
Automatic construction of parallel portfolios via algorithm
configuration
Lindauer, M.; Hoos, H.H.; Leyton-Brown, K.; Schaub, T.

Citation
Lindauer, M., Hoos, H. H., Leyton-Brown, K., & Schaub, T. (2017). Automatic
construction of parallel portfolios via algorithm configuration. Artificial Intelligence, 244,
272-290. doi:10.1016/j.artint.2016.05.004

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/58569

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/58569

Artificial Intelligence 244 (2017) 272–290
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Automatic construction of parallel portfolios via algorithm

configuration

Marius Lindauer a,∗, Holger Hoos b,∗, Kevin Leyton-Brown b,∗,
Torsten Schaub c,d,∗
a University of Freiburg, Germany
b University of British Columbia, Vancouver, Canada
c University of Potsdam, Germany
d INRIA Rennes, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received in revised form 11 April 2016
Accepted 14 May 2016
Available online 20 May 2016

Keywords:
Algorithm configuration
Parallel SAT solving
Algorithm portfolios
Programming by optimization
Automated parallelization

Since 2004, increases in computational power described by Moore’s law have substantially
been realized in the form of additional cores rather than through faster clock speeds. To
make effective use of modern hardware when solving hard computational problems, it is
therefore necessary to employ parallel solution strategies. In this work, we demonstrate
how effective parallel solvers for propositional satisfiability (SAT), one of the most
widely studied NP-complete problems, can be produced automatically from any existing
sequential, highly parametric SAT solver. Our Automatic Construction of Parallel Portfolios
(ACPP) approach uses an automatic algorithm configuration procedure to identify a set of
configurations that perform well when executed in parallel. Applied to two prominent SAT
solvers, Lingeling and clasp, our ACPP procedure identified 8-core solvers that significantly
outperformed their sequential counterparts on a diverse set of instances from the
application and hard combinatorial category of the 2012 SAT Challenge. We further extended
our ACPP approach to produce parallel portfolio solvers consisting of several different
solvers by combining their configuration spaces. Applied to the component solvers of
the 2012 SAT Challenge gold medal winning SAT Solver pfolioUZK, our ACPP procedures
produced a significantly better-performing parallel SAT solver.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over most of the last decade, additional computational power has come primarily in the form of increased parallelism.
As a consequence, effective parallel solvers are increasingly key to solving computationally challenging problems. Unfortu-
nately, the manual construction of parallel solvers is non-trivial, often requiring fundamental redesign of existing, sequential
approaches, as identified by Hamadi and Wintersteiger [32] as the challenge of Starting from Scratch. It is thus very appealing
to employ generic methods for the construction of parallel solvers from inherently sequential sources as a first step. Indeed,
the prospect of a substantial reduction in human development cost means that such approaches can have a significant
impact, even if their performance does not reach that of special-purpose parallel designs—just as high-level programming
languages are useful, even though compiled software tends to fall short of the performance that can be obtained from

* Corresponding authors.
E-mail addresses: lindauer@informatik.uni-freiburg.de (M. Lindauer), hoos@cs.ubc.ca (H. Hoos), kevinlb@cs.ubc.ca (K. Leyton-Brown),

torsten@cs.uni-potsdam.de (T. Schaub).
http://dx.doi.org/10.1016/j.artint.2016.05.004
0004-3702/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2016.05.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:lindauer@informatik.uni-freiburg.de
mailto:hoos@cs.ubc.ca
mailto:kevinlb@cs.ubc.ca
mailto:torsten@cs.uni-potsdam.de
http://dx.doi.org/10.1016/j.artint.2016.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2016.05.004&domain=pdf

M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290 273
expert-level programming in assembly language. One promising approach for parallelizing sequential algorithms is the de-
sign of parallel algorithm portfolios—sets of solvers that are run in parallel on a given instance of a decision problem, such
as SAT, until the first of them finds a solution [39,27].

In this work,1 we study generic methods for solving a problem we call Automatic Construction of Parallel Portfolios
(ACPP): automatically constructing a static2 parallel solver from a sequential solver or a set of sequential solvers. This
task can be understood as falling within the programming by optimization paradigm [34] in that it involves the design of
software in which many design decisions have been deliberately left open during the development process (here exposed as
parameters of SAT solvers) to be made automatically later (here by means of an automated algorithm configurator) in order
to obtain optimized performance for specific use cases. Hence, all that is required by our ACPP methods is a sequential
solver whose configuration space contains complementary configurations.

We study three variants of the ACPP problem. First, we consider building parallel portfolios starting from a single,
highly parametric sequential solver design. However, for well-studied problems (e.g., SAT), there often exist a wide range of
different solvers that contribute to the state of the art (see, e.g., [73]). Complementarities among such solvers can be ex-
ploited by algorithm portfolios, whether driven by algorithm selection (like SATzilla [72]) or by parallel execution (such as
ppfolio [63] or pfolioUZK [70]). Thus, the second problem we consider is leveraging such complementarities within the con-
text of the ACPP problem, generating a parallel portfolio based on a design space induced from a set of multiple (possibly
parametrized) solvers. Finally, some parallel solvers already exist; these have the advantage that they can increase perfor-
mance by communicating intermediate results—notably, learned clauses—between different processes. The third problem we
study is constructing parallel portfolios from a set containing both sequential and parallel solvers.

We investigate three methods for solving the ACPP problem:

1. Global simultaneously configures all solvers in a k-solver parallel portfolio, representing this ACPP problem as a single-
algorithm configuration problem with a design space corresponding to the kth Cartesian power of the design space of
the given sequential solver. This has the advantages of simplicity and comprehensiveness (no candidate portfolios are
omitted from the design space) but the disadvantage that the size of the design space increases exponentially with k,
which quickly produces extremely difficult configuration problems.

2. Hydra is a method for building portfolio-based algorithm selectors from a single, highly parameterized solver [71].
It proceeds iteratively. In the first round, it aims to find a configuration that maximizes overall performance on the
given dataset. In the i + 1st round, it aims to find a configuration that maximizes marginal contribution across the
configurations identified in the previous i rounds. In the original version of Hydra, these marginal contributions were
calculated relative to the current selector; in the latest version of Hydra, they are determined relative to an idealized,
perfect selector [41]. The wall-clock performance of a perfect selector across i solvers (also known as virtual best solver)
is the same as the wall-clock performance of the same i solvers running in parallel; thus, the same general idea can
be used to build parallel portfolios. (Building a parallel portfolio in this way has the added advantage that no instance
features are required, since there is no need to select among algorithms.) We introduce some enhancements to this
approach for the parallel portfolio setting (discussed in Section 3.1.2), and refer to our method as parHydra.

3. Some parallel solvers only achieve strong performance when running on more than one core; such solvers will not
be found by a greedy approach like parHydra, which only adds one configuration at a time and does not recognize
interaction effects that arise between different threads of a parallel solver. To overcome this problem, we introduce a
new method called parHydrab , which augments parHydra to train b solvers per iteration. This method trades off the
computational benefit of parHydra’s greedy approach with the greater coverage of Global.

We evaluated our ACPP methods on SAT. We chose this domain because it is highly relevant to academia and industry
and has been widely studied. We thus had access to a wide range of strong, highly parametric solvers and were assured
that the bar for demonstrating efficacy of parallelization strategies was appropriately high. We note that our approach is not
limited to SAT solvers and can be directly applied to other domains. To evaluate our methods in the single-solver setting, we
studied both Lingeling and clasp: prominent, highly parametric state-of-the-art solvers for SAT. Lingeling won a gold medal in
the application (wall-clock) track of the 2011 SAT Competition and clasp placed first in the hard combinatorial track of the
2012 SAT Challenge. To evaluate our methods for generating parallel portfolios involving multiple solvers, we started with
the set of solvers included by pfolioUZK, a parallel portfolio solver based on several solvers in their default configurations
that won the gold medal in the parallel track of the 2012 SAT Challenge. This set includes Plingeling, a parallel solver.

Our results demonstrate that parHydra transforms single solvers into parallel portfolios both well and robustly. Its per-
formance on standard 8-core CPUs compared favorably with that of hand-crafted parallel SAT solvers. For the generation
of parallel algorithm portfolios based on a set of both parallel and sequential solvers, we found that parHydrab was best
among the alternatives we considered, notably outperforming pfolioUZK. More detailed experimental results and open-source
code are available at http://www.cs.uni-potsdam.de/acpp.

1 This paper extends a 2012 workshop publication [37].
2 In contrast to parallel algorithm selection systems [53–55], we do not dynamically select solvers on a per-instance base but automatically construct a

static portfolio.

http://www.cs.uni-potsdam.de/acpp

274 M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290
2. Background and related work

We now survey related work on parallel SAT solving and algorithm portfolios.

2.1. Background: SAT solving

The Boolean satisfiability problem (SAT) is to decide whether it is possible to assign truth values (true, false) to the
variables in a given propositional formula F such that F becomes true. If such an assignment exists, F is called satisfiable,
otherwise F is called unsatisfiable. A complete SAT solver takes as an input a formula F , typically in conjunctive normal
form (a conjunction of disjunctions of variables and their negations) and determine a satisfiable assignment or prove that
none exists. An incomplete SAT solver can find satisfying assignments, but not prove unsatisfiability.

Most state-of-the-art complete SAT solvers are based on conflict-driven clause learning (CDCL; [57]). Their parameters
control variable selection for branching decisions, clause learning and restart techniques. State-of-the-art incomplete SAT
solvers use stochastic local search (SLS; [38]), and their parameters control the selection of the variable whose value is
modified in each local search step as well as the diversification and additional intensification strategies. Furthermore, there
exist several preprocessing techniques (e.g., [21]) to simplify formulas and their parameters control how long and how
aggressive preprocessing will be used – too much preprocessing can remove important structural information and hence,
it can increase the hardness of formulas. The efficacy of SAT solvers depends on multiple heuristic components whose
basic functions and the interplay between them are controlled by parameters. Some parameters are categorical (e.g., choice
between different search strategies in SLS), while many others are integer- or real-valued (e.g., the damping factor used in
computing heuristic variable scores in CDCL).

Parallel SAT solvers have received increasing attention in recent years. ManySAT [30,31,29] was one of the first parallel
SAT solvers. It is a static portfolio solver that uses clause sharing between its components, each of which is a manually
configured, CDCL-type SAT solver based on MiniSat [22]. PeneLoPe [5,23] is based on ManySAT and adds several policies for
importing and exporting clauses between the threads. Plingeling [12–16] is based on a similar design; its version 587, which
won a gold medal in the application track of the 2011 SAT Competition (with respect to wall clock time on SAT+UNSAT
instances), and the 2012 version ala, share unit clauses as well as equivalences between their component solvers. Similarly,
CryptoMiniSat [65], which won silver in the application track of the 2011 SAT Competition, shares unit and binary clauses.
clasp [26] is a state-of-the-art solver for SAT, ASP and PB that supports parallel multithreading (since version 2.0.0) for
search space splitting and/or competing strategies, both combinable with a portfolio approach. clasp shares unary, binary and
ternary clauses, and (optionally) offers a parameterized mechanism for distributing and integrating (longer) clauses. Finally,
ppfolio [63] is a simple, static parallel portfolio solver for SAT without clause sharing that uses CryptoMiniSat, Lingeling,
clasp, TNM [69] and march_hi [33] in their default configurations as component solvers, and that won numerous medals at
the 2011 SAT Competition. Like the previously mentioned portfolio solvers for SAT, ppfolio was constructed manually, but
uses a very diverse set of high-performance solvers as its components. pfolioUZK [70] follows the same idea as used for
ppfolio but uses other component solvers; it won the parallel track of the 2012 SAT Challenge. On one hand, ACPP can be
understood as automatically replicating the (hand-tuned) success of solvers like ManySAT , Plingeling, CryptoMiniSat or clasp,
which are inherently based on different configurations of a single parametric solver; on the other, it is also concerned with
automatically producing effective parallel portfolios from multiple solvers, such as ppfolio and pfolioUZK, while exploiting
the rich design spaces of these component solvers.

Katsirelos et al. [46] showed that an effective parallelization of a CDCL SAT solver does not merely hinge on picking a
good clause sharing strategy, since it is not straightforward to obtain shorter resolution proofs by parallelization without
essential changes of the underlying sequential reasoning mechanism. Our ACPP does not aim at parallelizing the resolution
proof, but rather runs multiple algorithms and algorithm configurations in parallel, in order to maximize the probability
that at least one of them finds a short proof quickly.

2.2. Related work

Well before there was widespread interest in multi-core computing, the potential benefits offered by parallel algorithm
portfolios were identified in seminal work by Huberman et al. [39]. Their notion of an algorithm portfolio is inspired by the
use of portfolios of assets for risk management in finance and amounts to running multiple algorithms concurrently and
independently on the same instance of a given problem, until one of them produces a solution. Gomes et al. [27] further
investigated conditions under which such portfolios outperform their component solvers. Both lines of work considered
prominent constraint programming problems (graph coloring and quasigroup completion), but neither presented methods
for automatically constructing portfolio solvers. Parallel portfolios have since made practical impact, both in cases where
the allocation of computational resources to algorithms in the portfolio is static [62,76] and where the component solvers
contained in a portfolio or the resources assigned to them can change over time [24].

A closely related notion of algorithm portfolios first saw practical application in this domain as the basis for algorithm
selectors such as SATzilla [58,72] and many conceptually related methods (see, e.g., [48]). In this context, a portfolio is a set
of candidate algorithms for a given problem from which one or more solvers are selected to be run, based on characteristics
of the problem instance to be solved.

M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290 275
p3S [44,53] and parCSHC [54,55] were the first methods to automatically select a parallel portfolio (in the case of p3S,
actually, a parallel algorithm schedule) from a given set of SAT solvers on a per-instance basis. p3S [53] is a parallel extension
of the sequential algorithm selector 3S [44]. Similar to the sequential version, p3S uses k-nearest neighbor clustering to
determine the k training instances closest in the feature space to a new instance to be solved, and computes a per-instance
parallel algorithm schedule based on the runtime data of these instances using Integer Linear Programming (ILP; [61,64]).
In contrast to our ACPP method, which trains the portfolio offline, the ILP problem within p3S has to be solved online
for each new instance to determine a well-performing parallel portfolio. This quickly becomes very time-consuming as
the number of available solvers grows and as more CPU cores are considered. parCSHC was specially designed for the
SAT Competition. It always statically and independently runs 4 threads of the parallel SAT solver Plingeling, 1 thread of
the sequential SAT solver CCASat, and three solvers selected on a per-instance basis. These latter solvers are selected by
models that are trained on application, hard-combinatorial and random SAT instances, respectively. Other approaches to the
per-instance selection of parallel portfolios that have emerged since our own are sunny-cp2 [2], which selects a parallel
algorithm schedule, andclaspfolio 2 [51], which implements several extensions of sequential algorithm selectors to select a
parallel portfolio.

One thing that all of these methods have in common—whether parallel, selection-based or both—is that they build
a portfolio from a relatively small candidate set of distinct algorithms. While, in principle, these methods could also be
applied given a set of algorithms expressed implicitly as the configurations of one parametric solver, in practice, they are
useful only when the set of candidates is relatively small. The same limitation applies to existing approaches that combine
algorithm selection and scheduling, notably CPHydra [60], which also relies on cheaply computable features of the problem
instances to be solved and selects multiple solvers to be run in parallel. Two further, conceptually related approaches are
aspeed [35] and MIPSAT [59], which compute (parallel) algorithm schedules by taking advantage of the modeling and solving
capacities of Answer Set Programming (ASP [10,25]) and Mixed Integer Programming (MIP; [61,64]), respectively.

Recently, automatic algorithm configuration has become increasingly effective, with the advent of high-performance
methods such as ParamILS [42], GGA [3], irace [52] and SMAC [40]. As a result, there has been recent interest in automati-
cally identifying useful portfolios of configurations from large algorithm design spaces. As before, such portfolio-construction
techniques were first demonstrated to be practical in the case of portfolio-based algorithm selectors. We have already dis-
cussed one key method for solving this problem: Hydra [71], which greedily constructs a portfolio by configuring solvers
iteratively, changing the configurator’s objective function at each iteration to direct it to maximize marginal contribution
to the portfolio. Another key method is ISAC [45], which clusters instances based on features and runs the configurator
separately for each cluster. Malitsky et al. [56] extended ISAC’s scope to the construction of portfolios from a set of dif-
ferent solvers. However, there are three differences between the construction of sequential portfolios and of static parallel
portfolios:

1. Whereas we know how many algorithms we need for a parallel portfolio when running exactly one solver per processor
core (i.e., the size of the portfolio is limited to the number of processor cores available), the potential size of the
portfolio is unlimited in the sequential case, since we may not select all solvers to run.

2. A sequential portfolio solver must somehow select component solvers (which can result in making the wrong decision),
while static parallel solvers run the entire portfolio in parallel and thus achieve nearly the same performance as the
portfolio’s virtual best solver. We note that both approaches are bounded by the performance of the virtual best solver.

3. Using several cores in parallel introduces overhead which should be considered in the configuration process.

3. Parallel portfolio configuration from a single sequential solver

We begin by considering the problem of automatically producing a parallel portfolio solver from a single, highly-
parametric sequential solver; this closely resembles the problem (manually) addressed by the developers of solvers like
ManySAT , Plingeling, CryptoMiniSat and clasp. First, we define our three ACPP methods. Next, we illustrate the performance
of our ACPP portfolio solvers based on Lingeling and clasp and analyze the empirical scalability of our trained ACPP solvers.
Finally, in the case where clause sharing is in the design space of the component solvers, we extend our ACPP solvers with
clause sharing and investigate how much further performance can be achieved by this extension.

3.1. Approach

We now describe three methods for automatically constructing parallel portfolios from a single parametric solver. We
use C to denote the configuration space of our parametric solver, c ∈ C to represent individual configurations, and I to
refer to the given set of problem instances. Our goal is to optimize (without loss of generality, to minimize) performance
according to a given metric m. (In our experiments, we minimize penalized average runtime, PAR10.3) We use a k-tuple
c1:k = (c1, . . . , ck) to denote a parallel portfolio with k component solvers. The parallel portfolio’s full configuration space
is Ck = ∏k

l=1{(c) | c ∈ C}, where the product of two configuration spaces X and Y is defined as {x‖y | x ∈ X, y ∈ Y }, with

3 PARX penalizes each timeout with X times the given cutoff time [42].

276 M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290
x‖y denoting the concatenation (rather than nesting) of tuples. Let AC denote a generic algorithm configuration procedure;
in our experiments, we used SMAC [40]. Following established best practices (see [40]), we performed n independent runs
of AC , obtained configured solvers c(j) with j ∈ {1 . . .n} and retained the configured solver ĉ which achieved the best
performance on instance set I according to metric m. By t we denote the overall time budget available for producing a
parallel portfolio solver.

Algorithm 1: Portfolio Configuration Procedure Global

Input : parametric solver with configuration space C ; desired number k of component solvers; instance set I; performance metric m;
configurator AC ; number n of independent configurator runs; total configuration time t

Output : parallel portfolio solver with portfolio ĉ1:k
1 for j := 1 . . .n do

2 obtain portfolio c(j)
1:k by running AC on configuration space ∏k

l=1{(c) | c ∈ C} on I using m for time t/n

3 choose ĉ1:k ∈ arg min
c(j)

1:k | j∈{1...n} m(c(j)
1:k, I) that achieved best performance on I according to m

4 return ĉ1:k

3.1.1. Simultaneous configuration of all component solvers (Global)
Our first portfolio configuration method is the straightforward extension of standard algorithm configuration to the

construction of a parallel portfolio (see Algorithm 1). Specifically, if the given solver has � parameters, we treat the portfolio
c1:k as a single algorithm with � · k parameters inducing a configuration space of size |C |k , and configure it directly. As
noted above, we identify a single configuration as the best of n independent runs of AC . These runs can be performed in
parallel, meaning that this procedure requires wall clock time t/n if n machines—one for each AC run—with k cores are
available. The used CPU time will be the given time budget t for Lines 1 and 2 in Algorithm 1 and some small overhead
ε to choose the best portfolio in Line 3. The scalability of this approach is limited by the fact that the global configuration
space Ck to which AC is applied grows exponentially with k. However, given a powerful configurator, a moderate value of
k and a reasonably sized C , this simple approach can be effective, especially when compared to manual parallel portfolio
construction.

Algorithm 2: Portfolio Configuration Procedure parHydra

Input : parametric solver with configuration space C ; desired number k of component solvers; instance set I; performance metric m;
configurator AC ; number n of independent configurator runs; total configuration time t

Output : parallel portfolio solver with portfolio ĉ1:k
1 for i := 1 . . .k do
2 for j := 1 . . .n do
3 obtain portfolio c(j)

1:i := ĉ1:i−1||c(j) by running AC on configuration space {ĉ1:i−1} × {(c) | c ∈ C} and initial incumbent ĉ1:i−1||cinit on I using
m for time t/(k · n)

4 let ĉ1:i ∈ arg min
c(j)

1:i | j∈{1...n} m(c(j)
1:i , I) be the configuration which achieved best performance on I according to m

5 let cinit ∈ arg minc(j) | j∈{1...n} m(ĉ1:i ||c(j), I) be the configuration that has the largest marginal contribution to ĉ1:i
6 return ĉ1:k

3.1.2. Iterative configuration of component solvers (parHydra)
The key problem with Global is that Ck may be so large that AC cannot effectively search it. We thus consider an

extension of the Hydra methodology to the ACPP problem, which we dub parHydra (see Algorithm 2). This method has
the advantage that it adds and configures component solvers one at a time. The key idea is to use AC only to configure
the component solver added in the given iteration, leaving all other components clamped to the configurations that were
determined for them in previous iterations. The procedure is greedy in the sense that in each iteration i, it attempts to add a
component solver to the given portfolio ĉ1:i−1 in a way that myopically optimizes the performance of the new portfolio ĉ1:i
(Line 4). While the sets of n independent configurator runs in Line 2 can be performed in parallel (as in Global), the choice
of the best-performing configuration ĉ1:i must be made after each iteration i, introducing a modest overhead compared to
the cost of the actual configuration runs.

A disadvantage of the original Hydra approach is that it discards any intermediate results learned during configuration
when it proceeds to the next iteration. In particular, configurations that were examined but not selected may turn out to be
useful later on. We thus introduce a new idea here—which, indeed, can also be applied to the construction of portfolio-based
algorithm selectors—as follows. We identify the unselected configuration c(j) �= ĉi:i with the best marginal contribution to
the current portfolio ĉ1:i (Line 5), and use it to initialize the configuration procedure in the next iteration (Line 3). This
idea helps when using different initial configurations in each iteration more quickly guides the configuration procedure to
complementary parts of the configuration space.

Another way that parHydra differs from the original Hydra methodology is that it runs entire portfolios on each instance
considered during configuration. Because we target multi-core machines, we consider these computational resources to be

M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290 277
Table 1
Required wall clock time and CPU time of Global and
parHydra for a configuration budget t , desired number k
of component solvers, n algorithm configurator runs, n ·k
available CPU cores, and a small overhead ε for evaluat-
ing the performance of a parallel portfolio.

Wall clock time CPU time

Global t/n + ε t + n · k · ε
parHydra t/n + k · ε ∑k

i=1 i · (t
k + n · ε)

available without cost. While Hydra explicitly modifies the performance metric in each round, parHydra thus achieves the
same modification implicitly, optimizing marginal contribution to the existing portfolio because only the ith element of the
portfolio is available to be configured in the ith iteration. Because parHydra only runs portfolios of size i in iteration i, if
there is a cost to CPU cycles, we achieve some savings relative to Global in iterations i < k. If the overhead for the evaluation
of the portfolios after each iteration is bounded by ε , the CPU cycles used in parHydra are bounded by

∑k
i=1 i · (t

k + n · ε) as
compared to t + n · k · ε for Global. If k > 1 and t

k > ε , parHydra will use fewer CPU cycles than Global. This is particularly
important if ACPP is used on commercial cloud infrastructure, where saving CPU cycles means saving money. Table 1 gives
an overview about the required wall clock time and CPU time for Global and parHydra.

Obviously, for k > 1, even if we assume that AC finds optimal configurations in each iteration, the parHydra procedure
is not guaranteed to find a globally optimal portfolio. For instance, since the configuration found in the first iteration will be
optimized to perform well on average on all instances I , the configuration added in the second iteration will then specialize
to some subset of I . A combination of two configurations that are both specialized to different sets of instances may perform
better; however, the configuration tasks in each parHydra iteration will be much easier than those performed by Global for
even a moderately sized portfolio, giving us reason to hope that under realistic conditions, parHydra might perform better
than Global, especially for large configuration spaces C and for comparatively modest time budgets t .

3.1.3. Independent configuration of component solvers (Clustering)
We also investigated adapting the ISAC approach [45,56] to the ACPP setting. Specifically, we identified clusters in a

space of instance features, ran a configurator to identify a configuration that performed well on each cluster, and combined
these configurations into a parallel portfolio. However, our experiments (see on-line Appendix A) showed that this approach
achieved consistently worse performance than Global and parHydra. In particular, we identified two main issues. First,
normalization of instance features was very important; we struggled to determine a way of normalizing that produced good
clusterings across different solvers. Second, we did not consistently observe that clusters of instances that were distinct in
feature space necessarily led to solver configurations with complementary performance (which, obviously, is necessary for
good performance in the ACPP setting). Thus, we do not further consider this approach in what follows.

3.2. Experiments

To empirically evaluate our methods for solving the ACPP problem, we applied Global and parHydra to two state-of-
the-art SAT solvers: clasp and Lingeling. Specifically, we compared our automatically configured parallel portfolios alongside
performance-optimized sequential solvers, running on eight processor cores. Furthermore, we investigated the scalability of
parHydra by assessing the performance of our portfolio after each iteration, thereby also assessing the slowdown observed
for increasing number of component solvers due to hardware bottlenecks. Finally, we integrated our configured portfolio
based on clasp into clasp’s flexible multithreading architecture and configured the clause sharing policy to investigate the
influence of clause sharing on our trained ACPP solvers.

3.2.1. Scenarios
We compared six evaluation scenarios for each solver. We denote the default configuration of a single-process solver

as Default-SP and that of a multi-process solver with 8 processes and without clause sharing as Default-MP(8);
Default-MP(8)+CS denotes the additional use of clause sharing, which is activated by default in both Plingeling and clasp.
We contrasted these solver versions with three versions obtained using automated configuration: Configured-SP denotes
the best (single-process) configuration obtained from configurator runs on a given training set, while Global-MP(8) and
parHydra-MP(8) represent the 8-component portfolios obtained using our Global and parHydra methods. We chose this
portfolio size to reflect widely available multi-core hardware, as used, for example, in the 2013 SAT Competition and also
supported by the Amazon EC2 cloud (CC2 instances). We note that our approach is not inherently limited to eight cores and
can be expected to scale to higher degrees of parallelism as long as sufficiently many complementary configurations can be
found in the given design space.

3.2.2. Solvers
We applied our approach to the SAT solvers clasp version 2.1.3 [26] and Lingeling version ala [14]. We chose these

two solvers because they were demonstrated to achieve state-of-the-art performance on combinatorial and industrial SAT

278 M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290
instances in the 2012 SAT Challenge and therefore, represent an appropriately high bar for demonstrating the efficacy
of our ACPP approach. Furthermore, both solvers are suitable for ACPP because they are highly parameterized; clasp has
81 parameters and Lingeling has 118. Hence, the configuration space for 8 processes has 648 parameters for clasp and 944
parameters for Lingeling.

We ruled out from our study other state-of-the-art parameterized solvers like glucose that have no parallelized counter-
part for comparison with our automatically constructed solvers. We did not study Plingeling, the “official” parallel version
of Lingeling, because it lacks configurable parameters for individual threads. We also disregarded the native parallel version
of clasp, because clasp’s clause sharing mechanism, which cannot be turned off, results in highly non-deterministic runtime
behavior, rendering the configuration process much more difficult. Instead, we investigated the impact of clause sharing in
a separate experiment. We executed all automatically constructed parallel portfolios via a simple wrapper script that runs a
given number of solver instances independently in parallel and without communication between the component solvers.

3.2.3. Instance sets
We conducted our experiments on instances from the application and hard combinatorial tracks of the 2012 SAT Challenge.

Our configuration experiments made use of disjoint training and test sets, which we obtained by randomly splitting both
instance sets into subsets with 300 instances each.4

To ensure that our experiments would complete within a feasible amount of time, we made use of an instance selection
technique [36] on our training set to obtain a representative and effectively solvable subset of 100 instances for use with a
runtime cutoff time of 180 seconds. We did this by (i) removing instances that we judged too easy and too hard from the
instance set, (ii) clustering the instances in the feature space, and (iii) subsampling the instance set to ensure approximately
equal coverage of the different clusters and normally distributed runtimes. As a reference for the selection process, we
used the base features of SATzilla [72] and employed SINN [75], Lingeling [14], glucose [6], clasp [26] and CCASat [18] as
representative set of state-of-the-art solvers, following [36].

3.2.4. Resource limits and hardware
We chose a cutoff time of 180 seconds for algorithm configuration on the training set and 900 seconds for evaluating

solvers on the test set (as in the 2012 SAT Challenge). Additionally, we performed three repetitions of each solver and test
instance run and report the median of those three runs. We restricted all solver runs (on both training and test sets) to use
at most 12 GB of memory (as in the 2012 SAT Challenge). If a solver terminated because of memory limitations, we recorded
it as a timeout. We performed all solver and configurator runs on Dell PowerEdge R610 systems with 48 GB RAM and two
Intel Xeon E5520 CPUs with four cores each (2.26 GHz and 8 MB Cache), running 64-bit Scientific Linux (2.6.18-348.6.1.el5).

3.2.5. Configuration experiments
We performed configuration using SMAC (version 2.04.01) [40], a state-of-the-art algorithm configurator. SMAC allows

the user to specify the initial incumbent, as required in the context of our parHydra approach (see Lines 2 and 5 of
Algorithm 2). We specified PAR10 as our performance metric, and gave SMAC access to the base features of SATzilla [72].
(SMAC builds performance models internally; it can operate without instance features, but often performs better when they
are available.) To enable fair performance comparisons, in the case of Configured-SP (n = 80) and Global-MP(8) (n = 10)
we allowed 80 hours of configuration time and 2 hours of validation time to determine the best-performing portfolio on
the training instances from our 10 independent configuration runs, which amounts to a total of 6560 CPU hours for k = 8.
For parHydra-MP(8), we allowed for 10 hours of configuration time and 2 hours of validation time (ε) per configurator run
(n = 10) in each iteration, amounting to a total of 3360 CPU hours (see Section 3.1.2). When using a cluster of dedicated
machines with 8-core CPUs, each of these solver versions could be produced within 96 hours of wall-clock time.

3.2.6. Results and interpretation
To evaluate our ACPP solvers, we present the number of timeouts (#TOs), PAR10 and PAR1 based on the median perfor-

mance of the three repeated runs for each solver–test instance pair in Table 2. The best ACPP portfolio on the training set
is marked with a dagger (†) to indicate that we would have chosen this portfolio if we had to make a choice only based
on training data. Furthermore, we applied a statistical test (a permutation test with 100 000 permutations and significance
level α = 0.05) to the (0/1) timeout scores, the PAR10 scores and the PAR1 scores to determine whether performance dif-
ferences between the solvers were significant. In Table 2, performance of a given solver is indicated in bold face if it was
not significantly different from the performance of the best solver. We use an asterisk (∗) to indicate that a given solver’s
performance was not significantly worse than the performance of Default-MP(8)+CS—the official parallel solver with clause
sharing produced by experts.

Table 2 summarizes the results of our experiments with Lingeling and clasp. Running a configurator to obtain an im-
proved, single-processor solver (Configured-SP) made a statistically insignificant impact on performance. We thus believe

4 A random split into training and test set is often used in machine learning to obtain unbiased performance estimates. However, such a simple split has
a higher variance in its performance estimation than using a cross validation. Because of the large amount of CPU resources needed for our experiments,
we could not afford to measure the performance of our ACPP methods on more splits, for example, based on cross validation.

M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290 279
Table 2
Runtime statistics on the test set from application and hard combinatorial SAT instances achieved by
single-processor (SP) and 8-processor (MP8) versions. Default-MP(8) was Plingeling in case of Lingeling
and clasp -t 8 for clasp where both use clause sharing (CS). The performance of a solver is shown
in boldface if it was not significantly different from the best performance, and is marked with an aster-
isk (∗) if it was not significantly worse than Default-MP(8)+CS (according to a permutation test with
100 000 permutations and significance level α = 0.05). The best ACPP portfolio on the training set is
marked with a dagger (†).

Solver set Lingeling (application) clasp (hard combinatorial)

#TOs PAR10 PAR1 #TOs PAR10 PAR1

Default-SP 72 2317 373 137 4180 481
Configured-SP 68 2204 368 140 4253 473

Default-MP(8) 64 2073 345 96 2950 358
Default-MP(8)+CS 53∗ 1730∗ 299∗ 90∗ 2763∗ 333∗

Global-MP(8) 52∗ 1702∗ 298∗ 98 3011 365
parHydra-MP(8) 55∗† 1788∗† 303∗† 96∗† 2945∗† 353∗†

Table 3
Runtime statistics of parHydra-MP(i) after each iteration i (test set). The performance of a solver is
shown in boldface if it was not significantly different from the best performance (according to a permu-
tation test with 100 000 permutations and significance level α = 0.05).

Solver Lingeling (application) clasp (hard combinatorial)

#TOs PAR10 PAR1 #TOs PAR10 PAR1

Default-SP 72 2317 373 137 4180 481
parHydra-MP(1) 82 2594 380 136 4136 464
parHydra-MP(2) 65 2086 331 118 3607 421
parHydra-MP(3) 60 1933 313 115 3515 410
parHydra-MP(4) 56 1874 308 115 3507 402
parHydra-MP(5) 58 1878 312 105 3219 384
parHydra-MP(6) 60 1935 315 103 3161 380
parHydra-MP(7) 59 1902 309 102 3126 372
parHydra-MP(8) 55 1788 303 96 2945 353

that these default configurations are nearly optimal, reflecting the status of Lingeling and clasp as state-of-the-art solvers.
With Lingeling as the component solver, Global-MP(8) produced the best-performing portfolio. There was no significant
difference on any of these scores between parHydra-MP(8), Global-MP(8) and Default-MP(8)+CS. However, the portfolio
performance of Default-MP(8) (Plingeling with deactivated clause sharing) was significantly worse than the performance of
all other parallel portfolios and not even significantly better than Configured-SP in terms of timeout scores or PAR10 scores.
Note that Plingeling (without clause sharing) builds a parallel portfolio only in a degenerate sense, simply using different
random seeds and thus making different choices in the default phase [14]. Hence, it is not surprising that Plingeling without
clause sharing performed significantly worse than Plingeling with clause sharing.

With clasp as the component solver, the portfolio constructed by parHydra-MP(8) was the best ACPP solver and matched
(up to statistically insignificant differences) the performance of Default-MP(8)+CS (the expert-constructed portfolio solver
with clause sharing) according to all metrics we considered, despite incurring six more timeouts. All other ACPP solvers fell
short of this (high) bar; however, the portfolios of Global-MP(8) performed as well as the default portfolio of clasp without
clause sharing (Default-MP(8)). All parallel solvers significantly outperformed the single-threaded versions of clasp.

Overall, parHydra-MP(8) was the only ACPP solver that matched the performance of Default-MP(8)+CS on both do-
mains. parHydra-MP(8)’s portfolio had also the best training performance and therefore, out of the ACPP solvers, we would
choose it. However, while Default-MP(8)+CS uses clause sharing, parHydra-MP(8) does not. This is surprising, because
the performance of Plingeling and clasp without clause sharing was significantly worse than with clause sharing. Thus,
parHydra-MP(8) was the best performing method among those that did not perform clause sharing.

3.2.7. Scalability and overhead
Although 8-core machines have become fairly common, 4-core machines are still more commonly used as desktop com-

puters. Furthermore, Asin et al. [4] observed that parallel portfolios scale sublinearly in the number of cores—in part, because
component solvers share the same CPU cache. Therefore, we investigated how the performance of our automatically con-
structed portfolios scaled with the number of processors. The parHydra approach has the advantage that the portfolio is
extended by one configuration at each iteration, making it easy to perform such scaling analysis.

Table 3 shows the test-set performance of parHydra-MP(i) after each iteration. First of all, parHydra-MP(1) was able to
find a better performing configuration than Default-SP for clasp. In contrast, parHydra-MP(1) found a poorly performing
configuration for Lingeling in comparison to Default-SP, and had to compensate in subsequent iterations. For both solvers,
the largest performance improvement occurred between the first and second iterations, with the number of timeouts re-

280 M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290
Table 4
Runtime statistics of Lingeling and clasp with parallel runs of the same configuration on all instances in
the corresponding test sets. The performance of a solver is shown in boldface if it was not significantly
different from the best performance (according to a permutation test with 100 000 permutations and
significance level α = 0.05).

Processes Lingeling (application) clasp (hard combinatorial)

#TOs PAR10 PAR1 #TOs PAR10 PAR1

1 82 2594 380 136 4136 464
2 79 2509 376 134 4079 461
3 79 2509 376 135 4106 451
4 85 2677 382 135 4107 452
5 86 2707 385 135 4108 463
6 89 2793 390 135 4110 465
7 90 2820 390 135 4110 465
8 92 2877 393 136 4139 467

duced by 17 for Lingeling and 18 for clasp. In later iterations, performance can stagnate or even drop: e.g., parHydra-MP(5)
solves two more instances than parHydra-MP(6) with Lingeling. This may in part reflect hardware limitations: as the size
of a portfolio increases, more processes compete for fixed memory (particularly, cache) resources.

We investigated the influence of these hardware limitations on the performance of our parallel solvers by constructing
portfolios consisting of identical copies of the same solver. In particular, we replicated the same configuration multiple times
with the same random seed; clearly, this setup should result in worsening performance as portfolio size increases, because
each component solver does exactly the same work but shares hardware resources. (We note that these experiments are
particularly sensitive to the underlying hardware we used.) To compare directly against Table 3, we used the configurations
found in the first iteration of parHydra-MP(1). In Table 4, we see that hardware limitations did seem to impact the portfolio
of Lingeling solvers; e.g., a single Lingeling configuration solved 10 more instances than eight such configurations running in
parallel on an eight-core machine. In contrast, the performance of clasp varied only slightly as duplicate solvers were added.
Based on the results in [1], we suspected that this overhead arose because of memory issues, noting that we evaluated clasp
on hard combinatorial instances with an average size of 1.4 MB each, whereas we evaluated Lingeling on application instances
with an average size of 36.7 MB. We confirmed that clasp’s portfolio also did experience overhead on instances with large
memory consumption, and that Lingeling produced nearly no overhead on instances with low memory consumption.

An interesting further observation is that Lingeling and clasp performed best if two copies of the same configuration ran
in parallel, and that running only one copy was worse than two copies. We speculate that this is caused by cache effects
known to affect multi-core computations with more than one CPU. For example, the operating system may move a solver
from one CPU to another, which may result in the loss of data in the CPU cache. However, if two solvers run on two CPUs,
the operating system might run each of them on its own CPU without moving them.

3.2.8. Algorithm configuration of clause sharing
Our previous experiments did not allow our component solvers to share clauses, despite evidence from the literature that

this can be very helpful [31]. The implementation of clause sharing is a challenging task; for example, if too many clauses
are shared, the overhead caused by clause sharing may exceed the benefits [49]. Furthermore, the best clause sharing
policy varies across instance sets and it is a tedious and time-consuming task to manually determine an effective clause
sharing policy. A combination of ACPP and clause sharing will not completely compensate for human efforts to implement
effective clause sharing, but ACPP can help developers to automatically determine well-performing clause sharing policies.
In the following, we investigate the application of clause sharing to our ACPP portfolio. Since there are many possible clause
sharing policies, we used algorithm configuration to identify effective clause sharing policies. This can be understood as an
additional instrument for improving the performance of ACPP portfolios in cases where clause sharing is available.

To study the impact of clause sharing on our ACPP procedures, we relied upon the clause sharing infrastructure provided
by clasp [26], which has a relatively highly parametrized clause sharing policy (10 parameters) and allows for the configura-
tion of each component solver. Plingeling, on the other hand, does not support the configuration of each component solver.
As before, we considered the hard combinatorial instance set.

We started with the portfolio identified by parHydra-MP(8). clasp’s multi-threading architecture performs preprocess-
ing before threading is used. Hence, we ignored the preprocessing parameters identified in the parHydra-MP(8) portfolio,
adding them again to the configuration space as global parameters. Since the communication of clause sharing induces
greater variation in solving behavior, we used 50 CPU hours as the configurator’s time budget.

Table 5 shows the performance of clasp’s default portfolio with clause sharing, Default-MP(8)+CS; the portfolio originally
returned by parHydra, which does not perform clause sharing, parHydra-MP(8); the application of clasp’s default clause
sharing and preprocessing settings to the original parHydra portfolio, parHydra-MP(8)+defCS; and the parHydra portfolio
with newly configured clause sharing and preprocessing settings, parHydra-MP(8)+confCS. As confirmed by these results,
the use of clause sharing led to significant performance gains; furthermore, while the additional gains through configuring
the clause sharing and preprocessing mechanisms were too small to reach statistical significance, parHydra-MP(8)+confCS
solved two more instances than Default-MP(8)+CS and parHydra-MP(8)+defCS.

M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290 281
Table 5
Runtime statistics of clasp’s parHydra-MP(8) portfolio with default clause
sharing (defCS) and configured clause sharing (confCS) on the test instances
of the hard combinatorial set. The performance of a solver is shown in bold-
face if its performance was at least as good as that of any other solver,
up to statistically insignificant differences (according to a permutation test
with 100 000 permutations and significance level α = 0.05).

clasp variant #TOs PAR10 PAR1

Default-MP(8) 96 2950 358
Default-MP(8)+CS 90 2763 333

parHydra-MP(8) 96 2945 353
parHydra-MP(8)+defCS 90 2777 347
parHydra-MP(8)+confCS 88 2722 346

We note that there is potential for performance to be improved even further if clause sharing were configured alongside
the portfolio itself. For example, clasp’s default portfolio contains configurations that are unlikely to solve instances directly,
but that generate useful clauses for other clasp instances.5 Clearly, our methodology for configuring clause sharing will
not identify such configurations. Configuration of clause sharing can be directly integrated in Global and parHydra by
adding the corresponding parameters to the configuration space, because the solvers actually run in parallel. However, since
clasp with clause sharing is highly non-deterministic, the configuration process would require a larger time budget for
constructing the portfolio. In a similar vein, some results in the literature indicate that the collaboration of SAT solvers via
clause sharing performs better if the solvers use similar strategies, e.g., the same solver with a fixed configuration runs
several times in parallel but with different seed (cf. Plingeling). If the configuration of the portfolio is performed alongside
the configuration of the clause sharing policy, such homogeneous portfolios would also belong to the configuration space of
our ACPP methods. We plan to investigate other approaches in future work.

3.2.9. Conclusion
Given a solver with a rich design space (such as Lingeling and clasp), all our ACPP methods were able to generate

8-core parallel solvers that significantly outperformed their sequential counterparts. We have thus demonstrated that our
ACPP methods are able to automatically build parallel portfolio solvers, without the need for costly, hand-crafted parallel
implementations. However, our scalability analysis indicates that hardware restrictions lead to substantial overhead as more
processor cores are used, and the scalability of our ACPP methods depends on the richness of the given sequential solver’s
design spaces and the existence of complementary designs within these spaces. We were also able to verify that clause
sharing can be used to further improve the performance of an ACPP solver, especially when configuration is performed
alongside the component solver instances.

4. Parallel portfolio configuration with multiple sequential solvers

So far, we have shown that our procedures were able to construct effective parallel portfolios based on single solvers
with rich design spaces. There is considerable evidence from the literature and from SAT competitions that strong portfolios
can also be built by combining entirely different solvers in their default configurations (see, e.g., SATzilla [72], ppfolio [63]
and pfolioUZK [70]). For instance, ppfolio was obtained simply by combining the best solvers from the previous competition
into a parallel portfolio. pfolioUZK included more state-of-the-art solvers from 2011 and relied on additional experiments
to find the best combination of solvers in a portfolio. Neither portfolio considers the configuration space of the component
solvers and therefore both can be seen as simple baselines for other parallelization approaches, including ours. However,
ppfolio and pfolioUZK use Plingeling as a portfolio component. Since we aim to investigate the strength of our ACPP methods
without additional human expert knowledge on parallel solving, we first consider only sequential solvers as the basis for
our ACPP approach. This section and the following section investigates the extension of our automatic techniques to the
construction of portfolios based on the configuration spaces spanned by such solver sets.

4.1. Approach

As long as all of our component solvers are sequential, we can simply use the ACPP procedures defined in Section 3.
We can accommodate the multi-solver setting by introducing a solver choice parameter for each portfolio component (see
Fig. 1), and ensuring that the parameters of solver a ∈ A are only active when the solver choice parameter is set to use a.
This is implemented by using conditional parameters (see the PCS format of the Algorithm Configuration Library [43]).
Similar architectures were used by SATenstein [47] and Auto-WEKA [66].

We have so far aimed to create portfolios with size equal to the number of available processor cores. But as observed in
Section 3.2.7, each component solver used within a parallel portfolio incurs some overhead. A similar observation was made

5 Personal communication with the main developer of clasp, Benjamin Kaufmann.

282 M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290
Fig. 1. Using a solver choice parameter, we can specify a single configuration space that spans multiple solvers.

by the developer of pfolioUZK (personal communication) and prompted the decision for pfolioUZK to use only 7 components
on an 8-core platform. To allow our portfolios to make the same choice, we included “none” as one of choices available for
each portfolio component.

4.2. Experiments

While we would presumably have obtained the strongest parallel solver by allowing our portfolio to include a very wide
range of modern SAT solvers, this would have made it difficult to answer the question how our automated methods compare
to human expertise in terms of the performance of the parallel portfolios thus obtained. In particular, we were interested
in pfolioUZK [70], a parallel solver that won the parallel track of the 2012 SAT Challenge with application instances. To
compare our automatic methods with the manual efforts of pfolioUZK’s authors, we thus chose the same set of solvers they
considered as the basis for our experiments.

4.2.1. Solvers
pfolioUZK uses satUZK, Lingeling, TNM, and MPhaseSAT_M on the same core in its sequential version (Default-SP)

and uses satUZK, glucose, contrasat and Plingeling with 4 threads and clause sharing in its 8-process parallel version
(Default-MP(8)+CS). In all cases, solvers are used in their default configurations. However, in designing pfolioUZK [70],
Wotzlaw et al. considered the following, larger set of component solvers:

• contrasat [68]: 15 parameters
• glucose 2.0 [6]: 10 parameters for satelite preprocessing and 6 for glucose
• Lingeling 587 [13]: 117 parameters
• march_hi 2009 [33]: 0 parameters
• MPhaseSAT_M [19]: 0 parameters
• satUZK [28]: 1 parameter
• sparrow2011 [67]: 0 parameters6

• TNM [50]: 0 parameters

Overall, the configuration space we considered has 150 parameters for each portfolio component (including the top-level
parameter used to select a solver), and thus 1200 parameters for an 8-component parallel portfolio.

4.2.2. Instances and setup
We evaluated pfolioUZK as well as our Global and parHydra approaches on the same 300 application test instances of

the 2012 SAT Challenge as used before. Otherwise, our experimental setup was as described in Section 3.2.

4.2.3. Results and interpretation
The first part of Table 6 shows the results of pfolioUZK in its sequential and parallel versions. Recall that pfolioUZK uses

Plingeling with clause sharing as a component solver. Sequential pfolioUZK experienced 115 more timeouts than its parallel
version; indeed, it was only ranked 16th in the sequential application track of the 2012 SAT Challenge.

The second part of Table 6 summarizes the performance of our ACPP solvers (which do not use Plingeling as a com-
ponent solver). parHydra-MP(8) performed best; indeed, there was no significant difference between parHydra-MP(8) and
pfolioUZK-MP(8) in terms of timeout and PAR10 scores. This indicates that our ACPP approach was indeed able to match
the performance of parallel portfolios manually constructed by experts, even with the disadvantage of being prohibited

6 Although sparrow2011 should be parameterized [67], the source code and binary provided with pfolioUZK does not expose any parameters.

M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290 283
Table 6
Runtime statistics for 8-processor parallel solvers on the application test set. The performance
of a solver is shown in boldface if it was not significantly different from the best performance
(according to a permutation test with 100 000 permutations at significance level α = 0.05).
The best ACPP portfolio on the training set is marked with a dagger (†).

8-Processor parallel solver #TOs PAR10 PAR1

pfolioUZK-ST 150 4656 606
pfolioUZK-MP(8)+CS 35 1168 223

Global-MP(8)(pfolioUZK w/o Plingeling) 44 1463 275
parHydra-MP(8)(pfolioUZK w/o Plingeling) 39† 1297† 244†

from using Plingeling and thus clause sharing. Global-MP(8) performed significantly worse than pfolioUZK-MP(8), but not
significantly worse than parHydra-MP(8) in terms of timeout and PAR10 scores.

Although we allowed our portfolio-building procedures to choose “none” for any component solver, this option was never
selected.

4.2.4. Conclusion
We have demonstrated that by exploiting the configuration spaces of a set of complementary solvers, even-better-

performing ACPP solvers can be obtained, compared to those constructed from a single parametric SAT solver such as
Lingeling (compare Table 2 and Table 6). To produce such an ACPP solver, we did not need to modify our ACPP methods,
but instead used conditionals in our configuration space to distinguish between the design spaces of the individual solvers.
Although we did not use parallel solvers with clause sharing (such as Plingeling) in our portfolio, our parHydra method was
able to generate a parallel solver without clause sharing that nevertheless performed as well as pfolioUZK.

5. Parallel portfolio configuration with multiple sequential and parallel solvers

Our results reported in Section 3.2.8 confirm the intuition that clause sharing is an important ingredient of high-
performance parallel solvers. This section extends the scope of our ACPP methods to allow inclusion of parallel solvers
that perform clause sharing as portfolio components. This way, we combine our automatic methods with the human expert
knowledge inherent in existing clause sharing mechanisms to boost performance even further.

5.1. Approach: parHydrab

To add parallel solvers as components in our ACPP approach, we consider each of them by adding multiple copies of
the same solver, where each copy represents one thread of the parallel solver. Thereby, we mark parameters that have to
be joined to be used across different cores; for example, the number of threads of a parallel solver. In contrast to other
approaches that use scheduling (e.g., [53]), we do not have to decide on which core a solver runs, but only how many cores
it will utilize.

The parHydra approach has a drawback when used to configure parallel SAT solvers. This can be seen when considering
the solvers Lingeling and Plingeling. First of all, the components of Plingeling are not parameterized, and we can only choose
the number of threads it is assigned. If the portfolio can also consist of configured versions of Lingeling, which subsumes
single-core Plingeling, and the configurator is run for long enough, there is no reason for the parHydra approach to choose
Plingeling as a component, unless Plingeling already belongs to the previous iteration’s portfolio (in which case the benefits
of clause sharing can make themselves felt). Obviously then, an argument by induction shows that Plingeling will never be
preferred by parHydra, revealing a disadvantage of its greedy optimization strategy. In contrast, Global does not have this
problem, but has difficulties dealing with the large configuration space encountered here.

To overcome both of these limitations and effectively interpolate between parHydra and Global, we introduce a new
approach, which we call parHydrab (Algorithm 3). In brief, unlike parHydra, parHydrab simultaneously configures b pro-
cesses in each iteration. Specifically, in Lines 2 and 3, parHydrab iterates up to the desired number of component solvers
with a step size of b; in Line 5, the algorithm configurator is used to find a portfolio of b configurations with b times
the configuration time budget and adds them to the current portfolio c(j)

1:i′ . After the n independent runs of the algorithm
configurator (Lines 4 and 5), the best performing portfolio ĉ1:i′ is selected in Line 6, and in Line 7, the initial incumbent for
the next iteration is selected based on the marginal contribution to the currently selected portfolio. The parameter b con-
trols the size of the configuration space in each iteration. Since the configuration space grows exponentially with b but we
allow configuration time to grow only linearly, the algorithm configurator has a harder task under parHydrab than under
parHydra. However, for sufficiently small b, this additional cost can be worthwhile, because of parHydrab ’s reduced ten-
dency to stagnate in local minima.

284 M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290
Algorithm 3: Portfolio Configuration Procedure parHydrab

Input : set of parametric solvers a ∈ A with configuration space Ca; desired number k of component solvers; number b of component solvers
simultaneously configured per iteration; instance set I; performance metric m; configurator AC ; number n of independent configurator
runs; total configuration time t

Output : parallel portfolio solver with portfolio ĉ1:k
1 i := 1
2 while i < k do
3 i′ := i + b − 1
4 for j := 1..n do

5 obtain portfolio c(j)
1:i′ := ĉ1:i−1||c(j)

i:i′ by running AC on configuration space {ĉ1:i−1} × (
∏i′

l=i

⋃
a∈A{(c) | c ∈ Ca}) and initial incumbent

ĉ1:i−1||cinit on I using m for time t · b/(k · n)

6 let ĉ1:i′ ∈ arg min
c(j)

1:i′ | j∈{1...n} m(c(j)
1:i′ , I) be the configuration that achieved best performance on I according to m

7 let cinit ∈ arg min
c(j)

i:i′ | j∈{1...n} m(ĉ1:i′ ||c(j)
i:i′ , I) be the configuration that has the largest marginal contribution to ĉ1:i′

8 i := i + b

9 return ĉ1:k

5.2. Experiments

We used the set of solvers described in Section 4.2, with the addition of Plingeling. We added parHydrab to the set
of ACPP methods considered and allowed b ∈ {2, 4}. We use the same setup as before, except that we allowed a 20-hour
configuration budget per configured process, twice as much as before, to take into consideration the greater variation in
solving behavior of Plingeling which induces a harder configuration task.

We compared our results to a variety of state-of-the-art solvers from the 2012 SAT Challenge on this benchmark set. We
considered two state-of-the-art sequential solvers: glucose (2.1) [6] (winner of the single-engine application track—like all
other competition results cited below, in the 2012 SAT Challenge); and SATzilla-App [74], which is SATzilla trained on appli-
cation instances (winner of the sequential portfolio application track). We also considered the following high-performance
parallel solvers7:

• clasp (2.1.3) [26];
• Plingeling (ala) [14] and Plingeling (aqw) [15]8;
• ppfolio [63] (bronze medal in the parallel track);
• PeneLoPe [5] (silver medal in the parallel track);
• and again pfolioUZK [70] (winner of the parallel track).

The first part of Table 7 summarizes the performance results for these solvers: first the sequential solvers in
their default configurations (Default-SP), then the parallel solvers using clause sharing in their default configurations
(Default-MP(8)+CS), and finally our ACPP solvers based on the component solvers of pfolioUZK. As already discussed, the
performance of the sequential pfolioUZK did not achieve state-of-the-art performance; this distinction goes to glucose for a
single solver, and SATzilla for a portfolio-based algorithm selector.

pfolioUZK and clasp performed significantly better than ppfolio, PeneLoPe and Plingeling; we observed no significant per-
formance difference between pfolioUZK and clasp in terms of any of the scores we measured. (Even with further, extensive
experiments, we have not been able to determine why clasp performed significantly worse than pfolioUZK and Lingeling in
the 2012 SAT Challenge.)

parHydra4-MP(8) produced the best parallel portfolio solver overall, which turned out to be significantly faster than
pfolioUZK. The portfolio solvers produced by parHydra-MP(8) and parHydra2-MP(8) exhibited no significant performance
differences from pfolioUZK. Furthermore, parHydra4-MP(8) also solved more instances than Plingeling(aqw), although Plin-
geling(aqw) won the 2013 SAT competition and the solvers in parHydra4-MP(8) were mostly published in 2011, which
gives Plingeling(aqw) an advantage of two additional years of development.

Taking a closer look at these portfolio solvers, parHydra2-MP(8), parHydra4-MP(8) and Global-MP(8) allocated three
cores to Plingeling. As expected, parHydra-MP(8) did not include Plingeling in its portfolio; however, it did include three vari-
ants of Lingeling. All four portfolio solvers used at most seven processes by selecting “none” on one process; Global-MP(8)

selected “none” twice.

7 We did not consider the parallel algorithm selection solvers p3S and parCSHC, since the only versions available are optimized for a mixed set of SAT
instances (application, handcrafted and random) and there is no trainable version available. Therefore, we had no way of performing a fair comparison
between those methods and our ACPP portfolios.

8 The work we describe in this study took more than a year. In the meantime, the 2013 SAT Competition took place and the new Plingeling version aqw
won the gold medal in the parallel track.

M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290 285
Table 7
Comparison of parallel solvers with 8 processors on the test set of application. The performance of a
solver is shown in boldface if its performance was at least as good as that of any other solver, up
to statistically insignificant differences (according to a permutation test with 100 000 permutations at
significance level α = 0.05). The best ACPP portfolio on the training set is marked with a dagger (†).

Solver #TOs PAR10 PAR1

Single threaded solvers: Default-SP

pfolioUZK-ST 150 4656 606
glucose-2.1 55 1778 293
SATzilla-2012-APP 38 1289 263

Parallel solvers with default config: Default-MP(8)

Plingeling(ala)+CS 53 1730 299
PeneLoPe+CS 49 1563 240
ppfolio+CS 46 1506 264
clasp+CS 37 1203 204
pfolioUZK-MP8+CS 35 1168 223
Plingeling(aqw)+CS 32 1058 194

ACPP solvers including a parallel solver
parHydra-MP(8)(pfolioUZK) 34 1143 225
parHydra2-MP(8)(pfolioUZK) 32 1082 218
parHydra4-MP(8)(pfolioUZK) 29† 992† 209†

Global-MP(8)(pfolioUZK) 35 1172 227

5.3. Comparison with sequential portfolio solvers

As illustrated in Table 7, our ACPP portfolios outperformed SATzilla—the winning sequential portfolio solver of the SAT
Challenge 2012. However, SATzilla used a different set of component solvers. Therefore, one might wonder how well a
sequential portfolio solver could perform when using our ACPP methods to obtain a configured portfolio. For all sequential
portfolio solvers, such as algorithm selection or scheduling systems, without communication between the components, the
best possible performance is achieved by the virtual best solver (VBS). We thus compared such a VBS to our ACPP method.
Specifically, we assessed the performance of all components of our best-performing parallel portfolio that does not use
any parallel solvers: parHydra-MP(8)(pfolioUZK w/o Plingeling) (see Table 6). In contrast to parHydra-MP(8)(pfolioUZK w/o
Plingeling), which gave rise to 39 timeouts, the VBS of parHydra-MP(8)(pfolioUZK w/o Plingeling)’s components gave rise
to 35 timeouts. This performance difference arises due to hardware overhead, as discussed earlier. Comparing this VBS
performance with our parHydra4-MP(8) with 29 timeouts (see Table 7), we conclude that no sequential portfolio solver
would have been able to outperform our parHydra4-MP(8) portfolios. parHydra4-MP(8) has a speedup of 1.18 on PAR10
(VBS: 1173 vs. parHydra4-MP(8): 992) and 1.09 on PAR1 (VBS: 228 vs. parHydra4-MP(8): 209).

5.4. Scaling to more than 8 cores

Our ACPP methods are able to take advantage of an arbitrary number of cores, as long we can find a sufficient number
of complementary solver configurations within the given configuration space. The comparison of parHydra-MP(8) with only
Lingeling (Section 3.2) and with the solvers of pfolioUZK demonstrated that a more extensive configuration space with several
solvers can lead to better performance (compare Tables 2 and 7). However, parHydra4-MP(8)(pfolioUZK) used only 7 out of
8 available CPU cores. This indicates that the configuration space of parHydra4-MP(8)(pfolioUZK) was relatively exhausted,
to the point where running a further solver produced less benefit than incurring additional hardware overhead.

Looking at the training performance of parHydra4-MP(8)(pfolioUZK), we note that the improvement between the first
and second iterations (first and last four components, respectively) of parHydra4-MP(8) was less than 10%. The performance
improvement achieved by the more fine-grained parHydra2-MP(8)(pfolioUZK) between its third and fourth iterations was
even lower, less than 3%. Indeed, the majority of our SMAC runs (7 out of 10) found similarly performing portfolios after
their last iterations (with a difference of less than 1 CPU seconds), and one of these 7 portfolios showed the overall best
performance on our training set. Therefore, given the configuration space we studied, we do not expect the potential for
substantial performance improvements by leveraging more than 8 cores.

Using a parallel solver with clause sharing in our ACPP portfolios, we expect that performance could always be improved
by increasing the number of parallel threads. Therefore, we studied the effect of increasing the number of parallel threads
of Plingeling (ala) in parHydra4-MP(8)(pfolioUZK) by using more than 8 cores. Since the machines we used for our previous
experiments had only 8 cores, we used another cluster for the following experiment, consisting of machines with 64 GB
memory and two Intel Xeon E5-2650v2 8-core CPUs with 2.60 GHz and 20 MB L2 cache each, running 64-bit Ubuntu 14.04
LTS.

Table 8 shows the scalability of Plingeling (ala) and parHydra4-MP(8)(pfolioUZK) in steps of 4 processes, since
parHydra4-MP(8)(pfolioUZK) also adds 4 components at a time. On this new hardware, we observed that hardware over-
head influenced performance less than in our previous experiments. parHydra4-MP(8)(pfolioUZK) reached a performance

286 M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290
Table 8
Comparing Plingeling(ala) and parHydra4-MP(8) with increasing number of cores where
parHydra4-MP(8) with more than 8 cores used more threads for Plingeling.

#Processes Plingeling(ala) parHydra4-MP(8)

#TOs PAR10 PAR1 #TOs PAR10 PAR1

4 27 938 209 34 1137 219
8 30 1009 199 22 766 172

12 28 950 194 22 761 167
16 28 949 193 25 845 25

peak at 12 processes and performed worse when using all 16 cores. Furthermore, parHydra4-MP(8)(pfolioUZK) did not
solve more instances when using additional Plingeling threads; we note that the original parHydra4-MP(8) already used 3
threads for Plingeling. However, the average runtime (PAR1) of parHydra4-MP(8)(pfolioUZK) slightly improved between 8
and 12 cores. Running only Plingeling had similar effects; Plingeling performance improved as cores were added up to 12
and then stagnated.

Based on these results, we conjecture that the number of CPU cores at which hardware overhead becomes important is
higher on newer hardware; indeed, perhaps future hardware architectures will permit running even larger parallel portfolios
on one machine without significant hardware overhead. We also observe that adding a reasonable number of additional
threads to Plingeling did not substantially improve the performance of parHydra-MP(8)(pfolioUZK).

5.4.1. Conclusion
Using our extended parHydrab method and a parallel solver with clause sharing, we were able to automatically gen-

erate an ACPP solver that outperformed pfolioUZK and reached the performance level of Plingeling(aqw), which is based
on considerably more advanced solving strategies than are used in the baseline portfolio from pfolioUZK. This shows that
the combination of our automatic ACPP methods and expert knowledge can be used not only to generate efficient parallel
solvers, but also to automatically (albeit slightly) improve Plingeling(aqw), the 2013 state of the art in parallel SAT solving.

6. Conclusions and future work

In this work, we demonstrated that sequential algorithms can be combined automatically and effectively into parallel
portfolios, following an approach we call Automatic Construction of Parallel Portfolios (ACPP). This approach enables solver
developers to leverage parallel resources without having to be concerned with synchronization, race conditions or other
difficulties that arise in the explicit design of parallel code. Of course, inherently parallel solving techniques (e.g., based on
clause sharing) can further improve the performance of our ACPP portfolios. In this view, ACPP can also be used to support a
human developer by determining a well-performing parallel portfolio which can provide a base for (i) adding clause sharing,
(ii) identifying complementary configurations or (iii) as starting point for further manual fine-tuning and development of
new techniques.

We investigated two different ACPP procedures: (i) configuration in the joint configuration space of all portfolio com-
ponents (Global); and (ii) iteratively adding one or more component solvers at a time (parHydra). We assessed these
procedures on widely studied classes of satisfiability problems: the application and hard combinatorial tracks of the 2012
SAT Challenge. Overall, we found that parHydra was the most practical method. The configuration space of Global grows
exponentially with the size of the portfolio; thus, while in principle it subsumes the other methods, in practice, it tended to
find worse portfolios than parHydra within available time budgets. In contrast to Global, parHydra was able to find well-
performing portfolios on all of our domains; using pfolioUZK’s solvers on application instances, it even was able to reach the
performance level of Plingeling(aqw), which won the 2013 parallel track. We expect that as additional highly parametric SAT
solvers become available, parHydra will produce even stronger parallel portfolios.

In future work, it would be interesting to investigate how information exchange strategies such as clause sharing can be
integrated more deeply into our procedures. This could be done, e.g., by combining our ACPP approach with HordeSAT [9],
a modular, massively parallel SAT solver with clause sharing that can make use of arbitrary CDCL solvers. Since parameters
governing such information exchange are global (rather than restricted to an individual component solver), we also intend
to investigate improved methods for handling global portfolio parameters. Finally, we plan to investigate ways of reusing
previously-trained portfolios for building new ones, for instance, in cases where the instance set changes slightly or new
solvers become available.

Acknowledgements

M. Lindauer was supported by the DFG (German Research Foundation) under Emmy Noether grant HU 1900/2-1 and
project SCHA 550/8-3, H. Hoos and K. Leyton-Brown by NSERC Discovery Grants, and T. Schaub by the DFG under project
SCHA 550/8-3, respectively.

M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290 287
Appendix A. Clustering approach

Algorithm 4: Portfolio Configuration Procedure Clustering

Input : parametric solvers with configuration space C ; desired number k of component solvers; instance set I; performance metric m;
configurator AC ; number n of independent configurator runs; total configuration time t; feature normalizer F N; cluster algorithm C A;
features f (i) for all instances i ∈ I

Output : parallel portfolio solver with portfolio ĉ S

1 normalize features with F N into feature space f ′
2 cluster instances with C A in normalized feature space f ′ into k clusters S
3 foreach s ∈ S do
4 for j := 1..n do

5 obtain configuration c(j)
s by running AC with configuration space C on Is using m for time t/(k · n), where Is denotes all instances in

cluster s

6 let ĉs ∈ arg min
c(j)

s | j∈{1...n} m(c(j)
s , I) be the configuration which achieved best performance on I according to m

7 let ĉ S be the portfolio consisting the configurations for each clusters
8 return ĉ S

ISAC [45,56] is a second method for automatically designing portfolio-based algorithm selectors. It works by clustering
a set of instances in a given (normalized) instance feature space and then independently configuring the given highly
parameterized algorithm on each instance cluster (see Algorithm 4). We adapted ISAC to the ACPP problem by generalizing
it in two ways. First, ISAC uses a linear normalization of the features, whereas we leave this decision as a parameter open
to the user, allowing linear, standard (or so-called z-score), or no normalization. In general the best normalization strategy
may vary between feature sets, and there is no way to assess cluster quality before configuration experiments are complete.
Second, we controlled the number of clusters via a parameter, allowing us to set it to the number of cores targeted by the
parallel portfolio. Hence, we do not have to use a clustering method to determine how many clusters to choose (e.g., ISAC
uses g-means). To avoid suggesting that ISAC’s authors endorsed these changes, we refer to the resulting method using the
neutral moniker Clustering.

Table A.9 shows results of Clustering in addition to Table 2. We note that Clustering-MP(8) clusters the training
instances based on instance features; thus, normalizing these features in different ways can result in different instance
clusters. There is no way to assess cluster quality before configuration experiments are complete; one can only observe the
distribution of the instances in the clusters. For example, the instances in the training set of the application distribution
for Clustering-None-MP(8) were distributed across clusters of sizes 2, 2, 3, 11, 13, 18, 21, and 30; we observed qual-
itatively similar distributions for Clustering-Linear-MP(8) and Clustering-Zscore-MP(8). This is potentially problematic,
because running a configurator on sets of 2 or 3 instances can lead to overfitting and produce configurations whose per-
formance does not generalize well to new instances. One reason for these small clusters could be related to our instance
selection technique (see Section 3.2.3), which reduced the number of training instances to speed up the configuration
process. However, the instance selection technique we used already provides a mechanism to improve the distribution of
the instances in the feature space. Kadioglu et al. [45] described how ISAC removes such small clusters by merging them
into larger clusters. However, in the case of parallel portfolios, the number of clusters is fixed, because the number of
clusters has to match the desired portfolio size, in order to ensure maximal utilization of the given parallel computing
resources.

For both solvers, linear feature normalization (Clustering-Linear-MP(8)) produced clusters that were insufficiently com-
plementary, and hence led to relatively poor performance. (We note that linear normalization is used in ISAC.) Using
clustering without feature normalization (Clustering-None-MP(8)) led to surprisingly strong performance in the case of
Lingeling on the application instances, but failed to reach the performance of Default-MP(8)+CS for clasp on the hard com-
binatorial scenario. Similarly, the use of z-score normalization (Clustering-Zscore-MP(8)) did not produce portfolios that
consistently reached the performance of Default-MP(8)+CS.

Table A.9
Runtime statistics on the test set from application and hard combinatorial SAT instances achieved
by Clustering with different feature normalization strategies, Clustering-None-MP(8): no normalization,
Clustering-Linear-MP(8): linear normalization ([0, 1]), Clustering-Zscore-MP(8): z-score normalization. The
performance of a solver is shown in boldface if it was not significantly different from the best performance, and is
marked with an asterisk (∗) if it was not significantly worse than Default-MP(8)+CS (according to a permutation
test with 100 000 permutations and significance level α = 0.05).

Solver set Lingeling (application) clasp (hard combinatorial)

#TOs PAR10 PAR1 #TOs PAR10 PAR1

Clustering-None-MP(8) 47∗ 1571∗ 302∗ 107 3257 368
Clustering-Linear-MP(8) 61 1970 323 114 3476 398
Clustering-Zscore-MP(8) 51∗ 1674∗ 297∗ 99 3035 362

288 M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290
Table A.10
Runtime statistics for 8-processor parallel solvers on the application test set. The performance
of a solver is shown in boldface if it was not significantly different from the best performance
(according to a permutation test with 100 000 permutations at significance level α = 0.05).

8-Processor parallel solver #TOs PAR10 PAR1

Clustering-None-MP(8)(pfolioUZK w/o Plingeling) 42 1390 256
Clustering-Linear-MP(8)(pfolioUZK w/o Plingeling) 48 1581 285
Clustering-Zscore-MP(8)(pfolioUZK w/o Plingeling) 52 1676 272

Table A.10 shows results of Clustering in addition to Table 6. All Clustering approaches performed significantly worse
than the best ACPP approach (parHydra-MP(8)).

As we previously observed with portfolios based on Lingeling, Clustering-None-MP(8) (no feature normalization) per-
formed best among the Clustering approaches. However, this time, Clustering-Zscore-MP(8) performed worse than
Clustering-Linear-MP(8). This indicates that the quality of the clusters depends not only on the instance set but also
on the configuration space of the portfolio (which, indeed, is disregarded by the Clustering approach).

The Clustering approach cannot be effectively applied to sets of component solvers that include parallel solvers. When
the configuration of each component solver is performed independently of all other solvers, there is no way to direct a
configurator to consider synergies between solvers, such as those arising from clause sharing. Therefore, an unparameter-
ized, parallel solver with clause sharing, such as Plingeling, will never be selected. Thus, we did not consider a variant of
Clustering in the experiments of Section 5.2.

References

[1] M. Aigner, A. Biere, C. Kirsch, A. Niemetz, M. Preiner, Analysis of portfolio-style parallel SAT solving on current multi-core architectures, in: Proceedings
of the Fourth International Workshop on Pragmatics of SAT, POS’13, 2013.

[2] R. Amadini, M. Gabbrielli, J. Mauro, A multicore tool for constraint solving, in: Q. Yang, M. Wooldridge (Eds.), Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI’15, AAAI Press, 2015, pp. 232–238.

[3] C. Ansótegui, M. Sellmann, K. Tierney, A gender-based genetic algorithm for the automatic configuration of algorithms, in: I. Gent (Ed.), Proceedings of
the Fifteenth International Conference on Principles and Practice of Constraint Programming, CP’09, in: Lecture Notes in Computer Science, vol. 5732,
Springer-Verlag, 2009, pp. 142–157.

[4] R. Asin, J. Olate, L. Ferres, Cache performance study of portfolio-based parallel CDCL SAT solvers, CoRR, arXiv:1309.3187, 2013.
[5] G. Audemard, B. Hoessen, S. Jabbour, J.-M. Lagniez, C. Piette, Penelope, a parallel clause-freezer solver, in: [7], pp. 43–44, available at https://helda.

helsinki.fi/handle/10138/34218.
[6] G. Audemard, L. Simon, GLUCOSE 2.1 in the SAT Challenge 2012, in: [7], p. 21, available at https://helda.helsinki.fi/handle/10138/34218.
[7] A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, C. Sinz (Eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions, Department

of Computer Science Series of Publications B, vol. B-2012-2, University of Helsinki, 2012, available at https://helda.helsinki.fi/handle/10138/34218.
[8] A. Balint, A. Belov, M. Heule, M. Järvisalo (Eds.), Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions, Department of Computer

Science Series of Publications B, vol. B-2013-1, University of Helsinki, 2013.
[9] T. Balyo, P. Sanders, C. Sinz, HordeSat: a massively parallel portfolio SAT solver, in: M. Heule, S. Weaver (Eds.), Proceedings of the International Confer-

ence on Theory and Applications of Satisfiability Testing, SAT’15, in: Lecture Notes in Computer Science, vol. 9340, Springer-Verlag, 2015, pp. 156–172.
[10] C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving, Cambridge University Press, 2003.
[11] A. Belov, D. Diepold, M. Heule, M. Järvisalo (Eds.), Proceedings of SAT Competition 2014: Solver and Benchmark Descriptions, Department of Computer

Science Series of Publications B, vol. B-2012-2, University of Helsinki, 2014.
[12] A. Biere, Lingeling, plingeling, PicoSAT and PrecoSAT at SAT Race 2010, Tech. Rep. 10/1, Institute for Formal Models and Verification, Johannes Kepler

University, 2010.
[13] A. Biere, Lingeling and friends at the SAT Competition 2011, Technical Report FMV 11/1, Institute for Formal Models and Verification, Johannes Kepler

University, 2011.
[14] A. Biere, Lingeling and friends entering the SAT Challenge 2012, in: [7], pp. 33–34, available at https://helda.helsinki.fi/handle/10138/34218.
[15] A. Biere, Lingeling, plingeling and treengeling entering the SAT Competition 2013, in: [8], pp. 51–52.
[16] A. Biere, Yet another local search solver and lingeling and friends entering the SAT Competition 2014, in: [11], pp. 39–40.
[17] C. Boutilier (Ed.), Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence, IJCAI’09, AAAI/MIT Press, 2009.
[18] S. Cai, C. Luo, K. Su, CCASAT: solver description, in: [7], pp. 13–14, available at https://helda.helsinki.fi/handle/10138/34218.
[19] J. Chen, Phase selection heuristics for satisfiability solvers, CoRR, arXiv:1106.1372, 2011.
[20] A. Cimatti, R. Sebastiani (Eds.), Proceedings of the Fifteenth International Conference on Theory and Applications of Satisfiability Testing, SAT’12, Lecture

Notes in Computer Science, vol. 7317, Springer-Verlag, 2012.
[21] N. Eén, A. Biere, Effective preprocessing in SAT through variable and clause elimination, in: F. Bacchus, T. Walsh (Eds.), Proceedings of the Eighth

International Conference on Theory and Applications of Satisfiability Testing, SAT’05, in: Lecture Notes in Computer Science, vol. 3569, Springer-Verlag,
2005, pp. 61–75.

[22] N. Eén, N. Sörensson, An extensible SAT-solver, in: E. Giunchiglia, A. Tacchella (Eds.), Proceedings of the Sixth International Conference on Theory and
Applications of Satisfiability Testing, SAT’03, in: Lecture Notes in Computer Science, vol. 2919, Springer-Verlag, 2004, pp. 502–518.

[23] G. Audemard, B.H. Jabbour, J. Lagniez, C. Piette, PeneLoPe in SAT Competition 2014, in: [11], pp. 58–59.
[24] M. Gagliolo, J. Schmidhuber, Learning dynamic algorithm portfolios, Ann. Math. Artif. Intell. 47 (3–4) (2006) 295–328, http://www.springerlink.com/

content/g10248526jq91k52/.
[25] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning,

Morgan and Claypool Publishers, 2012.
[26] M. Gebser, B. Kaufmann, T. Schaub, Multi-threaded ASP solving with clasp, Theory Pract. Log. Program. 12 (4–5) (2012) 525–545.
[27] C. Gomes, B. Selman, Algorithm portfolios, Artif. Intell. 126 (1–2) (2001) 43–62.
[28] A. Grinten, A. Wotzlaw, E. Speckenmeyer, S. Porschen, satUZK: solver description, in: [7], pp. 54–55, available at https://helda.helsinki.fi/handle/10138/

34218.

http://refhub.elsevier.com/S0004-3702(16)30062-5/bib616962696B696E697072313361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib616962696B696E697072313361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib616D6164696E69313561s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib616D6164696E69313561s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib616E73657469303961s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib616E73657469303961s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib616E73657469303961s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib61736F6C6665313361s1
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib7361746368616C6C656E67653133s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib7361746368616C6C656E67653133s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib42616C796F313561s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib42616C796F313561s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib626172616C303261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib736174636F6D703134s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib736174636F6D703134s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6269657265313061s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6269657265313061s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6269657265313161s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6269657265313161s1
https://helda.helsinki.fi/handle/10138/34218
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib696A6361693039s1
https://helda.helsinki.fi/handle/10138/34218
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6368656E313161s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib7361743132s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib7361743132s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib65656E626965303561s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib65656E626965303561s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib65656E626965303561s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib65656E736F72303361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib65656E736F72303361s1
http://www.springerlink.com/content/g10248526jq91k52/
http://www.springerlink.com/content/g10248526jq91k52/
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib67656B616B617363313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib67656B616B617363313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib67656B617363313262s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib676F6D73656C303161s1
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218

M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290 289
[29] L. Guo, Y. Hamadi, S. Jabbour, L. Sais, Diversification and intensification in parallel SAT solving, in: D. Cohen (Ed.), Proceedings of the Sixteenth
International Conference on Principles and Practice of Constraint Programming, CP’10, in: Lecture Notes in Computer Science, vol. 6308, Springer-Verlag,
2010, pp. 252–265.

[30] Y. Hamadi, S. Jabbour, L. Sais, Control-based clause sharing in parallel SAT solving, in: [17], pp. 499–504.
[31] Y. Hamadi, S. Jabbour, L. Sais, ManySAT: a parallel SAT solver, J. Satisf. Boolean Model. Comput. 6 (2009) 245–262.
[32] Y. Hamadi, C. Wintersteiger, Seven challenges in parallel SAT solving, AI Mag. 34 (2013) 99–106.
[33] M. Heule, M. Dufour, J. van Zwieten, H. van Maaren, March_eq: implementing additional reasoning into an efficient look-ahead SAT solver, in: H. Hoos,

D. Mitchell (Eds.), Proceedings of the Seventh International Conference on Theory and Applications of Satisfiability Testing, SAT’04, in: Lecture Notes in
Computer Science, vol. 3542, Springer-Verlag, 2004, pp. 345–359.

[34] H. Hoos, Programming by optimisation, Commun. ACM 55 (2012) 70–80.
[35] H. Hoos, R. Kaminski, T. Schaub, M. Schneider, aspeed: ASP-based solver scheduling, in: A. Dovier, V. Santos Costa (Eds.), Technical Communications of

the Twenty-Eighth International Conference on Logic Programming, ICLP’12, in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 17, 2012,
pp. 176–187.

[36] H. Hoos, B. Kaufmann, T. Schaub, M. Schneider, Robust benchmark set selection for Boolean constraint solvers, in: P. Pardalos, G. Nicosia (Eds.), Pro-
ceedings of the Seventh International Conference on Learning and Intelligent Optimization, LION’13, in: Lecture Notes in Computer Science, vol. 7997,
Springer-Verlag, 2013, pp. 138–152.

[37] H. Hoos, K. Leyton-Brown, T. Schaub, M. Schneider, Algorithm configuration for portfolio-based parallel SAT-solving, in: R. Coletta, T. Guns, B. O’Sullivan,
A. Passerini, G. Tack (Eds.), Proceedings of the First Workshop on Combining Constraint Solving with Mining and Learning, CoCoMile’12, 2012, pp. 7–12.

[38] H. Hoos, T. Stützle, Stochastic Local Search: Foundations and Applications, Elsevier/Morgan Kaufmann, 2004.
[39] B. Huberman, R. Lukose, T. Hogg, An economic approach to hard computational problems, Science 275 (1997) 51–54.
[40] F. Hutter, H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in: Proceedings of the Fifth International

Conference on Learning and Intelligent Optimization, LION’11, in: Lecture Notes in Computer Science, vol. 6683, Springer-Verlag, 2011, pp. 507–523.
[41] F. Hutter, H. Hoos, K. Leyton-Brown, Submodular configuration of algorithms for portfolio-based selection, Tech. rep., Department of Computer Science,

University of British Columbia, 2014, in press.
[42] F. Hutter, H. Hoos, K. Leyton-Brown, T. Stützle, ParamILS: an automatic algorithm configuration framework, J. Artif. Intell. Res. 36 (2009) 267–306.
[43] F. Hutter, M. López-Ibáñez, C. Fawcett, M. Lindauer, H. Hoos, K. Leyton-Brown, T. Stützle, AClib: a benchmark library for algorithm configuration, in:

P. Pardalos, M. Resende, C. Vogiatzis, J. Walteros (Eds.), Proceedings of the Eigth International Conference on Learning and Intelligent Optimization,
LION’14, in: Lecture Notes in Computer Science, vol. 8426, Springer-Verlag, 2014, pp. 36–40.

[44] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Algorithm selection and scheduling, in: J. Lee (Ed.), Proceedings of the Seventeenth
International Conference on Principles and Practice of Constraint Programming, CP’11, in: Lecture Notes in Computer Science, vol. 6876, Springer-Verlag,
2011, pp. 454–469.

[45] S. Kadioglu, Y. Malitsky, M. Sellmann, K. Tierney, ISAC – instance-specific algorithm configuration, in: H. Coelho, R. Studer, M. Wooldridge (Eds.),
Proceedings of the Nineteenth European Conference on Artificial Intelligence, ECAI’10, IOS Press, 2010, pp. 751–756.

[46] G. Katsirelos, A. Sabharwal, H. Samulowitz, L. Simon, Resolution and parallelizability: barriers to the efficient parallelization of SAT solvers, in: M. des-
Jardins, M. Littman (Eds.), Proceedings of the Twenty-Seventh National Conference on Artificial Intelligence, AAAI’13, AAAI Press, 2013.

[47] A. KhudaBukhsh, L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, SATenstein: automatically building local search SAT solvers from components, in: [17],
pp. 517–524.

[48] L. Kotthoff, Algorithm selection for combinatorial search problems: a survey, Tech. rep., University College Cork, 2012.
[49] N. Lazaar, Y. Hamadi, S. Jabbour, M. Sebag, Cooperation control in parallel SAT solving: a multi-armed bandit approach, Tech. rep., INRIA, 2012,

http://hal.inria.fr/hal-00733282.
[50] C. Li, W. Wei, Y. Li, Exploiting historical relationships of clauses and variables in local search for satisfiability, in: [20], pp. 479–480.
[51] M. Lindauer, H. Hoos, F. Hutter, From sequential algorithm selection to parallel portfolio selection, in: Proceedings of the International Conference on

Learning and Intelligent Optimization, LION’15, 2015, pp. 1–16.
[52] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, M. Birattari, The irace package, iterated race for automatic algorithm configuration, Tech. rep., IRIDIA,

Université Libre de Bruxelles, Belgium, 2011, http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf.
[53] Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Parallel SAT solver selection and scheduling, in: M. Milano (Ed.), Proceedings of the Eighteenth

International Conference on Principles and Practice of Constraint Programming, CP’12, in: Lecture Notes in Computer Science, vol. 7514, Springer-Verlag,
2012, pp. 512–526.

[54] Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Algorithm portfolios based on cost-sensitive hierarchical clustering, in: F. Rossi (Ed.), Proceedings
of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI’13, IJCAI/AAAI, 2013, pp. 608–614.

[55] Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Parallel lingeling, ccasat, and csch-based portfolio, in: [8], pp. 26–27.
[56] Y. Malitsky, M. Sellmann, Instance-specific algorithm configuration as a method for non-model-based portfolio generation, in: N. Beldiceanu, N. Jussien,

E. Pinson (Eds.), CPAIOR, in: Lecture Notes in Computer Science, vol. 7298, Springer-Verlag, 2012, pp. 244–259.
[57] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: engineering an efficient SAT solver, in: Proceedings of the Thirty-Eighth Conference on

Design Automation, DAC’01, ACM Press, 2001, pp. 530–535.
[58] E. Nudelman, K. Leyton-Brown, G. Andrew, C. Gomes, J. McFadden, B. Selman, Y. Shoham, Satzilla 0.9, solver description, International SAT Competition,

2003.
[59] S. Núnez, D. Borrajo, C. López, Mipsat, in: [8], pp. 59–60.
[60] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, B. O’Sullivan, Using case-based reasoning in an algorithm portfolio for constraint solving, in: D. Bridge,

K. Brown, B. O’Sullivan, H. Sorensen (Eds.), Proceedings of the Nineteenth Irish Conference on Artificial Intelligence and Cognitive Science, AICS’08,
2008.

[61] C. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Upper Saddle River, NJ, USA, 1982.
[62] M. Petrik, S. Zilberstein, Learning static parallel portfolios of algorithms, in: Proceedings of the International Symposium on Artificial Intelligence and

Mathematics, ISAIM 2006, 2006.
[63] O. Roussel, Description of ppfolio, available at http://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf, 2011.
[64] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, New York, NY, USA, 1986.
[65] M. Soos, K. Nohl, C. Castelluccia, Extending SAT solvers to cryptographic problems, in: O. Kullmann (Ed.), Proceedings of the Twelfth International

Conference on Theory and Applications of Satisfiability Testing, SAT’09, in: Lecture Notes in Computer Science, vol. 5584, Springer-Verlag, 2009,
pp. 244–257.

[66] C. Thornton, F. Hutter, H. Hoos, K. Leyton-Brown, Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms, in:
Proceedings of the 19th International Conference on Knowledge Discovery and Data Mining, KDD’13, 2013, pp. 847–855.

[67] D. Tompkins, A. Balint, H. Hoos, Captain Jack – new variable selection heuristics in local search for SAT, in: K. Sakallah, L. Simon (Eds.), Proceedings of
the Fourteenth International Conference on Theory and Applications of Satisfiability Testing, SAT’11, in: Lecture Notes in Computer Science, vol. 6695,
Springer-Verlag, 2011, pp. 302–316.

http://refhub.elsevier.com/S0004-3702(16)30062-5/bib677568616A617361313061s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib677568616A617361313061s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib677568616A617361313061s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib68616A617361303963s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib68616D77696E313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686564757A776D61303461s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686564757A776D61303461s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686564757A776D61303461s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686F6F73313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686F6B6173637363313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686F6B6173637363313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686F6B6173637363313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686F6B6173637363313361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686F6B6173637363313361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686F6B6173637363313361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686F6C6573637363313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686F6C6573637363313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib686F6F737475303461s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib68756C75686F393761s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6875686F6C65313162s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6875686F6C65313162s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6875686F6C65313461s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6875686F6C65313461s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6875686F6C657374303961s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib68756C6F66616C69686F6C657374313461s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib68756C6F66616C69686F6C657374313461s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib68756C6F66616C69686F6C657374313461s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6B616D61736173617365313161s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6B616D61736173617365313161s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6B616D61736173617365313161s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6B616D6173657469313061s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6B616D6173657469313061s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6B6174736972656C6F73313361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6B6174736972656C6F73313361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6B6F7474686F6666313261s1
http://hal.inria.fr/hal-00733282
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6C696E64617565722D6C696F6E313561s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6C696E64617565722D6C696F6E313561s1
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D61736173617365313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D61736173617365313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D61736173617365313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D61736173617365313361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D61736173617365313361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D617365313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D617365313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D6F6D617A687A686D61303161s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D6F6D617A687A686D61303161s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D616865686F6E757375303861s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D616865686F6E757375303861s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib6D616865686F6E757375303861s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib706170737465383261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib7065747A696C303661s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib7065747A696C303661s1
http://www.cril.univ-artois.fr/~roussel/ppfolio/solver1.pdf
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib73636872696A766572383661s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib736F6E6F6361303961s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib736F6E6F6361303961s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib736F6E6F6361303961s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib74686875686F6C65313361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib74686875686F6C65313361s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib746F6261686F313161s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib746F6261686F313161s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib746F6261686F313161s1

290 M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290
[68] A. van Gelder, Contrast – a contrarian SAT solver, J. Satisf. Boolean Model. Comput. 8 (1/2) (2012) 117–122.
[69] W. Wei, C. Li, Switching between two adaptive noise mechanism in local search for SAT, available at http://home.mis.u-picardie.fr/~cli/EnglishPage.html,

2009.
[70] A. Wotzlaw, A. van der Grinten, E. Speckenmeyer, S. Porschen, pfolioUZK: solver description, in: [7], p. 45, available at https://helda.helsinki.fi/handle/

10138/34218.
[71] L. Xu, H. Hoos, K. Leyton-Brown, Hydra: automatically configuring algorithms for portfolio-based selection, in: M. Fox, D. Poole (Eds.), Proceedings of

the Twenty-Fourth National Conference on Artificial Intelligence, AAAI’10, AAAI Press, 2010, pp. 210–216.
[72] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, SATzilla: portfolio-based algorithm selection for SAT, J. Artif. Intell. Res. 32 (2008) 565–606.
[73] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, Evaluating component solver contributions to portfolio-based algorithm selectors, in: [20], pp. 228–241.
[74] L. Xu, F. Hutter, J. Shen, H. Hoos, K. Leyton-Brown, SATzilla2012: improved algorithm selection based on cost-sensitive classification models, in: [7],

pp. 57–58, available at https://helda.helsinki.fi/handle/10138/34218.
[75] T. Yasumoto, Sinn, in: A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, C. Sinz (Eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark

Descriptions, in: [7], pp. 61–61, available at https://helda.helsinki.fi/handle/10138/34218.
[76] X. Yun, S. Epstein, Learning algorithm portfolios for parallel execution, in: Y. Hamadi, M. Schoenauer (Eds.), Proceedings of the Sixth International

Conference Learning and Intelligent Optimization, LION’12, in: Lecture Notes in Computer Science, vol. 7219, Springer-Verlag, 2012, pp. 323–338.

http://refhub.elsevier.com/S0004-3702(16)30062-5/bib67656C646572313261s1
http://home.mis.u-picardie.fr/~cli/EnglishPage.html
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib7875686F6C65313061s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib7875686F6C65313061s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib78756875686F6C65303861s1
https://helda.helsinki.fi/handle/10138/34218
https://helda.helsinki.fi/handle/10138/34218
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib79756E657073313261s1
http://refhub.elsevier.com/S0004-3702(16)30062-5/bib79756E657073313261s1

	Automatic construction of parallel portfolios via algorithm conﬁguration
	1 Introduction
	2 Background and related work
	2.1 Background: SAT solving
	2.2 Related work

	3 Parallel portfolio conﬁguration from a single sequential solver
	3.1 Approach
	3.1.1 Simultaneous conﬁguration of all component solvers (Global)
	3.1.2 Iterative conﬁguration of component solvers (parHydra)
	3.1.3 Independent conﬁguration of component solvers (Clustering)

	3.2 Experiments
	3.2.1 Scenarios
	3.2.2 Solvers
	3.2.3 Instance sets
	3.2.4 Resource limits and hardware
	3.2.5 Conﬁguration experiments
	3.2.6 Results and interpretation
	3.2.7 Scalability and overhead
	3.2.8 Algorithm conﬁguration of clause sharing
	3.2.9 Conclusion

	4 Parallel portfolio conﬁguration with multiple sequential solvers
	4.1 Approach
	4.2 Experiments
	4.2.1 Solvers
	4.2.2 Instances and setup
	4.2.3 Results and interpretation
	4.2.4 Conclusion

	5 Parallel portfolio conﬁguration with multiple sequential and parallel solvers
	5.1 Approach: parHydrab
	5.2 Experiments
	5.3 Comparison with sequential portfolio solvers
	5.4 Scaling to more than 8 cores
	5.4.1 Conclusion

	6 Conclusions and future work
	Acknowledgements
	Appendix A Clustering approach
	References

