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Reconstructing patterns of interconnections from partial information is one of the most important issues
in the statistical physics of complex networks. A paramount example is provided by financial networks.
In fact, the spreading and amplification of financial distress in capital markets are strongly affected by the
interconnections among financial institutions. Yet, while the aggregate balance sheets of institutions are publicly
disclosed, information on single positions is mostly confidential and, as such, unavailable. Standard approaches to
reconstruct the network of financial interconnection produce unrealistically dense topologies, leading to a biased
estimation of systemic risk. Moreover, reconstruction techniques are generally designed for monopartite networks
of bilateral exposures between financial institutions, thus failing in reproducing bipartite networks of security
holdings (e.g., investment portfolios). Here we propose a reconstruction method based on constrained entropy
maximization, tailored for bipartite financial networks. Such a procedure enhances the traditional capital-asset
pricing model (CAPM) and allows us to reproduce the correct topology of the network. We test this enhanced
CAPM (ECAPM) method on a dataset, collected by the European Central Bank, of detailed security holdings of
European institutional sectors over a period of six years (2009–2015). Our approach outperforms the traditional
CAPM and the recently proposed maximum-entropy CAPM both in reproducing the network topology and in
estimating systemic risk due to fire sales spillovers. In general, ECAPM can be applied to the whole class of
weighted bipartite networks described by the fitness model.

DOI: 10.1103/PhysRevE.96.032315

I. INTRODUCTION

The recent financial crises have highlighted the importance
of correctly evaluating systemic risk in financial markets, by
explicitly considering the role played by financial intercon-
nections (both as direct exposures through bilateral contracts
and indirect exposures through common assets holding [1–6])
in the spreading of financial distress [7–11]. Thus, character-
izing the underlying network structure of financial systems
has become not only a scientific but also an institutional
priority [12–16]. However, while financial institutions have
to disclose their aggregated exposures (eventually split into
major categories), detailed data on their single positions
are generally confidential and, thus, unaccessible. For this
reason, reconstructing the network structure from the available
data has recently attracted much attention [17–29]. Yet,
while several efforts have been devoted so far to reconstruct
monopartite networks of bilateral exposures between financial
institutions, methods to reconstruct the bipartite structure of
assets ownership by such institutions are still little explored
[30]. Assessing the portfolio composition of both financial
actors and the institutional sectors they belong to is, however,
crucial in terms of systemic stability. In fact, portfolio overlaps
have the potential to trigger fire sales, i.e., downward spirals for
illiquid asset prices due to self-reinforcing sell orders [31–35].
Fire sales spillovers are also dangerous because they create
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incentives to hoard liquidity, thus activating a spiral potentially
leading to a complete freeze of the financial system [36–41].

Reconstruction of monopartite networks of direct exposures
between financial institutions (such as interbank markets) is
typically pursued through dense maximum-entropy techniques
that use the available information as constraints to be satisfied
[17,18]. The major drawback of these approaches is, however,
that of generating unrealistically (almost) fully connected
topologies which, in turn, were shown to underestimate
systemic losses due to counterparty risk [19,20]. Several
techniques have thus been developed to obtain sparse recon-
structions [20,22–24] by inferring connection probabilities
via the aggregated exposures [25]. While these approaches
either explore the whole range of possible network densities
or directly make use of ad hoc density values, a recently
proposed bootstrapping algorithm allows one to obtain an
accurate guess of the true network density relying on small,
informative, subsets of nodes [42,43]. The latter approach
has then been developed into a statistically grounded recon-
struction procedure, which assesses connection probabilities
through a configuration model (CM) [44,45] tailored on the
estimated density and induced by the aggregated exposures
used as fitnesses [46,47]. In order to evaluate the weights
of connections, the approach can be complemented either
with a degree-corrected gravity model (dcGM) [27] or with
an enhanced CM (ECM [48]) [28]. As pointed out by
recent studies [49,50], this method outperforms other existing
(probabilistic) reconstruction techniques.
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Differently from interbank markets, networks of institu-
tional portfolio holdings are systems composed by two classes
of nodes: institutions (or sectors) and financial instruments.
In this case a reconstruction method has to account for the
bipartite structure of the system, since connections are allowed
only between nodes belonging to different classes. Standard
maximum entropy techniques have been extended also to
deal with such systems, generating candidate configurations
according to the capital-asset pricing model (CAPM)—for
which investors choose their portfolio so that each position
on a given asset is proportional to that asset’s market
capitalization [51,52]. Recently, a cross-entropy maximization
technique constraining weight expectations to match CAPM
values [maximum-entropy CAPM (MECAPM)] has also been
formalized [30]. Yet, both approaches predict very dense
configurations, thus failing in reproducing the real network
structure, and eventually underestimating systemic risk arising
from fire sales spillovers [32] (although this may depend on
the metric chosen [30]).

In this paper we aim at overcoming the density issue for
bipartite networks reconstruction, by defining an enhanced
CAPM (ECAPM), which extends the fitness-induced CM
introduced for monopartite networks [27] to the bipartite case.
In a nutshell, the method consists of a two-step inference
procedure: first, links presence is assessed through a bipartite
CM (BiCM) [53] calibrated using the aggregated balance
sheet data as fitnesses; then, weights are estimated via the
degree-corrected CAPM. To validate our method, we use a
unique dataset of security holdings by institutional sectors
in Europe (in particular, we have the detailed exposures of
long-term security bonds between sectors). Since we have
full information on these data (which is confidential and not
publicly available), we are able to precisely assess the accuracy
of our reconstruction method.

II. METHOD

A. Notation

We start by introducing the notation that is used throughout
the paper. Assets ownership data are represented as a weighted,
undirected, bipartite network G0 of N investors portfolios
and M assets. The generic element of the N×M biadjacency
matrix, wiα , is the value of asset α held by portfolio i.
The aggregated balance sheet information is thus given by
the nodes strengths, namely, the market value of portfolio
i, Vi = ∑

α wiα , and the market capitalization of asset α,
Cα = ∑

i wiα . Connection patters are instead described by the
N×M binary biadjacency matrix, the generic element aiα of
which equals 1 if wiα > 0 and zero otherwise. Nodes degrees
are then given by the number of different assets held by each
portfolio i, ki = ∑

α aiα , and by the number of investors in
each asset α, dα = ∑

i aiα . W = ∑
iα wiα denotes the total

economic value of the system, and L = ∑
iα aiα is the total

number of connections (ownership relations) in the network.

B. Problem statement

Suppose we have limited information on G0: we know the
whole strength sequences {Vi}Ni=1 and {Cα}Mα=1 and the total
number of links L (note that strengths are usually publicly

available and, thus, easy to access, whereas L is more difficult
to obtain and is typically proxied through density sampling or
bootstrapping techniques [42,54]). In this situation, our goal is
to find the optimal estimate for X(G0), the value of a generic
property X measured on the real network G0 on the basis of
the information available.

The ECAPM network reconstruction procedure works in
two main steps: it supposes G0 as drawn from an appropriate
ensemble � of bipartite graphs, defined by a fitness-induced
BiCM for links presence and by a degree-corrected CAPM
for links weight. In what follows, we will label with the tilde
symbol ∼ quantities of networks drawn from �.

C. Topology reconstruction

If we knew the degree of each node in the network, we
could use the BiCM [53] to directly generate � as the ensemble
of binary, undirected bipartite networks satisfying the degree
constraints 〈ki〉� = ki(G0), i = 1 . . . N and 〈dα〉� = dα(G0),
α = 1 . . . M . This would imply a probability distribution over
� defined by a set of Lagrange multipliers {xi}Ni=1 and {yα}Mα=1
(one for each node) associated to the degrees, so that the
connection probability between nodes i and α is

piα ≡ 〈ãiα〉� = xiyα

1 + xiyα

, (1)

independently for all nodes pairs. Here, however, we are
studying the case where node degrees are unknown, yet we
know the total number L of links. Thus, while we cannot
directly use the BiCM, we can resort to the fitness ansatz,
which assumes the network topology to be determined by
intrinsic node properties named fitnesses. This approach has
been successfully used in the past to model several economic
and financial networks, by assuming a proportionality between
fitnesses and Lagrange multipliers [47,55,56]. Thus, as in the
case of monopartite financial networks [27,28], we assume the
strengths (which we know) to represent node-specific fitnesses
and be linearly proportional to the BiCM Lagrange multipliers
(induced by degrees): xi ≡ √

zV Vi , ∀i and yα ≡ √
zCCα , ∀α.

Thanks to this assumption, our task reduces to determining
only one proportionality constant, which is obtained by
equating the ensemble average of the total number of links
with the (known) total number L of links of G0:

〈L〉� ≡
∑

i

∑
α

zViCα

1 + zViCα

= L(G0), (2)

where we have defined z = √
zV zC . Equation (2) is an

algebraic equation in z with a single positive solution, which
is then used to estimate the linking probabilities of Eq. (1):

piα ≡ 〈ãiα〉� = zViCα

1 + zViCα

∀(i,α). (3)

By preserving the network density, the topology predicted by
Eq. (3) generally differs substantially from the one charac-
terizing the fully, or very densely, connected configurations
predicted by the CAPM and MECAPM, respectively.

D. Weights reconstruction

If the information on nodes degrees were accessible, the
formal approach to obtain a weighted reconstructed network
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would prescribe to use the ECM to maximize entropy,
constraining both degrees and strengths. The observed degree
sequence might be in principle replaced by its estimate from
the first step of the method [28], yet this procedure becomes
unfeasible for large networks, since it requires the solution
of 2(N + M) coupled nonlinear equations. The alternative
approach that we follow here is to make use of the CAPM
framework, which can be seen as the bipartite counterpart
of the standard gravity model used for monopartite networks
[17,19]. In its original version, CAPM assigns weights as

ω̃iα = Vi Cα/W. (4)

As a result, the model reproduces the original strengths
sequence only when fully connected networks are considered.
To account for a network topology determined by nontrivial
connection probabilities, we can extend the dcGM prescription
proposed in [27] to bipartite networks. Weights of individual
links are thus determined as

w̃iα = ViCα

Wpiα

ãiα = (z−1 + Vi Cα)
ãiα

W
. (5)

Notably, this equation ensures that the expected values of
the reconstructed weights coincide with the CAPM ones,
〈w̃iα〉� ≡ ω̃iα, ∀(i,α), thus preserving the strength sequence
on average, irrespective of the underlying reconstructed
topology [28].

E. Remarks

To sum up, the set of connection probabilities defined in
Eq. (3) and of link weights defined in Eq. (5) univocally deter-
mine the ensemble �, so that the value of the generic quantity
X in G0 can be estimated as its ensemble average 〈X〉�. In the
following, we will show results of the ECAPM reconstruction
procedure for a case study of security holdings by European
institutional sectors, which we believe can be of interest to
both researchers and practitioners. A more exhaustive analysis
of ECAPM can be found in the Appendix, where we show the
analytic derivation of the model in the sparse network limit,
as well as a more general formulation using the continuous
approximation of the fitness model (in the latter case, we show
how to write the expected values of the quantities of interest in
terms of moments of the involved probability distributions).

Before moving further, let us explain the difference
between the ECAPM and the MECAPM [30] reconstruction
techniques (see the Appendix for further details). Although
both approaches predict average link weights matching the
CAPM values, MECAPM leads to connection probabilities
of the form qiα = ω̃iα/(1 + ω̃iα), which is the special case
z = 1/W of Eq. (3). These probabilities then assume values
very close to unity even for moderately large weights. This
is due to the very definition of MECAPM, obtained by
maximizing entropy constraining only the strength sequence
(i.e., without accounting for the network connectivity),
a prescription which redistributes weights as evenly as
possible—thus generating very dense networks.

III. DATA

The dataset we use to test our reconstruction method is
based on the Security Holding Statistics (SHS) collected by the

TABLE I. Institutional sector classification by the European
Central Bank.

Sector Description

s_11 Nonfinancial corporations
s_121 The central bank
s_122 Deposit-taking corporations except the central bank
s_123 Money market funds (MMFs)
s_124 Non-MMF investment funds
s_125 Other financial intermediaries, except ICs and PFs
s_126 Financial auxiliaries
s_127 Captive financial institutions and money lenders
s_128 Insurance corporations (ICs)
s_129 Pension funds (PFs)
s_13 General government
s_14 Households (only in holders)
s_15 Nonprofit institutions serving households
s_X Not allocated/unspecified

European Central Bank. The data have quarterly information
on each individual security at the country-sector level, covering
a time span from 2009Q1 to 2015Q2, and is reported at the
current Euro value. Holding data include four types of financial
tools: long-term security bonds, short-term security bonds,
money market funds, and equity. A distinctive feature of the
dataset is that the holding information is collected for each
international securities identification number (ISIN).

To carry out our analysis, we focus on long-term security
bonds and consider quarterly snapshots of the debt exposure
of 14 different institutional sectors, with standard European
Central Bank classification (see Table I), for each of the 19 Eu-
ropean reporting countries. This results in a first layer of N =
266 holders nodes, each corresponding to a specific country-
sector combination. The second layer represents the issuers
of the securities, where we aggregated the specific ISINs to
the same country-sector classification, with the exception of
the households (only 13 sectors). Since the reporting countries
are required to report on any equity, with no limitation on the
location of security issuer, the second layer is composed of all
the possible issuers nodes from 242 countries (including the
19 reporting countries) resulting in M = 3146 country-sector
combinations. Each link wiα thus corresponds to the holdings
of holder i (aggregated to the country sector) of the securities
issued by issuer j (aggregated to the country sector).

Overall, we have 24 temporal snapshots (quarters) of the
data, bearing the complex networks signature of broad degree
and strength distributions (Fig. 1). Notice that dense recon-
struction methods such as CAPM and MECAPM would not
be able to replicate these heterogeneous topological features.

We remark that the magnitude of the collected holdings is
substantial: for instance, total holdings by countries belonging
to the Euro area amount to around 18.3 trillion Euro at the end
of June 2014, thus representing a relevant share of the total
financial system. While the information on SHS marginals
(e.g., the total asset of a particular holder sector) is relatively
easy to access, the full availability of the SHS provides us with
a unique opportunity to test the effectiveness of our method in
reconstructing the network structure of such an important and
large-scale financial system. For the sake of confidentiality,
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FIG. 1. Empirical cumulative distributions for the degrees of holders k (a) and of issuers d (c), and of the strengths of holders V (b) and of
issuers C (d), in the SHS dataset.

the analysis does not contain any explicit reference to any
specific country. Also, for the sake of readability, in the
following we report results only for the most recent quarter of
the dataset (2015Q2), yet our findings are robust across all 24
quarterly snapshots.

IV. RESULTS

We start by looking at the size of individual exposures
between holders and issuers, i.e., the weights of the existing
links in the network. As already mentioned, ECAPM weight
expectations coincide with those of the original CAPM and
MECAPM defined in Eq. (4). If we compare such expectations
with the real observed weights (Fig. 2), we see that all
reconstruction methods perform well in reproducing the
nonzero weights of the network. However, weight uncertainties
differ significantly between ECAPM and MECAPM, as shown
by the ratio of standard deviations within the ensemble (see
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FIG. 2. Comparison between observed weights in the SHS net-
work and CAPM-predicted ones. The black line denotes the identity.

the Appendix):

rwiα
= σ ECAPM

wiα

σ MECAPM
wiα

�
√

1

piα

− 1. (6)

Since 90% of the rwiα
coefficients are smaller than 1 in our

dataset, we can assert that ECAPM is more accurate than
MECAPM. Notice the key role played by the topology in
lowering the uncertainty of weights estimation: rwiα

< 1 is
equivalent to piα > 1/2. The fact that such a feature holds
for country-sector holdings is also consistent with our fitness
model ansatz on the relationship between node degrees and
strengths.

Next, we perform a key test for the fitness ansatz of our
model (Fig. 3), showing that the strength-induced degrees
{〈ki〉�}Ni=1 and {〈dα〉�}Mα=1 predicted by ECAPM interpolate
well the empirical values {ki(G0)}Ni=1 and {dα(G0)}Mα=1, while
MECAPM fails to a large extent. This result supports the use
of connection probabilities defined by ECAPM as Eq. (3).
Then, to further assess the effectiveness of our reconstruction
method, we consider three different families of indicators:
topological, statistical, and financial ones.

Topological indicators aim at assessing whether a given
reconstruction method can effectively reproduce higher-order
features which are commonly regarded as most significant for
describing a network. Here we focus on the average nearest-
neighbor degrees knn and dnn and strengths V nn and Cnn [53],
namely, the arithmetic mean of degrees and strengths of node
neighbors, respectively (see the Appendix). In the context of
SHS data, knn (V nn) indicate how many exposures (the total
portfolio weight) holders have on average for a specific issuer,
while dnn (Cnn) indicate how many investors (the total amount
of money invested) issuers have on average for a specific
holder. As Fig. 4 shows, our method correctly reproduces the
observed decreasing trends, interpolating the clouds of points
describing the real network. Again, the MECAPM predicts flat
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FIG. 3. Empirical relation between strengths and degrees in the data (red points), superimposed with the prediction by ECAPM (blue
points) and MECAPM (green points), for both the layers of holders (a) and of issuers (b).

trends which are not compatible with the observed patterns,
by systematically over-/underestimating them.

Statistical indicators instead provide information on the
details of the reconstructed network structure. More specifi-
cally, they quantify the ability to correctly predict the presence
of individual links (i.e., the position of ones in the binary
biadjacency matrix) and their absence (i.e., the position of
zeros). As explained in detail in the Appendix, this is measured
by the performance of a binary classifier, thus using the
usual percentages of true positives, true negatives, false

positives, and false negatives. Table II reports four more
informative combinations of such indices: true positive rate
(TPR), specificity (SPC), positive predicted value (PPV), and
accuracy (ACC). Note that while these numbers refer to
2015Q2, they are remarkably stable across all 24 quarters
of our dataset (Fig. 5). In order to correctly interpret the
results provided in the table, we recall that while our ECAPM
correctly replicates the observed link density c = L

N ·M � 0.24
(since 〈L〉� = L), MECAPM returns a density of cMECAPM �
0.98. As a trivial consequence, the MECAPM correctly places
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FIG. 4. Empirical values for the average nearest-neighbor degrees dnn vs k (a) and knn vs d (c), and the average nearest-neighbor strengths
Cnn vs V (b) and V nn vs C (d) in the data (red points), superimposed with the prediction by ECAPM (blue points) and MECAPM (green
points).
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TABLE II. Values of statistical indicators quantifying the perfor-
mance of ECAPM and MECAPM in reproducing the details of the
SHS network structure.

ECAPM MECAPM

True positive rate (TPR) 0.63 0.99
Specificity (SPC) 0.89 0.02
Positive predicted value (PPV) 0.63 0.24
Accuracy (ACC) 0.83 0.25

almost all the ones, obtaining a very high true positive rate
(TPR=0.99). However, this feature also represents a major
drawback. In fact, the percentage of correctly recovered zeros
is very low (SPC=0.02), pointing out a strong bias towards
false positives (the percentage of which amounts to FPR =
1 − SPC = 0.98). Using the receiver operating characteristic
(ROC) curve, a plot which illustrates the performance of
a binary classifier as a point with coordinates (TPR,FPR)
inside a unit square—the better the classifier, the closer
its point to the (0,1) vertex—the point corresponding to
MECAPM lies at the top right corner, close to the identity
line: this, in turn, implies that its predictive power (PPV)
equals that of a random classifier based on the bipartite random
graph model (defined by the “homogeneous” assignments
piα ≡ p = L

N ·M ∀i,α). Thus the MECAPM performance in
reproducing the SHS network structure is low, as confirmed
by its small overall accuracy. In contrast, ECAPM performs
much more accurately, correctly recovering 63% of the ones
and 90% of zeros and thus achieving a much higher predictive
power.

Lastly, financial indicators provide information on how
systemic risk is estimated in the reconstructed ensemble.
Since we are in the context of bipartite networks of portfolio
holdings, here we focus on the risk stemming from sales
of illiquid assets and consequent losses during fire sales. In
particular, we follow [33] and use the systemicness index Si

as a measure of the impact of country sector i on the whole

system:

Si = �iVi

E
Biri, (7)

where �i = ∑
jα(wjαlαwiα) is computed from the illiquidity-

weighted projection of the bipartite network, lα is the illiquidity
parameter of α, Bi and ri are the leverage and portfolio return
of country sector i, and E is the total equity in the system.
Note that systemicness as defined by Eq. (7) is at the basis of
more recent and refined risk measures [34,57,58], which fully
implement dynamical downward spirals of asset prices in the
system. Here, since our focus is on network reconstruction
and not on systemic risk modeling, we refrain from using such
metrics which are more difficult to handle. Yet, Eq. (7) contains
quantities which are not accessible through the SHS data. To
get rid of them, we can assume homogeneous shocks in the
system, as well as equal illiquidity for the asset classes, in
order to define the relative systemicness:

S̃i

Si(G0)
=

∑
jα w̃jαw̃iα∑
jα wjαwiα

. (8)

We can then use this quantity to test the reconstruction
procedures. After some algebra (reported in the Appendix), we
find that ECAPM and MECAPM lead to the same predictions
in terms of ensemble average for the systemicness. This is a
natural consequence of weights expectations which coincide
in the two algorithms. However, when single instances of
networks drawn from the corresponding reconstructed ensem-
bles are considered, the two methods again differ. Figure 6
shows the relative systemicness values scattered versus the

holdings of country sectors. As for the reconstruction of
individual weights, the estimates provided by the two methods
coincide for the largest nodes. However, MECAPM tends to
overestimate the systemicness of small nodes. More impor-
tantly, the two methods perform quite differently in estim-
ating the standard deviation of systemicness values. In
particular, the standard deviations of the values shown
in Fig. 6 are ςMECAPM � 2×104 and ςECAPM � 10, and
the ratio of the standard deviations within the ensemble,
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FIG. 5. Performance of ECAPM (a) and MECAPM (b) measured by statistical indicators across the time span of the SHS dataset.
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FIG. 6. Relative systemicness index S̃i/Si(G0) of the various
country sectors as estimated by ECAPM and MECAPM for a
particular configuration drawn from the corresponding ensembles.
Averages are shown for both methods as horizontal solid lines.

rSi
= σ ECAPM

Si
/σ MECAPM

Si
, is smaller than 1 for 90% of the nodes

in the network. This is particularly relevant in potential stress
test applications, since the range of variability of the index
within the reconstructed ensemble basically sets the scenarios
to be considered: having a small variability is desirable to focus
on the most plausible network configurations.

V. DISCUSSION

Reconstructing the properties of a network when only
partial information is available represents a key open problem
in the field of complex systems. Our proposed solution points
out that the accuracy of a reconstruction method crucially
depends on its ability to reproduce the network topology
(i.e., the presence of single links). In fact, without enforcing
any topological constraints (e.g., whenever only the strength
sequence is enforced), the number of connections is usually
overestimated, causing an excess of false positives and, in
turn, reducing the predictive power of the reconstruction
method. Indeed, a method constraining only nodes strengths
assigns the same probability to all configurations with the
same strength sequence: since, as pointed out in previous
contributions [28,48], the number of configurations satisfying
these constraints is usually extremely large, the accuracy of
the achieved reconstruction is undermined.

The fundamental role played by topology clearly emerges in
the calculation of the errors affecting the estimates of quantities
considered. In our case, the standard deviations both for the
weights and of the systemicness index are defined in terms of
linking probabilities. Remarkably, lower errors are obtained
in correspondence of higher probabilities: according to our
assumption, this implies that bigger nodes establish more
connections, which are in turn less affected by errors. This
is relevant especially in terms of systemic risk: bigger nodes
are also the most dangerous ones in case of severe losses or
default. However, although errors are sensitive to topological
details, this is much less the case for the systemicness index
measure. S, in fact, ignores the node-specific patterns of
connections, being purely defined in terms of links weights (see
the Appendix). As a consequence, any algorithm providing
a satisfactory estimate of the latter performs equally well,

irrespective of its performance in reproducing the purely
structural quantities (as the presence of the links themselves).
In our view, this can represent a drawback of the S index to
measure systemic risk. Other measures, on the other hand, are
sensitive to topology [32,59]. In particular, in [32] it is shown
that the probability of contagion in stock markets strongly
depends on connectivity, achieving the minimum value for
both the empty and the fully connected configurations and the
maximum value for intermediate values of the link density
(while the extent of the contagion is a monotonic function
of the density). In [59], on the other hand, it is pointed
out that portfolio heterogeneity affects the extent and the
coordination of feedback effects “triggering transition from
stationary dynamics of price returns to non-stationary ones
characterized by a steep growth (bubbles) and plunges (bursts)
of market prices.” Indeed, the analysis of historical datasets
that also encompass bubbles and crises represents the subject
of future work.

By relying on the fitness model ansatz, ECAPM defines a
null model for bipartite weighted networks where strengths
replace degree constraints. When available, degrees can be di-
rectly used to define the topology using the full BiCM approach
[53]. If this is not the case, the applicability of the method
strongly depends on the accuracy of the assumed functional
relationship between strengths and degrees. While the validity
of the fitness ansatz can be assessed by explicitly comparing
nodes strengths and degrees (whenever available), its rationale
rests upon a simple argument, corroborated by the analysis of
other economic and financial networks [27,28,47,55,56]: the
higher the importance of a node, the larger we expect its degree
to be. Indeed, our method can be applied to any weighted
bipartite network for which this argument applies. Similarly,
the factorization of any graph probability into the product
of single link probabilities characterizing the ECAPM model
could be perceived as inherently inadequate to reproduce the
real network patterns. Although this may indeed be the cause of
the residual deviations between the actual network values and
the reconstructed ones, we emphasize that the independence
of link probabilities is not postulated by us at any stage:
rather, it emerges naturally from the enforcement of purely
local constraints (be they degrees or strengths). Put differently,
the unbiased solution to the inference problem prescribes to
consider independent probabilities. Paradoxically, introducing
(more realistic) dependencies would result in a biased infer-
ence, if starting from the same observational constraints.
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APPENDIX

1. The MECAPM method

MECAPM combines the constrained entropy-
maximization technique and the single weights estimation
wiα from the CAPM model [30], which reads

〈wiα〉CAPM = ViCα

W
∀(i,α). (A1)

This is achieved using the exponential random graph
theoretical framework [44,45]. Indeed, the CAPM model can
be understood as prescribing to constrain the whole set of
weights of a given weighted undirected bipartite network G0.
In this particular case, the probability distribution over the
ensemble factorizes into the product of pair-specific geometric
probability distributions:

P (G0) =
∏

i

∏
α

q
wiα

iα (1 − qiα). (A2)

The generic weight wiα is interpreted as the sum of unitary
links, each one behaving as an independent Bernoulli random
variable. Each pair-specific probability distribution is thus
characterized by a quantity qiα , describing the probability that
nodes i and α are connected.

The N ·M unknown parameters qiα (i =1. . .N , α=1 . . . M)
are estimated by exploiting the likelihood conditions [45]

〈wiα〉CAPM = qiα

1 − qiα

∀(i,α); (A3)

as a result, one obtains

qiα = 〈wiα〉CAPM

1 + 〈wiα〉CAPM
= ViCα/W

1 + ViCα/W
∀(i,α). (A4)

Note that the probability coefficients described by Eq. (A4)
solely depend on the (estimated) weights magnitude: as a con-
sequence, the larger the value 〈wiα〉, the larger the probability
that nodes i and α are connected. Since weights are typically
large, the MECAPM method is likely to predict very dense
configurations. For what concerns the SHS dataset considered
in the present paper, although link probabilities range in
the interval 5×10−5–1, their distribution is characterized
by an average value of q � 0.98 and a standard deviation
of σq � 0.091. Their variation coefficient is σq/q � 0.093,
indicating that the average faithfully represents the distribution
of values (which, practically, coincide with a delta peaked at 1).

2. The ECAPM method

Differently from MECAPM, the ECAPM algorithm fea-
tures a correction term 1/z that accounts for the overall
network link density. For the SHS dataset, probability coef-
ficients computed by ECAPM range in the interval 10−12–1,
their average value is p � 0.24 (coinciding with the network
density of links), and their standard deviation is σp � 0.057.
Their variation coefficient is σp/p � 0.24, indicating that the
average is not representative of the distribution of values,
which is thus rather spread over the corresponding support.

The key ingredient of ECAPM is to quantify the tendency
of any two nodes of establishing a connection, by assuming the
former to depend on the nodes fitness and on the (observed)

total number of links. The way in which the ECAPM method
works can be better illustrated by considering two special cases
which are analytically tractable.

a. Sparse networks

When considering low-density networks, the probability
coefficients can be assumed to be “small.” Let us, thus, assume
that the Taylor expansion (around z0 = 0) of any coefficient
can be truncated to the first order:

piα = zViCα

1 + zViCα

= zViCα − (zViCα)2 + (zViCα)3 . . .

� zViCα. (A5)

In this case, z can be estimated by imposing 〈L〉 =∑
i

∑
α piα = L, which leads to z = L/W 2, further implying

piα = L(ViCα/W 2). The latter expression highlights that any
two nodes are connected with a probability that is a fraction
of the total number of links, properly normalized by the
percentage of the total weight represented by the two involved
nodes strengths. Analogously, when calculating quantities like
nodes degrees, one finds that 〈ki〉 = ∑

α piα = Vi(L/W ) and
〈dα〉 = ∑

i piα = Cα(L/W ).

b. The continuous approximation

In the sparse case, the empirical distributions of strengths
are directly proportional to the empirical distributions of
degrees. As a consequence, a scale-free distribution of the
former induces a scale-free distribution of the latter. Such
an evidence can be used to gain insight into ECAPM also
in the general case: upon assuming nodes fitnesses (i.e.,
nodes strengths) to be drawn from well-defined probability
distributions, V ∼ π (V ) and C ∼ ρ(C), it is enough to
replace each sum with an integral over the aforementioned
distributions. As an example, the formula for computing the
degree of portfolio i, 〈ki〉 = ∑

α piα , becomes

〈ki〉(z,V ) = M

∫
C

(
zViC

1 + zViC

)
ρ(C)dC (A6)

with C representing the support of the distribution. By inserting
the Taylor expansion in Eq. (A5) into Eq. (A6) we get

〈ki〉(z,Vi) = M

∫
C

(
zViC

1 + zViC

)
ρ(C)dC

= M

∫
C
[zViC − (zViC)2 + (zViC)3 . . . ]ρ(C)dC

= M[zViμ1 − (zVi)
2μ2 + (zVi)

3μ3 . . . ], (A7)

offering a recipe for calculating the numerical value of the
statistics of interest, via the computation of the (raw) moments
of the involved distributions. As a last comment, note that
the formulas for the sparse case are obtained by retaining
only the first term in Eq. (A7), and requiring that the first
moment of ρ(C) can be estimated by invoking the likelihood-
maximization principle, i.e., μ = C = (

∑
α Cα)/M = W/M .
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3. Weights estimation

As stated in the main text, the ensemble averages of weights
under the MECAPM and ECAPM coincide. However, the
corresponding statistical fluctuations differ:

σ 2, ECAPM
wiα

= 〈wiα〉2
CAPM

[
1

piα

− 1

]
, (A8)

σ 2, MECAPM
wiα

= 〈wiα〉CAPM(1 + 〈wiα〉CAPM). (A9)

This implies

rwiα
= σ ECAPM

wiα

σ MECAPM
wiα

= 〈wiα〉2
CAPM

〈wiα〉CAPM(1 + 〈wiα〉CAPM)

√
1

piα

− 1

�
√

1

piα

− 1, (A10)

a ratio that is (strictly) smaller than 1 whenever piα > 1/2.

4. Testing the reconstruction methods

In order to test the performance of both ECAPM and
MECAPM in reconstructing the network, we have considered
topological, statistical, and financial indicators.

a. Topological indicators

The first family of indicators consists of quantities provid-
ing information on the global, structural organization of a given
network. For what concerns the network binary structure, we
have considered (i) the degree of, respectively, holders and
issuers, ki(A) = ∑M

α=1 aiα and dα(A) = ∑N
i=1 aiα , and (ii) the

average nearest-neighbor degree of holders and issuers [53]:

dnn
i (A) =

∑M
α=1 aiαdα

ki

, knn
α (A) =

∑N
i=1 aiαki

dα

. (A11)

We compared these values with their expected counterparts,
i.e., 〈ki〉 = ∑M

α=1〈aiα〉, 〈dα〉 = ∑N
i=1〈aiα〉 and

〈
dnn

i

〉 =
∑M

α=1〈aiα〉〈dα〉
〈ki〉 ,

〈
knn
α

〉 =
∑N

i=1〈aiα〉〈ki〉
〈dα〉 . (A12)

Note that, for ECAPM in the sparse case, it is 〈dnn
i 〉 �

(L/W 2)
∑

α C2
α and 〈knn

α 〉 � (L/W 2)
∑

i V
2
i , i.e., the expected

value of the average nearest-neighbor degree of holders and
issuers is constant for all nodes belonging to the same layer.
The predictions by MECAPM, on the other hand, can be
obtained by considering a very dense network, i.e., 〈aiα〉 =
qiα � 1. In this case, we obtain 〈knn

α 〉MECAPM � M − 1 and
〈dnn

i 〉MECAPM � N − 1.
For what concerns the weighted structure of the network,

we have considered the average nearest-neighbor strengths

Cnn
i (W) =

∑M
α=1 aiαCα

ki

, V nn
α (W) =

∑N
i=1 aiαVi

dα

(A13)

and compared them with their expected counterparts:

〈
Cnn

i

〉 =
∑M

α=1〈aiα〉Cα

〈ki〉 ,
〈
V nn

α

〉 =
∑N

i=1〈aiα〉Vi

〈dα〉 . (A14)

As for the average nearest-neighbor degrees, in the sparse
case ECAPM predicts flat trends for all nodes belonging to the
same layer: 〈Cnn

i 〉 � (
∑

α C2
α)/W and 〈knn

α 〉 � (
∑

i V
2
i )/W .

MECAPM predictions are instead obtained by again con-
sidering a very dense network: 〈V nn

α 〉MECAPM � W/(N − 1),
〈Cnn

i 〉MECAPM � W/(M − 1).

b. Statistical indicators

Statistical indicators are compactly represented by the so-
called confusion matrix, a 4×4 matrix the entries of which
represent the number of true positives, true negatives, false
positives, and false negatives. Let us briefly explain why these
concepts are useful for our analysis.

Reconstructing a network G0 means providing an algorithm
to estimate the presence and the weight of the connections. If
we limit our analysis to the binary structure only (represented
by the binary matrix A, with aiα = 
[wiα]), this implies
“guessing” the topological structure of the network, namely
the position of zeros and ones in the matrix. For each entry
of the considered biadjacency matrix, four different cases are
possible.

(a) aiα = 1 and we correctly predict ãiα = 1. When this is
the case, we have a true positive.

(b) aiα = 1 but we predict ãiα = 0. In this case, we have a
false negative.

(c) aiα = 0 and we correctly predict ãiα = 0. In this case,
we have a true negative.

(d) aiα = 0 but we predict ãiα = 1. When this is the case,
we have a false positive.

Given the observed biadjacency matrix A and the recon-
structed matrix Ã, we can straightforwardly count the total
number of true positives as the pointwise product of the two
matrices

TP =
∑

i

∑
α

aiαãiα (A15)

(the generic addendum of which is 1 iff both aij = 1 and
ãij = 1), the total number of false negatives as

FN =
∑

i

∑
α

aiα(1 − ãiα) = L(G0) − TP (A16)

[where L(G0) is total number of observed links], the total
number of true negatives as

TN =
∑

i

∑
α

(1 − aiα)(1 − ãiα)

= N · M − L̃ − L(G0) + TP (A17)

(the generic addendum of which is 1 iff both aij = 0 and
ãij = 0), and the total number of false positives as

FP =
∑

i

∑
α

(1 − aiα)ãiα

= L̃ − TP = [N · M − L(G0)] − TN (A18)

the first addendum of which is the number of zeros in the real
matrix A.
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The information provided by TP, FN, TN, and FP is usually
given by combinations of them. Sensitivity (or true positive
rate) is defined as

TPR = TP

TP + FN
= TP

L(G0)
(A19)

and quantifies the percentage of ones that are correctly
recovered by a reconstruction method. Specificity (or true
negative rate) is defined as

SPC = TN

FP + TN
= TN

N · M − L(G0)
(A20)

and quantifies the percentage of zeros that are correctly
recovered by a reconstruction method. The false positive rate,
defined as FPR = 1 − SPC, is usually compared to TPR in
order to evaluate the performance of a given algorithm with
respect to a random classifier. In fact, whenever TPR and FPR
coincide, the performance of the considered model equals that
of a random classifier (in other words, the model representative
point lies on the identity line of the ROC curve). Precision (or
positive predicted value) is defined as

PPV = TP

TP + FP
(A21)

and measures the performance of an algorithm in correctly
placing the ones with respect to the total number of predicted
ones. Finally, accuracy is

ACC = TP + TN

TP + TN + FP + FN
= TP + TN

N · M
(A22)

and measures the overall performance of a reconstruction
method in correctly placing both ones and zeros.

Since both the ECAPM and the MECAPM methods deal
with an entire ensemble of candidate matrices Ã, we are inter-
ested in estimating the expected values of the aforementioned
indices. Their ensemble averages are reported in Table III. For
the sake of illustration, let us explicitly derive them for the
ECAPM method in the sparse regime and for the MECAPM
method, below.

By resting upon the continuous approximation, the expected
number of true positives for ECAPM is

〈TP〉 = L(G0)
∫
V

∫
C
p(V,C)ρ(C)π (V )dCdV

� L(G0)
∫
V

∫
C
(zV C)ρ(C)π (V )dCdV

= L(G0)zλμ = L(G0)2/(N · M), (A23)

where we have truncated the analytical expression of p(V,C)
at the first order and estimated the first raw moment of the two
distributions as λ = V = W/N and μ = C = W/M . In the
same regime of Eq. (A23), 〈TPR〉 = L(G0)/(N · M), i.e., the
expected sensitivity coincides with the link density.

In the case of MECAPM, instead, TPR and FPR practically
coincide (see Table II). This implies

〈TPR〉 = 1 − 〈SPC〉
⇒ 〈TP〉

Ltrue
= 〈L〉 − 〈TP〉

N · M − Ltrue

⇒ 〈TP〉
〈L〉 = 〈PPV〉 = L(G0)

N · M
, (A24)

i.e., the MECAPM predictive power coincides with the
network link density, which is the PPV of the random graph
model.

Interestingly, the performance of the ECAPM method
in the sparse case and that of MECAPM in recovering
the correct number of ones are very similar (as confirmed
by their close PPV values). However, in the regime of
Eq. (A23), the expected accuracy for ECAPM reads 〈ACC〉 �
1 + 2L(G0)/(N · M), which can be quite large if the network
is very sparse. In other words, the overall accuracy of ECAPM
in reconstructing sparse networks can still be large, the reason
lying in the large number of zeros correctly recovered.

c. Financial indicators

The third family of indicators aims at quantifying the
systemicness of nodes belonging to a financial network. We
follow [33] and adopt the systemicness index Si :

Si = �iVi

E
Biri, (A25)

TABLE III. Statistical indicators used to evaluate the performance of ECAPM and MECAPM in reproducing the observed network structure.

ECAPM MECAPM

〈TP〉ECAPM = ∑
i

∑
α aiαpiα 〈TP〉MECAPM � L(G0)

〈TN〉ECAPM = ∑
i

∑
α(1 − aiα)(1 − piα) = N · M − 2L(G0) + 〈TP〉 〈TN〉MECAPM � 0

〈FP〉ECAPM = [N · M − L(G0)] − 〈TN〉ECAPM = L(G0) − 〈TP〉ECAPM 〈FP〉MECAPM � N · M − L(G0)

〈FN〉ECAPM = L(G0) − 〈TP〉ECAPM 〈FN〉MECAPM � 0

〈TPR〉ECAPM = 〈TP〉ECAPM/L(G0) 〈TPR〉MECAPM � 1

〈FPR〉ECAPM = L(G0)−〈TP〉ECAPM
N ·M−L(G0) 〈FPR〉MECAPM � 1

〈SPC〉ECAPM = 〈TN〉ECAPM
N ·M−L(G0) = 1 − 〈FPR〉ECAPM 〈SPC〉MECAPM � 0

〈PPV〉ECAPM = 〈TP〉ECAPM
〈TP〉ECAPM+〈FP〉ECAPM

= 〈TP〉ECAPM
L(G0) 〈PPV〉MECAPM � L(G0)

N ·M = c(G0)

〈ACC〉ECAPM = 〈TP〉ECAPM+〈TN〉ECAPM
N ·M = 1 − 2c(G0) + 2 〈TP〉ECAPM

N ·M 〈ACC〉MECAPM � c(G0)
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which can be compared with its expected counterpart 〈Si〉 via
the ratio 〈Si〉/Si . After some algebraic manipulations [30],
such a ratio can be rewritten as

〈Si〉
Si

=
∑

j

∑
α〈wiαwjα〉∑

j

∑
α wiαwjα

=
∑

α

〈
w2

iα

〉 + ∑
j 
=i〈wiα〉〈wjα〉∑

α wiαCα

.

(A26)

For ECAPM, this ratio can be further simplified upon

considering that 〈wiα〉 = ViCα

W
and 〈w2

iα〉 = ( ViCα

Wpiα
)
2
piα , which

leads to the expression

〈Si〉ECAPM

Si

=
∑

α

(
ViCα

Wpiα

)2
piα + ViCα

W

[
Cα − ViCα

W

]
∑

α wiαCα

. (A27)

In the case of MECAPM instead we have 〈wiα〉MECAPM =
ViCα

W
and 〈w2

iα〉MECAPM = ViCα

W
(1 + 2ViCα

W
), which leads to the

expression

〈Si〉MECAPM

Si

=
∑

α
ViCα

W

[
1 + Cα + ViCα

W

]
∑

α wiαCα

. (A28)

Since, in both cases, the term ViC
2
α

W
dominates over the other

ones and 〈wiα〉ECAPM = 〈wiα〉MECAPM = 〈wiα〉CAPM, we have

〈Si〉ECAPM

Si

� 〈Si〉MECAPM

Si

�
∑

α

ViC
2
α

W∑
α wiαCα

=
∑

α〈wiα〉CAPMCα∑
α wiαCα

. (A29)

Equation (A29) implies that, among the reconstruction
methods satisfying the strength constraints, those which are
expected to better reproduce the systemicness index are the
ones better reproducing the observed weights. As discussed in
the main text, the prescription 〈wiα〉ECAPM = 〈wiα〉MECAPM =
ViCα

W
is particularly successful in reproducing the largest

weights of the SHS network (beside ensuring that 〈Cα〉 = Cα).
The statistical fluctuations affecting the Si index are

σ
2, MECAPM
Si

=
∑

α

〈wiα〉
[

(1 + 2〈wiα〉)
∑

j

〈wjα〉2

+Cα(1 + Cα) + Cα〈wiα〉(2 + Cα)

]
, (A30)

σ
2, ECAPM
Si

=
∑

α

〈wiα〉2

piα

[ ∑
j

〈wjα〉2

pjα

+C2
α(1 − piα) −

∑
j

〈wjα〉2

]
. (A31)

Interestingly enough, plotting the vector of ratios

rSi
= σ ECAPM

Si

σ MECAPM
Si

(A32)

versus the nodes strengths Vi reveals a functional dependency
rSi

∝ V
−1/2
i . Again, this confirms that ECAPM outperforms

MECAPM in providing an estimate of the systemicness index
Si for the larger institutions, which become less sensitive to
statistical fluctuations.
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