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Torsional rigidity for cylinders with a Brownian fracture

Michiel van den Berg and Frank den Hollander

Abstract

We obtain bounds for the expected loss of torsional rigidity of a cylinder CL of length L and
planar cross-section Ω due to a Brownian fracture that starts at a random point in CL and runs
until the first time it exits CL. These bounds are expressed in terms of the geometry of the
cross-section Ω ⊂ R

2. It is shown that if Ω is a disc with radius R, then in the limit as L → ∞
the expected loss of torsional rigidity equals cR5 for some c ∈ (0,∞). We derive bounds for c
in terms of the expected Newtonian capacity of the trace of a Brownian path that starts at the
centre of a ball in R

3 with radius 1, and runs until the first time it exits this ball.

1. Introduction

In Section 1.1 we formulate the problem, in Section 1.2 we recall some basic facts, in Section 1.3
we state our main theorems, and in Section 1.4 we discuss these theorems and provide an outline
of the remainder of the paper.

1.1. Background and motivation

Let Λ be an open and bounded set in R
m, with boundary ∂Λ and Lebesgue measure |Λ|. Let Δ

be the Laplace operator acting in L2(Rm). Let (β̄(s), s � 0; P̄x, x ∈ R
m) be Brownian motion

in R
m with generator Δ. Denote the first exit time from Λ by

τ̄(Λ) = inf{s � 0: β̄(s) ∈ R
m − Λ},

and the expected lifetime in Λ starting from x by

vΛ(x) = Ēx[τ̄(Λ)], x ∈ Λ,

where Ēx denotes the expectation associated with P̄x. The function vΛ is the unique solution
of the equation

−Δv = 1, v ∈ H1
0 (Λ),

where the requirement v ∈ H1
0 (Λ) imposes Dirichlet boundary conditions on ∂Λ. The function

vΛ is known as the torsion function and found its origin in elasticity theory (see, for example,
[17]). The torsional rigidity T (Λ) of Λ is defined by

T (Λ) =
∫

Λ

dx vΛ(x).

Torsional rigidity plays a key role in many different parts of analysis. For example, the
torsional rigidity of a cross-section of a beam appears in the computation of the angular change
when a beam of a given length and a given modulus of rigidity is exposed to a twisting
moment [1, 14]. It also arises in the calculation of the heat content of sets with time-dependent
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boundary conditions [2], in the definition of gamma convergence [9], and in the study of minimal
submanifolds [13]. Moreover, T (Λ)/|Λ| equals the expected lifetime of Brownian motion in Λ
when averaged with respect to the uniform distribution over all starting points x ∈ Λ.

Consider a finite cylinder in R
3 of the form

ΩL = (−L/2, L/2) × Ω,

where Ω is an open and bounded subset of R
2, referred to as the cross-section. It follows from

[6, Theorem 5.1] that

T ′(Ω)L � T (ΩL) = T ′(Ω)L− 4H2(Ω)λ′
1(Ω)−3/2, (1.1)

where H2 denotes the two-dimensional Hausdorff measure, λ′
1(Ω) is the first eigenvalue of

the two-dimensional Dirichlet Laplacian acting in L2(Ω), and T ′(Ω) is the two-dimensional
torsional rigidity of the planar set Ω.

We observe that in (1.1) the leading term is extensive, that is, proportional to L, and that its
coefficient T ′(Ω) depends on the torsional rigidity of the cross-section Ω. There is a substantial
literature on the computation of the two-dimensional torsional rigidity for given planar sets Ω
(see, for example, [16, 17]). The finiteness of the cylinder induces a correction that is at most
O(1).

Let (β(s), s � 0; Px, x ∈ R
m) be a Brownian motion, independent of (β̄(s), s � 0;

P̄x, x ∈ R
m), and let

τ(Λ) = inf{s � 0: β(s) ∈ R
m − Λ}. (1.2)

Denote its trace in Λ up to the first exit time of Λ by

B(Λ) = {β(s) : 0 � s � τ(Λ)}. (1.3)

In this paper we investigate the effect of a Brownian fracture B(ΩL) on the torsional rigidity
of ΩL. More specifically, we consider the random variable T (ΩL −B(ΩL)), and we investigate
the expected loss of torsional rigidity averaged over both the path B(ΩL) and the starting
point y, defined by

T(ΩL) =
1

|ΩL|

∫
ΩL

dy Ey [T (ΩL) − T (ΩL −B(ΩL))] , (1.4)

where Ey denotes the expectation associated with Py.

1.2. Preliminaries

It is well known that the rich interplay between elliptic and parabolic partial differential
equations provides tools for linking various properties. See, for example, the monograph
by Davies [10], and [3–6, 8] for more recent results. As both statements and proofs of
Theorems 1.1, 1.2, and 1.3 rely on the connection between the torsion function, torsional
rigidity, and heat content, we recall some basic facts.

For an open set Λ in R
m with boundary ∂Λ, we denote the Dirichlet heat kernel by

pΛ(x, y; t), x, y ∈ Λ, t > 0. The integral

uΛ(x; t) =
∫

Λ

dy pΛ(x, y; t), x ∈ Λ, t > 0, (1.5)

is the unique weak solution of the heat equation

∂u

∂t
(x; t) = Δu(x; t), x ∈ Λ, t > 0,

with initial condition

lim
t↓0

u( · ; t) = 1 in L1(Λ),
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and with Dirichlet boundary conditions

u( · ; t) ∈ H1
0 (Λ), t > 0.

We denote the heat content of Λ at time t by

QΛ(t) =
∫

Λ

dxuΛ(x; t) =
∫

Λ

dx

∫
Λ

dy pΛ(x, y; t), t > 0. (1.6)

The heat content represents the amount of heat in Λ at time t when Λ has initial temperature
1 while ∂Λ is kept at temperature 0 for all t > 0. Since the Dirichlet heat kernel is non-negative
and is monotone in Λ, we have

0 � pΛ(x, y; t) � pRm(x, y; t) = (4πt)−m/2 e−|x−y|2/(4t). (1.7)

It follows from (1.5) and (1.7) that

0 � uΛ(x; t) � 1, x ∈ Λ, t > 0,

and that if |Λ| < ∞, then

0 � QΛ(t) � |Λ|, t > 0. (1.8)

In the latter case we also have an eigenfunction expansion for the Dirichlet heat kernel in
terms of the Dirichlet eigenvalues λ1(Λ) � λ2(Λ) � · · · , and a corresponding orthonormal set
of eigenfunctions {ϕΛ,1, ϕΛ,2, . . . }, namely,

pΛ(x, y; t) =
∞∑
j=1

e−tλj(Λ)ϕΛ,j(x)ϕΛ,j(y), x, y ∈ Λ, t > 0.

We note that by [10, p. 63] the eigenfunctions are in Lp(Λ) for all 1 � p � ∞. It follows from
Parseval’s formula that

QΛ(t) =
∞∑
j=1

e−tλj(Λ)

(∫
Λ

dxϕΛ,j(x)
)2

� e−tλ1(Λ)
∞∑
j=1

(∫
Λ

dxϕΛ,j(x)
)2

= e−tλ1(Λ) |Λ|, t > 0, (1.9)

which improves upon (1.8). Since the torsion function is given by

vΛ(x) =
∫

[0,∞)

dt uΛ(x; t), x ∈ Λ,

we have that

T (Λ) =
∫

[0,∞)

dtQΛ(t) =
∞∑
j=1

λj(Λ)−1

(∫
Ω

dxϕΛ,j(x)
)2

. (1.10)

1.3. Main theorems

To state our theorems, we introduce the following notation. Two-dimensional quantities, such
as the heat content for the planar set Ω, carry a superscript ′. The Newtonian capacity of a
compact set K ⊂ R

3 is denoted by cap(K). For R,L > 0 we define

DR = {x′ ∈ R
2 : |x′| < R},

CL,R = (−L/2, L/2) ×DR,

CR = CR,∞.

(1.11)
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For x ∈ R
3 and r > 0, we write B(x; r) = {y ∈ R

3 : |y − x| < r}.

Theorem 1.1. If Ω ⊂ R
2 is open and bounded, then

(i)

0 � T (ΩL) − T ′(Ω)L +
4

π1/2

∫
[0,∞)

dt t1/2Q′
Ω(t) � 8

L
λ′

1(Ω)−1T ′(Ω), L > 0, (1.12)

(ii)

T(ΩL) � 6λ′
1(Ω)−1/2T ′(Ω), L > 0, (1.13)

(iii)

lim sup
L→∞

T(ΩL) � 4λ′
1(Ω)−1/2T ′(Ω). (1.14)

Theorem 1.2. If Ω = DR, then

lim
L→∞

T(CL,R) = cR5, R > 0, (1.15)

with

67 703
√

79 − 582 194
5 059 848 192

κ � c � π

2j0
, (1.16)

where j0 = 2.4048 . . . is the first positive zero of the Bessel function J0, and

κ = E0 [cap (B(B(0; 1)))] .

We obtain better estimates when the Brownian fracture starts on the axis of the cylinder
CL,R, with a uniformly distributed starting point. Let

C(CL,R) =
1
L

∫
(−L/2,L/2)

dy1 E(y1,0) [T (CL,R) − T (CL,R −B(CL,R))] . (1.17)

Theorem 1.3. If Ω = DR, then

lim
L→∞

C(CL,R) = c′R5, R > 0, (1.18)

with

2867
√

61 − 21 773
303 750

κ � c′ � π

4

(
1 +

1
j0

)
. (1.19)

1.4. Discussion and outline

Theorem 1.1(i) is a refinement of (1.1), while Theorems 1.1(ii) and 1.1(iii) provide upper
bounds for the expected loss of torsional rigidity. Theorem 1.2 gives a formula for the expected
loss of torsional rigidity in the special case where Ω is a disc with radius R. Theorem 1.3 does
the same when the fracture starts on the axis of the cylinder, with a uniformly distributed
starting point.

Computing the bounds in (1.16) numerically, we find that the upper bound is 0.653
and the lower bound is approximately 0.386 × 10−5κ. Since κ is bounded from above by
cap(B(0; 1)) = 4π, the left-hand side is at most 0.485 × 10−4. Thus, the bounds are at least 4
orders of magnitude apart. It is not clear what the correct order of c should be. The bounds
for c′ in Theorem 1.3 are at least 2 orders of magnitude apart.
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The remainder of this paper is organised as follows. The proof of Theorem 1.1 is given in
Section 2, and uses the spectral representation of the heat kernel in Section 1.2. The proofs of
Theorems 1.2 and 1.3 are given in Section 4, and rely on a key proposition, stated and proved
in Section 3, that provides a representation of the constants c and c′.

2. Proof of Theorem 1.1

Proof of Theorem 1.1(i). We use separation of variables, and write x = (x1, x
′), y = (y1, y

′),
x1, y1 ∈ R, x′, y′ ∈ R

2. Since the heat kernel factorises, we have

pΩL
(x, y; t) = p

(1)
(−L/2,L/2)(x1, y1; t) p′Ω(x′, y′; t), x, y ∈ ΩL, t > 0,

where p
(1)
(−L/2,L/2)(x1, y1; t) is the one-dimensional Dirichlet heat kernel for the interval

(−L/2, L/2), and p′Ω(x′, y′; t) is the two-dimensional Dirichlet heat kernel for the planar set Ω.
By integrating over ΩL, we see that the heat content also factorises,

QΩL
(t) = Q

(1)
(−L/2,L/2)(t)Q

′
Ω(t), t > 0, (2.1)

where Q
(1)
(−L/2,L/2) is the one-dimensional heat content for the interval (−L/2, L/2), and Q′

Ω is
the two-dimensional heat content for the planar set Ω. In [6] it was shown that

L− 4t1/2

π1/2
� Q

(1)
(−L/2,L/2)(t) � L− 4t1/2

π1/2
+

8t
L
, t > 0. (2.2)

Combining (1.10), (2.1), and (2.2), we have

T (ΩL) =
∫

[0,∞)

dt QΩL
(t) �

∫
[0,∞)

dt

(
L− 4t1/2

π1/2
+

8t
L

)
Q′

Ω(t)

= LT ′(Ω) − 4
π1/2

∫
[0,∞)

dt t1/2Q′
Ω(t) +

8
L

∫
[0,∞)

dt tQ′
Ω(t). (2.3)

To bound the third term in the right-hand side of (2.3), we use the identities in (1.9) and (1.10)
to obtain∫

[0,∞)

dt t Q′
Ω(t) =

∫
[0,∞)

dt t
∞∑
j=1

e−tλ′
j(Ω)

(∫
Ω

dxϕΩ,j(x)
)2

=
∞∑
j=1

λ′
j(Ω)−2

(∫
Ω

dxϕΩ,j(x)
)2

� λ′
1(Ω)−1

∞∑
j=1

λ′
j(Ω)−1

(∫
Ω

dxϕΩ,j(x)
)2

= λ′
1(Ω)−1T ′(Ω). (2.4)

This completes the proof of the right-hand side of (1.12). The left-hand side of (1.12) follows
from (1.10), (2.1), and the first inequality in (2.2). �

Proof of Theorem 1.1(ii). Since ΩL ⊂ R × Ω, we have that vΩL
(x1, x

′) � vR×Ω(x1, x
′) =

v′Ω(x′). Hence

T (ΩL) �
∫

(−L/2,L/2)

dx1

∫
Ω

dx′ v′Ω(x′) = LT ′(Ω). (2.5)

To prove the upper bound in (1.13), we recall (1.4) and combine (2.5) with a lower bound for
Ey[(T (ΩL −B(ΩL))]. We observe that, for the Brownian motion defining B(ΩL) (recall (1.2)
and (1.3)) with starting point β(0) = (β1(0), β′(0)),

τ(ΩL) � τ ′(Ω) = inf{s � 0: β′(s) /∈ Ω}.
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Hence

B(ΩL) ⊂
[
max

{
−L

2
, min
0�s�τ ′(Ω)

β1(s)
}
,min

{
L

2
, max
0�s�τ ′(Ω)

β1(s)
}]

× Ω.

Therefore ΩL −B(ΩL) is contained in the union of at most two cylinders with cross-section Ω
and with lengths (L/2 + min0�s�τ ′(Ω) β1(s))+ and (L/2 − max0�s�τ ′(Ω) β1(s))+, respectively.
For each of these cylinders we apply the lower bound in Theorem 1.1(i), taking into account
that the total length of these cylinders is bounded from below by L− (max0�s�τ ′(Ω) β1(s) −
min0�s�τ ′(Ω) β1(s)). This gives

T (ΩL −B(ΩL)) �
(
L−

(
max

0�s�τ ′(Ω)
β1(s) − min

0�s�τ ′(Ω)
β1(s)

))
T ′(Ω)

− 8
π1/2

∫
[0,∞)

dt t1/2Q′
Ω(t). (2.6)

With obvious abbreviations, by the independence of the Brownian motions B1 and B′, we
have that E(y1,y′) = Ey1 ⊗ Ey′ . For the expected range of one-dimensional Brownian motion it
is known that (see, for example, [11])

Ey1

[
max

0�s�τ ′(Ω)
β1(s) − min

0�s�τ ′(Ω)
β1(s)

]
=

4τ ′(Ω)1/2

π1/2
. (2.7)

Furthermore,

Ey′
[
τ ′(Ω)1/2

]
=

∫
[0,∞)

dτ τ1/2
Py′ (τ ′(Ω) ∈ dτ) = −

∫
[0,∞)

dτ τ1/2

(
d

dτ
Py′ (τ ′(Ω) > τ)

)

=
1
2

∫
[0,∞)

dτ τ−1/2
Py′ (τ ′(Ω) > τ) =

1
2

∫
[0,∞)

dτ τ−1/2

∫
Ω

dz′ p′Ω(y′, z′; τ).

(2.8)

Therefore, by (1.6) and Tonelli’s theorem,∫
Ω

dy′ Ey′
[
τ ′(Ω)1/2

]
=

1
2

∫
[0,∞)

dτ τ−1/2Q′
Ω(τ). (2.9)

So with |ΩL|/L = H2(Ω),

1
|ΩL|

∫
ΩL

dy Ey

[
τ ′(Ω)1/2

]
=

1
2H2(Ω)

∫
[0,∞)

dτ τ−1/2Q′
Ω(τ). (2.10)

Combining (1.4), (2.5), (2.6), and (2.10), we obtain

T(ΩL) � 8
π1/2

∫
[0,∞)

dt t1/2Q′
Ω(t) +

(
2

π1/2H2(Ω)

∫
[0,∞)

dτ τ−1/2Q′
Ω(τ)

)
T ′(Ω). (2.11)

The second integral in the right-hand side of (2.11) can be bounded from above using (1.9).
This gives that

2
π1/2H2(Ω)

∫
[0,∞)

dτ τ−1/2Q′
Ω(τ) � 2

π1/2

∫
[0,∞)

dτ τ−1/2 e−τλ′
1(Ω) = 2λ′

1(Ω)−1/2. (2.12)

Via a calculation similar to the one in (2.4), we obtain that

8
π1/2

∫
[0,∞)

dt t1/2Q′
Ω(t) � 4λ′

1(Ω)−1/2 T ′(Ω). (2.13)
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Combining (2.11), (2.12), and (2.13), we arrive at (1.13). �

Proof of Theorem 1.1(iii). If we use the upper bound in (1.12) instead of the upper bound
in (2.5), then we obtain that

T(ΩL) � 4λ′
1(Ω)−1/2 T ′(Ω) + 8L−1λ′

1(Ω)−1 T ′(Ω).

This in turn implies (1.14). �

3. Key proposition

The proofs of Theorems 1.2 and 1.3 rely on the following proposition which states formulae for
the constants c in (1.15) and c′ in (1.18), respectively. We recall definitions (1.4), (1.11), and
(1.17).

Proposition 3.1. If Ω = DR, then

lim
L→∞

T(CL,R) = cR5, lim
L→∞

C(CL,R) = c′R5, R > 0, (3.1)

with

c =
1
π

∫
D1

dy′ E(0,y′)

[∫
C1

dx
(
vC1(x) − vC1−B(C1)(x)

)]
,

c′ = E(0,0)

[∫
C1

dx
(
vC1(x) − vC1−B(C1)(x)

)]
.

(3.2)

Proof. The proof for T(CL,R) comes in 10 steps.
(1) By (1.4),

T(CL,R) =
1

πR2L

∫
CL,R

dy Ey

[∫
CL,R

dx
(
vCL,R

(x) − vCL,R−B(CL,R)(x)
)]

. (3.3)

We observe that x �→ vCL,R
(x) − vCL,R−B(CL,R)(x) is harmonic on CL,R −B(CL,R), is non-

negative, and equals 0 for x ∈ ∂CL,R. By Lemma A.1 in Appendix, N �→ vCN,R
(x) −

vCN,R−B(CL,R)(x) is increasing on [L,∞), and bounded by 1
4R

2 uniformly in x. Therefore

vCL,R
(x) − vCL,R−B(CL,R)(x) � lim

N→∞
(
vCN,R

(x) − vCN,R−B(CL,R)(x)
)

= lim
N→∞

vCN,R
(x) − lim

N→∞
vCN,R−B(CN,R)(x)

= vCR
(x) − vCR−B(CL,R)(x)

� vCR
(x) − vCR−B(CR)(x), x ∈ CL,R −B(CL,R). (3.4)

The last inequality in (3.4) follows from the domain monotonicity of the torsion function.
Inserting (3.4) into (3.3), we get

T(CL,R) � 1
πR2L

∫
CL,R

dy

∫
CR

dx Ey

[(
vCR

(x) − vCR−B(CR)(x)
)]

. (3.5)

Since vCR
(x) is independent of x1, we have vCR

(x) = vCR
(x− (y1, 0)) and so

Ey [vCR
(x)] = E(0,y′) [vCR

(x− (y1, 0))] . (3.6)
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Since the stopping time τ(CR −B(CR)) is independent of y1, we also see that

Ey

[
vCR−B(CR)(x)

]
= E(0,y′)

[
vCR−B(CR)(x− (y1, 0))

]
. (3.7)

Combining (3.5), (3.6), and (3.7), we obtain

T(CL,R) � 1
πR2L

∫
CL,R

dy E(0,y′)

[∫
CR

dx
(
vCR

(x− (y1, 0)) − vCR−B(CR)(x− (y1, 0))
)]

=
1

πR2L

∫
CL,R

dy E(0,y′)

[∫
CR

dx
(
vCR

(x) − vCR−B(CR)(x)
)]

=
1

πR2

∫
DR

dy′ E(0,y′)

[∫
CR

dx
(
vCR

(x) − vCR−B(CR)(x)
)]

.

We conclude that

lim sup
L→∞

T(CL,R) � 1
πR2

∫
DR

dy′ E(0,y′)

[∫
CR

dx
(
vCR

(x) − vCR−B(CR)(x)
)]

.

Scaling each of the space variables y′ and x by a factor R, we gain a factor R5 for the
respective integrals with respect to y′ and x. Furthermore, scaling the torsion functions vCR

and vCR−B(CR), we gain a further factor R2. This completes the proof of the upper bound
for c.

(2) To obtain the lower bound for c, we define L̃ = {x ∈ R
3 : x1 = ±L/2} and

C̃L,R =
{

(x1, x
′) ∈ CR : − L

2
+ (RL)1/2 < x1 <

L

2
− (RL)1/2

}
, L � 4R.

Then, with 1 denoting the indicator function, we have that

T(CL,R) � 1
πR2L

∫
C̃L,R

dy Ey

[∫
CL,R

dx
(
vCL,R

(x) − vCL,R−B(CL,R)(x)
)]

� 1
πR2L

∫
C̃L,R

dy Ey

[
1{B(CL,R)∩L̃=∅}

∫
CL,R

dx
(
vCL,R

(x) − vCL,R−B(CL,R)(x)
)]

=
1

πR2L

∫
C̃L,R

dy Ey

[
1{B(CL,R)∩L̃=∅}

∫
CL,R

dx
(
vCL,R

(x) − vCL,R−B(CR)(x)
)]

=
1

πR2L

∫
C̃L,R

dy Ey

[∫
CL,R

dx
(
vCL,R

(x) − vCL,R−B(CR)(x)
)]

−A1, (3.8)

and

A1 =
1

πR2L

∫
C̃L,R

dy Ey

[
1{B(CL,R)∩L̃ �=∅}

∫
CL,R

dx
(
vCL,R

(x) − vCL,R−B(CL,R)(x)
)]

� 1
πR2L

∫
C̃L,R

dy Ey

[
1{B(CL,R)∩L̃�=∅}

] ∫
CL,R

dx vCL,R
(x)

� R2

8

∫
C̃L,R

dy Py

(
B(CL,R) ∩ L̃ 
= ∅

)

� πR4L

8
sup

y∈C̃L,R

Py

(
θ(L̃) � τ(CR)

)
, (3.9)
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where

θ(K) = inf{s � 0: β(s) ∈ K}

denotes the first entrance time of K. The penultimate inequality in (3.9) uses the two bounds∫
CL,R

dx vCL,R
(x) �

∫
CL,R

dx vCR
(x) = 1

8πR
4L and |C̃L,R| � πR2L.

(3) The following lemma gives a decay estimate for the supremum in the right-hand side of
(3.9) and implies that limL→∞ A1 = 0.

Lemma 3.2.

sup
y∈C̃L,R

Py

(
θ(L̃) � τ(CR)

)
� (j0 + 1)π1/2 e−j0L

1/2/(2R1/2), L � 4R. (3.10)

Proof. First observe that the distance of y to L̃ is bounded from below by (LR)1/2.
Therefore

Py

(
θ(L̃) � τ(CR)

)
� P(0,y′)

(
max

0�s�τ ′(CR)
|β1(s)| � (LR)1/2

)
. (3.11)

By [7, (6.3), Corollary 6.4],

P
(1)
0

(
max
0�s�t

|β1(s)| � R

)
� 23/2e−R2/(8t). (3.12)

Combining (3.11) and (3.12) with the independence of β1 and β′, we obtain via an integration
by parts,

Py

(
θ(L̃) � τ(CR)

)
� 23/2

∫
[0,∞)

dτ

(
∂

∂τ
Py′ (τ ′(DR) > τ)

)
e−LR/(8τ)

=
LR

23/2

∫
[0,∞)

dτ

τ2
Py′ (τ ′(DR) > τ) e−LR/(8τ). (3.13)

By the Cauchy–Schwarz inequality, the semigroup property of the heat kernel, the eigenfunction
expansion of the heat kernel, and the domain monotonicity of the heat kernel, we have
that

Py′ (τ ′(DR) > τ) =
∫
DR

dz′ p′DR
(z′, y′; τ)

� (πR2)1/2
(∫

DR

dz′ (p′DR
(z′, y′; τ))2

)1/2

= (πR2)1/2
(
p′DR

(y′, y′; 2τ)
)1/2

= (πR2)1/2

⎛
⎝ ∞∑

j=1

e−2τλ′
j(DR)

(
ϕ′
DR,j(y

′)
)2⎞⎠

1/2

� (πR2)1/2e−τλ′
1(DR)/2

⎛
⎝ ∞∑

j=1

e−τλ′
j(DR)

(
ϕ′
DR,j(y

′)
)2⎞⎠

1/2
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= (πR2)1/2e−τλ′
1(DR)/2

(
p′DR

(y′, y′; τ)
)1/2

� (πR2)1/2e−τλ′
1(DR)/2(p′

R2(y′, y′; τ))1/2

=
Re−j20τ/(2R

2)

(4τ)1/2
. (3.14)

Combining (3.13) and (3.14), and changing variables twice, we arrive at

Py

(
θ(L̃) � τ(CR)

)
� LR2

25/2

∫
[0,∞)

dτ

τ5/2
e−j20τ/(2R

2)−LR/(8τ)

=
j
3/2
0 L1/4

2R1/4

∫
[0,∞)

dτ

τ5/2
e−j0L

1/2(τ+τ−1)/(4R1/2)

=
j
3/2
0 L1/4

R1/4

∫
[0,∞)

dτ

τ4
e−j0L

1/2(τ2+τ−2)/(4R1/2)

= π1/2j0

(
1 +

2R1/2

j0L1/2

)
e−j0L

1/2/(2R1/2). (3.15)

The last equality follows from [12, 3.472.4]. This proves (3.10) because L � 4R. �

(4) We write the double integral in the right-hand side of (3.8) as B1 + B2, where

B1 =
1

πR2L

∫
C̃L,R

dy Ey

[
1{B(CR)∩L̂=∅}

∫
CL,R

dx
(
vCL,R

(x) − vCL,R−B(CR)(x)
)]

, (3.16)

B2 =
1

πR2L

∫
C̃L,R

dy Ey

[
1{B(CL,R)∩L̂ �=∅}

∫
CL,R

dx
(
vCL,R

(x) − vCL,R−B(CR)(x)
)]

,

with

L̂ = ±L

2
∓ (RL)1/2

2
.

We have that

B2 � 1
πR2L

∫
C̃L,R

dy Py

(
B(CR) ∩ L̂ 
= ∅

)∫
CL,R

dx vCR
(x)

� πR4L

8
sup

y∈C̃L,R

Py

(
τ(L̂) � τ(CR)

)
. (3.17)

The distance from any y ∈ C̃L,R to L̂ is bounded from below by (RL)1/2/8. Following the
argument leading from (3.13) to (3.15) with (RL/4)1/2 replacing (RL)1/2, we find that

Py

(
τ(L̂) � τ(CR)

)
� π1/2j0

(
1 +

4R1/2

j0L1/2

)
e−j0L

1/2/(4R1/2). (3.18)

This, together with (3.17), shows that limL→∞ B2 = 0. It remains to obtain the asymptotic
behaviour of B1.

(5) We write B1 = B3 + B4 + B5, where

B3 =
1

πR2L

∫
C̃L,R

dy Ey

[
1{B(CR)∩L̂=∅}

∫
CL,R

dx
(
vCR

(x) − vCR−B(CR)(x)
)]

,
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B4 =
1

πR2L

∫
C̃L,R

dy Ey

[
1{B(CR)∩L̂=∅}

∫
CL,R

dx
(
vCL,R

(x) − vCR
(x)

)]
,

B5 =
1

πR2L

∫
C̃L,R

dy Ey

[
1{B(CR)∩L̂=∅}

∫
CL,R

dx
(
vCR−B(CR)(x) − vCL,R−B(CR)(x)

)]
. (3.19)

We have that

B4 =
1

πR2L

∫
C̃L,R

dy Py

(
{B(CR) ∩ L̂ = ∅}

)∫
CL,R

dx
(
vCL,R

(x) − vCR
(x)

)

� 1
πR2L

∫
C̃L,R

dy (T (CL,R) − LT ′(DR))

� − 4
π1/2

∫
[0,∞)

dt t1/2Q′
DR

(t), (3.20)

where we have used the lower bound in (1.12) for Ω = DR. Furthermore,

B3 =
1

πR2L

∫
C̃L,R

dy Ey

[∫
CR

dx
(
vCR

(x) − vCR−B(CR)(x)
)]

−A2 −A3, (3.21)

where

A2 =
1

πR2L

∫
C̃L,R

dy Ey

[
1{B(CR)∩L̂=∅}

∫
CR−CL,R

dx
(
vCR

(x) − vCR−B(CR)(x)
)]

,

A3 =
1

πR2L

∫
C̃L,R

dy Ey

[
1{B(CR)∩L̂ �=∅}

∫
CR

dx
(
vCR

(x) − vCR−B(CR)(x)
)]

. (3.22)

(6) To bound A2 we note that x �→ vCR
(x) − vCR−B(CR)(x) is harmonic on CR −B(CR), equals

0 for x ∈ ∂CR, and equals 1
4 (R2 − |x′|2) for x ∈ B(CR). Therefore

vCR
(x) − vCR−B(CR)(x) � R2

4
P̄x (τ̄(B(CR)) � τ̄(CR)) .

On the set {B(CR) ∩ L̂ = ∅} we have that τ̄(L̂) � τ̄(B(CR)). Hence

A2 � 1
4πL

∫
C̃L,R

dy Ey

[
1{B(CR)∩L̂=∅}

∫
CR−CL,R

dx P̄x

(
τ̄(L̂) � τ̄(CR)

)]

� 1
4πL

∫
C̃L,R

dy Ey

[∫
CR−CL,R

dx P̄x

(
τ̄(L̂) � τ̄(CR)

)]

=
R2

4

(
1 − 2R1/2

L1/2

)∫
CR−CL,R

dx P̄x

(
τ̄(L̂) � τ̄(CR)

)
. (3.23)

Recall that τ̄(L̂) equals the first hitting time of L̂ by β̄1, and that τ̄(CR) is the first exit time of
DR by β̄′. Furthermore, for x ∈ CR − CL,R the distance from x to L̂ is equal to (RL/4)1/2 + x1.
By (3.14),

P̄x′ (τ̄ ′(DR) > τ) � Re−j20τ/(2R
2)

(4τ)1/2
.
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It is well known that

P̄
(1)
0

(
max

0�s�τ
β̄1(s) > R

)
= (πτ)−1/2

∫
[R,∞)

dξ e−ξ2/(4τ) � 21/2 e−R2/(8τ).

Hence

P̄
(1)
0

(
max

0�s�τ
β̄1(s) > (RL/4)1/2 + x1

)
� 21/2e−(RL+4x2

1)/(32τ).

By the independence of β̄1 and β̄′ we have, similarly to (3.13),

P̄x

(
τ̄(L̂) � τ̄(CR)

)
� 21/2

∫
[0,∞)

dτ

(
∂

∂τ
P̄x′ (τ̄ ′(DR) > τ)

)
e−(RL+4x2

1)/(32τ)

� R(RL + 4x2
1)

211/2

∫
[0,∞)

dτ

τ5/2
e−j20τ/(2R

2)−(RL+4x2
1)/(32τ)

=
R(RL + 4x2

1)
211/2

∫
[0,∞)

dτ τ1/2 e−j20/(2R
2τ)−(RL+4x2

1)τ/32

=
R(RL + 4x2

1)
29/2

∫
[0,∞)

dτ τ2 e−j20/(2R
2τ2)−(RL+4x2

1)τ
2/32

= 2π1/2R(RL + 4x2
1)

−1/2

(
1 +

j0(RL + 4x2
1)

1/2

4R

)
e−j0(RL+4x2

1)
1/2/(4R)

� 2π1/2

(
R1/2

L1/2
+

j0
4

)
e−(j20L/(32R))1/2−(j0x

2
1/(32R

2))1/2
,

where we have used [12, 3.472.2]. Integration of the above over x ∈ CR − CL,R, together with
(3.23), gives

A2 = O
(
e−(L/(6R))1/2

)
, L → ∞. (3.24)

(7) To bound A3 in (3.22), we use the Cauchy–Schwarz inequality to estimate

A3 � 1
πR2L

∫
C̃L,R

dy
(
Py

(
θ(L̂) � τ(CR)

))1/2
(

Ey

[∫
CR

dx
(
vCR

(x) − vCR−B(CR)(x)
)]2

)1/2

.

(3.25)

The probability in (3.25) decays subexponentially fast in (L/R)1/2 by (3.18). Hence it remains
to show that the expectation in (3.25) is finite. Define

B̂(CR) =
{
x ∈ CR : min

0�s�τ(CR)
β1(s) < x1 < max

0�s�τ(CR)
β1(s)

}
.

Then B(CR) ⊂ B̂(CR), and

Ey

[∫
CR

dx
(
vCR

(x) − vCR−B(CR)(x)
)]2

� Ey

[∫
CR

dx
(
vCR

(x) − vCR−B̂(CR)(x)
)]2

.

For x ∈ B̂(CR) we have vCR
(x) � R2/4 and vCR−B̂(CR)(x) = 0. Furthermore,

vCR
(x) − vCR−B(CR)(x) � R2

4
P̄x

(
τ̄(B̂(CR)) � τ̄(CR)

)
, x ∈ CR − B̂(CR),
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and hence

Ey

[∫
CR

dx
(
vCR

(x) − vCR−B̂(CR)(x)
)]2

� R4

8
Ey

⎡
⎣|B̂(CR)|2 +

(∫
CR−B̂(CR)

dx P̄x

(
τ̄(B̂(CR)) � τ̄(CR)

))2
⎤
⎦ . (3.26)

The probability distribution of the range of one-dimensional Brownian motion is known (see,
for example, [11, equation (19)]). This gives

Ey′

[
max

0�s�τ ′(DR)
β1(s) − min

0�s�τ ′(DR)
β1(s)

]2

=
64 log 2
π1/2

τ ′(DR). (3.27)

By a calculation similar to (2.8) and (2.9), we see that

Ey′

[
max

0�s�τ ′(DR)
β1(s) − min

0�s�τ ′(DR)
β1(s)

]2

=
64 log 2
π1/2

∫
[0,∞)

dτ

∫
DR

dz′ p′DR
(y′, z′; τ)

=
64 log 2
π1/2

v′DR
(y′) � 16 log 2

π1/2
R2.

Together with (3.27), this yields

Ey

(
|B̂(CR)|2

)
� 16π3/2(log 2)R6,

which gives us control over the first term in the right-hand side of (3.26). To estimate the
second term in the right-hand side of (3.26), we note that the set CR − B̂(CR) consists
of two semi-infinite cylinders. It is instructive to calculate this term explicitly. To simplify
notation, we define C+

R = {x ∈ R
3 : x1 > 0, |x′| < R}, ZR = {x ∈ R

3 : x1 = 0, |x′| � R}, and
ϑ(ZR) = inf{s � 0: β̄(s) ∈ ZR}. Then, by separation of variables and integration by parts, we
get

P̄x

(
ϑ(ZR) � τ̄(C+

R )
)

=
∫

[0,∞)

P̄x′ (τ̄ ′(DR) ∈ dτ) P̄x1 (ϑ(ZR) � τ)

=
∫

[0,∞)

P̄x′ (τ̄ ′(DR) ∈ dτ)
2

π1/2

∫
[x1/(2τ1/2),∞)

dξ e−ξ2

=
∫

[0,∞)

dτ P̄x′ (τ̄ ′(DR) > τ)
2x1

πτ3/2
e−x2

1/(4τ). (3.28)

Integrating (3.28) with respect to x1 ∈ R
+, we find that∫

R+
dx1P̄x

(
ϑ(ZR) � τ̄(C+

R )
)

=
4

π1/2

∫
[0,∞)

dτ τ−1/2
P̄x′ (τ̄ ′(DR) > τ) . (3.29)

Subsequently integrating both sides of (3.29) over x′ ∈ DR, we get∫
C+

R

dx P̄x

(
ϑ(ZR) � τ̄(C+

R )
)

=
4

π1/2

∫
[0,∞)

dτ τ−1/2Q′
DR

(τ).

It follows that(∫
CR−B̂(CR)

dx P̄x

(
τ̄(B̂(CR)) � τ̄(CR)

))2

=
64
π

(∫
[0,∞)

dτ τ−1/2Q′
DR

(τ)

)2

. (3.30)
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The integral over τ in (3.30) is finite by (2.12). We conclude that, by (3.18),

A3 �
(
Py

(
θ(L̂) � τ(CR)

))1/2

⎛
⎝2π3/2(log 2)R10 +

8
π
R4

(∫
[0,∞)

dτ τ−1/2Q′
DR

(τ)

)2
⎞
⎠

1/2

= O
(
e−j0L

1/2/(4R1/2)
)
, L → ∞. (3.31)

(8) The integrand in (3.21) is independent of y1. Since limL→∞(L− 2(RL)1/2)/L = 1, we have
by (3.21), (3.24), and (3.31) that

lim inf
L→∞

B3 � 1
πR2

∫
DR

dy′ E(0,y′)

[∫
CR

dx
(
vCR

(x) − vCR−B(CR)(x)
)]

. (3.32)

(9) It remains to obtain a lower bound on B5 in (3.19) as L → ∞. The integrand with respect
to x is a non-negative harmonic function, which can be bounded from below by enlarging the
set B(CR) to ĈR,L := {DR × [−L

2 + 1
2 (RL)1/2, L

2 − 1
2 (RL)1/2]}. Hence

B5 � 1
πR2L

∫
C̃L,R

dy Ey

[
1{B(CR)∩L̂=∅}

∫
CL,R

dx
(
vCR−ĈR,L

(x) − vCL,R−ĈR,L
(x)

)]

=
1

πR2L

∫
C̃L,R

dy Py

(
B(CR) ∩ L̂ = ∅

)∫
CL,R−ĈR,L

dx
(
vCR−ĈR,L

(x) − vCL,R−ĈR,L
(x)

)
.

(3.33)

The set CL,R − ĈR,L consists of two cylinders with cross-section DR and length (RL)1/2/2
each. Hence, by Theorem 1.1(i), we have∫

CL,R−ĈR,L

dx vCL,R−ĈR,L
(x) = T ′(DR)(RL)1/2 − 8

π1/2

∫
[0,∞)

dt t1/2Q′
DR

(t) + O(L−1/2).

(3.34)

The set CR − ĈR,L consists of two semi-infinite cylinders, and we integrate the torsion function
for that set over two cylinders of length (RL)1/2/2, each near their base. Adopting previous
notation, we get∫
CL,R−ĈR,L

dx vCR−ĈR,L
(x) = 2

∫
[0,(RL)1/2/2)

dx1

∫
DR

dx′vC+
R
(x)

= 2
∫

[0,∞)

dt

∫
[0,(RL)1/2/2)

dx1

∫
DR

dx′
∫

[0,∞)

dx1

∫
DR

dy′
∫

[0,∞)

dy1 p
′
DR

(x′, y′; t)pR+(x1, y1; t)

= 2
∫

[0,∞)

dt

∫
[0,(RL)1/2/2)

dx1 uR+(x1; t)Q′
DR

(t)

= 2
∫

[0,∞)

dt

∫
[0,(RL)1/2/2)

dx1

(
1 − 2

π1/2

∫
[x1/(4t)1/2,∞)

dξ e−ξ2

)
Q′

DR
(t)

= T ′(DR)(RL)1/2 − 4
π1/2

∫
[0,∞)

dtQ′
DR

(t)
∫

[0,(RL)1/2/2)

dx1

∫
[x1/(4t)1/2,∞)

dξ e−ξ2
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� T ′(DR)(RL)1/2 − 4
π1/2

∫
[0,∞)

dtQ′
DR

(t)
∫

[0,∞)

dx1

∫
[x1/(4t)1/2,∞)

dξ e−ξ2

= T ′(DR)(RL)1/2 − 4
π1/2

∫
[0,∞)

dt t1/2 Q′
DR

(t). (3.35)

Combining (3.33), (3.34), and (3.35), we arrive at

B5 � 1
πR2L

∫
C̃L,R

dy Py

(
B(CR) ∩ L̂ = ∅

)(
4

π1/2

∫
[0,∞)

dt t1/2 Q′
DR

(t) + O(L−1/2)

)
.

We conclude that

lim inf
L→∞

B5 � 4
π1/2

∫
[0,∞)

dt t1/2 Q′
DR

(t). (3.36)

(10) From (3.20), (3.32), and (3.36), we get

lim inf
L→∞

(B3 + B4 + B5) �
1

πR2

∫
DR

dy′ E(0,y′)

[∫
CR

dx
(
vCR

(x) − vCR−B(CR)(x)
)]

.

Scaling each the space variables y′ and x by a factor R, we gain a factor R5 for the
respective integrals with respect to y′ and x. Furthermore, scaling the torsion functions vCR

and vCR−B(CR), we gain a further factor R2. Hence

1
πR2

∫
DR

dy′ E(0,y′)

[∫
CR

dx
(
vCR

(x) − vCR−B(CR)(x)
)]

=
1
π
R5

∫
D1

dy′ E(0,y′)

[∫
C1

dx
(
vC1(x) − vC1−B(C1)(x)

)]
,

which is the required first formula in (3.1). �
The main modification for the proof for C(CL,R) in the second formula of (3.1) is that no

averaging takes place over the cross-section DR as y′ = 0 is fixed. Hence the absence of the
factor 1

π and the integral with respect to y′ over D1 in the formula for c′ in (3.2).

4. Proofs of Theorems 1.2 and 1.3

The proofs of Theorems 1.2 and 1.3 are given in Section 4.1 and 4.2, respectively, and rely on
Proposition 3.1.

4.1. Proof of Theorem 1.2

To prove the upper bound we note that λ′
1(DR) = j2

0/R
2 and T ′(DR) = πR4/8 (see [6]). This

gives the upper bound πR5/2j0 for the right-hand side of (1.15), which implies the upper
bound for c in (1.16).

To prove the lower bound we start from (3.2). Let a ∈ (0, 1
4 ). We have the following estimate:

c =
1
π

∫
D1

dy′ E(0,y′)

[∫
C1

dx
(
vC1(x) − vC1−B(C1)(x)

)]

� 1
π

∫
Da

dy′ E(0,y′)

[∫
C1

dx
(
vC1(x) − vC1−B(C1)(x)

)]

� 1
π

∫
Da

dy′ E(0,y′)

[∫
{x∈R3 : |x−β(0)|<a}

dx
(
vC1(x) − vC1−B(B(β(0);a))(x)

)]
, (4.1)
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where we have used that B(C1) ⊃ B(B((0, y′); a)). To estimate the second integral, we consider
a fixed compact set K ⊂ B((0, y′); a) ⊂ R

3 and derive a lower bound for vC1(x) − vC1−K(x)
uniformly in |y′| � a and |x− (0, y′)| � a.

First note that x �→ vC1(x) − vC1−K(x) is harmonic on C1 −K, equals 0 for x ∈ ∂C1, and
equals 1

4 (1 − |x′|2) for x ∈ K. If |y′| < a, then |x′| < 2a, x ∈ K. Hence vC1(x) − vC1−K(x) �
1
4 (1 − 4a2) for x ∈ K. We therefore have

vC1(x) − vC1−K(x) � 1 − 4a2

4
P̄x (τ̄R3−K < τ̄(C1)) , x ∈ C1. (4.2)

By the strong Markov property, we have

P̄x (τ̄R3−K < τ̄(C1)) = P̄x (τ̄R3−K < ∞) − P̄x (τ̄(C1) � τ̄R3−K < ∞)

� inf
{|x−(0,y′)|<a}

P̄x (τ̄R3−K < ∞) − sup
x∈∂C1

P̄x (τ̄R3−K < ∞) . (4.3)

Let μK denote the equilibrium measure for K. Then (see [15])

P̄x (τ̄R3−K < ∞) =
∫
K

μK(dz)
1

4π|x− z| , x ∈ K. (4.4)

If z ∈ K and |x− (0, y′)| � a, then |x− z| � 2a. Hence (4.4) gives

inf
{|x−(0,y′)|<a}

P̄x (τ̄R3−K < ∞) � 1
8πa

∫
K

μK(dz) =
1

8πa
cap(K). (4.5)

Furthermore, if x ∈ ∂C1, z ∈ K and |y′| � a, then |z − x| � 1 − 2a. Hence (4.4) also gives

sup
x∈∂C1

P̄x (τ̄R3−K < ∞) � 1
4π(1 − 2a)

cap(K). (4.6)

Combining (4.5) and (4.6), we get

P̄x (τ̄R3−K < τ̄(C1)) �
1 − 4a

8πa(1 − 2a)
cap(K),

K ⊂ B((0, y′); a), |x− (0, y′)| � a |y′| � a. (4.7)

Combining (4.1), (4.2), and (4.7), we arrive at

c � 1 − 4a2

4π
1 − 4a

8πa(1 − 2a)

∫
Da

dy′
∫
{x∈R3 : |x−(0,y′)|<a}

dxE(0,y′) [cap (B(B(β(0); a)))]

=
(1 − 4a)(1 + 2a)a4

24
E0 [cap (B(B(0; a)))]

=
(1 − 4a)(1 + 2a)a5

24
κ, (4.8)

where we have used that H2(Da) = πa2, |B(0; a)| = 4π
3 a3, and

E0 [cap (B(B(0; a)))] = aE0 [cap (B(B(0; 1)))] = κa.

The right-hand side of (4.8) is maximal when

a =
√

79 − 3
28

.

This choice of a yields the left-hand side of (1.16). �



TORSIONAL RIGIDITY FOR CYLINDERS WITH A BROWNIAN FRACTURE 337

4.2. Proof of Theorem 1.3

We first prove the upper bound. By (2.8),

E0

[
τ ′(DR)1/2

]
=

∫
[0,∞)

dτ τ1/2
Py′ (τ ′(DR) ∈ dτ) =

1
2

∫
[0,∞)

dτ τ−1/2

∫
DR

dz′ p′DR
(0, z′; τ).

(4.9)

By the monotonicity of the Dirichlet heat kernel,

p′DR
(0, z′; τ) � p′

R2(0, z′; τ) = (4πτ)−1e−|z′|2/(4τ). (4.10)

Combining (4.9) and (4.10), we get

E0

[
τ ′(DR)1/2

]
� 1

2

∫
[0,∞)

dτ τ−1/2

∫
DR

dz′ (4πτ)−1 e−|z′|2/(4τ) = 1
2π

1/2R. (4.11)

Combining (2.6), (2.7), and (4.11), we obtain

E0 [T (CL,R −B(CL,R))] � (L− 2R)T ′(DR) − 8
π1/2

∫
[0,∞)

dt t1/2Q′
DR

(t). (4.12)

From (1.12) we have

T (CL,R) � T ′(DR)L− 4
π1/2

∫
[0,∞)

dt t1/2Q′
DR

(t) +
8

Lλ′
1(DR)

T ′(DR). (4.13)

Combining (1.17), (4.12), and (4.13), we get

C(CL,R) � 2RT ′(DR) +
4

π1/2

∫
[0,∞)

dt t1/2Q′
DR

(t) +
8

Lλ′
1(DR)

T ′(DR).

Since T ′(DR) = π
8R

4, we conclude by (2.13) with Ω = DR, that

lim sup
L→∞

C(CL,R) � π

4

(
1 +

1
j0

)
R5.

To prove the lower bound we start from (3.2). Let a ∈ (0, 1
3 ). We have the following estimate:

c′ = E0

[∫
C1

dx
(
vC1(x) − vC1−B(C1)(x)

)]
� E0

[∫
Da

dx
(
vC1(x) − vC1−B(B(β(0);a))(x)

)]
.

Fix a compact set K ⊂ B(B(0); a) ⊂ R
3. Note that x �→ vC1(x) − vC1−K(x) is harmonic on

C1 −K, equals 0 for x ∈ ∂C1, and equals 1
4 (1 − |x′|2) for x ∈ K. If |x| < a, then |x′| < a,

x ∈ K. Hence vC1(x) − vC1−K(x) � 1
4 (1 − a2) for x ∈ K. We therefore have

vC1(x) − vC1−K(x) � 1 − a2

4
P̄x (τ̄R3−K < τ̄(C1)) , x ∈ C1.

It is straightforward to check that (4.5) holds for y′ = 0. Furthermore, if x ∈ ∂C1 and z ∈ K,
then |z − x| � 1 − a. Hence, by (4.4),

sup
x∈∂C1

P̄x (τR3−K < ∞) � 1
4π(1 − a)

cap(K).

Combining (4.5) and (4.6), we get

P̄x (τ̄R3−K < τ̄(C1)) �
1 − 3a

8πa(1 − a)
cap(K), K ⊂ B(β(0); a), |x| � a.
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Combining (4.2), (4.5), and (4.7), we arrive at

E0

[∫
C1

dx
(
vC1(x) − vC1−B(C1)(x)

)]

� 1 − a2

4
1 − 3a

8πa(1 − a)

∫
{x∈R3 : |x|<a}

dxE0 [cap (B(B(0; a)))]

=
(1 − 3a)(1 + a)a3

24
κ. (4.14)

The right-hand side of (4.14) is maximal when

a =
√

61 − 4
15

.

This choice of a yields the left-hand side of (1.19). �

Appendix

The following estimate was used in Step 1 of the proof of Proposition 3.1.

Lemma A.1. Let Ω1 ⊂ Ω2 be non-empty open sets in R
m and K a compact set in R

m.
Let the torsion functions for Ω1,Ω2,Ω1 −K,Ω2 −K be denoted by vΩ1 , vΩ2 , vΩ1−K , vΩ2−K ,
respectively. Suppose that inf [spec(−ΔΩ2)] > 0. Then

vΩ2(x) − vΩ2−K(x) � vΩ1(x) − vΩ1−K(x), x ∈ Ω1 −K,

and

vΩ2(x) − vΩ2−K(x) � 1
8
(m + cm1/2 + 8)λ(Ω2)−1, x ∈ Ω1 −K, (A.1)

with

c =
√

5(4 + log 2).

Proof. We extend the torsion functions vΩ2−K and vΩ1−K to all of Ω1 by putting them
equal to 0 on K ∪ (Rm − Ω1). Define h(x) = (vΩ2(x) − vΩ2−K(x)) − (vΩ1(x) − vΩ1−K(x)),
x ∈ Ω1 −K. Then h is harmonic on Ω1 −K, and h(x) = vΩ2(x) − vΩ1(x) � 0, x ∈ K, by the
domain monotonicity of the torsion function. Furthermore, h(x) = vΩ2(x) − vΩ2−K(x) � 0,
x ∈ ∂Ω1, by the domain monotonicity, and h(x) � 0, x ∈ Ω1 −K, by the maximum principle
of harmonic functions. The estimate in (A.1) follows from the non-negativity of the torsion
function, together with the estimate in [18]. �
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