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Kink-antikink asymmetry and impurity interactions in topological mechanical chains
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Instituut-Lorentz, Universiteit Leiden, 2300 RA Leiden, The Netherlands

(Received 17 August 2016; published 1 February 2017)

We study the dynamical response of a diatomic periodic chain of rotors coupled by springs, whose unit
cell breaks spatial inversion symmetry. In the continuum description, we derive a nonlinear field theory which
admits topological kinks and antikinks as nonlinear excitations but where a topological boundary term breaks
the symmetry between the two and energetically favors the kink configuration. Using a cobweb plot, we develop
a fixed-point analysis for the kink motion and demonstrate that kinks propagate without the Peierls-Nabarro
potential energy barrier typically associated with lattice models. Using continuum elasticity theory, we trace the
absence of the Peierls-Nabarro barrier for the kink motion to the topological boundary term which ensures that
only the kink configuration, and not the antikink, costs zero potential energy. Further, we study the eigenmodes
around the kink and antikink configurations using a tangent stiffness matrix approach appropriate for prestressed
structures to explicitly show how the usual energy degeneracy between the two no longer holds. We show how the
kink-antikink asymmetry also manifests in the way these nonlinear excitations interact with impurities introduced
in the chain as disorder in the spring stiffness. Finally, we discuss the effect of impurities in the (bond) spring
length and build prototypes based on simple linkages that verify our predictions.

DOI: 10.1103/PhysRevE.95.022202

I. INTRODUCTION

Topological ideas have led to recent advances in contin-
uum mechanics often inspired by the physics of electronic
topological insulators and the quantum Hall effect. In these
electronic systems the basic question is whether a material
is an insulator or a conductor. The answer depends on
which portion of a topological insulator one examines: The
bulk is usually gapped and hence insulating while the edge
displays gapless edge modes whose existence is protected from
disorder and variations in material parameters by the existence
of integer-valued topological invariants [1]. In topological
mechanical systems, the corresponding question is whether
a material is rigid or floppy. The ability to modulate the
rigidity of a structure in space allows us to robustly localize the
propagation of sound waves [2–19], change shape in selected
portions [20–29], or focus stress leading to selective buckling
or failure [30].

By translating the topological properties of bands of
electronic states into the classical setting of vibrational
bands, one can identify topologically protected and hence
robust properties of vibrational modes in both discrete lat-
tices and continuous media. For example, the concept of
“topological polarization” recently introduced by Kane and
Lubensky [20] building on counting ideas from Maxwell and
Calladine [31,32] determines the existence and the position of
zero-energy motions that are localized at edges and defects of
a marginally rigid mechanical lattice (one in which constraints
and degrees of freedom (d.o.f.) are exactly balanced).

Perhaps the simplest model of topological mechanical
lattices is the rotor chain proposed in Ref. [20]. The system
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consists of a chain of classical rotors harmonically coupled
with their nearest neighbors, as shown in Fig. 1(a). There
are two distinct classes of ground-state configurations, one
with all rotors leaning towards the left and the other where
they lean towards the right. Mathematically, these two states
may not be deformed to each other without the appearance of
bulk zero modes; thus they may each be assigned a different
winding number, associated with the Fourier transform of
the compatibility matrix C(q), which connects the linear
displacement of rotors with the extension of bonds; see
Ref. [21] for a detailed explanation.

The above considerations arise from band theory and
thus concern only the linearized zero-energy infinitesimal
motions. Indeed, the vanishing of the linear response implies
that nonlinear effects dominate. By developing a nonlinear
theory of the rotor chain, it was shown in Ref. [23] that
the infinitesimal zero-mode displacement integrates to a finite
motion. This motion can be described in the continuum limit
by objects similar to “kinks” in the φ4 field theory [33],
which connects the topological polarization invariant of the
linear vibrations to the study of topological solitons [23,24].
Although the two appearances of the term “topology” in
the linear and nonlinear theory stem from different contexts,
the latter encompasses the predictions of the former and
also explains additional features exclusive to the nonlinear
dynamics [24].

The nonlinear dynamics of this topological chain can be
approximated by the critical trajectories of a Lagrangian
written in the following form [23,24]:

L =
∫

dx

(
∂u

∂t

)2

−
(

∂u

∂x

)2

− 1

2
(u2 − 1)2 −

√
2
∂u

∂x
(u2 − 1).

(1)

The first term corresponds to the kinetic energy while the
second and third are the ones encountered for example in the
Landau theory of the Ising model. Note, however, that there
is an additional boundary term that contributes to the energy
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FIG. 1. A kink (a) and an antikink (b) configuration in a
topological chain (TC) model of rotors (blue) and springs (red dashed
lines) in the presence of a single impurity (green solid lines) modeled
as a spring with a different stiffness. For the kink profile, the springs
in the chain are at their rest length, while for the antikink, they are
stretched. A sketch of kink and antikink profiles in terms of the
continuum field variable u = sin θ (where θ is the rotor angle) is
shown below each configuration. (c) A two-rotor system. The masses
are the blue dots, the rigid rotors are the black lines, the pivots are
the crosses, and the spring is the dashed red line. Here a is the lattice
spacing, r is the rotor length, l̄ is the rest length of the springs, and
θ1,2 are the rotor angles with respect to the vertical.

but does not enter the Euler-Lagrange equation. Hence, one
obtains static kink and antikink solitary wave solutions of the
usual form [33],

u = ± tanh

(
x − x0√

2

)
. (2)

The boundary term gives new properties to the solutions
and breaks the symmetry between kinks and antikinks. For
example, it predicts that the static kink configuration costs
zero potential energy while the static antikink configuration
has a finite potential energy. Previous work on this model
has been motivated by the kink’s zero-energy properties, and
thus the shape and stability of the antikink and its dynamical
behavior were not studied.

In this paper we explore the physics of these finite-energy
configurations. We compare the dynamics of the kink and
antikink sectors in the topological rotor chain and study their
interaction with a lattice impurity. We find that differences
arising from the topological boundary term are apparent in
all of these aspects. In Sec. II, we explain the discrete model
and develop a fixed-point analysis of the kink motion using
a cobweb plot. In Sec. III, we review the continuum theory
and compare the predictions for the antikink with the discrete
model. In Sec. IV, we study the eigenmodes of the chain

Kink Antikink
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Afte r
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III

II

FIG. 2. Illustrated are the possible scenarios for how the kink
and antikink interact with a single impurity of spring stiffness. As
indicated by the arrow, an initial kink or antikink approaches the
impurity site (indicated by the green star) from the right. After
scattering, the incident kink is either (I) perfectly transmitted or
(II) splits into a reflected kink, a transmitted kink, and an antikink
that gets trapped at the impurity site. The incident antikink isr (I)
perfectly transmitted, (II) trapped at the impurity site, or (III) perfectly
reflected.

around a single kink or antikink profile. We exploit the tangent
stiffness matrix approach developed by Guest [34] to analyze
prestressed structures. In Sec. V, we study the nonlinear
transport properties. In a conventional continuum φ4 field
theory, due to translation invariance, both the kink and antikink
propagate at uniform speed. However, lattice discreteness
effects breaks this invariance and generates the so-called
Peierls-Nabarro (PN) barrier [35–37]. For the topological
rotor model, we find that only the antikink has a finite PN
barrier, whereas the kink always propagates freely. We explain
this phenomenon as a consequence of the zero-energy cost
associated with the kink profile. In Sec. VI, we investigate how
kinks and antikinks interact with a spring constant impurity
in the lattice. For the normal φ4 model, a phenomenological
theory predicts alternating windows of initial kink (antikink)
velocities that leads to reflection, trapping, and transmission
of the excitation [38,39]. By contrast, for the topological rotor
model that we study, an impurity in the spring stiffnesses
results in dramatically different scattering behaviors for the
kink and antikink, respectively. Figure 2 summarizes all the
possible scattering scenarios that we observe. Finally, in
Sec. VII, we make a connection between linear mode analysis
and nonlinear dynamics of kink motion in the context of spring
length impurities. We conclude by listing some open questions
related to our study.

II. DISCRETE MODEL AND COBWEB PLOT

The model we study consists of rotors of length r . The
rotor pivots are placed on a one-dimensional (1D) lattice
with spacing a. The angles θi of the rotors are measured
in an alternating fashion along the lattice, from the positive
y axis at odd-numbered sites and negative y axis at even-
numbered sites. The equilibrium angle is θ for a uniform lattice
configuration without a kink or antikink. The masses M at the
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FIG. 3. The configuration (a) and the corresponding cobweb plot
(b) for the kink in a topological rotor chain with r/a = 0.8, |θ | =
0.58. The springs are at their rest lengths. In (b), the black curve is the
constraint equation which ensures that the springs are unstretched, the
gray diagonal line satisfies θi+1 = θi , the blue point (θi,θi) represents
rotor i, the red point (θi,θi+1) represents the spring connecting rotors i

and i + 1, and the red dashed lines with arrows indicates the iterative
process that generates the kink profile. The iteration steps from θ7 to
θ10 are shown.

tips of the rotors are connected by harmonic springs with
identical rest lengths l and spring constants k. The two-rotor
unit cell of the topological chain is illustrated in Fig. 1(c).

We now construct the chain with a kink under free boundary
conditions. There are n rotors and n − 1 springs. If we assume
that the springs are infinitely stiff (k → ∞), the springs
become n − 1 constraints and the system only has a single
independent degree of freedom. The angle of a single rotor
determines all the others iteratively. This degree of freedom
manifests itself as a mechanism which, as has been previously
shown in Ref. [23], can be approximately described by the
domain wall solution in a modified φ4 theory [40]. We call
this mechanism a “kink” and discuss its continuum theory in
the following sections.

We use a cobweb plot to display the kink in Fig. 3. This
is a tool for visualizing the process of iteratively solving the
nonlinear constraint equations Eq. (3) cell by cell. We construct
the cobweb plot by drawing (1) a diagonal line θi = θi+1 and
(2) a curve of the implicit function given by the nonlinear
constraint equation that ensures the springs are not stretched,

(a + r sin θi − r sin θi+1)2 + (r cos θi + r cos θi+1)2 = l
2
.

(3)

(An explicit relation between neighboring rotor angles is
derived analytically with complex notation in Appendix A.)

The iteration steps are as follows:

(1) Given the angle θ1 of the first rotor at the left end, find
the point on the function curve with coordinates (θ1,θ2).

(2) Draw a horizontal line from (θ1,θ2) to the diagonal line.
This gives the point (θ2,θ2).

(3) Draw a vertical line from (θ2,θ2) to the function curve.
This gives the point (θ2,θ3).

(4) Repeat step 2 and 3 until the point (θn−1,θn) is found.
In Fig. 3(b), we illustrate steps (2) and (3) from θ7 to θ10,

which are near the kink center. The blue point with coordinates
(θi,θi) stands for the ith rotor of angle θi . The red point with
coordinates (θi,θi+1) represents the state of the spring that
connects the rotors of θi and θi+1.

Note that in Fig. 3(b), the diagonal line and the function
curve intersect at two points. They are the fixed points of
iteration. If all the red points (θi,θi+1) stay at one fixed point,
then the plot represents a uniform lattice. The iteration step
proceeds from the leftmost rotor of the chain to the rightmost.
We see that the flow proceeds outwards from one fixed point
and then inwards towards the other fixed point.

The cobweb plot may be used to graphically derive the
decay lengths of zero energy deformations, as they approach
their uniform limits. As mentioned above, a fixed point
corresponds to an intersection between the line θi = θi+1 and
the function curve. Note that the behavior of θi as it approaches
a fixed point resembles a “self-similar” zigzag motion between
θi = θi+1 and the tangent line of the function curve. This
motivates linearizing the function curve around the fixed point
as follows:

θi+1 − θ = F ′(θ )(θi − θ ), (4)

where θ , the equilibrium angle, is also just the value of the
fixed-point angle and F ′(θ) is the slope of the function curve
at that point (which could be computed explicitly in terms
of r,a,l). This equation yields that θi − θ ∝ exp ( log F ′(θ)i)
or that the decay length is |1/ log F ′(θ )| (the sign of log F ′
tells us whether the fixed point is attracting or repelling). This
result recovers the penetration depth of the boundary modes
computed in Ref. [23] using band theory.

In the cobweb plot, the static kink appears as a sequence of
points on the function curve interpolating between a repelling
and attracting fixed point. The dynamics of the kink in the
cobweb plot is therefore the flow of a cascade of points between
a pair of fixed points (see movie S1 in the Supplemental
Material [41]). While the kink propagates, the points in the
middle, such as (θ7,θ8), (θ8,θ9), and (θ9,θ10), corresponding to
the kink center, move more than those points close to the fixed
points, corresponding to the spatially localized nature of the
kinetic energy.

Generating an antikink requires a few more steps, as it
stretches springs, and thus does not satisfy a constraint function
that we could iteratively solve. However, the continuum theory
suggests that kinks and antikinks both have the same functional
profiles with only their signs reversed (see Sec. III). As a result,
we use the same iterative procedure as that for the kink and
then simply swap the appearances of θi and θi+1 in Eq. (3) to
obtain an approximation for the antikink profile. This method
is equivalent to reflecting the red points in Fig. 3(b) across
the diagonal line. The antikink constructed this way is not an
equilibrium configuration and has unbalanced stresses in the
springs. This is because, generically, the profiles of the kink
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FIG. 4. The configuration (a) and the corresponding cobweb plot
(b) for an antikink profile in the topological rotor chain with r/a =
0.8, |θ | = 0.58, where we see that the springs are stretched. In (b) the
same graphic notation as in Fig. 3 is used except that we have not
used an iterative process for constructing the antikink profile; rather,
depicted is only a visualization of the configuration of the rotor chain.
The red points are obtained by first reflecting the red points in Fig. 2
across the diagonal line and then relaxing the springs using dissipative
Newtonian dynamics. Note that the two rotors at the edges need to
be collinear with the springs to ensure force balance. This results in
the angles overshooting at the fixed points.

and antikink are not the same in a discrete topological rotor
chain. We next relax the springs using dissipative Newtonian
dynamics to remove the unbalanced stresses and obtain a stable
profile, which we show in the cobweb plot in Fig. 4. In that
figure, the spring connections (red dots) around the core of
the antikink profile (rotors 8 and 9) do not fall on the curve
which corresponds to unstretched springs. This implies large
spring deformations which we show explicitly in Fig. 5(b).
The amount by which the springs are stretched is symmetrical
around the eighth spring, which is in accordance with the
fact that a stable antikink has balanced forces on each rotor.
Note that we have fixed the boundary conditions to ensure
that the antikink is in mechanical equilibrium, which is not
generically true. As discussed later in Sec. V, this has important
consequences for the PN barrier.

III. CONTINUUM THEORY

In this section, we review the continuum approximation to
the kink and antikink profiles [23] and compare these with the
discrete model developed in the previous section. The discrete
Lagrangian for the topological rotor chain [see also Fig. 3(a)]

FIG. 5. (a) The θ profile (rotor angles) for the antikink profile in
Fig. 4(a) and the corresponding continuum prediction from Eq. (13).
Note that the two rotors at the edges need to be collinear with the
springs to ensure force balance and this results in the rotor angles
overshooting the equilibrium value θ = ±0.58. (b) The amount of
spring stretching for the antikink profile.

with free boundary conditions is

L =
n∑

i=1

1

2
Mr2

(
dθi

dt

)2

−
n−1∑
i=1

1

2
k(li,i+1 − l)2. (5)

Here n is the total number of rotors, M is the mass at the tip of
a rotor, r is the rotor length, θi is the angle that rotor i makes
with the vertical [measured alternately as shown in Fig. 3(a)],
k is the spring constant, l is the rest length of the spring, and
li,i+1 is the instantaneous length of the spring that connects
rotor i to rotor i + 1. From geometry

l2
i,i+1 = a2 + 2ar(sin θi+1 − sin θi) + 2r2

+ 2r2 cos(θi + θi+1), (6)

which in the uniform limit θi = θi+1 = θ̄ gives the rest length

of the spring l
2 = a2 + 4r2 cos2 θ .

We make the working assumption that deformations do not
stretch the springs significantly and hence we can neglect (or
add) terms higher than quadratic order in li,i+1 − l for all i. This
is a reasonable approximation for the system configuration
with a kink profile but is not well justified for an antikink
profile. However, in the limit that θ � 1, we find this to be
a good approximation for both kinks and antikinks. Within
this limit, we therefore express the potential energy term in
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Eq. (5) as

1

2
k(li,i+1 − l)2 ≈ k

8l
2

(
l2
i,i+1 − l

2)2
. (7)

Substituting the expression for l̄ and Eq. (6) into Eq. (7), we
express the potential energy as

Vi,i+1 = kr4

2l
2

[
a

r
(sin θi+1 − sin θi) − cos 2θ + cos(θi +θi+1)

]2

.

(8)

Now we take the continuum limit of the potential. First we
define a continuum field for the rotor angles θ (x), where the
spatial variable x = ia + a

2 is located symmetrically between
two rotors in the unit cell. To leading order, θi → θ (x) −
(a/2)(dθ/dx) and θi+1 → θ (x) + (a/2)(dθ/dx). Equation (8)
can then be expressed as

aV [θ ] = 2k

l
2

(
a2

2

du

dx
+ u2 − u2

)2

, (9)

where we have defined the projection of the rotor position
on the x axis as a new field variable u(x) ≡ r sin θ (x) and
u ≡ r sin θ .

The kinetic energy density term in Eq. (5) then assumes the
form

aT [θ̇] = 1

2

Mr2

r2 − u2

(
du

dt

)2

. (10)

Next we approximate the Lagrangian Eq. (5) as

L ≈
∫

dx

[
M

2a

(
∂u

∂t

)2

− ka3

2l
2

(
∂u

∂x

)2

− 2k

al
2 (u2 − u2)2 − ka

l
2

∂u

∂x
(u2 − u2)

]
, (11)

where we have taken the leading order of the Taylor series
expansion of the nonlinear kinetic term (in the variable u2/r2),
which is valid in the limit when u � r or, equivalently,
sin θ � 1.

The first three terms in Eq. (11) constitute the normal
φ4 theory. The last term linear in ∂u/∂x, is an additional
topological boundary term. Being a total derivative, it does not
enter the Euler-Lagrange equation of motion and we obtain
the usual nonlinear Klein-Gordon equation

M

a

∂2u

∂t2
− ka3

l
2

∂2u

∂x2
− 8k

al
2 u2u + 8k

al
2 u3 = 0, (12)

whose kink and antikink solutions are given by

u0 = ±u tanh

[
x − x0 − vt

(a2/2u)
√

1 − v2/c2

]
, (13)

where the ± denotes an (+)antikink and (-)kink, respectively.
Here v is the (anti)kink speed of propagation and c =
(a2/l

√
k/M) is the speed of sound in the medium. See Fig. 5(a)

for a comparison with the discrete profile.
Note how the additional boundary term makes the potential

energy density V [θ ] a perfect square, see Eq. (9). For the kink
configuration, V [θ ] therefore vanishes as is the case in the
discrete topological chain. For the antikink, however, V [θ ]

FIG. 6. The normalized potential energy plotted against the
equilibrium angle θ , for a static antikink configuration in a topological
rotor chain with with r/a = 0.8. The discrete model has 60 rotors.
Note that the wobbler transition [23] is around θ = sin−1 ( a

2r
) = 0.67,

which is close to where the continuum theory starts to significantly
deviate from the discrete model.

is nonzero and is in fact twice of what we would expect
in the normal φ4 theory (where both the kink and antikink
configurations have the same energy). This is an agreement
with our discussion on the discrete model in Sec. II.

On substituting the static (v = 0) antikink profile from
Eq. (13) into Eq. (11) and completing the integral, we obtain
the potential energy of the topological rotor chain with an
antikink profile

Vantikink/(ka2) = 16

3

(r/a)3 sin3 θ

1 + 4(r/a)2 cos2 θ
. (14)

In Fig. 6, we compare this expression with the predictions from
the discrete model. We see that the continuum theory agrees
reasonably well with the discrete model as long as θ is less
than approximately 0.6, below which, the width of the antikink
is larger than the lattice spacing and, therefore, a continuum
approximation well justified.

IV. LINEAR MODE ANALYSIS: TANGENT STIFFNESS
MATRIX APPROACH

We now study small oscillations around the kink and
antikink configurations, first in the continuum limit and next
in the discrete model by developing the tangent stiffness
matrix approach. In the continuum limit, we make the ansatz
u = u0 + δu and substitute into Eq. (12) retaining only terms
linear in δu:

M

a

∂2δu

∂t2
− ka3

l
2

∂2δu

∂x2
− 8k

al
2

(
u2 − 3u2

0

)
δu = 0. (15)

If we Fourier transform Eq. (15) with respect to time,
then we obtain a Schödinger-like equation with a solvable
potential [42,43]. This yields one continuous spectral band
as well as two discrete modes—one translation mode for the
(anti)kink and one shape mode, which corresponds to small
deformations of the shape of the (anti)kink localized around
the center of their profile. For the topological rotor chain, the
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(a)

(b)

(c)

(d)

FIG. 7. The configurations of (a) the kink translation mode, (b)
the kink shape mode, (c) the antikink translation mode, and (d) the
antikink shape mode. The green arrows depict the mode component
of each rotor.

frequencies of the two discrete modes are as follows:

ωt = 0, for the translation mode (16)

ωs = (r/a)
√

12k/M sin θ/

√
1 + 4(r/a)2 cos2 θ,

for the shape mode. (17)

In Figs. 7(a) and 7(c), the kink and antikink are located
in the middle of the chain. The mode arrows (in green) that
all point in the same direction, correspond to a translation
mode. In Figs. 7(b) and 7(d), the arrows on either side of the
(anti)kink point in opposite directions and these correspond to
shape deformations of the (anti)kink.

In Appendix B, we follow the approach proposed by
Guest [34] to derive the tangent stiffness matrix K for
prestressed mechanical structures. With K we numerically
obtain the frequencies of localized modes for the discrete
chain model and compare them with the predictions of the
continuum theory [Eq. (16) and Eq. (17)] in Fig. 8. We find that
the translation mode ωt for the kink indeed vanishes [within
machine-precision in our numerics) for all values of θ and is
thus absent in the range of the log-log plot shown in Fig. 8(a)].
However, as seen in Fig. 8(b), the translation mode (open
circles) for the antikink is nonzero.

For the shape mode ωs (filled circles), we find the numerical
results for both the kink and antikink to be in good agreement
with the continuum theory at small θ . Note that in Fig. 8(b),
although the antikink has a finite nonzero ωt , the value is still
significantly smaller than ωs .

V. KINK-ANTIKINK PROPAGATION IN ORDERED
LATTICES

In the previous section, we have seen that for the discrete
topological chain, the energy of the translation mode for the
kink is zero, whereas that for the antikink is nonzero. Note
that the standard discretization of a φ4 field theory leads to a
nonzero translation mode for both the kink and antikink [37].
Thus, the kink here differs qualitatively from the antikink in

(a)

(b)

FIG. 8. The frequencies ω of localized mode(s) for (a) the kink
and (b) the antikink as a function of θ for a rotor chain with
r/a = 0.8. The data points are numerically obtained from the tangent
stiffness matrix approach, filled circles correspond to the shape mode
(ωs), while open circles correspond to the translation mode (ωt ).
The curves are from the continuum theory. The frequencies for the
kink translation mode for all θ̄ and the frequencies for the antikink
translation mode for θ < 0.1 are effectively zero at machine precision
and, thus, not visible in the figure.

that it has a zero mode even when we consider the discrete
model. We next numerically simulate the propagation of a
kink and antikink along the discrete chain and see how this
difference manifests in their dynamics.

We numerically integrate Newtons equation of motion
for the rotors using molecular dynamics simulations. (The
simulation settings are described in Appendix C.) A stable
chain configuration with a single kink or antikink is used
as the initial configuration [see Figs. 7(a)–7(c) for the initial
conditions used]. An excitation is set in motion with a velocity
along the direction of the translation mode but with variable
amplitudes.

In Fig. 9, we plot the kinetic energy (KE) of the chain
as a function of time for a set of parameters for a kink
excitation (solid curve) and an antikink excitation (dashed
curve). The KE of the kink remains nearly constant for all times
with some small fluctuations (as the springs have to slightly
deform to transport energy by simultaneously minimize the
potential and kinetic energy). However, in comparison, the KE
of the antikink for the same set of initial parameters changes
significantly as it propagates down the chain. The key point is
that the kink and antikink do not propagate in the same way.

The asymmetry between a static kink and antikink configu-
ration was discussed in Ref. [23]. Further, we also know from
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FIG. 9. Time evolution of the kinetic energy for a kink [Fig. 7(a)]
and an antikink [Fig. 7(c)] in a topological rotor chain with nondi-
mensional parameters M = 1, k = 10000, r/a = 0.8, and θ = 0.58.
The magnitude of initial velocity in both cases is v0 = 2.4. The units
of energy and velocity are determined by the aforementioned physical
parameters. The kink propagation only results in small oscillation of
the KE, whereas we see significant fluctuations during the propagation
of an antikink. These can be traced to the Peierls-Nabarro potential
as shown in Fig. 10.

Eq. (11) (and the ensuing discussion) that in the continuum
limit, the topological rotor chain is approximately described
by a φ4 theory with an additional topological boundary term
which ensures that the potential energy of the kink is zero
while that for the antikink is nonzero (see Ref. [24] for an
interpretation of this fact in terms of supersymmetry breaking).
However, the additional boundary term does not affect the
continuum equation of motion and, thus, both the kink and
antikink should have translational invariance in this limit and
their dynamics should not have differed.

The reason for this asymmetrical behavior can be under-
stood only if we examine the discrete model. The system
with free boundary conditions has n rotors and n − 1 springs,
and the static kink does not require any of the springs to be
stretched. We can therefore interpret the springs as constraints.
Thus, the discrete kink’s equilibrium manifold is a continuous
curve embedded in the n-dimensional configuration space of
the rotor angles θi and the kink can be positioned stably
anywhere along the chain. By contrast, an antikink requires
the springs to be stretched. Forces on each of the rotors have to
be balanced for the system to be in mechanical equilibrium. So
the possible equilibrium configurations have to be symmetrical
locally around the center of the antikink, as shown in Fig. 10.
As a result, the equilibrium manifold for an antikink is not a
continuous curve but rather consists of a set of discrete points.
These correspond to either saddle points or minima in the
potential landscape. Any locally asymmetrical configuration
is therefore not stable and will slide towards a minima.

The saddle points and their nearest minima can be con-
nected by an “adiabatic trajectory” [36], which is a curve
of steepest descent. The concept of an adiabatic trajectory is
useful in two ways. First, it describes the slow motion of the
antikink through the chain. The position of the antikink center
can be defined by a coordinate along such a trajectory. Second,
it helps to rigorously define the so-called PN potential [35–37],
which is the effective periodic potential that the antikink feels

(a)

(b)

FIG. 10. Two equilibrium configurations in the potential energy
landscape of a static antikink: (a) a minimum and (b) a saddle
point, respectively. The topological chain has the same configuration
parameters as in Fig. 9.

as it moves along the adiabatic trajectory. A saddle point in the
full potential energy landscape corresponds to a maximum
along the adiabatic trajectory (while a minimum is still a
minimum). Note that although the antikink’s KE fluctuations
in Fig. 9 do not strictly equal its PN potential barrier, the former
reveals the existence of the latter.

In Appendix D, we derive the PN potential barrier from the
continuum theory

VPNB = 4π2[π2 + (a/w)2]

3[1 + 4(r/a)2 − (a/w)2] sinh(π2w/a)

∝ e−π2w/a for large w/a. (18)

This shows that the PN barrier decays exponentially as the
width w of the antikink increases.

We next compare the theoretical results with numerical
simulations. We obtain the exact PN barrier by computing
the difference in potential energy between the two types of
equilibrium points: a minima and a saddle point, see Fig. 10,
where for a given set of parameters, we find the barrier
height to be 1359.75 − 1359.15 = 0.60, consistent with the
magnitude of the KE fluctuations shown in Fig. 9 for the same
set of parameters. By repeating this calculation for systems
with various antikink widths w, we obtain the dependence
of the normalized PN barrier VPNB/(ka2) on w/a, which

FIG. 11. The dependence of the normalized PN barrier
(VPNB/ka2) on the normalized antikink width (w/a) for both the
discrete model (black circles) and the continuum theory (solid line).
The slope of the dashed line (fit to simulation) is −10.6, in reasonable
agreement with the predictions from the continuum theory in Eq. (18),
which gives a slope −π 2 ≈ −9.9.
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FIG. 12. The finite-size effect on VPNB. �VPNB is defined as
VPNB(L) − VPNB(L = 60). The configuration parameters are r/a =
0.8 and θ = 0.40.

we show in Fig. 11. We compare these with the predictions
from the continuum theory, given by Eq. (18). The numerical
results (filled circles) obtained from the discrete lattice and
the theoretical predictions (continuous curve) follow a similar
trend but differ by at least one order of magnitude. This
can be explained by the fact that the discreteness of the
lattice is ignored in the theory when we take the continuum
limit in going from Eq. (8) to Eq. (9). See Ref. [35] for a
thorough discussion of the effect of lattice discreteness on the
single-kink dynamics in a φ4 model.

Further, we also investigate finite-size corrections to the
PN barrier or, more precisely, the difference between VPNB

for a system with a small finite size and that for a system
with a sufficiently larger size (60 rotors). We find that finite-
size effects decay quickly as an exponential function with
increasing system size for a topological rotor chain with a
central antikink (see Fig. 12). This is because an antikink
configuration is a localized object. The components of its
displacement, its translation mode, as well as its shape mode,
decay exponentially away from its center and therefore so does
the effect of any boundaries.

To summarize, for the topological rotor chain that we study,
the PN barrier for a kink vanishes and that for an antikink
is finite. This not only affects how their respective kinetic
energies fluctuate over a lattice spacing but also affects their
dynamics over long distances. It is well known that φ4 kinks
and antikinks are nonintegrable solutions [43]. Although the
kinks and antikinks are “topologically” robust objects, they
still tend to dissipate energy into phonons and into shape
fluctuations as they propagate. Once an antikink has lost too
much kinetic energy to be able to overcome the PN barrier, it
gets trapped in a PN potential minimum, as shown in Fig. 13.
On the other hand, for the topological rotor chain that we study,
the kink never gets trapped, since its PN barrier vanishes.

VI. EFFECT OF SPRING STIFFNESS IMPURITIES

We next numerically explore whether the kink-antikink
asymmetry also manifests in the way these excitations interact
with a single lattice impurity, a natural starting point to study
their propagation in disordered lattices. For the conventional
φ4 models, previous studies on kink-impurity interactions (in
both discrete models [38] and continuum field models [39])

FIG. 13. Perspective view of a moving antikink trapped in
its Peierls-Nabarro barrier around Time = 20 near Rotor 35. The
topological rotor chain has the same configuration parameters as in
Fig. 9 and the initial antikink velocity is v0 = 1.1 in nondimensional
units.

have shown that scattering can result in transmission, trapping
or reflection of kinks, depending on the type of the impurity,
the attraction-repulsion strength of the impurity, and the kink’s
initial velocity. Although similar scattering also occurs in
the topological rotor chain model, we also find other novel
phenomena, for instance, the kink can split into two kinks and
one antikink. Moreover, as we will see, kinks and antikinks no
longer scatter in the same way—a feature which underscores
the kink-antikink asymmetry in our topological rotor chain.
In this work, we study impurities in properties of the springs,
which yield a richer set of effects on the response than mass
impurities.

In this section, we model an impurity by changing the
spring stiffness constant at a single site [Fig. 1(a)]. We study a
topological chain with lattice spacing a = 1 and rotor length
r/a = 0.8 and with equillibirum angle θ = 0.28. We perform
Newtonian dynamics simulation on a system with 60 rotors
using free boundary conditions and for a range of impurity
spring stiffness constant ki and kink-antikink initial velocity
v0. See Fig. 2 for a table of the possible scattering scenarios
that we observe.

Consider first the kink-impurity interaction. For most ki

and v0, the kink simply passes through the impurity and may
excite an impurity mode, which can be seen in the form of small
fluctuations in the middle of the chain as shown in Fig. 14(a).
When the impurity spring is sufficiently soft, the incident kink
splits into three: a transmitted kink, an antikink that is trapped
at the impurity, and a reflected kink. This is shown in Fig. 14(b).

Antikink scattering results in an ever richer set of behaviors.
Recall that the springs near the location of an antikink are
always stretched significantly, see Fig. 5(b). For ki/k near
1, the antikink gets transmitted with energy dissipation and
thus slows down [Fig. 15(a)]. Softening the impurity spring
stiffness creates an attractive potential well for the antikink.
The antikink may then release a part of its potential energy
and get trapped at such an impurity site [Fig. 15(b)]. If the
impurity spring is made even softer, such that an antikink can
no longer transfer its kinetic energy forward or dissipate it
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FIG. 14. A kink interacts with an impurity (different spring
stiffness) and is either (a) transmitted, shown here for v0 = 4.0 and
ki/k = 0.10, or (b) splits into a transmitted kink, a reflected kink,
and an antikink trapped at the impurity, shown here for v0 = 9.6
and ki/k = 0.01. The nondimensional parameters are M = 1, k =
10 000,r/a = 0.8, and θ̄ = 0.28.

sufficiently quickly to be trapped, then the incident antikink is
completely reflected [Fig. 15(c)]. For similar reasons, a stiffer
impurity acts like a repulsive potential well that can reflect
slow moving antikinks.

These numerical results are summarized in the phase
diagrams in the space of ki and v0 in Fig. 16. First, note that
a kink [Fig. 16(a)] behaves quite differently from an antikink
[Fig. 16(b)]. For instance, a kink is never completely trapped or
reflected by an impurity. The reason is that it has zero intrinsic
potential energy and, thus, no potential energy to lose during
a scattering event. As a collective object, the kink experiences
a flat potential landscape along the chain. It will always go
through the impurity, unless ki is so soft or v0 is so large that
the initial kinetic energy of the kink is sufficient to stretch
the impurity spring to form a pinned antikink. That is when
scattering results in the kink being split. This also explains the
positive slope of the boundary line between these two regimes.
(The topological constraints of the field require that the number

FIG. 15. An antikink interacts with an impurity and is either (a)
transmitted, shown here for v0 = 4.0 and ki/k = 0.80, (b) trapped,
shown here for v0 = 4.0 and ki/k = 0.70, or (c) reflected, shown here
for v0 = 4.8 and ki/k = 0.20. The system parameters are the same
as in Fig. 14.

of kinks minus the number of antikinks remains constant [33],
which is one for our boundary conditions.)
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(a)

(b)

FIG. 16. The phase diagram of the scattering behavior in the
parameter space of normalized spring constant of impurity ki/k and
kink initial velocity v0 for (a) the kink and (b) the antikink. The
system parameters are the same as Fig. 14. The lower limit of v0

for the antikink is around 0.7, below which even the PN barrier in a
perfect chain will capture the antikink.

For an antikink, the scattering phase diagram has more
regimes [Fig. 16(b)]. The positive slope of the boundary curve
at higher ki between the upper reflection regime (square) and
the transmission regime (circle) comes from the fact that the
higher the barrier is the faster the antikink needs to be to get
transmitted. The negative slope of the boundary between the
transmission regime (circle) and the trapping regime (triangle)
suggests that a softer impurity spring causes the antikink to
dissipate more energy. The antikink then needs a sufficiently
high initial velocity to avoid being trapped at such an impurity
site. The positive slope of the curve between the trapped regime
(triangle) and the lower reflection regime (square) suggests
that if the impurity spring is so soft such that it can no longer
transform the kinetic energy into other forms or channelize
the kinetic energy to the other side of the impurity sufficiently
“quickly,” an antikink incident with sufficiently high energy
will then be completely reflected. (In simulations, we find
that the maximum initial velocity with which we can launch
an antikink is around v0 = 12. Above this, the antikink itself
becomes unstable and tends to quickly disintegrate.)

For the topological rotor chain, the antikink scattering
behavior is therefore very similar to the ones reported for kinks
and antikinks in previous studies on the φ4 model [38,39]. In
addition, for normal φ4 kinks and antikinks, one also observes
resonance windows which are alternating regimes of the
excitation being reflected or trapped, along the axis of initial
velocities for a given impurity strength. These have not been

observed during our simulations of the discrete topological
chain. Instead, we only observe a small range of alternating
regimes where the antikink is transmitted or trapped, around
ki/k = 0.75 and v0 = 3.6 in Fig. 16(b). We leave a detailed
characterization of the resonance energy exchange between
these modes for future studies.

VII. EFFECT OF BOND LENGTH IMPURITIES

In Sec. IV we perform linear mode analysis of the
topological chain, and in Sec. VI we study the nonlinear motion
of (anti)kinks with impurities. Here in this section we will show
in a qualitative way that there is a connection between these
two aspects. For convenience, we investigate another type of
impurity: the spring length.

A. Linear mode analysis

We start with a qualitative observation of the linear
vibrational modes. For a perfect topological rotor chain
with free boundary conditions, there exists only one zero
mode—the translation mode of the kink. This is what the
Maxwell-Calladine counting predicts [31,32]: The chain has n

rotors as degrees of freedom and n − 1 springs as constraints,
and the former quantity minus the latter equals the number
of zero modes minus the number of states of self-stress. (In a
perfect chain there are no states of self-stress.) This counting
does not depend on the geometrical parameters of the chain
components.

(a)

(b)

(c)

(d)

FIG. 17. The zero vibrational mode (a), the soft vibrational mode
(b), and the soft tensional mode (c) of a topological chain with a longer
spring in the middle as an impurity. The configuration parameters are
θ = 0.58, r/a = 0.8, l/a = 1.68, l0/a = 2.30, and lcritical/a = 2.31.
The soft mode frequency is 7.7 × 10−9 in the unit of (r/a)

√
k/M ,

which means the mode is much “softer” than the kink shape mode
whose frequency is of the order 10−2. In (a) and (b), the arrows
indicate the mode amplitude of the displacement of each rotor. In (c),
the thickness of the green bars indicates the tensional mode amplitude
on each spring. All the springs, both normal ones and the impurity,
have the same stiffness. Panel (d) shows a LEGO demonstration (see
movie S2 in the Supplemental Material [41]).
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Now we increase one geometrical parameter, namely the
length of the middle spring l0, so it is an impurity in the
system (Fig. 17). As long as no state of self-stress is created,
there remains only one zero mode. However, as l0 approaches
a critical value lcritical, several qualitative changes take place:
(1) The profile of the chain varies significantly. There are two
kinks, one on each side of the impurity spring. (2) Eigenmode
analysis shows that the amplitude of the zero mode has two
prominent parts that are spatially separated, each of which is
localized around a kink as an individual translation mode. Both
parts of the zero mode point towards the same direction. (3)
An additional soft vibrational mode appears, whose amplitude
also has two separated parts just like the zero mode. But the
directions of these two parts are opposite to each other. This
soft mode has a frequency close to zero, much lower than that
of kink shape modes. (4) A soft tensional mode dual to the soft
vibrational mode emerges, being localized around the impurity
spring. (A tensional mode is a vector whose components are
the infinitesimal spring tensions caused by the infinitesimal
motion of the dual vibrational mode. The duality comes from
the fact that the tensional mode is an eigenfunction of the
supersymmetrical “partner” of the dynamical matrix, while
the vibrational mode is an eigenfunction of just the dynamical
matrix. See Refs. [20,21,24] for more details.)

These changes do not contradict the Maxwell-Calladine
counting: Only one vibrational mode has strictly zero fre-
quency, unless l0 actually reaches lcritical. In that case, the
frequencies of both the soft vibrational mode and the soft
tensional mode go to zero. By definition, the tensional mode
becomes a state of self-stress. Then the Maxwell-Calladine
counting still holds as there are now two zero modes and one
state of self-stress.

The above analysis only considers infinitesimal oscillations
around zero-energy equilibrium points. In the next section, we
study qualitatively the nonlinear motion of kinks with finite
energy, providing a perspective complementary to the linear
analysis.

B. Nonlinear dynamics: Linkage limit

1. Setup: Hamiltonian

To simplify the problem, we consider the linkage limit,
where all the springs in a perfect chain are nondeformable
rigid bars so they are holonomic constraints. There is only
one degree of freedom which is the translational motion of the
kink. We choose the kink position x as a collective variable to
describe this degree of freedom.

(a)

(b)

FIG. 18. (a) Illustration of the coordinate system of a topological rotor linkage chain with θ = 0.58, r/a = 0.8, l/a = 1.68, and lcritical/a =
2.31. The linkage bars are the solid lines and the impurity spring is the dashed line. In (b), the upper panels show the potential functions in 2D
configuration space for various l0. One corner of the function is trimmed for visualization. The red curve corresponds to the potential for Kink
1 in the one d.o.f. case where Kink 2 is fixed at x2 = 0. The lower panels show the phase portraits of Kink 1.
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Then we introduce the impurity by replacing the middle
rigid bar with a longer spring that is “soft” (i.e., with a finite
spring constant) [Fig. 18(a)]. A soft spring does not strictly
constrain the angles of the two rotors it connects but rather
gives a potential energy to deviations from its preferred length.
The chain then has one fewer constraint, which in turn means
that it has two degrees of freedom. We regard the whole
chain as two linkage subchains, and then the two degrees
of freedom are shared by the two kinks of the subchains,
which we call Kink 1 and Kink 2 with position x1 and x2,
respectively. The coordinate system for the discrete chain
model is illustrated in Fig. 18(a), and its precise definition
is contained in Appendix E. We see that by taking the linkage
limit, the number of degrees of freedom is reduced from the
number of rotors [16 for the chain in Fig. 18(a)] to the number
of kinks (2 for two kinks).

Now we derive the Hamiltonian. Note that the potential
energy only comes from the deformation of the impurity
spring, which in turn just depends on the angles of the head
rotors θ̃i . Since xi is the degree of freedom, it determines the
state of the subchain i, including θ̃i . Thus from the continuum
theory [Eq. (13) where u = r sin θ ], we obtain θ̃i(xi):

sin θ̃i(xi) = sin θ tanh

[
r sin θ(|xi | − x̃i)

a2

]
, (19)

where θ is the equilibrium angle of a perfect chain, a is the
lattice spacing, r is the rotor length, and x̃i is the position of
the head rotor.

Putting θ̃i(xi) into the Hookean spring potential V =
1
2k(l1,2 − l0)2, where l1,2 takes the form in Eq. (6) and l0 is
the rest length of the impurity spring, we obtain the potential
function V (x1,x2; l0) as a function of the kink positions

(a) (b)

(c) (d)

FIG. 19. The trajectories of the chain generated by simulations of Newtonian dynamics on the theoretical potential function in the
configuration space at (a) l0 < lcritical, E < Ec; (b) l0 < lcritical, E > Ec; (c) l0 = lcritical, E = Ec = 0; and (d) l0 > lcritical. In the top figures of
(a) and (b), the color scale of the trajectories indicates the potential energy of the chain in arbitrary units. The big red dots correspond to the
configuration of the real-space chains shown in the bottom figures of each panel.
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[Fig. 18(b)]. We formally define the effective kink momentum
p and mass m for the subchains in terms of the total kinetic
energy of the rotors T = ∑8

j=1
1
2mr2θ̇2

j ≡ 1
2m

p2. Thus the
Hamiltonian H (x1,x2,p1,p2; l0) = T (p1,p2) + V (x1,x2; l0) is
obtained.

2. Individual kink: Phase portrait

We first investigate a simple case where Kink 2 is fixed at
x2 = 0 and only Kink 1 is allowed to move. Then the chain has
only one degree of freedom x1. With the Hamiltonian, we draw
the phase portraits of xi for various l0 in Fig. 18(b). We find
that there is a critical value for the rest length of the impurity
spring,

lcritical =
√

(2r sin θ + a)2 + (2r cos θ )2, (20)

which determines the pattern of the phase portrait and the
qualitative behavior of the dynamics of the chain.

When l0 < lcritical, the dumbbell-shaped separatrix curve
extends almost across the whole reachable region of x1. The
two equilibrium points at x1 ≈ +8 and x1 ≈ −8 correspond
to the kink being localized around the impurity spring. x1 is
either positive or negative depending on the orientation of the
end rotor. At these two equilibrium points the impurity spring
is not stretched.

The behavior of Kink 1 depends on whether E is above
or below the separatrix curve’s energy Ec = 1

2k(l0 − lcritical)2.
If E < Ec, the trajectory in the phase plane stays inside the
region enclosed by separatrix and circulates around one of
the equilibrium points. In real space, Kink 1 makes small
oscillations around the impurity spring at either x1 ≈ −8 or
x1 ≈ +8. If E > Ec the trajectory moves in the region outside
of the separatrix. In real space, Kink 1 is able to go over the
subchain end and move back and forth between x1 ≈ −8 and
x1 ≈ +8.

When l0 approaches lcritical from below and exceeds lcritical,
the separatrix curve shrinks and disappears. The two equi-
librium points merge into one at x1 = 0 at the end of the
subchain [44]. In real space, the kink with finite energy
oscillates around the subchain end x1 = 0.

3. Two kinks: Accessible configuration space

The phase space of a chain with two kinks is 4D. For
the convenience of visualization, we investigate the potential
function V (x1,x2; l0) in the 2D configuration space. The shape
of the potential depends on l0 and determines the qualitative
dynamics of the two kinks. We also perform simulations of
Newtonian dynamics to investigate the qualitative behavior of
the nonlinear motion of the kinks.

When l0 < lcritical [Fig. 19(a)], the potential looks like a
square Mexican hat. The bottom of potential valley is a square
ring, on which all the points are at zero energy. In linear mode
analysis, we find a zero mode along the valley and a soft mode
along the transverse direction. We will show that the nonlinear
dynamics at finite energy possesses the traits that are closely
related to those in the linear analysis at zero energy.

Note that the impurity spring is maximally stretched at
x1 = x2 = 0, and the corresponding potential maximum Ec =
1
2k(l0 − lcritical)2. It is the minimal energy for both kinks to

move away from the impurity. If E < Ec, then the two kinks
take turns moving on their respective subchains. One kink
oscillates near the impurity spring, while the other kink moves
away. The nonlinear dynamics of the kinks is visualized as
a trajectory going along the bottom of the potential valley.
The accessible region in the configuration space is a square
annulus, at the corner of which the major part of energy is
transferred from the one kink to another. In fact, this can be
interpreted as the motion of a single “split” kink through the
system.

When E � Ec [Fig. 19(b)], there is sufficient energy
for both kinks to move away from the impurity spring
simultaneously. In the configuration space, the trajectory gets
out of the potential valley and climbs up to the 2D plateau in
the middle. The accessible region now is a square disk. In real
space, the kinks independently hit the impurity spring and get
reflected.

When l0 = lcritical [Fig. 19(c)], the linear mode analysis
predicts that the chain model in Fig. 19(c) has two zero
modes, each being localized around the kink at the end of
the respective subchain and a state of self-stress localized
around the impurity spring. From the viewpoint of nonlinear
dynamics, the potential function changes qualitatively: As
l0 approaches lcritical, the square ring of the potential valley
shrinks into one point at x1 = x2 = 0, and Ec goes to zero. In
other words, the Mexican hat transforms into a single basin.
In this shrinking process, the soft mode, which corresponds
to the oscillation transverse to the valley, transitions into a
zero mode, because the depth of the valley vanishes. In terms
of nonlinear dynamics, this transition means that no matter
how small the total energy E is, the accessible region in the
configuration space is always a square disk rather than a square
annulus.

When l0 > lcritical [Fig. 19(d)], the impurity spring is
compressed, which gives a minimum potential energy Emin =
1
2k(l0 − lcritical)2 for the static configuration. In a linear anal-
ysis, the two zero modes become normal modes with finite

0
l0

E

Ec=
k
2
(l0 - lcritical)2

lcritical

FIG. 20. The parameter space of the total energy E and the
impurity spring length l0. The critical energy Ec as a function of
l0 forms a parabola. The chain shows different dynamical behaviors
across the left branch of the parabola. The vertical dashed line of
l0 = lcritical is the boundary line across which the shape of the potential
function transitions qualitatively. The gray area below the right branch
of the parabola is energetically forbidden.
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frequency, as the impurity spring pushes the two kinks to the
chain ends, generating a finite restoring force for the motion
of the modes. In the nonlinear dynamics, the accessible region
of the kinks is still a square disk.

Figure 20 summarizes the above results with E and l0 as
parameters. When l0 � lcritical, the curve Ec = 1

2k(l0 − lcritical)2

marks the transition of the accessible region in configuration
space from an annulus to a disk. Note that we only investigate
the case of l0 > l, in which Fig. 20 is valid. For l0 < l case,
the potential landscape takes a different form and so does
the possible transition. We do not cover this case in this paper,
however, as we have made the connection between linear mode
analysis and nonlinear dynamics.

VIII. CONCLUSION

We have studied the nonlinear dynamics of a topological
rotor chain. The continuum limit is well approximated by a
modified φ4 theory whose nonlinear excitations are the kinks
and antikinks. We have seen how the breaking of inversion
asymmetry at the discrete level results in an asymmetry
between the kink and antikink excitations that affects the
properties of linear modes around these excitations, their
transport along an ordered lattice, as well as in how these
excitations interact with a lattice impurity. The results herein
further enrich the class of phenomenon described by the
φ4 theory, a model which is extensively studied and finds
numerous applications in many fields of physics.

Some questions for further research include the following:
(1) We find that kinks reflect perfectly off the free boundaries
of a topological rotor chain. This is surprising given that in
the continuum limit, the φ4 kink is a nonintegrable solution
and thus could create bound states or emit radiation as it
interacts with a free boundary. Furthermore, an antikink cannot
reach a free boundary without colliding with a kink—another
feature which we do not yet know how to interpret within the
continuum theory. (2) We have not undertaken a detailed study
of the phases of motion for an antikink (wobbling, spinner).
Preliminary simulations indicate that antikink configurations
in these other phases are in fact unstable. The large amount
of initial spring stretching energy necessary in a configuration
where the rotors point “away from each other” is immediately
converted to kinetic energy and induces rapid spinning of
the nearby rotors which then spreads across the system in
a chaotic fashion. It is not clear how this effect would arise in
the continuum theory, which, for the spinner, is related to the
integrable sine-Gordon model [23].

A more speculative question is whether there are connec-
tions between our results and the observed asymmetry between
kinks and antikinks in certain one-dimensional quantum
magnetic systems, called δ or sawtooth chains [45,46]. These
systems also have two uniform ground states which may be
thought of as the analog of “right-leaning” and “left-leaning”
states and also share the property that the excitation energy for
a kink is zero while for an antikink is large and finite.
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APPENDIX A: COMPLEX NOTATION

We use complex variables to derive the explicit relation
between neighboring rotor angles. Adopting the notation in
Fig. 1(c), we put the pivot of rotor 1 at the origin of complex
plane and the pivot of rotor 2 at the coordinate (a,0). The
positions of the rotor tips are

z1 = ire−iθ1 , (A1)

z2 = a − ireiθ2 . (A2)

We have two constraints (where a bar represents complex
conjugations):

(z2 − z1)(z̄2 − z̄1) = l2
0 , (A3)

(z2 − a)(z̄2 − a) = r2. (A4)

Eliminating z̄2 from above two constraints, we find a
quadratic equation for z2,

Az2
2 + Bz2 + C = 0, (A5)

where

A = z̄1 − a

a − z1
, (A6)

B =
(

l2
0 + a2 − 2r2

a − z1

)
− a

(
z̄1 − z1

a − z1

)
, (A7)

C = a2 − r2 − a

(
l2
0 + a2 − 2r2

a − z1

)
. (A8)

We have two branches of the solution for z2

z2 = −B ± √
B2 − 4AC

2A
, (A9)

which explicitly expresses the black curve in Fig. 3(b).

APPENDIX B: VIBRATIONAL MODES OF PRESTRESSED
MECHANICAL STRUCTURES: METHOD OF TANGENT

STIFFNESS MATRIX

Consider a single spring p in the configuration shown in
Fig. 21(a) (note here we are now specifying rotor angles θ with
respect to the positive x axis). From geometry, we find

fp =−
vp · 
lp t̂p

fp+1 = 
vp+1 · 
lp t̂p. (B1)

FIG. 21. Detailed configurations around a single spring p.
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Here fp is the spring force projected along the tangent vector

vp of rotor p,


vp =
(− sin θp

cos θp

)
. (B2)


lp is the vector along the length of the spring p and points
from rotor p to p + 1,


lp =
(

a + r cos θp+1 − r cos θp

r sin θp+1 − r sin θp

)
. (B3)

t̂p is a scalar tension coefficient for spring p, defined as t̂p ≡
tp/|
lp|, where tp ≡ kp(|
lp| − l) for a harmonic spring. Here,
|
lp| is the instantaneous length of spring p, l is the rest length
of the spring, and k is the spring constant.

In order to find the tangent stiffness, we differentiate
Eq. (B1) with respect to the rotor angles θp and θp+1,

∂fp

r∂θp

= ∂(−
vp · 
lp)

r∂θp

t̂p − 
vp · 
lp ∂t̂p

r∂θp

, (B4)

∂fp

r∂θp+1
= ∂(−
vp · 
lp)p

r∂θp+1
t̂p − 
vp · 
lp ∂t̂p

r∂θp+1
, (B5)

∂fp+1

r∂θp

= ∂(
vp+1 · 
lp)

r∂θp

t̂p + 
vp+1 · 
lp ∂t̂p

r∂θp

, (B6)

∂fp+1

r∂θp+1
= ∂(
vp+1 · 
lp)

r∂θp+1
t̂p + 
vp+1 · 
lp ∂t̂p

r∂θp+1
. (B7)

To simplify Eq. (B4), we express

∂t̂p

r∂θp

= dt̂p

d|
lp|
∂|
lp|
r∂θp

, (B8)

dt̂p

d|
lp| = d(tp/|
lp|)
d|
lp| = 1

|
lp| (gp − t̂p) = ĝp/|
lp|, (B9)

where gp ≡ dtp/d|
lp| is defined as the axial stiffness and ĝp ≡
gp − t̂p is defined as the modified axial stiffness.

From Fig. 21(b), we see that �l = r�θ (−
vp · 
lp)/|
lp| and,
therefore,

∂|
lp|
r∂θp

= (−
vp · 
lp)

|
lp| . (B10)

Substituting Eqs. (B8)–(B10) into Eq. (B4), we find

∂fp

r∂θp

= ∂(−
vp · 
lp)

r∂θp

t̂p − (
vp · 
lp)
ĝp

|
lp|
(−
vp · 
lp)

|
lp| . (B11)

Similarly, we simplify Eqs. (B5)–(B7).
With the above derivatives, we can now define the tangent

stiffness matrix. For a single spring p, the tangent stiffness
matrix, Kp, relates small changes in rotor position to small
changes in rotor forces,(

δfp

δfp+1

)
= Kp

(
rδθp

rδθp+1

)
, (B12)

and can be expressed as

Kp =
(

np

np+1

)
[ĝp](np np+1) + sp, (B13)

where np ≡ −
vp · 
lp/|
lp|, np+1 ≡ −
vp+1 · 
lp/|
lp|, and the
stress matrix sp is

sp =
⎛
⎝− ∂(
vp ·
lp)

r∂θp
t̂p − ∂(
vp ·
lp)

r∂θp+1
t̂p

∂(
vp+1·
lp)
r∂θp

t̂p
∂(
vp+1·
lp)
r∂θp+1

t̂p

⎞
⎠. (B14)

To derive the total tangent stiffness K for the rotor chain, we
first represent the tangent stiffness Kp in a global coordinate
system as an n × n matrix and then sum up all the Kp for the
n − 1 springs:

K =
n−1∑
p=1

Kp =
n−1∑
p=1

ap[ĝp]aT
p +

n−1∑
p=1

Sp, (B15)

where

ap =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
np

np+1

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B16)

and

Sp =

⎛
⎜⎜⎜⎜⎝

0 . . . 0
... sp11 sp12

...
... sp11 sp12

...
0 . . . 0

⎞
⎟⎟⎟⎟⎠. (B17)

In ap, the np and np+1 terms are in the pth and p + 1th rows,
respectively, and all the other terms are zero. In Sp, spij is the
(i,j ) element of the 2 × 2 stress matrix sp for a single spring
p and is located in the (p − 1 + i,p − 1 + j ) position of Sp,
and all the other terms in Sp are zero. Here Sp has a simpler
form than that of Ref. [34] because we exploit the fact that
only nearest neighbors are coupled in the topological chain.

APPENDIX C: SIMULATION METHODS

The molecular dynamics simulations are carried out in
MATHEMATICA. The ordinary differential equation (ODEs)
are solved by the function NDSolve, which uses a multistep
method (LSODA) by default.

In the simulations, we set the lattice spacing a = 1, the
rotor mass M = 1, and an arbitrary time unit t = 1. The spring
constant k is measured in units of M/t2. The linear velocity
of a rotor is measured in units of a/t . The initial velocity v0

of a (anti)kink is defined as the velocity amplitude of the unit
translation mode et and et

i is the mode component on the ith
rotor. Thus the initial kinetic energy is 	i

1
2m(v0e

t
i )

2 = 1
2mv2

0.

APPENDIX D: PEIERLS-NABARRO POTENTIAL
BARRIER VIA CONTINUUM THEORY

We derive the PN potential by discretizing the potential
energy density in the continuum theory, i.e., taking the
quasicontinuum limit. The PN potential is, by definition, the
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potential that the kink faces as it propagates along the adiabatic
trajectory (ad. tr.):

VPN(X) = V (. . . ,un−1,un,un+1, . . . )|X∈ad.tr.. (D1)

Here X is the position of the (anti)kink center, un is the
continuum field at lattice site n, and V is a discretization
of the potential energy density V (θ ) in Eq. (9) and is obtained
by summing the potential f (n,X) of each lattice site:

V (. . . ,un−1,un,un+1, . . . ) =
∑

f (n,X), (D2)

where

f (n,X) = 2k

l
2

[
a2

2

dun

d(na)
+ u2 − u2

n

]2

. (D3)

f (n,X) is the approximate potential at a single site n when the
(anti)kink center is at X. Here, we discretize the continuum
potential energy density rather than directly use the exact form
of the lattice potential in Eq. (8), so we can readily substitute
un, the continuum field at site n, into f (n,X), which results in
an integrable solution. We choose the static solution (v = 0)
of Eq. (13) as the adiabatic trajectory:

un(X) = ±u tanh

(
na − X

w

)
, (D4)

where the “+” is for the antikink, “−” is for the kink, and the
width of the (anti)kink w = a2

2r sin θ
[23]. Substituting Eqn. (D4)

into Eq. (D3), we find

f (n,X) = 0 for the kink,

f (n,X) = 8ku4

l
2 sech4

(
na − X

w

)
for the antikink. (D5)

Thus VPN(X) = 0 for the kink, in accordance with the fact
that the kink configuration does not stretch springs and hence
costs zero potential energy. For the antikink, we use the Poisson
summation formula to express:

VPN(X) =
+∞∑

n=−∞
f (n,X) =

+∞∑
k=−∞

f̂ (k,X)

=
+∞∑

k=−∞

∫ +∞

−∞
dnf (n,X)e−2πikn. (D6)

To leading order, we only consider the first harmonic terms k =
1 and k = −1 (k = 0 recovers the continuum approximation).

For k = 1, we find

∫ +∞

−∞
dnf (n,X)e−2πin

= e−2πi(X/a)
∫ +∞

−∞
dn′ 8ku4

l
2 sech4

(
n′a
w

)
e−2πin′

. (D7)

The complex exponential suggests a sinusoidally varying
potential along the coordinate X of the adiabatic trajectory,
with a period that is equal to the lattice spacing a. We define
the PN barrier (VPNB) as the height of this sinusoidal potential.
The last integral in Eq. (D7) can be completed using residues
to yield

VPNB = 4π2[π2 + (a/w)2]

3[1 + 4(r/a)2 − (a/w)2] sinh(π2w/a)

∝ e−π2w/a for large w/a. (D8)

APPENDIX E: DEFINITION OF KINK COORDINATES IN
DISCRETE MODELS

The concept of kinks stems from the continuum φ4 theory.
To extend this concept to the discrete chain model, we
define the coordinate system of a subchain kink as follows
[Fig. 18(a)]: The absolute value of the position of a kink equals
the rotor’s integer index if the rotor is vertical, otherwise the
position is a real number interpolating between the indices of
the two neighboring rotors that are leaning opposite to each
other. The positional interpolation is proportional to the linear
interpolation between the absolute values of the angles of two
neighbor rotors. The rotor angles are the measured against the
vertical alternatively, as mentioned in Sec. II. When a kink
approaches the end points of the chain, the end rotor flips over.
Here the kink profile from the continuum theory ceases to be
valid. Thus we take as our convention that a kink is at the origin
of the coordinate system when the end rotor is collinear with
the spring connecting to the next rotor, and its sign depends
on whether the end rotor leans upwards or downwards. The
coordinate between 0 and 1 (or −2) is obtained by linear
interpolation of the angles of the end rotor at 0 and 1 (or −2).
In this ad hoc convention, the chain forms a state of self-stress
when both kinks are at origin. The two subchains are aligned
head to head, and the two head rotors (|xi | = 8) are coupled
by the impurity spring.
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