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Clusters of galaxies have the potential of providing powerful constraints on possible deviations from
General Relativity. We use the catalog of Sunyaev-Zel’dovich (SZ) sources detected by Planck and
consider a correction to the halo mass function for a fðRÞ class of modified gravity models, which has been
recently found to reproduce well results from N-body simulations, to place constraints on the scalaron field
amplitude at the present time, f0R. We find that applying this correction to different calibrations of the halo
mass function produces upper bounds on f0R tighter by more than an order of magnitude, ranging from
log10ð−f0RÞ < −5.81 to log10ð−f0RÞ < −4.40 (95% confidence level). This sensitivity is due to the different
shape of the halo mass function, which is degenerate with the parameters used to calibrate the scaling
relations between SZ observables and cluster masses. Any claim of constraints more stringent that the
weaker limit above, based on cluster number counts, appears to be premature and must be supported by a
careful calibration of the halo mass function and by a robust calibration of the mass scaling relations.
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I. INTRODUCTION

We discuss viability of fðRÞ gravity [1] by comparing
redshift number counts predictions for galaxy clusters with
the recently released [2] all-sky, full-mission, Planck
catalog of Sunyaev-Zel’dovich (SZ) sources (PSZ2). In
particular, we discuss substantial improvements on existing
constraints, their stability, and their dependence from the
choice of the halo mass function (MF) of galaxy clusters,
the most massive gravitationally bound structures in the
Universe [3,4]. The MF, nðM; zÞ, i.e. the number density of
halos in the mass range ½M;M þ dM� at redshift z, is a
sensitive cosmological probe of the late time Universe, and
it can provide unique constraints on cosmological param-
eters and other fundamental physical quantities, like
neutrino masses [5,6].
Here we are interested in constraining fðRÞ gravity [7],

which is characterized by a Lagrangian density of the form
Rþ fðRÞ, where f depends on the Ricci scalar, R.
Fundamental quantities in the theory are fR ¼ df=ðdRÞ,
the scalaron, and its Compton wavelength B ¼ d2f=ðdRÞ2,
of which f0R and B0 represent the values at the current
epoch. Deviations from General Relativity (GR) affect
gravitational collapse and structure formation, resulting
in a dependence of nðM; zÞ on f0R. We describe modified
gravity effects on the cluster MF following [8,9], where
N-body simulations are used to fit departure from GR
predictions for the critical density contrast for the collapse

of a top-hat spherical perturbation, δc, in models with
fðRÞ ∼ R−n, with n a positive integer [10,11].
By taking into account cosmic microwave background

(CMB) lensing, constraints from primary CMB temper-
ature anisotropies result in B0 < 0.1 [12] [all results in the
text are at 95% confidence level (C.L.), unless otherwise
stated]. Adding small scale information from redshift space
distortions and weak lensing [13,14] further tightens this
constraint to B0 < 0.8 × 10−4. Similar results are obtained
combining CMB and large scale structure (e.g., galaxy
clustering) data [15–18]. Constraints coming from cluster
number counts [15,19,20] have provided upper limits on f0R
in the range ½1.3–4.8� × 10−4 by using different data sets
and making somewhat different assumptions. Recently a
stronger upper limit, jf0Rj ≲ 7 × 10−5, was obtained from
peak statistics in weak lensing maps [21].
To derive constraints on cosmological models using

clusters, a precise calibration of the halo MF is necessary.
Significant progress in this direction has been made over
the past decade in the context of GR, but only in a few cases
modified gravity theories have been considered. In the
context of fðRÞ theory, the good agreement down to
nonlinear scales of recent numerical approaches, which
compare theoretical models for the MF [22–26] with the
results of different implementations of N-body simulations,
motivates the use of an updated calibration of the MF to
improve existing constraints on modified gravity theo-
ries [19,20].
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In general, the MF can be written as [27,28]

dnðM; zÞ
dM

¼ FðσMÞ
ρM
M2

d log σ−1M
d logM

; ð1Þ

where ρM is the comoving density of matter, M the cluster
mass, σM the variance of the linear matter power spectrum
filtered on the mass-scale M, and F the multiplicity
function. Achitouv et al. [8] define a new functional form
for FðσÞ in fðRÞ gravity. This is done by a reparametriza-
tion of δc that, contrary to the GR case, becomes a scale
dependent function of f0R. This derivation of the MF for
fðRÞ models should apply for halo masses computed at the
virial radius.
To calibrate the MF parameters, Achitouv et al. [8]

compared their predictions to the MF results from fðRÞ,
N-body simulations in the redshift range z ∈ ½0; 1.5� and for
scalaron values in the range −f0R ∈ ½10−4; 10−6� [24], using
halos identified by a Friends-of-Friends (FoF) algorithm.
On the other hand, in the PSZ2 catalog that we are using

here the cluster masses are given as M500c, i.e. the total
mass within a radius, R500c, chosen in such a way that the
mean enclosed density is 500ρc. To adapt the calibration of
the fðRÞMF to our case, we implement the Achitouv et al.
[8] MF as a correction to GR multiplicity functions,
computed at R500c, and calibrated from large sets of
N-body simulations of standard gravity:

FðσÞ ¼ FGRðσÞ
FfR
A ðσÞ

FGR
A ðσÞ : ð2Þ

Here FfR
A ðσÞ and FGR

A ðσÞ are the multiplicity functions
defined in Ref. [8]. For the multiplicity function calibrated
on N-body simulations in GR, FGRðσÞ, we implement two
alternative definitions: the Tinker et al. MF [29], and the
Watson et al. MF [30] (in the following, Tinker and
Watson, respectively). We choose to test the Achitouv
et al. MF in the form of a correction to another MF [see
(2)], because its GR limit is markedly different from the
Tinker and Watson results. These two MFs have been
widely studied thus allowing us to compare our results to
past literature. Following this procedure, we are implicitly
assuming that the fðRÞ correction to the MF from Ref. [8]
also applies at R500c. This assumption clearly needs to be
verified from an extensive calibration of the MF at different
overdensities from large fðRÞ N-body simulations.
Within the PSZ2 catalog, we identify a sample of 429

clusters with a signal-to-noise ratio q > 6. These clusters,
with masses in the range M500c ∈ ½1; 10� × 1014 M⊙, and
redshift z ∈ ½0; 1�, are hereafter denoted as the SZ data set.
The characteristic mass scale of the cluster sample is a
critical element in the number counts analysis. The original
analysis of the Planck collaboration [2] assumes a calibra-
tion of a scaling relation between measured cluster masses

and integrated Compton-y parameter. To parametrize the
uncertainty in the calibration of cluster masses [2], a mass
bias parameter is introduced, b, the ratio between themasses
calibrated through x-ray Multi-Mirror Mission (XMM)-
Newton x-ray observations [31] and the true cluster masses.
In the following, we assume true cluster masses to be given
by the weak lensing results from the Weighing the Giants
project [32]. This implies for the bias parameter BSZ ¼
1 − b a Gaussian prior with mean value 0.688 and variance
0.072. This choice is motivated because it provides a better
agreement with primary Planck CMB results. It is, thus, a
conservative choice, since it leaves less freedom for devia-
tions from the standardΛCDM results. By choosing another
prior, the tension between different data sets could result in
artificially tighter constraints on f0R, when combining CMB
and cluster number counts data. Compared to other x-ray
selected cluster data sets, like CCCP [33] or REFLEX [34],
the Planck sample is biased towards larger masses and
higher redshift, and offers a unique opportunity to test the
MF in a complementary regime. Another key parameter in
the likelihood analysis is αSZ, which sets the slope of the
scaling relation between Y500c, the strength of the SZ signal
in terms of the Compton y-profile integrated within a sphere
of radius R500c, and M500c.
We also use Planck measurements of CMB fluctuations

in both temperature and polarization [35,36] in the multi-
poles range l ≤ 29. We account for CMB anisotropies at
smaller angular scales by using the Plik likelihood [36] for
CMB measurements of the TT, TE and EE power spectra.
Finally, we include the Planck 2015 full-sky lensing
potential power spectrum [35] in the multipole range
40 ≤ l ≤ 400.
Finally, we complement CMB measurements with the

joint light-curve analysis “JLA” supernovae sample [37],
and with BAO measurements of: the SDSS main galaxy
sample at zeff ¼ 0.15 [38]; the BOSS DR11 “LOWZ”
sample at zeff ¼ 0.32 [39]; the BOSS DR11 CMASS at
zeff ¼ 0.57 [39]; and the 6dFGS survey at zeff ¼ 0.106
[40]. We refer to the data combination CMBþ BAOþ
JLA as Planck.
After computing cosmological predictions with

EFTCAMB and EFTCosmoMC [41,42] modifications of the
CAMB/CosmoMC codes [43,44], we compare these predic-
tions with observations. The EFTCosmoMC code has been
modified to account for the fðRÞ cluster likelihood, a
suitable modification of the original likelihood in [2].

II. RESULTS

Table I shows the marginalized constraints obtained from
the Planckþ SZ data set, with the fðRÞ correction applied
to both Tinker and Watson MFs. Tinker MF results in the
tightest constraints on fðRÞ to date. In particular we
improve the bounds in [20] on log10ð−f0RÞ by 1 order of
magnitude, and the ones in [21] by almost an order of
magnitude. These constraints improve substantially also on
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the bounds coming from large scale cosmological obser-
vations [14], confirming the leading role of galaxy clusters
in constraining modified gravity theories.
At the same time, we find a strong dependence of this

upper bound on the choice of the MF, which can affect
observational constraints by more than 1 order of magni-
tude. This strong dependence is clear also from Fig. 1(a):
the Tinker MF produces the tightest bounds, while the
Watson MF is less constraining. To better understand this
result, we first note that SZ cluster measurements break the
degeneracy between σ8 and log10ð−f0RÞ that Planck CMB
measurements clearly display. We then considered also a
run with SZ clusters without Planck data, adding the
previously described BAO constraints, including a prior

on ns [45], ns ¼ 0.9624� 0.014, and adopting big bang
nucleosynthesis constraints [46], Ωb ¼ 0.022� 0.002
(SZþ BAO data set). The results are shown in Fig. 1(a),
where we report both the Tinker (yellow) and Watson
(orange) contour plots. We can notice that, at least for the
Tinker run, the addition of CMB data improves the
constraints on f0R by more than 2 orders of magnitude.
We especially emphasize that, in the case of SZþ BAO, we
do not get the strong dependence on the GR calibration of
the MF that we obtain for the SZþ Planck runs. We can
then expect that, in the latter case the constraints obtained
for the choice of Watson MF are weaker because the shape
of this MF is different from Tinker MF exactly in the range
of mass and redshift probed by SZ Planck clusters. More
precisely, as shown in Fig. 1(b), NðzÞ falls off at high
redshift for the Watson MF more slowly compared to the
Tinker case: when combined with CMB Planck data, in
order to fit the tail at high redshift in GR, a lower BSZ is
required; a lower αSZ is instead preferred in order to fit the
low-redshift trend for NðzÞ. When we, instead, consider
fðRÞ models for the Watson MF, there is a more effective
way to change the slope of NðzÞ with this parameter
(Fig. 1) than by using αSZ, which is now fairly uncon-
strained and degenerate with f0R. The same is not true for
the Tinker case: this degeneracy is not present, and this
results in tighter constraints on f0R. This would explain the

TABLE I. Marginalized constraints obtained from the Planckþ
SZ data set. Different columns show the two different MFs to
which the fðRÞ correction is being applied, see the discussion
following Eq. (2). A prior on BSZ has been applied as in [2].

Parameter Tinker (95% C.L.) Watson (95% C.L.)

log10ð−f0RÞ < −5.81 < −4.40
log10 B0 < −5.60 < −4.06
σ8 (0.79, 0.83) (0.80, 0.83)
αSZ (1.68, 1.91) (1.57, 1.89)
BSZ (0.55, 0.67) (0.50, 0.63)
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(b) Cluster Number Counts (a) Constraints on f(R)

GR + Tinker MF
GR + Watson MF
f(R) + Tinker MF
f(R) + Watson MF
Planck data

Planck + SZ + Watson MF
Planck + SZ + Tinker MF

Planck

BAO + SZ + Watson MF
BAO + SZ + Tinker MF

FIG. 1. (a) The joint marginalized posterior of log10ð−f0RÞ and σ8. Different colors correspond to different data set combinations, as
shown in the legend. Constraints that do not include Planck have been obtained by using weak priors on ns and Ωb. The darker and
lighter shades correspond to the 68% C.L. and the 95% C.L. regions, respectively. (b) Comparison between the Planck measurements
and the model predictions for the cluster number counts, as a function of redshift. Different colors correspond to different models and
different mass functions, as shown in the legend. The black data points are samples from the PSZ2 catalog. The continuous lines
represent the best fit prediction of the Planck and Planck cluster GR posterior. The dashed lines correspond to the same values of the
parameters, but with log10ð−f0RÞ ¼ −4.
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strong influence of the choice of the MF on the final
constraints.
Coming to the interplay between cosmology and astro-

physical parameters of the cluster scaling relations, in Fig. 2
we show the contour plots for f0R, and for the SZ parameters
αSZ and BSZ. The first two panels show that the degeneracy
between f0R and the other two parameters is clear in the
Watson case, but absent in the Tinker one. The wider range
of αSZ probed by the Watson MF when compared to the
Tinker MF in fðRÞ models is evident, and it explains the
weaker constraints obtained in the former case. We com-
ment below about a possibility to reduce this dependence
related to the cluster mass bias.

III. STABILITY OF THE RESULTS

To test the dependence of our results on other effects, we
first add the contribution of baryons, and implement the
baryonic correction to the MF in [47]. In particular, we
consider the correction to the MF obtained by inclusion of
feedback from active galactic nuclei (AGN) in hydro-
dynamic simulations. We obtain log10ð−f0RÞ < −5.84
when considering the Tinker MF and the SZþ Planck
data set. We thus conclude that the presence of baryons
does not have a substantial influence on our results unlike
the larger effects found in Ref. [5], where, however, cluster
data probed smaller masses, which are more affected by
feedback effects than those probed by SZ clusters.
We then investigate the dependence from the signal-to-

noise ratio of Planck data, by using the most conservative
choice q > 8.5, which reduces the sample to 40% of the
original one. In this case we obtain log10ð−f0RÞ < −5.54
using the Tinker MF. Again, we can conclude that our

constraints are stable, as a change in q affects them much
less than a change in the MF would.

IV. DISCUSSION

We compare our results with a recent work [20], where
galaxy clusters have been used in order to get constraints on
fðRÞ gravity theory. In that case the authors got
log10ð−f0RÞ < −4.79 by considering the Tinker MF. In
this sense, with the same choice of the MF and leveraging
on the higher constraining power of Planck SZ cluster
catalog, our work improves the constraint by 1 order of
magnitude and gives log10ð−f0RÞ < −5.81, the key ingre-
dients of this improvement being the extended mass and
redshift coverage of Planck clusters. We stress that this
result should be compared with the one in [20], since both
come from the same choice of the MF. However, according
to us, the main result of this work is not only the exposition
of a tighter constraint. Indeed, we also show that the
implementation of a fðRÞ correction to the MF strongly
depends on the calibration of the MF in GR. In this context
we show that, by keeping the fðRÞ correction constant and
changing the MF for GR, e.g. by switching from Tinker to
Watson, we obtain a change of more than 1 order of
magnitude in the f0R constraint. In the case of Tinker we get
log10ð−f0RÞ < −5.81, while for the Watson log10ð−f0RÞ <
−4.40. We discussed in detail how this strong dependence
on the MF arises from the degeneracy between f0R and the
SZ parameters, αSZ and BSZ. Therefore, in order to reduce
this dependence it would be effective to further constrain
the cluster mass bias; by reducing the distribution of this
parameter, and thus of BSZ, one would minimize the region
of the parameter space in which the degeneracy occurs.
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-4.0

0.72

0.72

0.66

0.660.66

0.60
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(a) (b) (c)

1.9 2.01.81.71.61.5 1.9 2.01.81.71.61.5

Planck and Planck SZ Clusters

f(R) + Tinker MF f(R) + Watson MF GR + Tinker MF GR + Watson MF

FIG. 2. The joint marginalized posterior of log10ð−f0RÞ, αSZ and BSZ for the Planck and Planck SZ clusters data sets. Different colors
correspond to different models, as shown in the legend. The darker and lighter shades correspond to the 68% C.L. and the 95% C.L.
regions, respectively.
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Thus, we expect that a better determination of the variables
describing SZ clusters would directly translate into a more
robust estimation of modified gravity parameters with
respect to the choice of the GR MF.
In our analysis we also considered stability of the final

results. We implemented the corrections on the MF induced
by baryons and, more specifically, the effect of stars
formation and AGN feedback in hydrodynamic simulations
[47]. In particular, we speculated that the baryonic proc-
esses would not depend on the model of gravity, i.e. on the
value of f0R. In principle, since these effects strongly
influence the shape of the MF and, consequently, of the
cluster number counts, we would expect some change in
the final constraints on the scalaron amplitude. However,
taking into account these effects did not appreciably
influence the result.
We also investigated the effects of the signal-to-noise

ratio q for the identification of the clusters in the Planck
catalog. Setting this threshold to the most conservative one,
q > 8.5, we obtain log10ð−f0RÞ < −5.54, i.e. a difference of
about 5% from the original result for log10ð−f0RÞ. Also for
this setup, we can then state the stability of our results.
Concluding, we quantitatively investigated the important

role that SZ clusters have in constraining theories of
modified gravity once cluster physics is properly under-
stood and modeled, by implementing a state-of-the-art
conservative analysis, and using the best available data
set together with recent results in terms of cluster MF.
While studies in GR are already at an advanced stage,

modified gravity theories can benefit from additional
insight on cluster physics that can be directly translated
in tighter constraints on gravitational physics. Here, we
obtained the tightest constraints to date on the scalaron
amplitude, and, especially, we emphasized and discussed a
strong dependence from the choice of the GR mass
function. This is relevant to present and future cosmologi-
cal surveys, like Euclid and CMB-S4, that are expected to
deliver unprecedented quality cluster measurements, as it
shows that a deep understanding of the physics of clusters
is essential to fully exploit the constraining power of these
observations [48,49].

ACKNOWLEDGMENTS

We are grateful to Ixandra Achitouv for discussions.
M. V. is supported by the European Research Council
Starting Grant (ERC-StG) The Intergalactic Medium
as a Cosmological Tool (cosmoIGM). M. V., S. B. and
M. R. are supported by Istituto Nazionale di Fisica
Nucleare (INFN) PD51–INDARK. S. B. and M. V. are
also supported by the Progetto di Ricerca di Interesse
Nazionale - Ministero dell’Università e della Ricerca
(PRIN-MIUR) 201278X4FL and by “Consorzio per la
Fisica” of Trieste. M. R. acknowledges partial support by
the Italian Space Agency through the ASI contracts Euclid-
IC (I/031/10/0). We thank the Instituut Lorentz (Leiden
University) and the Osservatorio Astronomico di Trieste
(OATS) for the allocation of computational resources.

[1] L. Pogosian and A. Silvestri, Pattern of growth in viable f(R)
cosmologies, Phys. Rev. D 77, 023503 (2008).

[2] P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J.
Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G.
Bartlett et al. (Planck Collaboration), Planck 2015 results.
XXIV. Cosmology from Sunyaev-Zeldovich cluster counts,
Astron. Astrophys. 594, A24 (2015)..

[3] S. W. Allen, A. E. Evrard, and A. B. Mantz, Cosmological
parameters from observations of galaxy clusters, Annu. Rev.
Astron. Astrophys. 49, 409 (2011).

[4] A. V. Kravtsov and S. Borgani, Formation of galaxy
clusters, Annu. Rev. Astron. Astrophys. 50, 353 (2012).

[5] M. Costanzi, F. Villaescusa-Navarro, M. Viel, J.-Q. Xia, S.
Borgani, E. Castorina, and E. Sefusatti, Cosmology with
massive neutrinos III: The halo mass function and an
application to galaxy clusters, J. Cosmol. Astropart. Phys.
12 (2013) 012.

[6] A. B. Mantz, A. von der Linden, S. W. Allen, D. E.
Applegate, P. L. Kelly, R. G. Morris, D. A. Rapetti, R. W.
Schmidt, S. Adhikari, M. T. Allen, P. R. Burchat, D. L.
Burke, M. Cataneo, D. Donovan, H. Ebeling, S. Shandera,
and A. Wright, Weighing the giants—IV. Cosmology

and neutrino mass, Mon. Not. R. Astron. Soc. 446, 2205
(2015).

[7] F. Schmidt, M. Lima, H. Oyaizu, and W. Hu, Nonlinear
evolution of f(R) cosmologies. III. Halo statistics, Phys.
Rev. D 79, 083518 (2009).

[8] I. Achitouv, M. Baldi, E. Puchwein, and J. Weller, Imprint
of f (R) gravity on nonlinear structure formation, Phys. Rev.
D 93, 103522 (2016).

[9] M. Kopp, S. A. Appleby, I. Achitouv, and J. Weller,
Spherical collapse and halo mass function in f(R) theories,
Phys. Rev. D 88, 084015 (2013).

[10] W. Hu and I. Sawicki, Models of f(R) cosmic acceleration
that evade solar system tests, Phys. Rev. D 76, 064004
(2007).

[11] A. A. Starobinsky, Disappearing cosmological constant in
f(R) gravity, JETP Lett. 86, 157 (2007).

[12] B. Hu, M. Raveri, A. Silvestri, and N. Frusciante, Exploring
massive neutrinos in dark cosmologies with EFTCAMB/
EFTCOSMOMC, Phys. Rev. D 91, 063524 (2015).

[13] P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J.
Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, N.
Bartolo et al. (Planck Collaboration), Planck 2015 results.

CONSTRAINING fðRÞ GRAVITY WITH SUNYAEV- … PHYSICAL REVIEW D 95, 023521 (2017)

023521-5

http://dx.doi.org/10.1103/PhysRevD.77.023503
http://dx.doi.org/10.1051/0004-6361/201525833
http://dx.doi.org/10.1146/annurev-astro-081710-102514
http://dx.doi.org/10.1146/annurev-astro-081710-102514
http://dx.doi.org/10.1146/annurev-astro-081811-125502
http://dx.doi.org/10.1088/1475-7516/2013/12/012
http://dx.doi.org/10.1088/1475-7516/2013/12/012
http://dx.doi.org/10.1093/mnras/stu2096
http://dx.doi.org/10.1093/mnras/stu2096
http://dx.doi.org/10.1103/PhysRevD.79.083518
http://dx.doi.org/10.1103/PhysRevD.79.083518
http://dx.doi.org/10.1103/PhysRevD.93.103522
http://dx.doi.org/10.1103/PhysRevD.93.103522
http://dx.doi.org/10.1103/PhysRevD.88.084015
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1134/S0021364007150027
http://dx.doi.org/10.1103/PhysRevD.91.063524


XIV. Dark energy and modified gravity, Astron. Astrophys.
594, A14 (2016)..

[14] B. Hu, M. Raveri, M. Rizzato, and A. Silvestri, Testing
Hu-Sawicki f(R) gravity with the effective field theory
approach, Mon. Not. R. Astron. Soc. 459, 3880 (2016).

[15] L. Lombriser, A. Slosar, U. Seljak, and W. Hu, Constraints
on f(R) gravity from probing the large-scale structure, Phys.
Rev. D 85, 124038 (2012).

[16] J. Dossett, B. Hu, and D. Parkinson, Constraining models of
f(R) gravity with Planck and WiggleZ power spectrum data,
J. Cosmol. Astropart. Phys. 03 (2014) 046.

[17] J. Bel, P. Brax, C. Marinoni, and P. Valageas, Cosmological
tests of modified gravity: Constraints on F(R) theories from
the galaxy clustering ratio, Phys. Rev. D 91, 103503 (2015).

[18] E. Di Valentino, A. Melchiorri, and J. Silk, Cosmological
hints of modified gravity?, Phys. Rev. D 93, 023513 (2016).

[19] F. Schmidt, A. Vikhlinin, and W. Hu, Cluster constraints on
f(R) gravity, Phys. Rev. D 80, 083505 (2009).

[20] M. Cataneo, D. Rapetti, F. Schmidt, A. B. Mantz, S. W.
Allen, D. E. Applegate, P. L. Kelly, A. von der Linden, and
R. G. Morris, New constraints on f(R) gravity from clusters
of galaxies, Phys. Rev. D 92, 044009 (2015).

[21] X. Liu, B. Li, G.-B. Zhao, M.-C. Chiu, W. Fang, C. Pan, Q.
Wang, W. Du, S. Yuan, L. Fu, and Z. Fan, Constraining
fðRÞGravity Theory Using CFHTLenSWeak Lensing Peak
Statistics, Phys. Rev. Lett. 117, 051101 (2016).

[22] L. Lombriser, B. Li, K. Koyama, and G.-B. Zhao, Modeling
halo mass functions in chameleon f(R) gravity, Phys. Rev. D
87, 123511 (2013).

[23] J.-h. He, B. Li, and Y. P. Jing, Revisiting the matter power
spectra in f(R) gravity, Phys. Rev. D 88, 103507 (2013).

[24] E. Puchwein, M. Baldi, and V. Springel, Modified-gravity-
GADGET: A new code for cosmological hydrodynamical
simulations of modified gravity models, Mon. Not. R.
Astron. Soc. 436, 348 (2013).

[25] M. Baldi, F. Villaescusa-Navarro, M. Viel, E. Puchwein, V.
Springel, and L. Moscardini, Cosmic degeneracies—I. Joint
N-body simulations of modified gravity and massive neu-
trinos, Mon. Not. R. Astron. Soc. 440, 75 (2014).

[26] H. A. Winther, F. Schmidt, A. Barreira, C. Arnold, S. Bose,
C. Llinares, M. Baldi, B. Falck, W. A. Hellwing, K.
Koyama, B. Li, D. F. Mota, E. Puchwein, R. E. Smith,
and G.-B. Zhao, Modified gravity N-body code comparison
project, Mon. Not. R. Astron. Soc. 454, 4208 (2015).

[27] J. R. Bond, S. Cole, G. Efstathiou, and Nick Kaiser,
Excursion set mass functions for hierarchical Gaussian
fluctuations, Astrophys. J. 379, 440 (1991).

[28] William H. Press and Paul Schechter, Formation of galaxies
and clusters of galaxies by self-similar gravitational con-
densation, Astrophys. J. 187, 425 (1974).

[29] J. Tinker, A. V. Kravtsov, A. Klypin, K. Abazajian, M.
Warren, G. Yepes, S. Gottlöber, and D. E. Holz, Toward a
halo mass function for precision cosmology: The limits of
universality, Astrophys. J. 688, 709 (2008).

[30] W. A. Watson, I. T. Iliev, A. D’Aloisio, A. Knebe, P. R.
Shapiro, and G. Yepes, The halo mass function through the
cosmic ages, Mon. Not. R. Astron. Soc. 433, 1230 (2013).

[31] M. Arnaud, G. W. Pratt, R. Piffaretti, H. Böhringer, J. H.
Croston, and E. Pointecouteau, The universal galaxy cluster
pressure profile from a representative sample of nearby

systems (REXCESS) and the YSZ-M500 relation, Astron.
Astrophys. 517, A92 (2010).

[32] A. von der Linden, M. T. Allen, D. E. Applegate, P. L. Kelly,
S. W. Allen, H. Ebeling, P. R. Burchat, D. L. Burke,
D. Donovan, R. G. Morris, R. Blandford, T. Erben, and
A. Mantz, Weighing the giants—I. Weak-lensing masses for
51 massive galaxy clusters: Project overview, data analysis
methods and cluster images, Mon. Not. R. Astron. Soc. 439,
2 (2014).

[33] H. Hoekstra, R. Herbonnet, A. Muzzin, A. Babul, A.
Mahdavi, M. Viola, and M. Cacciato, The Canadian cluster
comparison project: Detailed study of systematics and
updated weak lensing masses, Mon. Not. R. Astron. Soc.
449, 685 (2015).

[34] C. A. Collins, H. Bohringer, L. Guzzo, P. Schuecker, D.
Neumann, S. Schindler, R. Cruddace, S. Degrandi, G.
Chincarini, A. C. Edge, H. T. MacGillivray, P. Shaver, G.
Vettolani, and W. Voges, The REFLEX cluster survey, in
19th Texas Symposium on Relativistic Astrophysics and
Cosmology, edited by J. Paul, T. Montmerle, and E.
Aubourg (1998).

[35] P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J.
Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G.
Bartlett et al. (Planck Collaboration), Planck 2015 results.
XIII. Cosmological parameters, Astron. Astrophys. 594,
A13 (2016)..

[36] N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C.
Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, N.
Bartolo et al. (Planck Collaboration), Planck 2015 results.
XI. CMB power spectra, likelihoods, and robustness of
parameters, Astron. Astrophys. 594, A11 (2016)..

[37] M. Betoule et al., Improved cosmological constraints from a
joint analysis of the SDSS-II and SNLS supernova samples,
Astron. Astrophys. 568, A22 (2014).

[38] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival,
A. Burden, and M. Manera, The clustering of the SDSS
DR7 main galaxy sample—I. A 4 percent distance measure
at z ¼ 0.15, Mon. Not. R. Astron. Soc. 449, 835 (2015).

[39] L. Anderson et al., The clustering of galaxies in the SDSS-
III baryon oscillation spectroscopic survey: Baryon acoustic
oscillations in the data releases 10 and 11 galaxy samples,
Mon. Not. R. Astron. Soc. 441, 24 (2014).

[40] F. Beutler, C. Blake, M. Colless, L. Staveley-Smith, and H.
Jones, The 6dF galaxy survey: Baryon acoustic oscillations
and the local Hubble constant, in American Astronomical
Society Meeting Abstracts No. 219, 2012, Vol. 219,
p. 402.01.

[41] B. Hu, M. Raveri, N. Frusciante, and A. Silvestri, Effective
field theory of cosmic acceleration: An implementation in
CAMB, Phys. Rev. D 89, 103530 (2014).

[42] M. Raveri, B. Hu, N. Frusciante, and A. Silvestri,
Effective field theory of cosmic acceleration: Constraining
dark energywithCMBdata, Phys. Rev.D 90, 043513 (2014).

[43] A. Lewis, A. Challinor, and A. Lasenby, Efficient compu-
tation of cosmic microwave background anisotropies in
closed Friedmann-Robertson-Walker models, Astrophys. J.
538, 473 (2000).

[44] A. Lewis and S. Bridle, Cosmological parameters from
CMB and other data: AMonte Carlo approach, Phys. Rev. D
66, 103511 (2002).

PEIRONE, RAVERI, VIEL, BORGANI, and ANSOLDI PHYSICAL REVIEW D 95, 023521 (2017)

023521-6

http://dx.doi.org/10.1051/0004-6361/201525814
http://dx.doi.org/10.1051/0004-6361/201525814
http://dx.doi.org/10.1093/mnras/stw775
http://dx.doi.org/10.1103/PhysRevD.85.124038
http://dx.doi.org/10.1103/PhysRevD.85.124038
http://dx.doi.org/10.1088/1475-7516/2014/03/046
http://dx.doi.org/10.1103/PhysRevD.91.103503
http://dx.doi.org/10.1103/PhysRevD.93.023513
http://dx.doi.org/10.1103/PhysRevD.80.083505
http://dx.doi.org/10.1103/PhysRevD.92.044009
http://dx.doi.org/10.1103/PhysRevLett.117.051101
http://dx.doi.org/10.1103/PhysRevD.87.123511
http://dx.doi.org/10.1103/PhysRevD.87.123511
http://dx.doi.org/10.1103/PhysRevD.88.103507
http://dx.doi.org/10.1093/mnras/stt1575
http://dx.doi.org/10.1093/mnras/stt1575
http://dx.doi.org/10.1093/mnras/stu259
http://dx.doi.org/10.1093/mnras/stv2253
http://dx.doi.org/10.1086/170520
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.1086/591439
http://dx.doi.org/10.1093/mnras/stt791
http://dx.doi.org/10.1051/0004-6361/200913416
http://dx.doi.org/10.1051/0004-6361/200913416
http://dx.doi.org/10.1093/mnras/stt1945
http://dx.doi.org/10.1093/mnras/stt1945
http://dx.doi.org/10.1093/mnras/stv275
http://dx.doi.org/10.1093/mnras/stv275
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201526926
http://dx.doi.org/10.1051/0004-6361/201423413
http://dx.doi.org/10.1093/mnras/stv154
http://dx.doi.org/10.1093/mnras/stu523
http://dx.doi.org/10.1103/PhysRevD.89.103530
http://dx.doi.org/10.1103/PhysRevD.90.043513
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1103/PhysRevD.66.103511
http://dx.doi.org/10.1103/PhysRevD.66.103511


[45] P. A. R. Ade, N. Aghanim, Y. Akrami, P. K. Aluri, M.
Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J.
Banday et al. (Planck Collaboration), Planck 2015 results.
XVI. Isotropy and statistics of the CMB, Astron. Astrophys.
594, A16 (2016).

[46] G. Steigman, Neutrinos and BBN (and the CMB),
arXiv:0807.3004.

[47] W. Cui, S. Borgani, and G. Murante, The effect of active
galactic nuclei feedback on the halo mass function, Mon.
Not. R. Astron. Soc. 441, 1769 (2014).

[48] D. S. Y. Mak, E. Pierpaoli, F. Schmidt, and N. Macellari,
Constraints on modified gravity from Sunyaev-Zeldovich
cluster surveys, Phys. Rev. D 85, 123513 (2012).

[49] B. Sartoris, A. Biviano, C. Fedeli, J. G. Bartlett, S. Borgani,
M. Costanzi, C. Giocoli, L. Moscardini, J. Weller, B.
Ascaso, S. Bardelli, S. Maurogordato, and P. T. P. Viana,
Next generation cosmology: Constraints from the Euclid
galaxy cluster survey, Mon. Not. R. Astron. Soc. 459, 1764
(2016).

CONSTRAINING fðRÞ GRAVITY WITH SUNYAEV- … PHYSICAL REVIEW D 95, 023521 (2017)

023521-7

http://dx.doi.org/10.1051/0004-6361/201526681
http://dx.doi.org/10.1051/0004-6361/201526681
http://arXiv.org/abs/0807.3004
http://dx.doi.org/10.1093/mnras/stu673
http://dx.doi.org/10.1093/mnras/stu673
http://dx.doi.org/10.1103/PhysRevD.85.123513
http://dx.doi.org/10.1093/mnras/stw630
http://dx.doi.org/10.1093/mnras/stw630

