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ABSTRACT
Improvements in the accuracy of shape measurements are essential to exploit the statistical
power of planned imaging surveys that aim to constrain cosmological parameters using weak
lensing by large-scale structure. Although a range of tests can be performed using the mea-
surements, the performance of the algorithm can only be quantified using simulated images.
This yields, however, only meaningful results if the simulated images resemble the real ob-
servations sufficiently well. In this paper, we explore the sensitivity of the multiplicative bias
to the input parameters of Euclid-like image simulations. We find that algorithms will need
to account for the local density of sources. In particular, the impact of galaxies below the
detection limit warrants further study because magnification changes their number density, re-
sulting in correlations between the lensing signal and multiplicative bias. Although achieving
sub-per cent accuracy will require further study, we estimate that sufficient archival Hubble
Space Telescope data are available to create realistic populations of galaxies.

Key words: gravitational lensing: weak – dark energy – dark matter – cosmology:
observations.

1 IN T RO D U C T I O N

In the past decades, the theoretical framework that describes the
formation of cosmic structure has been tested by ever-increasing
precise observations (see e.g. Planck Collaboration XIII 2016, for a
comprehensive comparison of results), which are in general agree-
ment. However, the main ingredients of this ‘concordance model’
are not understood at all: Dark matter and dark energy make up the
bulk, with a mere frosting of baryonic matter. Although a cosmo-
logical constant is an excellent fit to the current data, its unnaturally
small value is by no means satisfactory. Consequently, many alter-
native explanations have been suggested, including modifications
of the theory of General Relativity (see e.g. Amendola et al. 2013,
for an overview). To distinguish between such a multitude of ideas,
dramatically better observational constraints are needed.

Of particular interest is the study of the distribution of matter as
a function of redshift because it is sensitive to modified gravity and
the expansion history. The practical complication that most of the
matter is made up of dark matter can be overcome by measuring the
correlations in the ellipticities of distant galaxies that are the result
of the differential deflection of light rays by intervening structures,
i.e. a phenomenon called gravitational lensing. The amplitude of the
distortion provides us with a direct measurement of the gravitational
tidal field, which, in turn, can be used to ‘map’ the distribution
of dark matter directly. This makes weak lensing by large-scale
structure, or cosmic shear, one of the most powerful probes to
study dark energy and the growth of structure: We can determine
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the statistical properties of the matter distribution as a function of
cosmic time, which depend on the cosmological parameters (see e.g.
Hoekstra & Jain 2008; Kilbinger 2015, for some recent reviews).

The typical change in ellipticity caused by gravitational lensing
is about a per cent, much smaller than the intrinsic ellipticities of
galaxies. This source of statistical uncertainty can be overcome by
averaging over large numbers of galaxies, although intrinsic align-
ments complicate this simple picture (see e.g. Joachimi et al. 2015;
Troxel & Ishak 2015, for reviews). The cosmological lensing signal
has now been measured using ground-based observations of rela-
tively small areas of sky (e.g. Heymans et al. 2013; Jarvis et al. 2016;
Jee et al. 2016; Hildebrandt et al. 2017), but future surveys will
cover large fractions of the extragalactic sky, increasing the source
samples accordingly.

The change in ellipticity is also smaller than the typical biases in-
troduced by instrumental effects. Consequently, averaging the shape
measurements of large ensembles of galaxies is meaningful only if
these sources of bias can be corrected for to a level that renders them
sub-dominant to the statistical uncertainties afforded by the survey.
This will be challenging for the next generation of surveys, such
as Euclid1 (Laureijs et al. 2011), the Wide-Field InfraRed Space
Telescope2 (WFIRST; Spergel et al. 2015) and the Large Synoptic
Survey Telescope (LSST; LSST Science Collaboration et al. 2009),
which aim to measure the dark energy parameters with a precision
much better than a per cent.

1 http://euclid-ec.org
2 http://wfirst.gsfc.nasa.gov
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A detailed study of how systematic biases affect the measure-
ments of galaxy shapes is presented in Massey et al. (2013). This
work showed, not surprisingly, that the point spread function (PSF)
is the dominant source, driving the desire for space-based observa-
tions (also see Paulin-Henriksson et al. 2008). Another complica-
tion is the fact the shapes are measured from noisy images. Recent
studies have shown that this leads to biases in the ellipticity (e.g.
Melchior & Viola 2012; Refregier et al. 2012; Miller et al. 2013).
Given a survey design, our current understanding of these biases
and our ability to correct for them, requirements can be placed on
the instrument performance, but also on the accuracy of the shape
measurement algorithm. Cropper et al. (2013) present a detailed
breakdown for Euclid, which forms the basis for some of the num-
bers used in this paper.

Fortunately, the impact of the various sources of bias can be stud-
ied by applying the shape measurement algorithm to simulated data,
where the galaxy images are sheared by a known amount. Compar-
ison with the recovered values then immediately provides an esti-
mate of the bias. For instance, Erben et al. (2001) and Hoekstra et al.
(2002) used simulated images to examine the performance of the
KSB algorithm developed by Kaiser, Squires & Broadhurst (1995).
To benchmark the performance of a wider range of algorithms, the
Shear TEsting Programme (STEP; Heymans et al. 2006; Massey
et al. 2007) created a blind challenge: The input shear was unknown
to the participants. The results showed a range in performance, even
for algorithms that were, in principle, rather similar (such as vari-
ous implementations of the KSB algorithm). This demonstrated the
importance of how a method is actually implemented. To examine
the origin of the variation in performance further, a series of chal-
lenges were carried out using highly idealized simulations. These
Gravitational LEnsing Accuracy Testing (GREAT) challenges
(Bridle et al. 2010; Kitching et al. 2012; Mandelbaum et al. 2015)
have resulted in a steady improvement in the accuracy of the algo-
rithms, given the metric used to compare them, while also demon-
strating the importance of noise on the performance.

However, as recently shown by Hoekstra et al. (2015, hereafter
H15), the actual performance of the algorithms depends crucially
on the input of the simulations, such as the distribution of galaxy
ellipticities and the inclusion of faint galaxies. The fidelity of the
image simulations is therefore crucial, not only to quantify biases in
the shape measurements, but also to correctly capture the selection
of galaxies (e.g. Fenech Conti et al. 2017). The aim of this paper is a
first exploration of the sensitivity of shape measurement algorithms
to some of the most basic input parameters in preparation for the
next generation of cosmic shear surveys, and Euclid, in particular.
This will help define the range of parameters to consider and to
measure from actual data or simulations.

In Section 2, we describe the basic principles of calibrating a
shape measurement pipeline and introduce the algorithm we use.
The image simulations are described in Section 3. We explore the
sensitivity to the noise level in Section 4. The dependence on the
properties of bright galaxies is quantified in Section 5. The impact
of faint galaxies is explored in Section 6. The response to the input
ellipticity distribution is studied in Section 7, and different imple-
mentations of the algorithm are examined in Section 8. The effect
of stars is evaluated in Section 9.

2 TH E N E E D F O R A C A L I B R AT E D
A L G O R I T H M

The measurement of accurate shapes of small, faint galaxies from
noisy data is a critical step in any weak-lensing analysis. For this

reason, much effort has been focused on reducing the biases in the
measurements of the ellipticity, in particular, the correction for the
smearing by the PSF, which leads to rounder images (due to the size
of the PSF) and preferred orientations (if the PSF is anisotropic).
Moreover, all algorithms that measure shapes for individual galax-
ies are sensitive to the noise in the images (Viola, Kitching &
Joachimi 2014). Consequently, an ideal algorithm is able to account
for both the biases introduced by the PSF and the noise because both
tend to vary between exposures. We note, however, that the situation
is complicated further because the object selection itself may lead
to bias: The significance with which galaxies are detected typically
depends on their orientation with respect to the shear or the PSF
(Kaiser 2000; Bernstein & Jarvis 2002; Hirata & Seljak 2003). For
instance, Fenech Conti et al. (2017) find that the selection bias can
be as important as the shape measurement bias. Although we do
not study selection bias in this paper, it is clearly another important
topic to study in future work.

The performance of shape measurement algorithms can be esti-
mated using image simulations. Early comparisons (e.g. Heymans
et al. 2006; Massey et al. 2007) included some of the complexity
of real data, such as blending of galaxies. To examine differences
between algorithms better, most recent studies considered ideal-
ized circumstances; for instance, the GREAT challenges (Bridle
et al. 2010; Kitching et al. 2012; Mandelbaum et al. 2015) focused
on isolated galaxies. However, at the accuracy required for the next
generation of cosmic shear surveys, it is not sufficient to consider
such idealized scenarios as a multitude of subtle effects prevent
a straightforward interpretation of the inferred ellipticity in actual
data.

Recently, Huff & Mandelbaum (2017) and Sheldon & Huff
(2017) explored an alternative approach, where the actual survey
data are modified, thus avoiding the use of synthetic data. In this
method, which is similar to the one proposed by Kaiser (2000), the
data are sheared by a known amount, and convolved with additional
PSFs to mimic the variation in observing conditions. The response
to these changes provides an estimate of the multiplicative bias for
a particular (biased) shape measurement method. Huff & Mandel-
baum (2017) show how this can reduce the multiplicative bias for
a range of methods. Although these initial results are encouraging,
it is not yet clear whether it is possible to achieve the stringent
requirements for the next generation of surveys, such as Euclid.

Sources of bias affect the lensing results in two ways. First of
all, systematics may lead to spurious correlations in the shapes of
galaxies, resulting in an additional signal, i.e. it causes an additive
bias c. Although correcting for the various sources of additive bias
may not be easy, residual systematics can typically be identified by
considering cross-correlations between the galaxy shapes and the
source of bias. A well-known example is the star–galaxy correlation,
which is sensitive to residuals in the correction for PSF anisotropy
(see Heymans et al. 2012, for a detailed example).

Secondly, the amplitude may be biased by a factor of (1 + μ),
i.e. the systematics cause a multiplicative bias. The potential of
cosmic shear to constrain dark energy models relies on an accurate
determination of the amplitude of the lensing signal as a function of
source redshift. The amplitude of the lensing signal around galax-
ies as a function of (photometric) redshift can be used to test for
the presence of multiplicative bias (Velander et al. 2014). Thanks
to tremendous progress in cosmic microwave background (CMB)
experiments, comparisons to (future) CMB lensing constraints pro-
vide an alternative observational test (e.g. Liu, Ortiz-Vazquez &
Hill 2016; Schaan et al. 2016), although the precision may not be
sufficient. We note, however, that these tests are compromised if
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the photometric redshifts themselves are biased. Therefore, unlike
additive biases, the multiplicative bias can be reliably assessed only
through image simulations.3

The observed shear and true shear are thus related by

γ obs
i = (1 + μ)γ true

i + c, (1)

where we implicitly assumed that the biases are the same for both
shear components. We do so to reduce the number of simulations
we need, but note that, in practice, the biases need to be determined
for both shear components separately, as we do not expect them to
be the same. Moreover, μ and c may vary spatially, for instance,
because the PSF properties themselves do. In this paper, we do not
consider such complications.

Left unaccounted for, multiplicative and additive biases lead to
systematic errors in the inferred cosmological parameters. By re-
quiring that the systematic shifts in the parameters of interest are
at least smaller than some fraction of the expected statistical un-
certainties from a survey, the maximum allowed range for μ and c
can be specified. In the case of Euclid, the design is based on the
dark energy parameters wp and wa, which describe the constant and
dynamic nature of the dark energy, respectively (see e.g. Laureijs
et al. 2011).

Note that the problem is not the amplitude of the bias, but rather
how well the bias can be determined: A known bias can be in-
corporated as part of an empirical calibration step, thus reducing
the ‘effective’ residual bias. Hence, a robust bias may be preferred
over a smaller bias that is more sensitive to variations in the data
or the input parameters of the simulations: The objective should be
to reduce the sensitivity |∂μ/∂p|, where p is a parameter that may
affect the multiplicative bias, for instance, the noise level. This is
particularly important if the parameter of interest is correlated with
the lensing signal itself. For example, the sensitivity to faint, unde-
tected galaxies results in correlations with the large-scale structure
that we are trying to measure (see Section 6 for more discussion).
In some cases, the uncertainty in the parameter p may be so large
that it leads to an error in the bias that exceeds the requirement: The
method is not calibratable.

Before we continue, it is useful to distinguish between two types
of sensitivity. First of all, methods are sensitive to parameters that
are required to correct for the various sources of bias; incorrect
estimates of these observables lead to biased shape measurements.
For example, the sensitivity to the PSF parameters scales with the
ratio of the square of the PSF size over the galaxy size (Paulin-
Henriksson et al. 2008; Massey et al. 2013). Similarly, the correction
for noise bias (e.g. Fenech Conti et al. 2017) does not reduce the
accuracy with which the noise level needs to be determined. Hence,
the sensitivity of the algorithm to errors in these parameters needs to
be quantified to establish requirements on how well these parameters
need to be determined from the data.

The other kind of sensitivity determines how well the parame-
ters of interest need to be captured by the image simulations. A
shape measurement algorithm that is truly unbiased4 will still be
sensitive to errors in the PSF size, noise level, etc. However, these
dependences can be readily determined by computing the change
in bias when varying the input parameters. Hence, no image simu-
lations are required because the use of the correct input parameters
is guaranteed to yield an unbiased estimate of the shear.

3 Unless it is a priori known that the method is unbiased.
4 Thai is, it can be proved that the algorithm is unbiased in realistic condi-
tions.

On the other hand, if a method is biased, image simulations are
required to determine the bias and its sensitivities to the various input
parameters (but see Huff & Mandelbaum 2017, for an alternative
approach). The sensitivities can be quantified using simulations
where only the parameters of interest are varied. If we assume that
most effects act independently, as is done in this paper, this can be
done for each parameter separately. Hence, the sensitivities to input
parameters can be quantified using a significantly reduced number
of galaxies for which shapes need to be measured.

Once it has been established that the input parameters are suf-
ficiently realistic, the actual bias can be determined. The resulting
uncertainty in the bias should be small compared to the statistical
uncertainties from the survey itself, thus defining the size of the
image simulations. In this regard, there is no immediate advantage
to use less biased methods, or even less sensitive methods, unless
the source of bias can be eliminated. However, a lower sensitivity
to a given parameter is clearly preferable because it does relax the
requirements on how well it needs to be captured by the simulations.

In this paper, we examine how the multiplicative bias is affected
by changes in the input parameters of the simulations and by modifi-
cations in the analysis pipeline. We consider only the multiplicative
bias because it is the most constraining. It has the added benefit that
we do not have to consider a suite of PSFs with different ellipticities.

The results presented in Massey et al. (2013) suggest a maxi-
mum allowed residual multiplicative bias5 of |μtot| < 2 × 10−3.
However, as discussed in Massey et al. (2013), a number of effects
contribute to this bias, such as errors in the PSF determination and
other corrections for instrumental effects. A detailed discussion of
a possible breakdown is presented in Cropper et al. (2013). We
note that these studies considered requirements under the assump-
tion that systematic effects do not depend on scale. This can result
in conservative limits, as was discussed in Kitching et al. (2016).
None the less, in order to minimize the multiplicative bias caused by
shortcomings of the image simulations, we consider an ambitious
value of |μsim| = 10−4. We note that this is not an actual allocation,
but rather sets the scope of the calculations and places requirements
on the knowledge of the input parameters.

To reach a statistical uncertainty of 10−4 for the multiplicative
bias, a large number of galaxies need to be analysed. If we consider
a shear of 0.01 and an intrinsic ellipticity of 0.3, then a sample
of 1011 galaxies would be needed. This estimate, however, is too
pessimistic because the uncertainty is dominated by the intrinsic
ellipticity. To reduce this source of noise, pairs of images, with
one rotated by 90◦, can be used (see e.g. Massey et al. 2007). The
use of more rotations, for example, four images rotated by 45◦,
suppresses shape noise more efficiently (Fenech Conti et al. 2017),
but the performance is ultimately limited by the pixel noise in the
images, such that, in practice, still about 1010 galaxies are required.
To ensure that the inferred biases are robust against the uncertainties
in the input parameters, we wish to explore a range of simulated
data. To achieve these objectives within a reasonable amount of
time and limited computational resources, we thus need to use a
sufficiently fast algorithm.

2.1 Description of the shape analysis

The impact of (relatively) static sources of bias can be determined
from image simulations, provided they are known and sufficiently

5 We note that our notation corresponds to that of equation (11) in Massey
et al. (2013), such that M ≈ 2μ.
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well characterized. However, the instrument configuration varies
with time as does the atmosphere in the case of ground-based ob-
servations; an ideal shape measurement method should therefore
accurately correct for the resulting temporal variations in the PSF
in order to avoid having to create a large suite of simulations for all
possible PSFs. In this paper, we do not consider varying PSFs, but
assume that this can be accurately corrected for. Furthermore, we
do not consider the impact of selection effects, which will be impor-
tant in realistic situations, as shown by Fenech Conti et al. (2017).
Instead, we focus on the sensitivity of the shape measurements to
the input parameters of the image simulations.

Given an image and a model for the PSF (we assume that other
sources of bias have been removed to a sufficient level of accu-
racy), different approaches can be used to estimate the true galaxy
shape. For instance, one can fit a parametrized model of the surface
brightness distribution to the data by representing galaxies by a de-
composition into shapelets (Refregier & Bacon 2003). The resulting
model can then be deconvolved analytically to yield an estimate of
the underlying galaxy shape. However, the expansion into shapelets
needs to be truncated because of noise.

To avoid the problems with direct deconvolution, forward mod-
elling techniques have become more popular. In this case, a model
image is sheared, convolved with the PSF and pixellated. The model
parameters are varied until a best fit to the data is obtained. This step
requires many calculations, especially if more model parameters are
to be determined. Accurate priors for the parameters are required
to obtain an unbiased estimate for the shear. These priors can be
derived from high-quality observations, similar to what is needed as
input for the image simulations. Moreover, the data themselves can
be used to update the priors. Analogous to the need to truncate the
shapelet expansion, the model should provide a good description of
the galaxies, while having a limited number of parameters in order
to avoid overfitting. A model that is too rigid will lead to model bias
(e.g. Bernstein 2010), whereas a model that is too flexible tends to
fit noise in the images (e.g. Kacprzak et al. 2012). We note that this
can mitigated by a marginalization of the nuisance parameters in
the model (Miller et al. 2013).

Unfortunately, fitting methods require many evaluations, thus
increasing the computational time per galaxy significantly. We focus
instead on an alternative approach: We measure the moments of the
galaxy images, which are subsequently corrected for the PSF. The
shapes are quantified by the polarization6

e1 = I11 − I22

I11 + I22
and e2 = 2I12

I11 + I22
, (2)

where the quadrupole moments Iij are given by

Iij = 1

I0

∫
d2x xi xj W (x) f (x), (3)

where f (x) is the observed galaxy image, W (x) is a suitable weight
function to suppress the noise and I0 is the weighted monopole
moment.

Matching the width of the weight function to the object size maxi-
mizes the signal-to-noise ratio (S/N) of the shape measurement. For
the weight function, we adopt a Gaussian with a dispersion rg deter-
mined by the half-light radius rh measured by SEXTRACTOR (Bertin &
Arnouts 1996). As reference, we consider rg = rh/

√
2, which is

slightly smaller than the optimal value for a Gaussian, which would

6 We define the ellipticity ε ≡ (a − b)/(a + b), with a and b being the major
and minor axes, respectively. The polarization e for such a galaxy would be
approximately (a2 − b2)/(a2 + b2).

imply rg = rh/
√

2 ln 2. This choice does not affect our conclusions,
and we explore different choices in Section 8. A further sophistica-
tion would be to try to match the shape of the weight function (e.g.
Melchior et al. 2011; Okura & Futamase 2011). This optimization
slows down the shape measurement algorithm and increases the
sensitivity to the input ellipticity distribution. As the gain is ex-
pected to be small for the smallest galaxies, we limit our study to
an axisymmetric weight function.

In practice, an estimate for the background needs to be subtracted
from the observed image and contributions from nearby objects
need to be suppressed. In our reference set-up, we simply mask
pixels within a radius of 4rg around neighbouring objects, and the
background is determined locally by considering an annulus with
inner and outer radii of 16 and 32 pixels, respectively, from the
centroid of the object. Objects located in the annulus are masked
and a plane is fitted to the counts in the unmasked pixels. We
prefer a local background determination over a global one because
biases due to artefacts are limited to relatively small scales, and
thus do not introduce coherent biases on scales that are relevant for
the cosmological interpretation. In Section 8, we explore different
settings, demonstrating that the background determination is an
essential aspect of the algorithm performance.

The resulting weighted moments are biased because of the weight
function and PSF. To undo these, we focus here on the commonly
used KSB method developed by Kaiser et al. (1995) and Luppino &
Kaiser (1997) with corrections provided in Hoekstra et al. (1998)
and Hoekstra, Franx & Kuijken (2000), which was used in H15.
The only difference with H15 is that we use SEXTRACTOR for the
object detection step to speed up the analysis. We note that the KSB
algorithm makes simplifying assumptions about the PSF, which are
not valid for realistic cases, such as the Euclid PSF. However, this
can be accounted for with improved moment-based methods such
as DEIMOS (Melchior et al. 2011).

We stress, however, that the aim of this paper is not to find a
suitable shape measurement algorithm, nor are we interested in the
value of the bias. Instead, we explore the change in bias as a function
of the input parameters of the image simulations. Exactly this crucial
step has been largely overlooked in previous work. However, as we
will see, most of the variations in bias are small and therefore not
that important for current surveys. On the other hand, our results
also clearly demonstrate that the situation is fundamentally different
for Euclid because of the much more stringent requirements.

3 D E S C R I P T I O N O F T H E I M AG E
SI MULATI ONS

A flexible framework to create simulated images is provided by
GALSIM (Rowe et al. 2015), a publicly available code that was de-
veloped for GREAT3 (Mandelbaum et al. 2014, 2015). Here we
use simple parametric models for the galaxies, and the main input
is a list of galaxy properties with a position, flux, half-light radius,
Sérsic index and ellipticity, from which sheared galaxy images are
computed. The reference galaxy parameters are described in more
detail in Section 3.1.

As input to the simulations, we use a sample of galaxies for
which morphological parameters were measured from resolved
F606W images from the GEMS survey (Rix et al. 2004). These
galaxies were modelled as single Sérsic models with GALFIT (Peng
et al. 2002), and for our study, we use the measured half-light radius,
apparent magnitude and Sérsic index n. For simplicity, we consider
only galaxies fainter than magnitude m = 20.
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Figure 1. Number density of galaxies as a function of limiting magnitude.
The dashed black line indicates our reference model, which is a power law
with a slope of 0.36, which is a good description of the GEMS counts (solid
blue line) for 20 < m < 25. The points with error bars are the F775W counts
from Coe et al. (2006) based on the HUDF, which suggest a flatter slope at
faint magnitudes.

The solid blue line in Fig. 1 shows the number density of galaxies
in the GEMS catalogue as a function of apparent magnitude. For
20 < m < 25, the counts are well described by a power law with a
slope of 0.36, indicated by the black dashed line. Comparison with
the observed F775W counts from the Hubble Ultra-Deep Field
(HUDF) by Coe et al. (2006) shows that for m > 26, the GEMS
catalogue is incomplete. Although the HUDF counts indicate a
flattening of the slope for m > 25.5, our reference simulations
assume a simple power law with slope 0.36, but in Section 6.2, we
explore the sensitivity of the results to this assumption.

The input catalogue is normalized to 36 galaxies arcmin−2 with
20 < m < 24.5. We choose a nominal noise level per pixel with a dis-
persion of 0.8, which results in a typical number density of 47 galax-
ies arcmin−2 with a S/N larger than 10, as measured by SEXTRACTOR,
and a number density of 33 galaxies arcmin−2 if we restrict the mag-
nitude range to 20 < m < 24.5. We measure shapes for all detected
galaxies, but report results for galaxies with 20 < m < 24.5 and
rh > 0.11 arcsec, unless specified otherwise. For this magnitude
range, the cut in half-light radius cleanly separates galaxies from
stars. We note that these number densities are somewhat higher than
the nominal values for Euclid (Laureijs et al. 2011).

We create pairs of images where the galaxies are rotated by 90◦in
the second image in order to reduce the noise due to the intrinsic
ellipticity distribution (see e.g. Massey et al. 2007): By construc-
tion, the mean intrinsic ellipticity when both are combined is zero.
We analyse the images separately, and, thus, due to noise in the
images, this is no longer exactly true, especially for faint galaxies.
The input shears range from −0.06 to 0.06 in steps of 0.01 (for both
components), yielding 169 image pairs for each ‘set’. We use the
galsim.applyShear() function,7 which preserves the area of
the object, i.e. the galaxies are not magnified. We verified this by
measuring the average sizes of the galaxies as a function of the ap-

7 In version 1.1, this method was deprecated.

plied shear.8 This greatly simplifies the interpretation of our results,
as magnification changes the galaxy selection as a function of shear.
Although not the focus of this paper, we discuss the implications of
our results on size magnification studies in Section 5.3.

Each image has a size of 10 000 × 10 000 pixels, with a pixel
scale of 0.10 arcsec, corresponding to that of the Euclid VIS camera.
Down to a limit m = 29 (see Section 6) for each pair of images, we
include 106 objects, or 1.7 × 108 per set. To reduce the statistical
uncertainties further, we simulate typically tens of sets created with
different random seeds. The analysis of a single set, using the ref-
erence set-up of the KSB algorithm, takes approximately 60 core
hours on a Dell PowerEdge R820 with Intel Xeon E5-4620 2.20-
GHz processors. For example, the results presented in Fig. 7 took
over 34 000 core hours.

To simulate a diffraction-limited telescope in space, we adopt a
circular Airy PSF for a telescope with a diameter of 1.2 m and a
PSF obscuration of 0.3 at a reference wavelength of 800 nm. This is
a reasonable approximation to the Euclid PSF in the VIS-band. We
include a small number of bright stars in the simulations, which are
used to measure the PSF properties required to correct the galaxy
shapes. In this paper, we do not consider the complications that arise
from modelling of the PSF. In Section 9, we do explore the impact
of variations in the star density on the multiplicative bias.

3.1 Input galaxy properties

The morphological properties, such as sizes, shapes and surface
brightness profiles, are correlated: Fainter galaxies are, on average,
smaller, whereas disc-dominated galaxies show a broader ellip-
ticity distribution. To capture some of these correlations, we use
measurements of morphological parameters (specifically magni-
tude, observed half-light radius and Sérsic index) from the resolved
F606W images from the GEMS survey (Rix et al. 2004). The use
of Sérsic profiles to describe the galaxies limits the fidelity of the
simulations (see Kacprzak et al. 2014, for a study of the biases that
may arise), and future work will need to examine how well mor-
phological parameters need to be determined, including the spatial
variation of galaxy colours (Semboloni et al. 2013).

Although Rix et al. (2004) also estimated ellipticities, we ignore
any correlation with ellipticity, but randomly draw ellipticity values
from a Rayleigh distribution given by

P (ε; ε0) = ε

ε2
0

e−ε2/2ε2
0 , (4)

where the value of ε0 determines the width of the distribution,
as well as the average 〈ε〉 = ε0

√
π/2. We need to truncate the

distribution because the ellipticity cannot exceed unity, but also
because galaxy discs have a finite thickness. We therefore set
P(ε, ε0) = 0 if ε > 0.9.

As a reference value, we adopt ε0 = 0.25, which best described
the data used in H15. This simplifying assumption, i.e. P(ε) is
independent of other galaxy properties, will need to be studied in
future work, as the ellipticity distributions for early- and late-type
galaxies differ (e.g. van Uitert et al. 2011), which, in turn, results
in dependences with the environment (Kannawadi, Mandelbaum &
Lackner 2015). In practice, the ellipticity distributions for various

8 We found that the mean observed half-light radius increased by a negligible
0.2 per cent for the largest shear we consider here. However, closer investi-
gation revealed that this change in size is solely due to a direction-dependent
feature in the way the half-light radius is determined.
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subsets will need to be measured from deep observations (Viola
et al. 2014).

We consider bins with a width of 0.1 in magnitude and compute
the expected number of galaxies assuming a power law for the
galaxy counts as described above. Down to a limiting magnitude
of m = 25.4, we randomly draw galaxies from the corresponding
magnitude bin from the GEMS catalogue. For fainter galaxies, we
create duplicates with different orientations and place those postage
stamps in the image. This speeds up the creation of the simulated
images.

3.1.1 Sizes of faint galaxies

H15 showed that a robust estimate of the multiplicative bias requires
the inclusion of sufficiently faint galaxies in the image simulations:
For current ground-based observations, the bias converges when
galaxies that are 1.5 mag fainter than the faintest galaxy used in
the lensing analysis are present. As discussed in more detail in
Section 6, in the case of Euclid, we may need to consider galaxies
as faint as magnitude 29.

For galaxies brighter than m = 26.5, we use the observed half-
light radii from Rix et al. (2004) instead of the GALFIT estimate for
the effective radius because it is a more robust estimate.9 However,
for m > 26.5, the GEMS catalogue becomes progressively incom-
plete, resulting in a biased distribution of galaxy sizes. Given the
small space-based PSF and the stringent requirements of the Euclid
mission, the adopted distribution of galaxy sizes may be relevant.
This is quantified in Section 6.1, but here we describe how we
parametrized the size distribution of the faint galaxies.

As shown in Appendix A, the distribution of observed half-light
radii for bright galaxies can be approximated by a skewed lognormal
distribution. We keep the skewness fixed to a representative value
of −0.58 and determine the mean and dispersion of log10 rh as a
function of apparent magnitude. The results are presented as the
black points in Fig. 2. For galaxies with 23 < m < 25.5, both
the mean and the dispersion of log10rh are well described by a
simple linear relation. We determine the best fit in this magnitude
range (dashed lines) and use this to describe the size distribution for
galaxies with m > 26.5.

Coe et al. (2006) provide estimates for the effective radii, reff,
from the best-fitting GALFIT model using HST observations of the
HST HUDF. To allow for a direct comparison to our input param-
eters, we convert the values for reff into half-light radii using an
empirical relation based on the GEMS catalogue, which provides
both size estimates (see Appendix A for details). We consider only
galaxies for which the effective radius was determined with a rela-
tive precision <10 per cent and present the results in the top panel of
Fig. 2 (red points). The agreement with the GEMS measurements
and our parametric model is good for m < 26. Interestingly, the
results from Coe et al. (2006) suggest that the sizes of the faint
galaxies may be larger than we assume here.

Similarly, we use the GEMS results to relate the dispersion in reff

to an estimate of the scatter in rh. As shown in the bottom panel

9 These are the values measured by SEXTRACTOR, and thus not corrected for
the Hubble Space Telescope (HST) PSF. This omission, which we discovered
during the refereeing process, slightly biases the sizes used in our analysis:
At m = 24.5, the corrected sizes are 4 per cent smaller and the differences
are even smaller for brighter galaxies. The change in size is larger for fainter
galaxies, but this affects only the recovered biases and not the sensitivities
themselves (see e.g. Fig. 8).

Figure 2. Top panel: mean logarithm of the observed half-light radius as a
function of apparent magnitude. The black points indicate the measurements
from GEMS that are used to derive our parametric model (indicated by the
dashed line; see the text for details). The red points indicate the results from
the HUDF, suggesting that the actual sizes of faint galaxies may be larger.
Bottom panel: width of the galaxy size distribution as a function of limiting
magnitude, where the black points correspond to GEMS and the red points
are from the HUDF. The dashed line shows the value for the parametric
model adopted for the image simulations.

of Fig. 2, the resulting converted measurements from Coe et al.
(2006) roughly match our adopted model. Although this level of
agreement is adequate for the purpose of this paper, it will clearly
be worthwhile to revisit the size measurements presented in Coe
et al. (2006).

4 SENSI TI VI TY TO NOI SE

As shown in Viola et al. (2014), any ellipticity measurement is bi-
ased in the presence of noise in the image because the estimator is
non-linear in terms of the pixel values: Equation (2) involves a ratio
of moments. As a consequence, the observed ellipticity distribution
is skewed and not centred on the true value. This needs to be ac-
counted for when estimating the shear from an ensemble of sources
because it otherwise leads to a multiplicative bias.

In the actual observations, the background level is expected to
vary: in ground-based data due to the moon or changing atmospheric
conditions and in space-based observations because of the zodiacal
background that varies across the sky. Consequently, the shape mea-
surement algorithm needs to be able to account for the dependence
on the S/N (Miller et al. 2013; H15; Fenech Conti et al. 2017),
which, in turn, implies that the statistics of the background need to
be determined sufficiently well. This is typically done by measuring
the distribution of unmasked pixel values where no galaxies were
detected, i.e. assuming that the noise is uncorrelated. We turn to the
complications posed by faint undetected galaxies in Section 6, and
consider a simple background first.

To do so, we simulate 20 sets of images where we include galax-
ies down to a limiting magnitude of mlim = 24.5. We add Gaussian
noise with a dispersion σ bg (the images are created with a mean
background of zero). Note that we are not attempting to simulate
the actual observing process, which involves the combination of
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Figure 3. Multiplicative bias for galaxies with 20 < m < 24.5 as a function
of σ bg, the rms of the background. The error bars indicate the dispersion
in the results. The bias increases with increasing noise level and the slope
dμ/dσ bg steepens, as is evident from the bottom panel. For our implemen-
tation of the KSB algorithm, we find that the bias around σ bg = 0.8 (see the
inset in the top panel) can be approximated by a linear relation with a slope
∂μ/∂σbg = −0.0326 ± 0.0007.

multiple exposures. To reduce the number of simulations, the seeds
for the noise realizations and galaxy properties are the same between
sets. The images are analysed as described in Section 2.1. The result-
ing observed multiplicative bias μ as a function of the background
level is presented in the top panel of Fig. 3. As expected, the bias
increases when the background noise level is higher. Also note that
μ does not vanish in the absence of noise, a demonstration of the
fundamental limitation of using the KSB algorithm. The inset panel
shows the change in bias close to the nominal background σ bg = 0.8,
which we use for the other results presented in this paper.

The bottom panel of Fig. 3 shows the slope ∂μ/∂σbg, which
steepens as the noise level increases. When considering a small
range, such as the one shown in the inset of the top panel, a constant
slope is a good approximation, and around σ bg = 0.8, we measure
a value ∂μ/∂σbg = −0.0326 ± 0.0007.

We can use this result to estimate how well the background rms
needs to be determined, given an allocation for the bias that can be
tolerated: A maximum uncertainty of δμ = 10−4 implies that σ bg

needs to be measured with a relative precision of approximately
0.3 per cent. If the noise is homoscedastic and Gaussian, as we as-
sumed here, this requires about 2 × 105 blank pixels. In practice,
undetected cosmic rays, galaxies, flat-field errors, etc. may also
contribute to the background statistics. These are naturally included
when blank pixels are used to characterize the background, pro-
vided instrumental effects that modify the statistics of the observed
background do not do so over the area that contains 2 × 105 blank
pixels. If we assume that half the pixels are blank, this corresponds
to a square patch of 650 pixels on a side, which is much smaller
than the section that is controlled by a single component of read-out
electronics.

We stress that we are concerned only with coherent errors in
the determination of background statistics as these lead to bias on
cosmologically interesting scales. Small-scale effects that do not

Figure 4. Change in multiplicative bias for galaxies with 20 < m < 24.5
when the sizes of the input galaxies (we include only galaxies brighter than
mlim = 26 in the simulations) are increased by a factor of fsize. For reference,
the hatched region indicates a variation of 10−4 in the value of μ. The red
dashed line is the best-fitting linear relation between μ and fsize.

correlate between detectors or exposures merely increase the mea-
surement noise slightly, which is negligible compared to the intrinsic
shape noise on such small scales (see e.g. Kitching et al. 2016).

5 PRO P E RT I E S O F B R I G H T G A L A X I E S

The presence of noise in the images prevents us from using un-
weighted moments, for which the correction for the smearing by
the PSF is trivial. To relate the observed weighted moments to the
true (unweighted) moments requires estimates of the higher or-
der moments or equivalently the morphology of the galaxies (e.g.
Semboloni et al. 2013). Only noisy estimates can be obtained from
the data, and thus the bias depends not only on the noise level, but
also on the underlying distribution of galaxy morphologies. This
remains an important open topic of study, albeit not as prominent
as the two properties that we will study in this section: the sizes and
number densities of galaxies.

5.1 Sensitivity to galaxy size

The larger a galaxy, relative to the PSF, the easier it should be to
measure its shape. Consequently, the multiplicative bias is typically
a (strong) function of the galaxy size. To quantify the sensitivity
to input galaxy size, we make simulated images where we change
the sizes of the input galaxies by a factor of fsize. We created 10
sets for each value of fsize, where we include galaxies down to a
limiting magnitude mlim = 26. We measure μ for galaxies with
20 < m < 24.5 and show the results in Fig. 4. The sensitivity
is substantial, with the dashed line indicating the best fit to the
measurements for 0.9 ≤ fsize ≤ 1.1. Note that the slope is so steep
because for our implementation μ is a strong function of galaxy
size. We find a slope ∂μ/∂fsize = −0.0656 ± 0.0010, which would
imply that fsize should be determined with a precision of 0.15 per cent
if we consider a maximum tolerance of δμ = 10−4.

This is unnecessarily conservative because it would be appar-
ent from the data themselves that the mean sizes differ from the
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simulations. This could then be corrected by improving the realism
of the image simulations. For instance, Bruderer et al. (2016) pro-
pose the use of Monte Carlo control loops to adjust the simulated
data such that they are statistically consistent with the observations.
An alternative approach was explored in Fenech Conti et al. (2017),
who resampled the output from the simulations to match the size
distribution in the data. Although this provides an improved estimate
for the bias for the observed sample of galaxies, local variations in
galaxy sizes will not be captured.

It is therefore preferable to account for any size dependence in
the algorithm through an empirical calibration. Note that such a
calibration, or ‘training’, is not restricted to size, but can include
any parameter of interest, such as brightness, surface brightness
profile, local environment, etc. In this case, the image simulations
are used to identify correlations between multiplicative bias and
observables. For instance, Tewes et al. (2012) explored the use of
supervised machine learning. Similarly, Gruen et al. (2010) used a
neural network to remove residual biases. Interestingly, the run time
is not determined by the application of the trained algorithm to real
data, but rather by the time it takes to analyse the simulated data.
Compared to typical machine learning applications, the training
sample is much larger than the actual data sample because we wish
to reduce the uncertainty in multiplicative biases by considering a
very large volume of image simulations. Importantly, the fidelity of
the machine learning step depends critically on using appropriate
inputs. As we discuss in Section 6, this includes capturing the impact
of galaxies below the detection limit.

Inevitably, the empirical corrections are based on observed pa-
rameters that are noisy. As a consequence, the calibration may be
biased if the input properties are incorrect. Moreover, the choice of
size definition matters. This was highlighted in Fenech Conti et al.
(2017), who showed how selection biases in both the detection and
analysis steps may result in implicit selections in ellipticity, and
consequently lead to biases in the recovered shear. Hence, particu-
lar care should be taken in ensuring that consistent size definitions
are used. We do not study the impact of these selection effects
here, but stress that these represent an important source of bias,
especially when selections are made using parameters that correlate
strongly with ellipticity. Moreover, as such selection biases appear
inevitable in the presence of PSF anisotropy and shear, it remains
unclear whether image simulations covering a wide range of instru-
ment states can be avoided.

5.2 Sensitivity to galaxy density

Close pairs of galaxies are another complication in real data. Most
recent work on the performance of shape measurement algorithms
focused on isolated galaxies: In Bridle et al. (2010), Kitching et al.
(2012), Mandelbaum et al. (2015) and Jarvis et al. (2016), only
postage stamps of isolated galaxies were analysed, and thus the ef-
fects of blending were not included. The image simulations we study
here do include close pairs, but do not capture the full complexity
expected in real data as galaxies are not positioned randomly on the
sky, but are instead clustered. Hence, the local density of galaxies
varies significantly, with clusters of galaxies representing the most
extreme cases. For instance, for a sample of massive clusters at
z ∼ 0.2, H15 find that the number density of the brightest galax-
ies (20 < m < 21) is, on average, increased by a factor of 2 at a
radius of 1 Mpc, whereas the number density of fainter galaxies
(24 < m < 25) is increased by approximately 20 per cent.

One of the objectives of the Euclid mission is to use the num-
ber density of galaxy clusters as a function of mass and red-

Figure 5. Multiplicative bias for galaxies with magnitude 20 < m < 24.5
as a function of nfac, the relative increase in the number density of galaxies
brighter than magnitude 26. For reference, the hatched region indicates a
variation in μ of size 10−4.

shift to constrain cosmological parameters (Sartoris et al. 2016),
which relies on accurate mass estimates. As shown by Köhlinger,
Hoekstra & Eriksen (2015), this should be possible, provided that
the multiplicative bias for this application is comparable to the re-
quired accuracy for cosmic shear studies.

Given the impact of blending on shape measurements, it is useful
to examine how μ depends on the number density of bright galaxies.
To do so, we simulated observations with mlim = 26, while increas-
ing the number density by a factor of nfac compared to the reference
case. We measure μ for galaxies with 20 < m < 24.5 and show the
results in Fig. 5. The red dashed line indicates the best-fitting linear
relation with a slope ∂μ/∂nfac = −0.008 56 ± 0.000 17. These re-
sults show a strong (linear) dependence on the local number density
of bright galaxies. If unaccounted for, this will lead to significant
biases in cluster mass estimates from Euclid.

The dependence on the number density of bright galaxies does
not only affect cluster studies, but also complicate the cosmic-shear
analysis. The large-scale structure that gives rise to the signal (with
most of the contribution coming from haloes that correspond to
galaxy groups) is correlated with the density of galaxies. Hence,
the multiplicative bias is coupled to the cosmic-shear signal, and
the image simulations should thus capture the clustering of galaxies
well. This is a concern because the predicted clustering signal itself
depends on cosmology.

We should therefore strive for algorithms that are minimally sen-
sitive to neighbouring objects. Our deblending implementation is
simple, and more sophisticated approaches will be studied in future
work to quantify the impact of clustering. For instance, we note
that Fenech Conti et al. (2017) measured a change of 2 × 10−3 in
multiplicative bias for their simulations of ground-based data when
the number density of galaxies was reduced by a factor of 2. We do
expect fitting methods to perform better than our KSB implemen-
tation because the estimates of the moments are biased by simply
masking blended objects. In contrast, fitting methods are naturally
less sensitive to masked areas, but can also be adapted to fit multiple
galaxies simultaneously. Whether this can fully eliminate the effect
of blending should be studied further.
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As a first exploration for moment-based methods, we analysed a
smaller set of image simulations using two alternative implemen-
tations (see Section 8 for more variations). First, we switched off
the masking of neighbouring detected galaxies. In this case, the bias
increases, and the slope ∂μ/∂nfac is 30 per cent steeper. As blending
may affect the local background determination, we also considered
the case where the background is fixed to 0, the correct level in the
simulated data. In this case, the bias is indeed reduced, but the slope
is unchanged. These findings demonstrate that differences in imple-
mentation play a role, but appear unable to significantly reduce the
sensitivity to blending. Something to investigate in future work is
whether the impact of blending can be alleviated by interpolating
over the masked regions.

Alternatively, the bias can be determined as a function of both
distance to the nearest neighbour and its flux difference. For ex-
ample, Fenech Conti et al. (2017) examined the additive bias as a
function of galaxy separation, which is also affected by blending in
the presence of an anisotropic PSF. This can be used to parametrize
the residual biases caused by blending, thus reducing the sensitivity
to the local density. Hence, in addition to the statistics of the local
background, information about the local galaxy density should be
included in the next generation of shape measurement algorithms.

Naively, an easier solution would be to remove close pairs from
the analysis. Clear cases may indeed be identified and culled from
the data, but some galaxies are blended to such a large degree that
they are detected as single objects. As shown by Dawson et al.
(2016), the latter are particularly relevant for deep ground-based
observations and lead to an increase in the shape noise. Impor-
tantly, very strict criteria may result in undesirable reductions in
source densities, especially in the case of deep data. The challenge
is thus to find a balance between the sensitivity of the multiplica-
tive bias due to blending and the increase in statistical uncertainties
when blends are removed. Moreover, the preferential removal of
sources behind overdense regions, where the lensing signal is high-
est, complicates the interpretation of the cosmological signal, as
was shown by Hartlap et al. (2011). If ignored, the resulting shear
correlation function can be biased low by a few per cent on scales
of 1 arcsec. On the other hand, close pairs may also affect the fi-
delity of photometric redshift estimates. The impact of blending
on the combination of shape and redshift determination is another
open question, which requires further study using multiband image
simulations.

5.3 Impact on size magnification

So far, we have focused on the measurements of galaxy shapes,
but gravitational lensing also alters the sizes of galaxies and their
fluxes because surface brightness is conserved. Although the mea-
surement of the magnification signal is generally noisier than the
shear, it can, in principle, be made using the same data that are
used in the shear analysis. Moreover, the shear field is related to
the projected surface density through a convolution (e.g. Kaiser &
Squires 1993), whereas magnification, to leading order, probes the
convergence field directly. This can help break parameter degenera-
cies, in particular, for studies of density profiles.

The change in flux modifies the number density of sources for
a magnitude-limited sample, where the net effect depends on the
slope of the number counts. The sources need not be resolved to
measure this flux magnification signal, thus expanding the sample of
potential sources to be used. The signal has been measured around
clusters of galaxies (e.g. Hildebrandt et al. 2011; Ford et al. 2014;
Umetsu et al. 2016) and galaxies (e.g. Hildebrandt, van Waerbeke &

Erben 2009). The main challenges for flux magnification studies are
the need for uniform photometry and a very clean separation of lens
and source samples (see Hildebrandt 2016, for a detailed discussion
on observational biases in flux magnification measurements).

On the other hand, the change in galaxy sizes, or size magnifi-
cation, has not been widely used because it requires high-quality
imaging. A number of results have been presented based on HST
observations. Schmidt et al. (2012) studied a sample of galaxy
groups using a combination of flux and size magnification, finding
fair agreement between the shear and magnification measurements.
Duncan et al. (2016) used HST observations of the A901/A902 su-
percluster and found that the magnification measurements yielded
lower masses, although the statistical uncertainties are substantial.

Casaponsa et al. (2013) studied how well size magnification can
be measured with LENSFIT (Miller et al. 2013) and concluded that an
unbiased estimate of the convergence can be obtained, provided the
source galaxies are larger than the PSF and have a S/N > 10. These
constraints are similar to those for reliable shape measurements.
Their image simulations, however, ignored the impact of blending,
as each postage stamp contained only a single galaxy. As blending
tends to bias the measured sizes, it is worthwhile to explore this
using our more realistic simulations. The image simulations that
we use to study the performance of shear measurements can be
used to identify additive biases for magnification, as any change in
mean size must be the result of a systematic. However, to quantify
the systematics for size magnification studies in more detail, we
simulated the impact of pure magnification, including the changes
in flux. To do so, we magnified the galaxies in the input catalogue
(including the mean separation between the galaxies) by a factor of
1 + Mmag ∈ [1.0, 1.05, 1.1] and analysed these images using our
standard pipeline. Our lensing pipeline does not attempt to estimate
PSF-corrected sizes, and instead we use the observed half-light radii
to examine biases in magnification studies.

We take the simulation with Mmag = 0 (i.e. no magnification)
and nfac = 1 as the reference, and compute

Mobs
mag = 〈r̃h〉

〈r̃h〉ref
− 1, (5)

where r̃h is the half-light radius from which the mean PSF size
was subtracted in quadrature. We found that this simple estimator
scales linearly with the input magnification. Analogous to what was
done to quantify the biases in the shape measurement algorithm, we
define

Mobs
mag = μmag Mtrue

mag + cmag, (6)

where μmag and cmag are the multiplicative and additive bias, re-
spectively. We note that our estimate of the size may be particularly
sensitive to blending, and a more detailed study is warranted. None
the less, with the simulations, it is possible to highlight some of the
challenges for magnification studies.

The points in the bottom panel in Fig. 6 indicate the multiplica-
tive bias μmag for galaxies with 20 < m < 24.5 as a function of nfac,
the increase in source number density relative to the reference sim-
ulation. As was the case for shape measurements, the multiplicative
bias is affected by blending. If we use the median size instead in
equation (5), we find similar results but with smaller biases; the red
triangles in the bottom panel of Fig. 6 are offset by 0.1 to allow for
a direct comparison.

The observed change in average size is a combination of the
increase in size due to magnification and an increase in the number
of intrinsically smaller galaxies due to flux magnification. The latter
is quite relevant: If we repeat the analysis by adjusting the magnitude
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Figure 6. Multiplicative (bottom panel) and additive bias (top panel) for
size magnification, as a function of the relative increase in the number density
of galaxies brighter than magnitude 26. The measurements are based on the
observed half-light radius of galaxies with magnitude 20 < m < 24.5;
the black points use the average size, whereas the red triangles correspond
to the results when the median size is used (we subtract 0.1 from μmag

in this case for easier comparison). Part of the multiplicative bias is the
result of smaller galaxies entering this magnitude-limited sample due to
magnification.

limits to correct for the change in flux, we find μmag = 0.66, and
0.81 if we use the median size. The sensitivity to the properties of
galaxies below the nominal flux limit is an additional complication
for magnification studies, which is essentially absent in the case of
shape measurements.

More worrisome are the results presented in the top panel in
Fig. 6: The additive bias cmag is a strong function of the number
density of bright galaxies. The bias is reduced somewhat if we use
the median size, as indicated by the red triangles, and the use of more
optimized size estimates may improve things further. However, as
the regions of high magnification tend to correspond to regions of
increased galaxy density, this substantial additive bias represents a
serious complication, especially for cluster studies such as the one
presented in Duncan et al. (2016) or Schmidt et al. (2012).

Our results suggest that magnification studies will also be af-
fected by the complexity in the data. In particular, the additive bias
that arises from changes in the galaxy density needs to be carefully
accounted for. Although this is possible, in principle, the argument
that magnification is an attractive complement to cosmic shear be-
cause it is subject to different systematics (Alsing et al. 2015) should
be reconsidered: Our findings rather suggest that magnification is
subject to additional systematics.

6 TH E I M PAC T O F U N D E T E C T E D G A L A X I E S

The properties of sufficiently bright galaxies can be compared
directly to the outputs of the simulations, and remaining trends
can be quantified and accounted for, for instance, through ma-
chine learning techniques. H15, however, found that galaxies fainter
than the limit of the source sample also affect the multiplica-
tive bias of the brighter galaxies. This is partly the result of

Figure 7. Multiplicative bias for galaxies with 20 < m < 24.5 when only
galaxies with magnitudes brighter than mlim are included in the simulation.
Because of the small PSF, even galaxies as faint as m = 29 affect the bias.
The hatched region indicates a variation in μ of amplitude 10−4.

blending, but also because these galaxies act as a skewed source
of background noise, affecting the local background determination.
If such faint galaxies are not included in the image simulations,
the multiplicative bias can be underestimated by a fair amount:
H15 found that the bias doubled for their simulation of ground-
based data, and saturated when the simulation included galaxies
that were at least 1.5 mag fainter than the limiting magnitude of the
source sample.

We therefore examine which value for mlim, the limiting mag-
nitude of the faintest galaxies included in the simulation, may be
adequate for image simulations for Euclid. The input GEMS cat-
alogue is incomplete for m > 25.5 (see Fig. 1), and we augment
the catalogue by duplicating the fainter galaxies such that the input
counts follow the power-law relation seen at brighter magnitudes,
i.e. we adopt a slope of 0.36 over the full magnitude range (indi-
cated by the dashed line in Fig. 1). Compared to the actual counts
observed from the HUDF by Coe et al. (2006), our results represent
a worst-case situation. We assign sizes following our parametric
model described in Appendix A, but explore the sensitivity of the
results to the size distribution in Section 6.1.

Fig. 7 shows that the multiplicative bias μ converges rather
slowly as a function of mlim. To reduce the number of simula-
tions, we add fainter galaxies to the existing images, such that
the bright galaxies are always in common. Hence, the variation
between points is somewhat smaller than the error bars, which
indicate the statistical uncertainty of a single measurement. The
results are based on 81 sets of simulations for each data point.
The dashed line indicates a change |�μ| = 10−4, indicating that
we may have to include galaxies as faint as m = 29 in the Euclid
image simulations.

The change in bias presented in Fig. 7 is the result of two effects.
Galaxies just below the detection limit affect the shape measure-
ments mostly through blending, whereas the very faint galaxies
bias the measurements by affecting the determination of the local
background. We revisit this topic in Section 8, where we explore
different implementations of the background determination.
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Figure 8. Change in multiplicative bias for galaxies with 20 < m < 24.5
when the sizes of the input galaxies with m > 27 are increased by a factor of
f faint

size compared to our reference distribution. The hatched region indicates
|�μ| < 5 × 10−5.

6.1 Varying size distribution of faint galaxies

The effect of the faint galaxies is to add highly skewed noise to
the pixels where they are located. Our parametrized model for the
galaxy sizes (see Fig. 2) suggests that the faintest galaxies are small,
but have sizes that are not completely negligible compared to the
size of the PSF. This is different from the large PSF in ground-based
data.

Size distributions for relatively bright galaxies (m < 26) can
be determined from existing deep HST observations, such as the
Cosmological Evolution Survey (Scoville et al. 2007) and the
All-wavelength Extended Groth Strip International Survey (Davis
et al. 2007). For instance, Griffith et al. (2012) present a compi-
lation of photometric and morphological measurements. Reliable
size estimates of the fainter galaxies require deeper data, which are
only available for relatively small areas, such as the HUDF.

To determine whether the available data are adequate, we examine
how well the mean size needs to be determined. To do so, we
increase the input half-light radii of galaxies with m > 27 by a factor
of f faint

size and measure the difference �μ with respect to the reference
simulation. To reduce the number of simulations, the positions and
intrinsic ellipticities of the galaxies are the same for the different
values of f faint

size .
The results, based on 50 sets of simulations for each value of

f faint
size , are presented in Fig. 8. We find that the multiplicative bias

is smaller (corresponding to positive �μ because μ < 0) when the
faint galaxies are larger. This is expected because the galaxies are
more spread out and thus introduce noise that is less skewed. If we
consider an allocation |�μ| < 5 × 10−5, these results indicate that
the mean sizes of galaxies with m > 27 should be determined to
better than 5 per cent.

Given the width of the observed size distribution and the number
of galaxies for which sizes were determined in the HUDF, we find
that the mean sizes of these faint galaxies can, in principle, be
constrained to better than 4 per cent. We note, however, that the
analysis presented by Coe et al. (2006) will need to be revisited to
ensure that biases in the mean sizes are sufficiently small.

Figure 9. Multiplicative bias for galaxies with 20 < m < 24.5 as a function
of αfaint, the power-law slope of the galaxies counts fainter than magnitude
24.5; the reference simulation assumes αfaint = 0.36 for all magnitudes,
whereas the HUDF counts suggest a slope of 0.24 for faint magnitudes. The
hatched regions indicate a change of 10−4 in the estimate of μ.

6.2 Varying the count slope of faint galaxies

We expect the amplitude of the multiplicative bias to decrease
if fewer faint galaxies are present. For our reference model, we
adopted a single-power-law slope for the galaxy counts of 0.36
down to magnitude 29. The actual counts from the HUDF from
Coe et al. (2006) shown in Fig. 1 suggests that the actual slope is
lower; we obtain a best-fitting value of 0.237 ± 0.009 when we fit
a power law to the counts of galaxies with 25 < m < 29. The error
on the slope was obtained by splitting the data into four quadrants.
To quantify the sensitivity of our results to the count slope of faint
galaxies, we simply change the slope of the counts for galaxies with
m > 24.5 to a value αfaint.

The multiplicative bias as a function of αfaint is presented in Fig. 9.
The bias increases linearly with increasing slope. We find a best-
fitting dμ/dαfaint = −0.0239 ± 0.0014, which suggests that we need
to determine the mean slope with a precision of 0.004 if we wish to
allocate a maximum uncertainty of �μ = 10−4. This precision can
probably not be achieved from the HUDF alone, as we expect the
slope to vary due to variations in the distant large-scale structure.
The impact of cosmic variance can be reduced by combining with
the Hubble Deep Fields, the parallel observations from the Frontier
Fields (although the clusters may contaminate the counts) as well as
future James Webb Space Telescope observations. These combined
observations should reduce the uncertainties to the required level.

The multiplicative bias will vary locally as a result of fluctuations
in the faint galaxy counts. If these are uncorrelated with the lens-
ing signal, the main impact is to slightly increase the noise in the
cosmic-shear signal. However, the slope may be affected by gravi-
tational lensing: As discussed in Section 5.3, magnification leads to
an increase or decrease in the number density of background galax-
ies, depending on the slope of the number counts as a function of
magnitude. The relatively flat slope we find for faint galaxies would
lead to a reduction in the average number counts behind overdense
regions. Hence, this introduces a correlation between the large-scale
structure that causes the lensing signal and the multiplicative bias.
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Figure 10. Top panel: multiplicative bias for galaxies with 20 < m < 24.5
when the input ellipticities are increased by a factor of εfac. The hatched re-
gion indicates the allocated uncertainty in the multiplicative bias of 5 × 10−4.
Bottom panel: the slope ∂μ/∂εfac as a function of εfac.

This is worrisome, but a detailed assessment is beyond the scope
of this paper. In future work, we will explore the complications
that arise from magnification using numerical simulations to create
more realistic source samples.

7 VA RY I N G T H E IN P U T E L L I P T I C I T Y
D I S T R I BU T I O N

The response of a galaxy to an applied shear depends on its ellip-
ticity: The change in shape is larger for intrinsically round objects
compared to those that are intrinsically elliptical. As the shear is
computed as an ensemble average of the ellipticity of a population
of galaxies, the average shear responsivity depends on the ellip-
ticity distribution. Moreover, as discussed in detail in Viola et al.
(2014), the bias due to pixel noise also depends on the ellipticity
distribution.

In this section, we examine the sensitivity of the multiplicative
bias to the input ellipticity distribution. H15 found that the multi-
plicative bias for their implementation of the KSB algorithm was
relatively insensitive to the value of ε0 because of the use of a ra-
dial weight function (i.e. no attempt is made to optimize the weight
function and match it to the galaxy shape). None the less, the recov-
ered bias varied by 0.01 over the large range in ε0 considered. Given
the much more challenging constraints for Euclid, it is interesting
to quantify how the bias depends on the ellipticity distribution used
in the image simulations.

The input ellipticity distribution can be modified in a number
of ways, but here we simply multiply the input ellipticity by a
factor of εfac. The resulting multiplicative bias for galaxies with
20 < m < 24.5 as a function of εfac is presented in the top panel of
Fig. 10. The hatched region indicates an uncertainty of 5 × 10−4

in the multiplicative bias due to uncertainties in the ellipticity
distribution.

The bottom panel of Fig. 10 shows the slope ∂μ/∂εfac as a func-
tion of εfac, which reaches a maximum absolute value of 0.05; for
an allocation of �μ = 5 × 10−4, this implies that εfac needs to be

Table 1. Multiplicative bias for mlim = 29 for different
implementations.

Implementation μ

Reference −0.046 45 ± 0.000 17
Unflagged objects −0.041 46 ± 0.000 17
Unmasked neighbouring objects −0.048 25 ± 0.000 20
Aperture of 3r ref

g −0.079 72 ± 0.000 16
rg = 1.5r ref

rg −0.038 73 ± 0.000 21
rg = 2r ref

rg −0.081 72 ± 0.000 23
32 < rbg < 64 pixels −0.042 67 ± 0.000 17
64 < rbg < 128 pixels −0.042 46 ± 0.000 17
Zero background −0.037 79 ± 0.000 26
SWARP background-subtracted −0.038 58 ± 0.000 31

Column 1: modified implementation as explained in the text;
column 2: value for the multiplicative bias for galaxies with
20 < m < 24.5 when galaxies down to mlim = 29 are included
in the simulation.

known with a precision of 1 per cent. This is comparable to the
precision of 0.3 per cent found by Viola et al. (2014) for galaxies
with S/N = 10.

Similar to the case for the observed size distribution, a mismatch
between the data and the simulations can be readily identified by
comparing the distributions. A simple comparison of the observed
dispersion 〈ε2

obs〉1/2 for a subset of the simulations was sufficient to
constrain εfac to better than 0.5 per cent. A complication for real data
is that variations in the noise level will lead to varying broadening
of the observed distributions. Instead, Viola et al. (2014) advocate
observing a small area of sky to a depth such that the impact of pixel
noise can be neglected. In the case of Euclid, an area of 40 deg2

observed with 40 times the nominal integration time is sufficient to
achieve this. However, further study is needed, as Viola et al. (2014)
do not account for the blending with fainter galaxies, which may
act as an additional source of noise.

8 SENSI TI VI TY TO I MPLEMENTATI ON

Until now, we have focused on the sensitivity of the shape mea-
surement algorithm to changes in the input images. Although the
implementation of a simple moment-based method such as KSB is
relatively straightforward, a number of choices are made, such as
the values of the SEXTRACTOR deblending parameters, the width of
the weight function, the background determination, etc. It is there-
fore useful to explore how changes in the actual implementation
of a method affect the resulting multiplicative bias. This may help
identify parameters that can improve the robustness. Table 1 lists
the multiplicative bias values for simulations with mlim = 29 for
the various implementation changes that we discuss in more detail
below.

In our reference analysis, we consider all galaxies detected by
SEXTRACTOR, which also provides a flag to indicate potential prob-
lems with an object. We expect that restricting the analysis to un-
flagged objects (flag = 0) reduces the bias, which is indeed the case.
In contrast, when we do not mask the neighbouring galaxies, the
bias is increased somewhat.

When we reduce the size of the postage stamp to 3r ref
g , the bias

increases significantly because the small radial extent effectively
truncates the estimates of the higher order moments. The results pre-
sented in Table 1 indicate that the biggest improvement is achieved
by increasing the width of the weight function to 1.5 times the nom-
inal value for r ref

g . However, increasing the width further rapidly
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Figure 11. Multiplicative bias for galaxies with 20 < m < 24.5 as a function
of mlim, the magnitude of the faintest galaxies that are included in the
simulation, for different implementations as described in the text. In all
cases, faint galaxies affect the measured multiplicative bias.

increases the bias. Although most of the changes are small, they are
none the less comparable or larger than the desired error budget of
δμ = 10−4.

As discussed in Section 6, faint galaxies affect the local back-
ground determination. The reference analysis determines the back-
ground by fitting a plane to the quadrants of an annulus with radii in
the range 16 < rbg < 32 pixels. Increasing the area of this annulus
should make the background estimate more robust. Indeed, we find
that the bias is reduced for larger annuli, and find similar values for
both cases. However, our simulated data have a constant background
with an expectation value that vanishes. Hence, we can also consider
the case where the background is set to 0, its true value. This yields
the smallest bias of the changes considered here. To mimic a more
realistic scenario, we also run SWARP10 with BACK_SIZE = 128
and BACK_FILTERSIZE = 3 to determine the background for
each image. This results in a slight increase of the bias, but it does
perform better than our local background estimates.

Modifying the background determination can thus have a signif-
icant impact on the bias. If the sensitivity to the faint galaxies could
be reduced, then this represents an interesting avenue to improve
the robustness of the shape measurements against variations in the
properties of galaxies that are too faint to be detected in the survey
data. It is therefore interesting to repeat the analysis of the bias as a
function of mlim for different background determinations.

The results for galaxies with 20 < m < 24.5 are presented in
Fig. 11. The solid and open points indicate the results when we use
larger annuli for the local background determination. The depen-
dence on mlim is, however, similar to that of the reference set-up.
We also show results when we reduce the impact of blending by
selecting only galaxies for which no SEXTRACTOR flag was raised
(blue squares). The bias is indeed smaller, but it increases for larger
values of mlim.

The behaviour is markedly different when we assume that we
know the background level a priori (filled red triangles), which

10 http://www.astromatic.net/software/swarp

does yield the smallest bias: After initially increasing in amplitude,
the multiplicative bias decreases with increasing mlim. This is also
observed when we use SWARP to determine the background in a more
realistic way (open red triangles). Compared to the results for the
local background determination, the dependence of the bias on mlim

is in fact stronger.
To examine the origin of these different dependences, we com-

pared the half-light radii and fluxes measured for galaxies with
20 < m < 24.5 in simulations with mlim = 26 to measurements
obtained using mlim = 29, where we matched the two catalogues. In
the case of local background determination, the inclusion of faint
galaxies results in a small decrease of only 0.2 per cent in the half-
light radius, whereas the flux decreases by 0.3 per cent (both results
are median values). Moreover, the distributions of the differences
are fairly symmetric. In contrast, fixing the background to zero or
using SWARP to subtract a smooth background results in a highly
skewed distribution, where the measurements for most objects are
unchanged. In this case, the presence of faint galaxies leads to a
median increase of 2.2 per cent in size and a median increase of
3.6 per cent in flux. This is not surprising, as the faint objects can in-
crease only the measured sizes and fluxes if the background is fixed.
Hence, this is a generic result, although the details will depend on
the shape measurement method.

The sensitivity to faint galaxies depends clearly on the way the
background is determined. Interestingly, a global background deter-
mination may actually lead to an increased sensitivity to undetected
galaxies, although we note that the number density of faint galaxies
in our simulations is higher than observed in deep HST data (see
Fig. 1). Although further study is warranted, we do advocate the use
of local background determination because it also avoids coherent
biases in shapes measurements that may arise from errors in the
global background.

9 T H E I M PAC T O F S TA R S

Actual data will also contain stars, which may enter the galaxy
catalogue or affect the shapes of galaxies through blending. H15
showed that stars contribute to multiplicative bias for ground-based
observations at low Galactic latitude (see their fig. A2). Bright stars
can be identified morphologically because the galaxy images are
resolved, but as faint objects contribute to multiplicative bias, we
are most concerned about the impact of faint stars.

To quantify the impact of blending by stars for Euclid obser-
vations, we need predictions for the number density of faint stars
as a function of location on the sky. This requires a population
synthesis model of the Milky Way that can predict the properties
of the various stellar populations that make up the Galaxy. Here
we consider two well-known models for the distribution of stars
in the Milky Way, the Besançon model11 (Robin et al. 2003) and
v1.6 of the TRI-dimensional modeL of thE GALaxy12 (TRILEGAL;
Girardi et al. 2005). Both provide web-based interfaces that return
simulated catalogues.

The synthesis models use theoretical stellar evolution tracks, pre-
scriptions for the initial mass function (IMF), star formation history
(SFH), age–metallicity relation, extinction and geometries for the
Galactic components, and a stellar spectral library to predict the
photometry at a given location on the sky. The models consider
separate spatial distributions and SFHs for the thin and thick discs,

11 http://model.obs-besancon.fr/
12 http://stev.oapd.inaf.it/cgi-bin/trilegal
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Figure 12. Left-hand panel: star counts as a function of magnitude for a Galactic longitude l = 180◦ and latitudes b of 90◦, 70◦, 50◦ and 30◦ (black, blue,
magenta and red lines, respectively). The solid lines indicate the results from the Besançon model (Robin et al. 2003), whereas the dashed lines correspond to
the results from the TRILEGAL model (Girardi et al. 2005). For magnitude m < 23, the agreement between the models is fair, but we observe large differences
for the faint counts. Right-hand panel: the change in multiplicative bias �μ for galaxies with 20 < m < 24.5, with respect to the reference simulations, which
contain only a small number of stars for PSF modelling. The black (solid) points correspond to the TRILEGAL counts as a function of latitude for l = 180◦,
whereas the red (open) points indicate the results when the Besançon model star counts are used instead. The differences in the faint star counts do not appear
to be important.

the bulge and the stellar halo, and the parameters are optimized to
match certain observations, such as star counts, colours or kinematic
data.

We note, however, that the assumption of a smooth stellar halo
may be inadequate, as it is well known that the stellar halo con-
tains substantial substructure as a result of minor mergers, with
the Sagittarius stream (Ibata, Gilmore & Irwin 1994) being the
most prominent. Although the stream can be clearly identified out
to large distances using multicolour observations (e.g. Pila-Dı́ez
et al. 2015), it is less prominent in the counts themselves (see e.g.
fig. 4 of Pila-Dı́ez et al. 2014).

The Besançon and TRILEGAL models provide a good match to
observed star counts at bright magnitudes. For instance, Gao,
Just & Grebel (2013) present a comparison to SDSS star counts
at the North Galactic Pole. At fainter magnitudes, the situation is
less clear. Deep HST observations provide some constraints (e.g.
Pirzkal et al. 2005; Stanway et al. 2008; Pirzkal et al. 2009), but
also for these data, contamination by galaxies limits the selection
at the faintest magnitudes, although proper motions can be used to
improve the selection (e.g. Kilic et al. 2005).

The Besançon model parameters are fixed, and we consider
counts in the Megacam i′ filter, including stars with a maximum
distance of 300 kpc. The results as a function of longitude b (for a
Galactic latitude of l = 180◦) are presented in Fig. 12 by the solid
lines. The Besançon model includes a population of low-luminosity
white dwarfs (see section 2.5.3 in Robin et al. 2003) that dominate
the faint counts. Although these may be confused with blue extra-
galactic sources, we note that a comparison with Fig. 1 shows that
faint galaxies outnumber the stars by two orders of magnitude.

The TRILEGAL interface allows the user to change the model param-
eters, such as the IMF or binary fraction, but also the geometry and
SFHs of the bulge, thin disc, thick disc and stellar halo components.
We use the default settings and the resulting counts as a function of
Megacam i′ magnitude are indicated by the dashed lines in Fig. 12.

For bright stars (m < 23), the agreement with the Besançon pre-
dictions is fair; the large differences for the faint counts are caused
by the large number of distant halo white dwarfs in the Besançon
model. In this regard, we can consider the Besançon model as a
worst-case scenario for the impact of stars on shape measurements.

The right-hand panel of Fig. 12 shows the resulting change in
multiplicative bias (relative to the reference simulations that do not
include many stars) as a function of Galactic latitude (for a Galactic
longitude l = 180◦). As for the reference case, we select galaxies
requiring that the observed half-light radius rh > 0.11 arcsec because
the galaxies with m < 24.5 are larger than the stars. The black (solid)
points indicate the results for the TRILEGAL star counts, whereas
the red (open) points correspond to the results when using the
Besançon predictions. We observe a small increase in multiplicative
bias of 3 × 10−4, which increases to 10−3 for low Galactic latitudes.
Importantly, the biases for the two models are consistent, suggesting
that the differences in faint star counts have a negligible impact.

As the number density of stars varies across the sky, so will
the corresponding change in multiplicative bias. One would like to
avoid having to create large suites of image simulations to quantify
the impact of stars in the data. We therefore explored whether it is
possible to predict the change in multiplicative bias using the ob-
served counts of bright stars. To do so, we used TRILEGAL star counts
for a range of Galactic longitudes and latitudes, and determined
the resulting multiplicative bias as a function of nstar, the observed
number density of stars within the magnitude range 18.5 < m < 24.

Fig. 13 shows that the bias increases linearly with nstar. The
residuals with respect to the best-fitting linear relation are presented
in the bottom panel; with an rms of 10−4, these results suggest
that the bias can be predicted sufficiently well using the observed
number density of stars. Note that we did not attempt to optimize the
magnitude range for the bright star counts, but further refinement is
limited in any case by the relative small number of simulations we
created (20 sets per position).
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Figure 13. Top panel: change in multiplicative bias, relative to the refer-
ence simulations (which contain only a small number of stars), for galaxies
with 20 < m < 24.5 as a function of the observed density of bright stars
(18.5 < m < 24). The red dashed line is the best-fitting linear relation.
Bottom panel: the residuals δ�μ with respect to this fit, indicating that the
bias can be predicted with a precision of 10−4 (rms).

1 0 C O N C L U S I O N S

To exploit the statistical power of future cosmic-shear surveys, the
accuracy with which shapes can be measured needs to be improved.
This requires a careful modelling of the PSF, which is the dominant
source of bias, even for space-based observations. However, the
presence of noise and neighbouring galaxies affects the accuracy of
shape measurement algorithms.

The performance of shape measurement algorithms can, however,
be quantified using simulated data. Moreover, the resulting biases as
a function of observed properties can be used to derive an empirical
calibration of the method (e.g. H15; Fenech Conti et al. 2017).
For a meaningful calibration, it is essential that the simulated data
are sufficiently realistic, whereas many studies have focused on
idealized cases, which not only yield incorrect bias estimates, but
can also lead to the development of algorithms that may not perform
well on real data.

We explored the sensitivity of the multiplicative bias of a simple
moment-based method to a number of real-life effects, such as
noise, the presence of stars and galaxies below the detection limit.
We also examined how well the sizes and intrinsic ellipticities of
the galaxies need to be known. Moreover, we demonstrated how
slight modifications in the algorithm can significantly change the
recovered biases. Most of the changes are well below the statistical
uncertainties of ongoing surveys, but need to be studied for the next
generation of surveys that are an order of magnitude larger. Hence,
although we focused here on the accuracy with which Euclid will
need to determine galaxy shapes, our findings are also of relevance
for LSST and WFIRST.

We used the publicly available code GALSIM (Rowe et al. 2015) to
create the simulated data. The images are analysed with the KSB
algorithm (Kaiser et al. 1995), which is fast but not well suited for
the analysis of real data. However, the objective of this paper is
not to calibrate this algorithm, but rather to demonstrate that shape
measurements are sensitive to a number of real-life effects that

have not been considered before. Although the actual sensitivities
will differ between algorithms and implementations, our results are
generic.

As expected, the multiplicative bias depends on the noise level in
the images. The noise level will vary across the survey, in particular,
due to changes in the zodiacal light, but we find that this can be
measured with sufficient precision from the Euclid data. The bias is
also a strong function of galaxy size, and changes in the input sizes
thus modify the results. This can be accounted for by adjusting the
input parameters by comparing the simulated data to the observa-
tions (e.g. Bruderer et al. 2016; Fenech Conti et al. 2017), or by
capturing the dependence on size through an empirical correction.
It is, however, important that selection biases are also accounted for
(Fenech Conti et al. 2017).

The multiplicative bias also depends on the galaxy number den-
sity, which is not captured in simulations of individual galaxies. As
the cosmic-shear signal is correlated with the galaxy density, it is
important that shape measurement algorithms account for this. For
instance, one could consider algorithms that are minimally sensitive
to neighbouring objects. We find that adjustments in the implemen-
tation can indeed reduce the biases somewhat. Compared to fitting
algorithms, moment-based methods are more sensitive to blends
because they bias the estimates of the moments. Whether this can
be reduced will require further study. We also note that strict criteria
may result in undesirable reductions in source density, but can also
complicate the interpretation of the signal. The number density of
stars also varies across the survey, but we find that the observed star
counts can be used to empirically correct the bias with adequate ac-
curacy. Blending also affects the accuracy of measurements of the
change in galaxy size due to magnification. This results in additive
biases for size magnification studies that will need to be accounted
for.

The importance of galaxies below the detection limit was al-
ready highlighted in H15. Given the accuracy required for Euclid,
we find that we need to include galaxies as faint as magnitude 29.
The bias is sensitive to the number density of these faint galaxies
and their size distribution. Magnification of faint galaxies by the
intervening large-scale structure may introduce a correlation be-
tween the lensing signal and the multiplicative bias. This requires
further study, but we note that our results may be considered a
worst case because the observed number density of faint galaxies
is much lower than we simulate (see Fig. 1). Minimizing the sensi-
tivity to these faint galaxies is none the less an important topic for
further study.

The shape measurement also depends on the way the background
level is determined. Our reference implementation uses a local mea-
surement, which has the advantage that errors in the background due
to artefacts are confined to small scales. In this case, the multiplica-
tive bias increases as fainter galaxies are included in the simula-
tions. We observe the opposite, but steeper, trend when we consider
a global background determination.

We considered a number of complications that occur in the
analysis of real data, and demonstrated that these affect the ac-
curacy of shape measurements at a level that is relevant for fu-
ture surveys such as Euclid. These should be considered in the
selection of shape measurement algorithms. Improving the ac-
curacy of the input parameters of the image simulations is per-
haps the most important step. Although our results show that
achieving sub-per cent accuracy is challenging, we estimate that
existing HST observations, as well as future JWST data, are,
in principle, adequate to create sufficiently realistic populations
of galaxies.

MNRAS 468, 3295–3311 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/468/3/3295/3089745
by Jacob Heeren user
on 10 January 2018



3310 H. Hoekstra, M. Viola and R. Herbonnet

AC K N OW L E D G E M E N T S

We thank the members of the Euclid weak-lensing science work-
ing group, in particular Mark Cropper, Tom Kitching, Lance Miller
and Tim Schrabback, for useful discussions. HH also acknowledges
fruitful discussions during an international team meeting on ‘Cos-
mology with size and flux magnification’ led by Alan Heavens and
Hendrik Hildebrandt at the International Space Science Institute
(ISSI). HH, RH and MV acknowledge support from the European
Research Council FP7 grant number 279396. MV is supported
by the Netherlands Organisation for Scientific Research (NWO)
through grant 614.001.103.

R E F E R E N C E S

Alsing J., Kirk D., Heavens A., Jaffe A. H., 2015, MNRAS, 452, 1202
Amendola L. et al., 2013, Living Rev. Relativ., 16, 6
Bernstein G. M., 2010, MNRAS, 406, 2793
Bernstein G. M., Jarvis M., 2002, AJ, 123, 583
Bertin E., Arnouts S., 1996, A&AS, 117, 393
Bridle S. et al., 2010, MNRAS, 405, 2044
Bruderer C., Chang C., Refregier A., Amara A., Bergé J., Gamper L., 2016,
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A P P E N D I X : PA R A M E T R I C M O D E L
O F G A L A X Y S I Z E S

To describe the size distribution of faint galaxies, we extrapolate the
observed distribution of half-light radii from GEMS (Rix et al. 2004)

MNRAS 468, 3295–3311 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/468/3/3295/3089745
by Jacob Heeren user
on 10 January 2018

http://arxiv.org/abs/1702.02600
http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/0912.0201
http://arxiv.org/abs/1607.01761
http://arxiv.org/abs/1702.02601
http://arxiv.org/abs/1503.03757


Sensitivity of shape measurements 3311

Figure A1. Histograms of the distribution of half-light radii from the GEMS
catalogue (Rix et al. 2004) for three magnitude bins (with a width of
0.5 mag). From the left- to right-hand side, the central values are 26.5,
24.5 and 23.0 (blue, black and red, respectively). The smooth curves show
the parametric model, which match the data fairly well.

to fainter magnitudes. In this appendix, we describe how we deter-
mined the model parameters.

The observed distribution of half-light radii is well described
by a lognormal distribution, as shown in Fig. A1. The histograms
show the data for three bins with a width of 0.5 mag. From the
left- to right-hand side, the central values are 26.5, 24.5 and 23.0
(blue, black and red, respectively), clearly showing that the mean
galaxy sizes decrease with magnitude. We note that the faintest bin
in Fig. A1 is shown for reference because the GEMS catalogue is
incomplete for this bin.

Instead, we derive the model parameters using bins with central
values between magnitude 23 and 25.5, and assume that we can
extrapolate the results to fainter magnitudes. We initially kept the
skewness as a free parameter, but found that the most robust results
were obtained by fixing it to a representative value of −0.58. In
this magnitude range, the mean size and dispersion decrease ap-
proximately linearly with apparent magnitude m (see Fig. 2), and
we obtain best fits 〈log10 rh〉 = (3.086–0.145) × m (with rh in units
of arcseconds) and rms σlog10 rh = (0.892–0.0266) × m. These re-
lations were used to compute the dashed lines in Fig. 2, which
indeed match the GEMS data well. The smooth curves in Fig. A1
are the model size distributions, which match the histograms well,
including the magnitude 26.5 bin, which is an extrapolation using

Figure A2. Plot of the best-fitting effective radius as a function of apparent
magnitude from Coe et al. (2006). The black points indicate the points with
a fractional uncertainty <10 per cent in the size, whereas the grey points
correspond to the remaining galaxies in the catalogue.

the model. We use this simple parametric model to assign sizes to
galaxies with m > 26.5 in our image simulations.

To compare our model to deep HST observations, we use mea-
surements from the HUDF by Coe et al. (2006). Similar to Rix
et al. (2004), they fit the galaxy brightness distribution using GALFIT.
Fig. A2 shows the resulting best-fitting effective radii as a function
of apparent magnitude. The scatter increases rapidly for galaxies
with 27.5 < m < 29, most likely due to degeneracies with other fit
parameters. If we require a relative uncertainty <10 per cent in reff,
the scatter is reduced considerably, as indicated by the black points
in Fig. A2.

Unfortunately, Coe et al. (2006) report only the best-fitting effec-
tive radii, whereas we use the more robust half-light radius. Instead,
we assume a linear relation between reff and rh, and determine the
parameters from the GEMS catalogue, which contains both size es-
timates (Rix et al. 2004): rh ≈ (0.066 + 0.46) × reff. The resulting
average half-light radii are indicated by the red points in Fig. 2,
which indicate that our parametric model may underestimate the
sizes for the faintest galaxies. Similarly, we adjust the dispersions;
the red points in the bottom panel of Fig. 2 agree fairly well, al-
though the width of the size distribution may be larger than adopted.
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