
the ALMA detections have significantly higher stellar masses
than the non-detections: ALMA-detected galaxies constitute the
majority of galaxies at log M∗ > 11.3, while non-detections be-
come dominant at log M∗ < 10.9 (KS test <1%). This is most
likely a consequence of the SFR–M∗ correlation, as we will show
in the following.

3.4. Note on the astrometry

In their survey of the Hubble Ultra Deep Field (HUDF, in the
center of GOODS–south), Dunlop et al. (2017) reported a sys-
tematic position offset of ∆δ = δHST − δALMA = +0.24′′ between
the ALMA detections and their HST counterparts, with the
ALMA emission observed south of the HST. Rujopakarn et al.
(2016) confirmed this offset using the JVLA and 2MASS, mea-
suring ∆δ = +0.26 ± 0.13′′, and suggesting an issue in the
absolute astrometry of the HST images. None of our targets
falls in the HUDF, so we cannot directly double check their re-
sult. However, selecting our 3σ detections in the whole GOODS
field, we consistently find a median systematic shift of ∆δ =
+0.15 ± 0.05′′ in GOODS–south. In addition, we find a shift
of ∆α = −0.14 ± 0.05′′ in UDS, and no significant shift in
COSMOS. These shifts are relatively small compared to the
ALMA beam, and vary substantially from one source to another
(0.2′′ scatter for the 3σ detections). We therefore do not attempt
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Fig. 2. Stacked mid- to far-IR SED of our full sample (orange) and only
the 3σ ALMA detections (red). The large open circles with error bars
are the stacked fluxes, with SPIRE fluxes corrected for flux boosting
from clustering (see text). Darker and smaller circles show the best-
fit model fluxes, and the corresponding template is shown with a solid
line in the background (NB: MIPS 24 µm was not used in the fit). The
blue solid line is the stellar emission, estimated by fitting the stacked
UV-to-near-IR photometry with FAST (Kriek et al. 2009). The dotted
line is the best-fit SED of the ALMA detections, rescaled to the LIR of
the whole sample for easier comparison. The stacked cutouts are shown
at the top of the plot, both for the ALMA detections (top) and the full
sample (bottom). The arrows help identify which flux measurement they
correspond to.

to correct for it; since we fit for the centroid for most of our tar-
gets, this would have a negligible impact anyway.

4. Results

4.1. Dust temperature and star-formation rates

To determine the SFR of the galaxies in our sample, we need
to extrapolate the 8-to-1000 µm infrared luminosity (LIR) of all
galaxies from the 890 µm flux alone. Indeed, most of the galax-
ies of our sample are undetected in other mid-IR or far-IR bands,
and their IR spectral energy distribution (SED) cannot be con-
strained individually. However, we can stack them together on
the Spitzer and Herschel images to recover their average SED,
which can then be used to infer LIR assuming it is representative
of the whole sample. As in Schreiber et al. (2015), we median
stack the images and measure the flux by fitting a point spread
function (PSF) model at the center of the stacked image, with
a freely varying background level. Because of the poor angular
resolution of the images, SPIRE fluxes are boosted by the con-
tribution of clustered nearby objects, and we statistically correct

for this boost following Schreiber et al. (2015). Uncertainties are
determined by bootstrapping the sample.

We show in Fig. 2 the median-stacked SED from Spitzer,
Herschel and ALMA, separately for the full sample (96 galaxies)
and for the 3σALMA detections only (30 galaxies). The stacked
signal is stronger when we only consider the ALMA detections,
and the corresponding stacked fluxes form a coherent SED in
all bands. However, this sample is probably not representative of
the whole population: the dust temperature (Tdust) is known to in-
crease for brighter galaxies above the MS (Magnelli et al. 2014),
which are preferentially selected in such flux-limited samples
(e.g., Rodighiero et al. 2011). Therefore, we expect the sub-
sample of ALMA-detected galaxies to have on average higher
Tdust than the rest of the population. That being said, the stacked
SED of the full sample is more uncertain but does not appear to
differ significantly from that of the ALMA detections.

To quantify this, we use the dust SEDs introduced in
Schreiber et al. (2016) and fit the stacked photometry. This li-
brary has three free parameters: LIR, Tdust and IR8 ≡ LIR/L8.
Since we have no data to constrain L8 (the rest-frame 8 µm
luminosity), we keep this last parameter fixed at IR8 = 8
(Reddy et al. 2012; Schreiber et al., in prep.) and only fit for LIR
and Tdust. We find that this model provides a good description of
our data, with a reduced χ2 of 1.3 for both samples. The best-
fit dust temperatures are Tdust = 40 ± 2 and 43 ± 1 K for the full
sample and for the ALMA detections, respectively. Therefore we
do find that our ALMA detections have on average higher Tdust
values, although the difference is only 1.3σ and mild: it would
result in a difference of only 0.1 dex when extrapolating LIR from
the 890 µm flux. Consequently, we choose here to assume a sin-
gle dust temperature of Tdust = 40 K for all galaxies, and expect
our individual SFRs to be systematically biased by up to 0.1 dex.
We also note that high dust temperatures around 40 K have al-
ready been reported in the recent literature for z = 4 galaxies
(e.g., da Cunha et al. 2015; Béthermin et al. 2015).

Although the stacked Herschel fluxes were corrected for flux
boosting by clustering, we find that the 500 µm fluxes are sys-
tematically above our best-fit SED. This suggests that our cor-
rection, which was derived as an average correction from lower-
redshift samples, is insufficient at least in this band. To check
that our conclusions are not affected by this potential bias, we
re-run the fit excluding the SPIRE bands and find higher Tdust
values by only 0.6 K, which is well within our error bars. We
therefore conclude that our 40 K SED is not significantly biased
by clustering.

Using this SED, we extrapolated the LIR for all our targets
and convert it into SFR with the Kennicutt (1998) conversion
factor. We also include the contribution of the non-obscured
UV light, although it is always negligible.

4.2. The z = 4 main sequence

We show the location of our galaxies on the z = 4 SFR–M∗
plane in Fig. 3 (left). At first order, the detections appear to
be distributed around the expected location of the MS, as in-
ferred from previous Herschel stacking (e.g., Heinis et al. 2014;
Schreiber et al. 2015; Tomczak et al. 2016), with a tendency for
higher mass galaxies to have overall higher SFRs. However, be-
cause of our relatively low detection rate, deriving conclusions
on the locus and scatter of the MS from this figure alone can
prove difficult.

Instead, we use a forward modeling approach where we
model the observed distribution of sSFR = SFR/M∗ (shown
on the right panel of the same figure) for both detected and
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Fig. 3. Left: relation between the star-formation rate (SFR) and stellar mass (M∗) at z = 4. Our ALMA sample is shown with small green squares
(>2σ), and downward-facing triangles (<2σ). The gray cross at the top of the plot indicates the systematic uncertainty affecting our measurements
(see text). The median SFR of our sample in two mass bins is shown with black squares (correcting the median for the contaminant population,
see text). The green lines are our estimate of the z = 4 MS locus (solid line) and scatter (dotted lines) as determined from modeling the sSFR
distribution (see text and figure on the right), and the hatched area in the background indicates the uncertainty on the MS locus. Observations
from the literature are shown with open circles, from Bouwens et al. (2012) (blue) and Salmon et al. (2015) (pink) who both derived their SFRs
without mid-IR or far-IR observations, while Tomczak et al. (2016) (orange, z = 3.5) and Schreiber et al. (2015) (red) both used Herschel stacking.
The latter are corrected by −0.1 dex to account for the difference between the mean and median. Finally, the MS relation found in the Illustris
simulation is shown as a blue line (Sparre et al. 2015). Right: distribution of sSFR = SFR/M∗ for our sample. The observed counts (including
non-detections) are shown with a green histogram and error bars. The best-fit modeled intrinsic distribution is shown in black in the background,
and the modeled counts (simulating measurement uncertainties and selection effects) are shown with open squares. The 1σ confidence region for
the model parameters is shown in inset, where the green cross gives the position of minimum χ2, and the purple lines indicate the contaminant
fraction required by the fit (see text).

non-detected galaxies, without stacking them. The model as-
sumes an intrinsic functional form and includes all quantifi-
able sources of selection and observational effects (see, e.g.,
Mullaney et al. 2015). We describe the method we employ in the
next section.

4.3. Modeling the sSFR distribution

In the following, we will make the distinction between “intrin-
sic” and “observed” mock quantities. The former are the real
galaxy properties, free of measurement error and systematics,
while the latter are an attempt at simulating the real observa-
tions we report in this work, after including all sources of noise.
Owing to the modest size of our sample, we settle for a simple
three-parameter model where the sSFR of star-forming galax-
ies is distributed according to a log-normal law of logarithmic
width σMS, and median sSFRMS (e.g., Rodighiero et al. 2011;
Sargent et al. 2012; Schreiber et al. 2015; Ilbert et al. 2015). In
addition, we allow a fraction fc of galaxies in the model to
be flagged as “contaminants”, in which case their sSFR is set
to zero. This last step takes into account two sources of con-
tamination in our sample. First and foremost is the existence
of quiescent galaxies, which have no star formation by defini-
tion, and which could contribute as much as 30% of our sample
(Straatman et al. 2014; Spitler et al. 2014). A secondary source
of contamination are redshift interlopers and brown dwarfs
which we would have failed to identify with the available pho-
tometry, and which are expected to be substantially fainter at
submillimeter wavelengths.

We created a grid for the first two parameters (as displayed
in the inset of Fig. 3, right), and model the observed sSFR
distribution for each cell of that grid. To do so, we generated
a mock catalog of 100 000 galaxies to which we attribute an
observed redshift and stellar mass by drawing randomly and
independently from their respective distributions in our real
z = 4 sample. We then perturbed these redshifts and masses
with a Gaussian distribution of width ∆z/(1 + z) = 6.5% and
∆ log10 M∗/M� = 0.14 dex, respectively, to obtain the associ-
ated intrinsic quantities (1/

√
2 times the values we obtained in

Sect. 2.3). It is important to take into account these sources of un-
certainty to constrain the intrinsic scatter of the main sequence;
if we had not modeled them, our measured intrinsic scatter (see
next section) would have been 0.05 dex higher. Conversely, if
we had used more pessimistic values of ∆z/(1 + z) = 10% and
∆log10 M∗/M� = 0.2 dex, our measured scatter would have been
smaller by 0.02 dex. It turns out this variation is well within the
statistical uncertainties, so our conclusions do not strongly de-
pend on these values.

Given these intrinsic redshifts and masses, we then use the
assumed MS model to derive the intrinsic sSFR of each mock
galaxy, including a mild redshift evolution of 〈sSFR〉 ∼ (1 + z)1.5

(Schreiber et al. 2015). The next step is to infer the 890 µm flux.
To do so, we first converted the sSFR into LIR using the intrinsic
stellar mass and the Kennicutt (1998) conversion factor. We then
attributed an intrinsic Tdust to each mock galaxy, with an average
of 40 K and a Gaussian scatter of 3 K (as observed at lower red-
shifts, e.g., Ciesla et al. 2014), and used the corresponding SED
to infer the intrinsic ALMA flux. The observed flux is obtained
simply by adding a random Gaussian noise, whose amplitude is
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drawn from the flux uncertainty distribution. Given these mock
observed fluxes, we applied the same procedure as in the previ-
ous section to derive the observed SFR (including, in particular,
the assumption of a fixed Tdust = 40 K), and finally obtained
the observed sSFR by dividing this value by the observed M∗.
We applied the same procedure to a second mock catalog where
the intrinsic ALMA fluxes are all set to zero to model the con-
taminant population, and build histograms of the observed sSFR
for both mock catalogs. These histograms are normalized to the
total number of simulated galaxies (100 000). A linear combina-
tion of these two histograms is then fit to our observed data, ad-
justing their respective normalization to match the total number
of observed galaxies, and the relative weight of each histogram
allows us to derive fc. In this fit, the uncertainties on the sSFR
histograms were derived by repeatedly perturbing all the sSFRs
by their respective uncertainties, and computing the standard de-
viation of the counts in each bin. As a last step we noted down
the χ2 of the fit and proceeded to the next cell in the grid.

4.4. Result

In Fig. 3 (right) we show the intrinsic sSFR distribution
that produces the smallest χ2 when compared to our ob-
servations. This distribution has σMS = 0.28+0.14

−0.12 dex and
log10(sSFRMS [1/Gyr]) = 0.45+0.11

−0.18, and the fit required a con-
taminant fraction of fc = 25%.

This median sSFR is lower but still consistent with
our previous determination from Herschel stacking of
log10(sSFRMS [1/Gyr]) = 0.6 ± 0.1 (Schreiber et al. 2015), and
the width of the distribution appears unchanged from the value
of σMS = 0.31 ± 0.02 dex we obtained at z ∼ 1 (see also
Ilbert et al. 2015; Guo et al. 2015). Overall, this confirms the
theoretical expectation that the MS paradigm still holds in the
early Universe (e.g., Sparre et al. 2015). This agreement is both
qualitative and quantitative, since our determination of the locus
and scatter of the MS is also in agreement with the prediction
of the latest numerical simulations. Sparre et al. (2015) indeed
found a scatter of 0.2–0.3 dex at z = 4 in the Illustris simulation
with a scatter closer to 0.3 dex at high mass, although at these
redshifts they lack the volume to constrain the M∗ > 3×1010 M�
population. Similarly, Mitchell et al. (2014) found a 0.27 dex
scatter in the GALFORM semi-analytic model at z = 3, this
time with an increase toward higher redshifts (contrary to Sparre
et al. who found, if anything, an opposite evolution). Our data
are still insufficiently deep to rule out current models based
on the scatter only, however the z = 3 MS normalization of
Mitchell et al. (as also discussed in their work) is particularly
low. Assuming a typical redshift dependence of sSFR ∼ (1+z)2.5

(e.g., Dekel et al. 2013), it is inconsistent with our observations
at the 3.5σ level.

As a check, we then compute the median SFR of our sam-
ple in two bins of stellar mass above and below M∗ = 1011 M�
(still including non-detections), and divide the obtained values
by (1− fc) to statistically remove the contribution of the contam-
inants. The obtained SFRs, 138 ± 22 and 406 ± 25 M�/yr, are
reported in Fig. 3 (left), and clearly illustrate the positive corre-
lation between SFR and M∗. The low-mass point is found below
the SFR–M∗ relation derived from the sSFR modeling, although
at a significance of only 0.7σ. This may suggest that the fraction
of contaminant is higher among low-mass galaxies, which can
be expected given that these are about one magnitude fainter and
are therefore more likely to be wrongly characterized.

4.5. Contaminants: quiescent galaxies or redshift
interlopers?

The contaminant fraction fc = 25% is low, and remains con-
sistent with the observed number of quiescent galaxies at these
redshifts (Muzzin et al. 2013; Straatman et al. 2014). We can-
not rule out, however, that a substantial fraction of these “con-
taminants” could be low redshift interlopers. At first order, we
can obtain an estimate of how many such outliers contaminate
our sample by comparing our photometric redshifts (zphot) at
3.5 < zphot < 5 against spectroscopic determinations (zspec)
from the literature. Since only one of the AR4S galaxy has a
zspec = 3.582, we widen our selection to include 110 galaxies
of lower stellar masses. Among these, 4% have zspec < 2. This
spectroscopic sample has substantially bluer colors than the typ-
ical AR4S galaxy (observed (r − H) ∼ 1 and 3, respectively),
so we expect this fraction to be larger in AR4S, possibly up to
10%. Subtracting these outliers from our contaminant popula-
tion would imply that quiescent galaxies contribute only 15% of
our sample, which would be more consistent with the extrapola-
tion of the quiescent fraction from lower redshifts. On the other
hand, as shown in Fig. 3 (right, inset), fc can range from 0 to 40%
within the 1σ confidence interval for our two model parameters.
We therefore refrain from drawing strong conclusions out of this
number.

Independent constraints on the quiescent population could be
provided by their rest-optical colors. However, as mentioned in
Sect. 2, the standard UV J selection of quiescent galaxies is un-
certain at z = 4 because the rest-frame J (1.2 µm) band shifts into
the Spitzer IRAC 5.8 µm band. While the 5.8 µm observations
are deep enough in the GOODS–south field, they are shallower
in UDS and COSMOS, and because they require cryogenic cool-
ing (which is no longer available on-board Spitzer) their depth
has not improved during the past years. Probably as a conse-
quence of this poorly constrained V − J color, 5 out of 30 of our
ALMA detections are classified as UV J-quiescent (one of them
being in GOODS–south). Encouragingly, the fraction of UV J
quiescent galaxies is larger among the ALMA non-detections
(31 out of 66), but their stacked ALMA flux of 0.4 ± 0.1 mJy
suggests that not all are truly quiescent.

The red colors of these galaxies could be mistaken for a qui-
escent stellar population if these galaxies contain dust-obscured
AGNs (e.g., Donley et al. 2012). Among the 5 UV J-quiescent
ALMA detections, only one of them is strongly detected in
MIPS 24 µm, and none is detected in the available X-ray or ra-
dio images. Among the 31 non-detections, we find one 24 µm
detection, one X-ray detection and one X-ray+radio detection.
Therefore the majority of these galaxies do not show sign of
AGN activity.

We conclude that the UV J classification in CANDELS UDS
and COSMOS is indeed unreliable at these redshifts, and until
the launch of the James Webb Space Telescope the only way to
robustly identify these z ≥ 4 quiescent objects is to constrain
their individual star-formation activity, either with deep near-IR
spectroscopy or ALMA high-frequency imaging.

5. Conclusions

We introduce AR4S, a systematic ALMA survey of all the
known massive galaxies (M∗ > 5 × 1010 M�) at z = 4 in the
deepest fields observed with Hubble and Herschel. With only
6 h of telescope time, we detect 30 out of 95 galaxies: our strat-
egy of targeting mass-selected samples is an order of magnitude
more efficient at detecting high redshift galaxies compared to
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contiguous surveys (e.g., Dunlop et al. 2017; Walter et al. 2016).
Detailed properties of the detected and non-detected galaxies, as
well as the full catalog, will be discussed in a forthcoming paper
(Leiton et al., in prep.).

Using these new data, we first build the average dust SED
of our sample and find an average dust temperature of 40 K, in
agreement with recent studies of z ∼ 4 galaxies.

From this SED, we extrapolate the total LIR (hence SFR)
from the ALMA fluxes of our individual objects, and model
the observed sSFR distribution with a three-parameter model in-
spired by observations at lower redshifts. This analysis suggests
that galaxies at z = 4 follow a linear relation between SFR and
M∗, with a dispersion around that relation of 0.3 dex. This value
is the same as that measured at lower redshifts, which is proof
that the MS is already in place at z = 4, at least among massive
galaxies. These new constraints on the properties of the MS are
also in good agreement with the latest prediction from numerical
simulations (e.g., Illustris).

Finally, our results are compatible with the existence of a
population of massive quiescent galaxies early in the history of
the Universe, although spectroscopic confirmation and deeper
ALMA imaging would be required to draw reliable conclusions.
Future works with this data will include a study of the dust
attenuation properties of the galaxies in our sample (Pannella
et al., in prep.) and the geometry of their star-forming regions
(Elbaz et al., in prep.).

Acknowledgements. Most of the analysis for this paper was done using phy++,
a free and open source C++ library for fast and robust numerical astrophysics
(http://cschreib.github.io/phypp/). This paper makes use of the follow-
ing ALMA data: ADS/JAO.ALMA#2013.1.01292.S. ALMA is a partnership of
ESO (representing its member states), NSF (USA) and NINS (Japan), together
with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Re-
public of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO
and NAOJ. This work is based on observations taken by the CANDELS Multi-
Cycle Treasury Program with the NASA/ESA HST, which is operated by the
Association of Universities for Research in Astronomy, Inc., under NASA con-
tract NAS5-26555. R.L. acknowledges the financial support from FONDECYT
through grant 3130558. T.W. acknowledges the financial support from the Euro-
pean Union Seventh Framework Program (FP7/2007–2013) under grant agree-
ment No. 312725 (ASTRODEEP).

References
Béthermin, M., Daddi, E., Magdis, G., et al. 2015, A&A, 573, A113
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2012, ApJ, 754, 83
Capak, P. L., Riechers, D., Scoville, N. Z., et al. 2011, Nature, 470, 233
Capak, P. L., Carilli, C., Jones, G., et al. 2015, Nature, 522, 455

Caputi, K. I., Dunlop, J. S., McLure, R. J., et al. 2012, ApJ, 750, L20
Ciesla, L., Boquien, M., Boselli, A., et al. 2014, A&A, 565, A128
da Cunha, E., Walter, F., Smail, I. R., et al. 2015, ApJ, 806, 110
Daddi, E., Dickinson, M., Morrison, G., et al. 2007, ApJ, 670, 156
Daddi, E., Dannerbauer, H., Elbaz, D., et al. 2008, ApJ, 673, L21
Dekel, A., Zolotov, A., Tweed, D., et al. 2013, MNRAS, 435, 999
Donley, J. L., Koekemoer, A. M., Brusa, M., et al. 2012, ApJ, 748, 142
Dunlop, J. S., McLure, R. J., Biggs, A. D., et al. 2017, MNRAS, 466, 861
Elbaz, D., Daddi, E., Le Borgne, D., et al. 2007, A&A, 468, 33
Elbaz, D., Dickinson, M., Hwang, H. S., et al. 2011, A&A, 533, A119
Galametz, A., Grazian, A., Fontana, A., et al. 2013, ApJS, 206, 10
Guo, Y., Ferguson, H. C., Giavalisco, M., et al. 2013, ApJS, 207, 24
Guo, Y., Ferguson, H. C., Bell, E. F., et al. 2015, ApJ, 800, 39
Heinis, S., Buat, V., Béthermin, M., et al. 2014, MNRAS, 437, 1268
Hodge, J. A., Carilli, C. L., Walter, F., et al. 2012, ApJ, 760, 11
Hodge, J. A., Karim, A., Smail, I., et al. 2013, ApJ, 768, 91
Huang, J., Zheng, X. Z., Rigopoulou, D., et al. 2011, ApJ, 742, L13
Ilbert, O., Arnouts, S., Le Floc’h, E., et al. 2015, A&A, 579, A2
Kennicutt, Robert C., J. 1998, ARA&A, 36, 189
Kriek, M., van Dokkum, P. G., Labbé, I., et al. 2009, ApJ, 700, 221
Laidler, V. G., Papovich, C., Grogin, N. A., et al. 2007, PASP, 119, 1325
Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415
Magdis, G. E., Daddi, E., Béthermin, M., et al. 2012, ApJ, 760, 6
Magnelli, B., Lutz, D., Saintonge, A., et al. 2014, A&A, 561, A86
Maiolino, R., Carniani, S., Fontana, A., et al. 2015, MNRAS, 452, 54
Mitchell, P. D., Lacey, C. G., Cole, S., & Baugh, C. M. 2014, MNRAS, 444,

2637
Mullaney, J. R., Alexander, D. M., Aird, J., et al. 2015, MNRAS, 453, L83
Muzzin, A., Marchesini, D., Stefanon, M., et al. 2013, ApJ, 777, 18
Noeske, K. G., Weiner, B. J., Faber, S. M., et al. 2007, ApJ, 660, L43
Oesch, P. A., Brammer, G., van Dokkum, P. G., et al. 2016, ApJ, 819, 129
Pannella, M., Carilli, C. L., Daddi, E., et al. 2009, ApJ, 698, L116
Pannella, M., Elbaz, D., Daddi, E., et al. 2015, ApJ, 807, 141
Pope, A., Scott, D., Dickinson, M., et al. 2006, MNRAS, 370, 1185
Reddy, N., Dickinson, M., Elbaz, D., et al. 2012, ApJ, 744, 154
Riechers, D. A., Bradford, C. M., Clements, D. L., et al. 2013, Nature, 496, 329
Rodighiero, G., Daddi, E., Baronchelli, I., et al. 2011, ApJ, 739, L40
Rujopakarn, W., Dunlop, J. S., Rieke, G. H., et al. 2016, ApJ, 833, 12
Salmon, B., Papovich, C., Finkelstein, S. L., et al. 2015, ApJ, 799, 183
Salpeter, E. E. 1955, ApJ, 121, 161
Sargent, M. T., Béthermin, M., Daddi, E., & Elbaz, D. 2012, ApJ, 747, L31
Schreiber, C., Pannella, M., Elbaz, D., et al. 2015, A&A, 575, A74
Schreiber, C., Elbaz, D., Pannella, M., et al. 2016, A&A, 589, A35
Scoville, N., Sheth, K., Aussel, H., et al. 2016, ApJ, 820, 83
Skelton, R. E., Whitaker, K. E., Momcheva, I. G., et al. 2014, ApJS, 214, 24
Sparre, M., Hayward, C. C., Springel, V., et al. 2015, MNRAS, 447, 3548
Spitler, L. R., Straatman, C. M. S., Labbé, I., et al. 2014, ApJ, 787, L36
Stark, D. P., Ellis, R. S., Bunker, A., et al. 2009, ApJ, 697, 1493
Straatman, C. M. S., Labbé, I., Spitler, L. R., et al. 2014, ApJ, 783, L14
Tacconi, L. J., Genzel, R., Neri, R., et al. 2010, Nature, 463, 781
Tomczak, A. R., Quadri, R. F., Tran, K. H., et al. 2016, ApJ, 817, 118
Walter, F., Decarli, R., Aravena, M., et al. 2016, ApJ, 833, 67
Wang, T., Elbaz, D., Schreiber, C., et al. 2016, ApJ, 816, 84
Williams, R. J., Quadri, R. F., Franx, M., van Dokkum, P., & Labbé, I. 2009,

ApJ, 691, 1879

A134, page 7 of 7

http://cschreib.github.io/phypp/
http://linker.aanda.org/10.1051/0004-6361/201629155/1
http://linker.aanda.org/10.1051/0004-6361/201629155/2
http://linker.aanda.org/10.1051/0004-6361/201629155/3
http://linker.aanda.org/10.1051/0004-6361/201629155/4
http://linker.aanda.org/10.1051/0004-6361/201629155/5
http://linker.aanda.org/10.1051/0004-6361/201629155/6
http://linker.aanda.org/10.1051/0004-6361/201629155/7
http://linker.aanda.org/10.1051/0004-6361/201629155/8
http://linker.aanda.org/10.1051/0004-6361/201629155/9
http://linker.aanda.org/10.1051/0004-6361/201629155/10
http://linker.aanda.org/10.1051/0004-6361/201629155/11
http://linker.aanda.org/10.1051/0004-6361/201629155/12
http://linker.aanda.org/10.1051/0004-6361/201629155/13
http://linker.aanda.org/10.1051/0004-6361/201629155/14
http://linker.aanda.org/10.1051/0004-6361/201629155/15
http://linker.aanda.org/10.1051/0004-6361/201629155/16
http://linker.aanda.org/10.1051/0004-6361/201629155/17
http://linker.aanda.org/10.1051/0004-6361/201629155/18
http://linker.aanda.org/10.1051/0004-6361/201629155/19
http://linker.aanda.org/10.1051/0004-6361/201629155/20
http://linker.aanda.org/10.1051/0004-6361/201629155/21
http://linker.aanda.org/10.1051/0004-6361/201629155/22
http://linker.aanda.org/10.1051/0004-6361/201629155/23
http://linker.aanda.org/10.1051/0004-6361/201629155/24
http://linker.aanda.org/10.1051/0004-6361/201629155/25
http://linker.aanda.org/10.1051/0004-6361/201629155/26
http://linker.aanda.org/10.1051/0004-6361/201629155/27
http://linker.aanda.org/10.1051/0004-6361/201629155/28
http://linker.aanda.org/10.1051/0004-6361/201629155/29
http://linker.aanda.org/10.1051/0004-6361/201629155/30
http://linker.aanda.org/10.1051/0004-6361/201629155/30
http://linker.aanda.org/10.1051/0004-6361/201629155/31
http://linker.aanda.org/10.1051/0004-6361/201629155/32
http://linker.aanda.org/10.1051/0004-6361/201629155/33
http://linker.aanda.org/10.1051/0004-6361/201629155/34
http://linker.aanda.org/10.1051/0004-6361/201629155/35
http://linker.aanda.org/10.1051/0004-6361/201629155/36
http://linker.aanda.org/10.1051/0004-6361/201629155/37
http://linker.aanda.org/10.1051/0004-6361/201629155/38
http://linker.aanda.org/10.1051/0004-6361/201629155/39
http://linker.aanda.org/10.1051/0004-6361/201629155/40
http://linker.aanda.org/10.1051/0004-6361/201629155/41
http://linker.aanda.org/10.1051/0004-6361/201629155/42
http://linker.aanda.org/10.1051/0004-6361/201629155/43
http://linker.aanda.org/10.1051/0004-6361/201629155/44
http://linker.aanda.org/10.1051/0004-6361/201629155/45
http://linker.aanda.org/10.1051/0004-6361/201629155/46
http://linker.aanda.org/10.1051/0004-6361/201629155/47
http://linker.aanda.org/10.1051/0004-6361/201629155/48
http://linker.aanda.org/10.1051/0004-6361/201629155/49
http://linker.aanda.org/10.1051/0004-6361/201629155/50
http://linker.aanda.org/10.1051/0004-6361/201629155/51
http://linker.aanda.org/10.1051/0004-6361/201629155/52
http://linker.aanda.org/10.1051/0004-6361/201629155/53
http://linker.aanda.org/10.1051/0004-6361/201629155/54
http://linker.aanda.org/10.1051/0004-6361/201629155/55
http://linker.aanda.org/10.1051/0004-6361/201629155/56
http://linker.aanda.org/10.1051/0004-6361/201629155/57

	Introduction
	Sample selection 
	Observed sample
	Cleaning the sample
	Robustness of the redshift and masses determinations 

	ALMA observations and reduction 
	Data
	Flux measurements
	Properties of the detected and non-detected galaxies
	Note on the astrometry

	Results 
	Dust temperature and star-formation rates 
	The z = 4 main sequence 
	Modeling the sSFR distribution 
	Result 
	Contaminants: quiescent galaxies or redshift interlopers? 

	Conclusions
	References

