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Since 2004, increases in computational power described by Moore’s law have substantially 
been realized in the form of additional cores rather than through faster clock speeds. To 
make effective use of modern hardware when solving hard computational problems, it is 
therefore necessary to employ parallel solution strategies. In this work, we demonstrate 
how effective parallel solvers for propositional satisfiability (SAT), one of the most 
widely studied NP-complete problems, can be produced automatically from any existing 
sequential, highly parametric SAT solver. Our Automatic Construction of Parallel Portfolios
(ACPP) approach uses an automatic algorithm configuration procedure to identify a set of 
configurations that perform well when executed in parallel. Applied to two prominent SAT 
solvers, Lingeling and clasp, our ACPP procedure identified 8-core solvers that significantly 
outperformed their sequential counterparts on a diverse set of instances from the 
application and hard combinatorial category of the 2012 SAT Challenge. We further extended 
our ACPP approach to produce parallel portfolio solvers consisting of several different 
solvers by combining their configuration spaces. Applied to the component solvers of 
the 2012 SAT Challenge gold medal winning SAT Solver pfolioUZK, our ACPP procedures 
produced a significantly better-performing parallel SAT solver.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over most of the last decade, additional computational power has come primarily in the form of increased parallelism. 
As a consequence, effective parallel solvers are increasingly key to solving computationally challenging problems. Unfortu-
nately, the manual construction of parallel solvers is non-trivial, often requiring fundamental redesign of existing, sequential 
approaches, as identified by Hamadi and Wintersteiger [32] as the challenge of Starting from Scratch. It is thus very appealing 
to employ generic methods for the construction of parallel solvers from inherently sequential sources as a first step. Indeed, 
the prospect of a substantial reduction in human development cost means that such approaches can have a significant 
impact, even if their performance does not reach that of special-purpose parallel designs—just as high-level programming 
languages are useful, even though compiled software tends to fall short of the performance that can be obtained from 
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expert-level programming in assembly language. One promising approach for parallelizing sequential algorithms is the de-
sign of parallel algorithm portfolios—sets of solvers that are run in parallel on a given instance of a decision problem, such 
as SAT, until the first of them finds a solution [39,27].

In this work,1 we study generic methods for solving a problem we call Automatic Construction of Parallel Portfolios 
(ACPP): automatically constructing a static2 parallel solver from a sequential solver or a set of sequential solvers. This 
task can be understood as falling within the programming by optimization paradigm [34] in that it involves the design of 
software in which many design decisions have been deliberately left open during the development process (here exposed as 
parameters of SAT solvers) to be made automatically later (here by means of an automated algorithm configurator) in order 
to obtain optimized performance for specific use cases. Hence, all that is required by our ACPP methods is a sequential 
solver whose configuration space contains complementary configurations.

We study three variants of the ACPP problem. First, we consider building parallel portfolios starting from a single, 
highly parametric sequential solver design. However, for well-studied problems (e.g., SAT), there often exist a wide range of 
different solvers that contribute to the state of the art (see, e.g., [73]). Complementarities among such solvers can be ex-
ploited by algorithm portfolios, whether driven by algorithm selection (like SATzilla [72]) or by parallel execution (such as
ppfolio [63] or pfolioUZK [70]). Thus, the second problem we consider is leveraging such complementarities within the con-
text of the ACPP problem, generating a parallel portfolio based on a design space induced from a set of multiple (possibly 
parametrized) solvers. Finally, some parallel solvers already exist; these have the advantage that they can increase perfor-
mance by communicating intermediate results—notably, learned clauses—between different processes. The third problem we 
study is constructing parallel portfolios from a set containing both sequential and parallel solvers.

We investigate three methods for solving the ACPP problem:

1. Global simultaneously configures all solvers in a k-solver parallel portfolio, representing this ACPP problem as a single-
algorithm configuration problem with a design space corresponding to the kth Cartesian power of the design space of 
the given sequential solver. This has the advantages of simplicity and comprehensiveness (no candidate portfolios are 
omitted from the design space) but the disadvantage that the size of the design space increases exponentially with k, 
which quickly produces extremely difficult configuration problems.

2. Hydra is a method for building portfolio-based algorithm selectors from a single, highly parameterized solver [71]. 
It proceeds iteratively. In the first round, it aims to find a configuration that maximizes overall performance on the 
given dataset. In the i + 1st round, it aims to find a configuration that maximizes marginal contribution across the 
configurations identified in the previous i rounds. In the original version of Hydra, these marginal contributions were 
calculated relative to the current selector; in the latest version of Hydra, they are determined relative to an idealized, 
perfect selector [41]. The wall-clock performance of a perfect selector across i solvers (also known as virtual best solver) 
is the same as the wall-clock performance of the same i solvers running in parallel; thus, the same general idea can 
be used to build parallel portfolios. (Building a parallel portfolio in this way has the added advantage that no instance 
features are required, since there is no need to select among algorithms.) We introduce some enhancements to this 
approach for the parallel portfolio setting (discussed in Section 3.1.2), and refer to our method as parHydra.

3. Some parallel solvers only achieve strong performance when running on more than one core; such solvers will not 
be found by a greedy approach like parHydra, which only adds one configuration at a time and does not recognize 
interaction effects that arise between different threads of a parallel solver. To overcome this problem, we introduce a 
new method called parHydrab , which augments parHydra to train b solvers per iteration. This method trades off the 
computational benefit of parHydra’s greedy approach with the greater coverage of Global.

We evaluated our ACPP methods on SAT. We chose this domain because it is highly relevant to academia and industry 
and has been widely studied. We thus had access to a wide range of strong, highly parametric solvers and were assured 
that the bar for demonstrating efficacy of parallelization strategies was appropriately high. We note that our approach is not 
limited to SAT solvers and can be directly applied to other domains. To evaluate our methods in the single-solver setting, we 
studied both Lingeling and clasp: prominent, highly parametric state-of-the-art solvers for SAT. Lingeling won a gold medal in 
the application (wall-clock) track of the 2011 SAT Competition and clasp placed first in the hard combinatorial track of the 
2012 SAT Challenge. To evaluate our methods for generating parallel portfolios involving multiple solvers, we started with 
the set of solvers included by pfolioUZK, a parallel portfolio solver based on several solvers in their default configurations 
that won the gold medal in the parallel track of the 2012 SAT Challenge. This set includes Plingeling, a parallel solver.

Our results demonstrate that parHydra transforms single solvers into parallel portfolios both well and robustly. Its per-
formance on standard 8-core CPUs compared favorably with that of hand-crafted parallel SAT solvers. For the generation 
of parallel algorithm portfolios based on a set of both parallel and sequential solvers, we found that parHydrab was best 
among the alternatives we considered, notably outperforming pfolioUZK. More detailed experimental results and open-source 
code are available at http://www.cs.uni-potsdam.de/acpp.

1 This paper extends a 2012 workshop publication [37].
2 In contrast to parallel algorithm selection systems [53–55], we do not dynamically select solvers on a per-instance base but automatically construct a 

static portfolio.

http://www.cs.uni-potsdam.de/acpp
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2. Background and related work

We now survey related work on parallel SAT solving and algorithm portfolios.

2.1. Background: SAT solving

The Boolean satisfiability problem (SAT) is to decide whether it is possible to assign truth values (true, false) to the 
variables in a given propositional formula F such that F becomes true. If such an assignment exists, F is called satisfiable, 
otherwise F is called unsatisfiable. A complete SAT solver takes as an input a formula F , typically in conjunctive normal 
form (a conjunction of disjunctions of variables and their negations) and determine a satisfiable assignment or prove that 
none exists. An incomplete SAT solver can find satisfying assignments, but not prove unsatisfiability.

Most state-of-the-art complete SAT solvers are based on conflict-driven clause learning (CDCL; [57]). Their parameters 
control variable selection for branching decisions, clause learning and restart techniques. State-of-the-art incomplete SAT 
solvers use stochastic local search (SLS; [38]), and their parameters control the selection of the variable whose value is 
modified in each local search step as well as the diversification and additional intensification strategies. Furthermore, there 
exist several preprocessing techniques (e.g., [21]) to simplify formulas and their parameters control how long and how 
aggressive preprocessing will be used – too much preprocessing can remove important structural information and hence, 
it can increase the hardness of formulas. The efficacy of SAT solvers depends on multiple heuristic components whose 
basic functions and the interplay between them are controlled by parameters. Some parameters are categorical (e.g., choice 
between different search strategies in SLS), while many others are integer- or real-valued (e.g., the damping factor used in 
computing heuristic variable scores in CDCL).

Parallel SAT solvers have received increasing attention in recent years. ManySAT [30,31,29] was one of the first parallel 
SAT solvers. It is a static portfolio solver that uses clause sharing between its components, each of which is a manually 
configured, CDCL-type SAT solver based on MiniSat [22]. PeneLoPe [5,23] is based on ManySAT and adds several policies for 
importing and exporting clauses between the threads. Plingeling [12–16] is based on a similar design; its version 587, which 
won a gold medal in the application track of the 2011 SAT Competition (with respect to wall clock time on SAT+UNSAT 
instances), and the 2012 version ala, share unit clauses as well as equivalences between their component solvers. Similarly, 
CryptoMiniSat [65], which won silver in the application track of the 2011 SAT Competition, shares unit and binary clauses. 
clasp [26] is a state-of-the-art solver for SAT, ASP and PB that supports parallel multithreading (since version 2.0.0) for 
search space splitting and/or competing strategies, both combinable with a portfolio approach. clasp shares unary, binary and 
ternary clauses, and (optionally) offers a parameterized mechanism for distributing and integrating (longer) clauses. Finally, 
ppfolio [63] is a simple, static parallel portfolio solver for SAT without clause sharing that uses CryptoMiniSat, Lingeling, 
clasp, TNM [69] and march_hi [33] in their default configurations as component solvers, and that won numerous medals at 
the 2011 SAT Competition. Like the previously mentioned portfolio solvers for SAT, ppfolio was constructed manually, but 
uses a very diverse set of high-performance solvers as its components. pfolioUZK [70] follows the same idea as used for 
ppfolio but uses other component solvers; it won the parallel track of the 2012 SAT Challenge. On one hand, ACPP can be 
understood as automatically replicating the (hand-tuned) success of solvers like ManySAT , Plingeling, CryptoMiniSat or clasp, 
which are inherently based on different configurations of a single parametric solver; on the other, it is also concerned with 
automatically producing effective parallel portfolios from multiple solvers, such as ppfolio and pfolioUZK, while exploiting 
the rich design spaces of these component solvers.

Katsirelos et al. [46] showed that an effective parallelization of a CDCL SAT solver does not merely hinge on picking a 
good clause sharing strategy, since it is not straightforward to obtain shorter resolution proofs by parallelization without 
essential changes of the underlying sequential reasoning mechanism. Our ACPP does not aim at parallelizing the resolution 
proof, but rather runs multiple algorithms and algorithm configurations in parallel, in order to maximize the probability 
that at least one of them finds a short proof quickly.

2.2. Related work

Well before there was widespread interest in multi-core computing, the potential benefits offered by parallel algorithm 
portfolios were identified in seminal work by Huberman et al. [39]. Their notion of an algorithm portfolio is inspired by the 
use of portfolios of assets for risk management in finance and amounts to running multiple algorithms concurrently and 
independently on the same instance of a given problem, until one of them produces a solution. Gomes et al. [27] further 
investigated conditions under which such portfolios outperform their component solvers. Both lines of work considered 
prominent constraint programming problems (graph coloring and quasigroup completion), but neither presented methods 
for automatically constructing portfolio solvers. Parallel portfolios have since made practical impact, both in cases where 
the allocation of computational resources to algorithms in the portfolio is static [62,76] and where the component solvers 
contained in a portfolio or the resources assigned to them can change over time [24].

A closely related notion of algorithm portfolios first saw practical application in this domain as the basis for algorithm 
selectors such as SATzilla [58,72] and many conceptually related methods (see, e.g., [48]). In this context, a portfolio is a set 
of candidate algorithms for a given problem from which one or more solvers are selected to be run, based on characteristics 
of the problem instance to be solved.
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p3S [44,53] and parCSHC [54,55] were the first methods to automatically select a parallel portfolio (in the case of p3S, 
actually, a parallel algorithm schedule) from a given set of SAT solvers on a per-instance basis. p3S [53] is a parallel extension 
of the sequential algorithm selector 3S [44]. Similar to the sequential version, p3S uses k-nearest neighbor clustering to 
determine the k training instances closest in the feature space to a new instance to be solved, and computes a per-instance 
parallel algorithm schedule based on the runtime data of these instances using Integer Linear Programming (ILP; [61,64]). 
In contrast to our ACPP method, which trains the portfolio offline, the ILP problem within p3S has to be solved online 
for each new instance to determine a well-performing parallel portfolio. This quickly becomes very time-consuming as 
the number of available solvers grows and as more CPU cores are considered. parCSHC was specially designed for the 
SAT Competition. It always statically and independently runs 4 threads of the parallel SAT solver Plingeling, 1 thread of 
the sequential SAT solver CCASat, and three solvers selected on a per-instance basis. These latter solvers are selected by 
models that are trained on application, hard-combinatorial and random SAT instances, respectively. Other approaches to the 
per-instance selection of parallel portfolios that have emerged since our own are sunny-cp2 [2], which selects a parallel 
algorithm schedule, andclaspfolio 2 [51], which implements several extensions of sequential algorithm selectors to select a 
parallel portfolio.

One thing that all of these methods have in common—whether parallel, selection-based or both—is that they build 
a portfolio from a relatively small candidate set of distinct algorithms. While, in principle, these methods could also be 
applied given a set of algorithms expressed implicitly as the configurations of one parametric solver, in practice, they are 
useful only when the set of candidates is relatively small. The same limitation applies to existing approaches that combine 
algorithm selection and scheduling, notably CPHydra [60], which also relies on cheaply computable features of the problem 
instances to be solved and selects multiple solvers to be run in parallel. Two further, conceptually related approaches are 
aspeed [35] and MIPSAT [59], which compute (parallel) algorithm schedules by taking advantage of the modeling and solving 
capacities of Answer Set Programming (ASP [10,25]) and Mixed Integer Programming (MIP; [61,64]), respectively.

Recently, automatic algorithm configuration has become increasingly effective, with the advent of high-performance 
methods such as ParamILS [42], GGA [3], irace [52] and SMAC [40]. As a result, there has been recent interest in automati-
cally identifying useful portfolios of configurations from large algorithm design spaces. As before, such portfolio-construction 
techniques were first demonstrated to be practical in the case of portfolio-based algorithm selectors. We have already dis-
cussed one key method for solving this problem: Hydra [71], which greedily constructs a portfolio by configuring solvers 
iteratively, changing the configurator’s objective function at each iteration to direct it to maximize marginal contribution 
to the portfolio. Another key method is ISAC [45], which clusters instances based on features and runs the configurator 
separately for each cluster. Malitsky et al. [56] extended ISAC’s scope to the construction of portfolios from a set of dif-
ferent solvers. However, there are three differences between the construction of sequential portfolios and of static parallel 
portfolios:

1. Whereas we know how many algorithms we need for a parallel portfolio when running exactly one solver per processor 
core (i.e., the size of the portfolio is limited to the number of processor cores available), the potential size of the 
portfolio is unlimited in the sequential case, since we may not select all solvers to run.

2. A sequential portfolio solver must somehow select component solvers (which can result in making the wrong decision), 
while static parallel solvers run the entire portfolio in parallel and thus achieve nearly the same performance as the 
portfolio’s virtual best solver. We note that both approaches are bounded by the performance of the virtual best solver.

3. Using several cores in parallel introduces overhead which should be considered in the configuration process.

3. Parallel portfolio configuration from a single sequential solver

We begin by considering the problem of automatically producing a parallel portfolio solver from a single, highly-
parametric sequential solver; this closely resembles the problem (manually) addressed by the developers of solvers like 
ManySAT , Plingeling, CryptoMiniSat and clasp. First, we define our three ACPP methods. Next, we illustrate the performance 
of our ACPP portfolio solvers based on Lingeling and clasp and analyze the empirical scalability of our trained ACPP solvers. 
Finally, in the case where clause sharing is in the design space of the component solvers, we extend our ACPP solvers with 
clause sharing and investigate how much further performance can be achieved by this extension.

3.1. Approach

We now describe three methods for automatically constructing parallel portfolios from a single parametric solver. We 
use C to denote the configuration space of our parametric solver, c ∈ C to represent individual configurations, and I to 
refer to the given set of problem instances. Our goal is to optimize (without loss of generality, to minimize) performance 
according to a given metric m. (In our experiments, we minimize penalized average runtime, PAR10.3) We use a k-tuple 
c1:k = (c1, . . . , ck) to denote a parallel portfolio with k component solvers. The parallel portfolio’s full configuration space 
is Ck = ∏k

l=1{(c) | c ∈ C}, where the product of two configuration spaces X and Y is defined as {x‖y | x ∈ X, y ∈ Y }, with 

3 PARX penalizes each timeout with X times the given cutoff time [42].
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x‖y denoting the concatenation (rather than nesting) of tuples. Let AC denote a generic algorithm configuration procedure; 
in our experiments, we used SMAC [40]. Following established best practices (see [40]), we performed n independent runs 
of AC , obtained configured solvers c( j) with j ∈ {1 . . .n} and retained the configured solver ĉ which achieved the best 
performance on instance set I according to metric m. By t we denote the overall time budget available for producing a 
parallel portfolio solver.

Algorithm 1: Portfolio Configuration Procedure Global

Input : parametric solver with configuration space C ; desired number k of component solvers; instance set I; performance metric m; 
configurator AC ; number n of independent configurator runs; total configuration time t

Output : parallel portfolio solver with portfolio ĉ1:k
1 for j := 1 . . .n do

2 obtain portfolio c( j)
1:k by running AC on configuration space ∏k

l=1{(c) | c ∈ C} on I using m for time t/n

3 choose ĉ1:k ∈ arg min
c( j)

1:k | j∈{1...n} m(c( j)
1:k, I) that achieved best performance on I according to m

4 return ĉ1:k

3.1.1. Simultaneous configuration of all component solvers (Global)
Our first portfolio configuration method is the straightforward extension of standard algorithm configuration to the 

construction of a parallel portfolio (see Algorithm 1). Specifically, if the given solver has � parameters, we treat the portfolio 
c1:k as a single algorithm with � · k parameters inducing a configuration space of size |C |k , and configure it directly. As 
noted above, we identify a single configuration as the best of n independent runs of AC . These runs can be performed in 
parallel, meaning that this procedure requires wall clock time t/n if n machines—one for each AC run—with k cores are 
available. The used CPU time will be the given time budget t for Lines 1 and 2 in Algorithm 1 and some small overhead 
ε to choose the best portfolio in Line 3. The scalability of this approach is limited by the fact that the global configuration 
space Ck to which AC is applied grows exponentially with k. However, given a powerful configurator, a moderate value of 
k and a reasonably sized C , this simple approach can be effective, especially when compared to manual parallel portfolio 
construction.

Algorithm 2: Portfolio Configuration Procedure parHydra

Input : parametric solver with configuration space C ; desired number k of component solvers; instance set I; performance metric m; 
configurator AC ; number n of independent configurator runs; total configuration time t

Output : parallel portfolio solver with portfolio ĉ1:k
1 for i := 1 . . .k do
2 for j := 1 . . .n do
3 obtain portfolio c( j)

1:i := ĉ1:i−1||c( j) by running AC on configuration space {ĉ1:i−1} × {(c) | c ∈ C} and initial incumbent ĉ1:i−1||cinit on I using 
m for time t/(k · n)

4 let ĉ1:i ∈ arg min
c( j)

1:i | j∈{1...n} m(c( j)
1:i , I) be the configuration which achieved best performance on I according to m

5 let cinit ∈ arg minc( j) | j∈{1...n} m(ĉ1:i ||c( j), I) be the configuration that has the largest marginal contribution to ĉ1:i
6 return ĉ1:k

3.1.2. Iterative configuration of component solvers (parHydra)
The key problem with Global is that Ck may be so large that AC cannot effectively search it. We thus consider an 

extension of the Hydra methodology to the ACPP problem, which we dub parHydra (see Algorithm 2). This method has 
the advantage that it adds and configures component solvers one at a time. The key idea is to use AC only to configure 
the component solver added in the given iteration, leaving all other components clamped to the configurations that were 
determined for them in previous iterations. The procedure is greedy in the sense that in each iteration i, it attempts to add a 
component solver to the given portfolio ĉ1:i−1 in a way that myopically optimizes the performance of the new portfolio ĉ1:i
(Line 4). While the sets of n independent configurator runs in Line 2 can be performed in parallel (as in Global), the choice 
of the best-performing configuration ĉ1:i must be made after each iteration i, introducing a modest overhead compared to 
the cost of the actual configuration runs.

A disadvantage of the original Hydra approach is that it discards any intermediate results learned during configuration 
when it proceeds to the next iteration. In particular, configurations that were examined but not selected may turn out to be 
useful later on. We thus introduce a new idea here—which, indeed, can also be applied to the construction of portfolio-based 
algorithm selectors—as follows. We identify the unselected configuration c( j) �= ĉi:i with the best marginal contribution to 
the current portfolio ĉ1:i (Line 5), and use it to initialize the configuration procedure in the next iteration (Line 3). This 
idea helps when using different initial configurations in each iteration more quickly guides the configuration procedure to 
complementary parts of the configuration space.

Another way that parHydra differs from the original Hydra methodology is that it runs entire portfolios on each instance 
considered during configuration. Because we target multi-core machines, we consider these computational resources to be 
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Table 1
Required wall clock time and CPU time of Global and
parHydra for a configuration budget t , desired number k
of component solvers, n algorithm configurator runs, n ·k
available CPU cores, and a small overhead ε for evaluat-
ing the performance of a parallel portfolio.

Wall clock time CPU time

Global t/n + ε t + n · k · ε
parHydra t/n + k · ε ∑k

i=1 i · ( t
k + n · ε)

available without cost. While Hydra explicitly modifies the performance metric in each round, parHydra thus achieves the 
same modification implicitly, optimizing marginal contribution to the existing portfolio because only the ith element of the 
portfolio is available to be configured in the ith iteration. Because parHydra only runs portfolios of size i in iteration i, if 
there is a cost to CPU cycles, we achieve some savings relative to Global in iterations i < k. If the overhead for the evaluation 
of the portfolios after each iteration is bounded by ε , the CPU cycles used in parHydra are bounded by 

∑k
i=1 i · ( t

k + n · ε) as 
compared to t + n · k · ε for Global. If k > 1 and t

k > ε , parHydra will use fewer CPU cycles than Global. This is particularly 
important if ACPP is used on commercial cloud infrastructure, where saving CPU cycles means saving money. Table 1 gives 
an overview about the required wall clock time and CPU time for Global and parHydra.

Obviously, for k > 1, even if we assume that AC finds optimal configurations in each iteration, the parHydra procedure 
is not guaranteed to find a globally optimal portfolio. For instance, since the configuration found in the first iteration will be 
optimized to perform well on average on all instances I , the configuration added in the second iteration will then specialize 
to some subset of I . A combination of two configurations that are both specialized to different sets of instances may perform 
better; however, the configuration tasks in each parHydra iteration will be much easier than those performed by Global for 
even a moderately sized portfolio, giving us reason to hope that under realistic conditions, parHydra might perform better 
than Global, especially for large configuration spaces C and for comparatively modest time budgets t .

3.1.3. Independent configuration of component solvers (Clustering)
We also investigated adapting the ISAC approach [45,56] to the ACPP setting. Specifically, we identified clusters in a 

space of instance features, ran a configurator to identify a configuration that performed well on each cluster, and combined 
these configurations into a parallel portfolio. However, our experiments (see on-line Appendix A) showed that this approach 
achieved consistently worse performance than Global and parHydra. In particular, we identified two main issues. First, 
normalization of instance features was very important; we struggled to determine a way of normalizing that produced good 
clusterings across different solvers. Second, we did not consistently observe that clusters of instances that were distinct in 
feature space necessarily led to solver configurations with complementary performance (which, obviously, is necessary for 
good performance in the ACPP setting). Thus, we do not further consider this approach in what follows.

3.2. Experiments

To empirically evaluate our methods for solving the ACPP problem, we applied Global and parHydra to two state-of-
the-art SAT solvers: clasp and Lingeling. Specifically, we compared our automatically configured parallel portfolios alongside 
performance-optimized sequential solvers, running on eight processor cores. Furthermore, we investigated the scalability of
parHydra by assessing the performance of our portfolio after each iteration, thereby also assessing the slowdown observed 
for increasing number of component solvers due to hardware bottlenecks. Finally, we integrated our configured portfolio 
based on clasp into clasp’s flexible multithreading architecture and configured the clause sharing policy to investigate the 
influence of clause sharing on our trained ACPP solvers.

3.2.1. Scenarios
We compared six evaluation scenarios for each solver. We denote the default configuration of a single-process solver 

as Default-SP and that of a multi-process solver with 8 processes and without clause sharing as Default-MP(8); 
Default-MP(8)+CS denotes the additional use of clause sharing, which is activated by default in both Plingeling and clasp. 
We contrasted these solver versions with three versions obtained using automated configuration: Configured-SP denotes 
the best (single-process) configuration obtained from configurator runs on a given training set, while Global-MP(8) and 
parHydra-MP(8) represent the 8-component portfolios obtained using our Global and parHydra methods. We chose this 
portfolio size to reflect widely available multi-core hardware, as used, for example, in the 2013 SAT Competition and also 
supported by the Amazon EC2 cloud (CC2 instances). We note that our approach is not inherently limited to eight cores and 
can be expected to scale to higher degrees of parallelism as long as sufficiently many complementary configurations can be 
found in the given design space.

3.2.2. Solvers
We applied our approach to the SAT solvers clasp version 2.1.3 [26] and Lingeling version ala [14]. We chose these 

two solvers because they were demonstrated to achieve state-of-the-art performance on combinatorial and industrial SAT 
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instances in the 2012 SAT Challenge and therefore, represent an appropriately high bar for demonstrating the efficacy 
of our ACPP approach. Furthermore, both solvers are suitable for ACPP because they are highly parameterized; clasp has 
81 parameters and Lingeling has 118. Hence, the configuration space for 8 processes has 648 parameters for clasp and 944
parameters for Lingeling.

We ruled out from our study other state-of-the-art parameterized solvers like glucose that have no parallelized counter-
part for comparison with our automatically constructed solvers. We did not study Plingeling, the “official” parallel version 
of Lingeling, because it lacks configurable parameters for individual threads. We also disregarded the native parallel version 
of clasp, because clasp’s clause sharing mechanism, which cannot be turned off, results in highly non-deterministic runtime 
behavior, rendering the configuration process much more difficult. Instead, we investigated the impact of clause sharing in 
a separate experiment. We executed all automatically constructed parallel portfolios via a simple wrapper script that runs a 
given number of solver instances independently in parallel and without communication between the component solvers.

3.2.3. Instance sets
We conducted our experiments on instances from the application and hard combinatorial tracks of the 2012 SAT Challenge. 

Our configuration experiments made use of disjoint training and test sets, which we obtained by randomly splitting both 
instance sets into subsets with 300 instances each.4

To ensure that our experiments would complete within a feasible amount of time, we made use of an instance selection 
technique [36] on our training set to obtain a representative and effectively solvable subset of 100 instances for use with a 
runtime cutoff time of 180 seconds. We did this by (i) removing instances that we judged too easy and too hard from the 
instance set, (ii) clustering the instances in the feature space, and (iii) subsampling the instance set to ensure approximately 
equal coverage of the different clusters and normally distributed runtimes. As a reference for the selection process, we 
used the base features of SATzilla [72] and employed SINN [75], Lingeling [14], glucose [6], clasp [26] and CCASat [18] as 
representative set of state-of-the-art solvers, following [36].

3.2.4. Resource limits and hardware
We chose a cutoff time of 180 seconds for algorithm configuration on the training set and 900 seconds for evaluating 

solvers on the test set (as in the 2012 SAT Challenge). Additionally, we performed three repetitions of each solver and test 
instance run and report the median of those three runs. We restricted all solver runs (on both training and test sets) to use 
at most 12 GB of memory (as in the 2012 SAT Challenge). If a solver terminated because of memory limitations, we recorded 
it as a timeout. We performed all solver and configurator runs on Dell PowerEdge R610 systems with 48 GB RAM and two 
Intel Xeon E5520 CPUs with four cores each (2.26 GHz and 8 MB Cache), running 64-bit Scientific Linux (2.6.18-348.6.1.el5).

3.2.5. Configuration experiments
We performed configuration using SMAC (version 2.04.01) [40], a state-of-the-art algorithm configurator. SMAC allows 

the user to specify the initial incumbent, as required in the context of our parHydra approach (see Lines 2 and 5 of 
Algorithm 2). We specified PAR10 as our performance metric, and gave SMAC access to the base features of SATzilla [72]. 
(SMAC builds performance models internally; it can operate without instance features, but often performs better when they 
are available.) To enable fair performance comparisons, in the case of Configured-SP (n = 80) and Global-MP(8) (n = 10) 
we allowed 80 hours of configuration time and 2 hours of validation time to determine the best-performing portfolio on 
the training instances from our 10 independent configuration runs, which amounts to a total of 6560 CPU hours for k = 8. 
For parHydra-MP(8), we allowed for 10 hours of configuration time and 2 hours of validation time (ε) per configurator run 
(n = 10) in each iteration, amounting to a total of 3360 CPU hours (see Section 3.1.2). When using a cluster of dedicated 
machines with 8-core CPUs, each of these solver versions could be produced within 96 hours of wall-clock time.

3.2.6. Results and interpretation
To evaluate our ACPP solvers, we present the number of timeouts (#TOs), PAR10 and PAR1 based on the median perfor-

mance of the three repeated runs for each solver–test instance pair in Table 2. The best ACPP portfolio on the training set 
is marked with a dagger (†) to indicate that we would have chosen this portfolio if we had to make a choice only based 
on training data. Furthermore, we applied a statistical test (a permutation test with 100 000 permutations and significance 
level α = 0.05) to the (0/1) timeout scores, the PAR10 scores and the PAR1 scores to determine whether performance dif-
ferences between the solvers were significant. In Table 2, performance of a given solver is indicated in bold face if it was 
not significantly different from the performance of the best solver. We use an asterisk (∗) to indicate that a given solver’s 
performance was not significantly worse than the performance of Default-MP(8)+CS—the official parallel solver with clause 
sharing produced by experts.

Table 2 summarizes the results of our experiments with Lingeling and clasp. Running a configurator to obtain an im-
proved, single-processor solver (Configured-SP) made a statistically insignificant impact on performance. We thus believe 

4 A random split into training and test set is often used in machine learning to obtain unbiased performance estimates. However, such a simple split has 
a higher variance in its performance estimation than using a cross validation. Because of the large amount of CPU resources needed for our experiments, 
we could not afford to measure the performance of our ACPP methods on more splits, for example, based on cross validation.
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Table 2
Runtime statistics on the test set from application and hard combinatorial SAT instances achieved by 
single-processor (SP) and 8-processor (MP8) versions. Default-MP(8) was Plingeling in case of Lingeling
and clasp -t 8 for clasp where both use clause sharing (CS). The performance of a solver is shown 
in boldface if it was not significantly different from the best performance, and is marked with an aster-
isk (∗) if it was not significantly worse than Default-MP(8)+CS (according to a permutation test with 
100 000 permutations and significance level α = 0.05). The best ACPP portfolio on the training set is 
marked with a dagger (†).

Solver set Lingeling (application) clasp (hard combinatorial)

#TOs PAR10 PAR1 #TOs PAR10 PAR1

Default-SP 72 2317 373 137 4180 481
Configured-SP 68 2204 368 140 4253 473

Default-MP(8) 64 2073 345 96 2950 358
Default-MP(8)+CS 53∗ 1730∗ 299∗ 90∗ 2763∗ 333∗

Global-MP(8) 52∗ 1702∗ 298∗ 98 3011 365
parHydra-MP(8) 55∗† 1788∗† 303∗† 96∗† 2945∗† 353∗†

Table 3
Runtime statistics of parHydra-MP(i) after each iteration i (test set). The performance of a solver is 
shown in boldface if it was not significantly different from the best performance (according to a permu-
tation test with 100 000 permutations and significance level α = 0.05).

Solver Lingeling (application) clasp (hard combinatorial)

#TOs PAR10 PAR1 #TOs PAR10 PAR1

Default-SP 72 2317 373 137 4180 481
parHydra-MP(1) 82 2594 380 136 4136 464
parHydra-MP(2) 65 2086 331 118 3607 421
parHydra-MP(3) 60 1933 313 115 3515 410
parHydra-MP(4) 56 1874 308 115 3507 402
parHydra-MP(5) 58 1878 312 105 3219 384
parHydra-MP(6) 60 1935 315 103 3161 380
parHydra-MP(7) 59 1902 309 102 3126 372
parHydra-MP(8) 55 1788 303 96 2945 353

that these default configurations are nearly optimal, reflecting the status of Lingeling and clasp as state-of-the-art solvers. 
With Lingeling as the component solver, Global-MP(8) produced the best-performing portfolio. There was no significant 
difference on any of these scores between parHydra-MP(8), Global-MP(8) and Default-MP(8)+CS. However, the portfolio 
performance of Default-MP(8) (Plingeling with deactivated clause sharing) was significantly worse than the performance of 
all other parallel portfolios and not even significantly better than Configured-SP in terms of timeout scores or PAR10 scores. 
Note that Plingeling (without clause sharing) builds a parallel portfolio only in a degenerate sense, simply using different 
random seeds and thus making different choices in the default phase [14]. Hence, it is not surprising that Plingeling without 
clause sharing performed significantly worse than Plingeling with clause sharing.

With clasp as the component solver, the portfolio constructed by parHydra-MP(8) was the best ACPP solver and matched 
(up to statistically insignificant differences) the performance of Default-MP(8)+CS (the expert-constructed portfolio solver 
with clause sharing) according to all metrics we considered, despite incurring six more timeouts. All other ACPP solvers fell 
short of this (high) bar; however, the portfolios of Global-MP(8) performed as well as the default portfolio of clasp without 
clause sharing (Default-MP(8)). All parallel solvers significantly outperformed the single-threaded versions of clasp.

Overall, parHydra-MP(8) was the only ACPP solver that matched the performance of Default-MP(8)+CS on both do-
mains. parHydra-MP(8)’s portfolio had also the best training performance and therefore, out of the ACPP solvers, we would 
choose it. However, while Default-MP(8)+CS uses clause sharing, parHydra-MP(8) does not. This is surprising, because 
the performance of Plingeling and clasp without clause sharing was significantly worse than with clause sharing. Thus, 
parHydra-MP(8) was the best performing method among those that did not perform clause sharing.

3.2.7. Scalability and overhead
Although 8-core machines have become fairly common, 4-core machines are still more commonly used as desktop com-

puters. Furthermore, Asin et al. [4] observed that parallel portfolios scale sublinearly in the number of cores—in part, because 
component solvers share the same CPU cache. Therefore, we investigated how the performance of our automatically con-
structed portfolios scaled with the number of processors. The parHydra approach has the advantage that the portfolio is 
extended by one configuration at each iteration, making it easy to perform such scaling analysis.

Table 3 shows the test-set performance of parHydra-MP(i) after each iteration. First of all, parHydra-MP(1) was able to 
find a better performing configuration than Default-SP for clasp. In contrast, parHydra-MP(1) found a poorly performing 
configuration for Lingeling in comparison to Default-SP, and had to compensate in subsequent iterations. For both solvers, 
the largest performance improvement occurred between the first and second iterations, with the number of timeouts re-
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Table 4
Runtime statistics of Lingeling and clasp with parallel runs of the same configuration on all instances in 
the corresponding test sets. The performance of a solver is shown in boldface if it was not significantly 
different from the best performance (according to a permutation test with 100 000 permutations and 
significance level α = 0.05).

# Processes Lingeling (application) clasp (hard combinatorial)

#TOs PAR10 PAR1 #TOs PAR10 PAR1

1 82 2594 380 136 4136 464
2 79 2509 376 134 4079 461
3 79 2509 376 135 4106 451
4 85 2677 382 135 4107 452
5 86 2707 385 135 4108 463
6 89 2793 390 135 4110 465
7 90 2820 390 135 4110 465
8 92 2877 393 136 4139 467

duced by 17 for Lingeling and 18 for clasp. In later iterations, performance can stagnate or even drop: e.g., parHydra-MP(5)
solves two more instances than parHydra-MP(6) with Lingeling. This may in part reflect hardware limitations: as the size 
of a portfolio increases, more processes compete for fixed memory (particularly, cache) resources.

We investigated the influence of these hardware limitations on the performance of our parallel solvers by constructing 
portfolios consisting of identical copies of the same solver. In particular, we replicated the same configuration multiple times 
with the same random seed; clearly, this setup should result in worsening performance as portfolio size increases, because 
each component solver does exactly the same work but shares hardware resources. (We note that these experiments are 
particularly sensitive to the underlying hardware we used.) To compare directly against Table 3, we used the configurations 
found in the first iteration of parHydra-MP(1). In Table 4, we see that hardware limitations did seem to impact the portfolio 
of Lingeling solvers; e.g., a single Lingeling configuration solved 10 more instances than eight such configurations running in 
parallel on an eight-core machine. In contrast, the performance of clasp varied only slightly as duplicate solvers were added. 
Based on the results in [1], we suspected that this overhead arose because of memory issues, noting that we evaluated clasp
on hard combinatorial instances with an average size of 1.4 MB each, whereas we evaluated Lingeling on application instances 
with an average size of 36.7 MB. We confirmed that clasp’s portfolio also did experience overhead on instances with large 
memory consumption, and that Lingeling produced nearly no overhead on instances with low memory consumption.

An interesting further observation is that Lingeling and clasp performed best if two copies of the same configuration ran 
in parallel, and that running only one copy was worse than two copies. We speculate that this is caused by cache effects 
known to affect multi-core computations with more than one CPU. For example, the operating system may move a solver 
from one CPU to another, which may result in the loss of data in the CPU cache. However, if two solvers run on two CPUs, 
the operating system might run each of them on its own CPU without moving them.

3.2.8. Algorithm configuration of clause sharing
Our previous experiments did not allow our component solvers to share clauses, despite evidence from the literature that 

this can be very helpful [31]. The implementation of clause sharing is a challenging task; for example, if too many clauses 
are shared, the overhead caused by clause sharing may exceed the benefits [49]. Furthermore, the best clause sharing 
policy varies across instance sets and it is a tedious and time-consuming task to manually determine an effective clause 
sharing policy. A combination of ACPP and clause sharing will not completely compensate for human efforts to implement 
effective clause sharing, but ACPP can help developers to automatically determine well-performing clause sharing policies. 
In the following, we investigate the application of clause sharing to our ACPP portfolio. Since there are many possible clause 
sharing policies, we used algorithm configuration to identify effective clause sharing policies. This can be understood as an 
additional instrument for improving the performance of ACPP portfolios in cases where clause sharing is available.

To study the impact of clause sharing on our ACPP procedures, we relied upon the clause sharing infrastructure provided 
by clasp [26], which has a relatively highly parametrized clause sharing policy (10 parameters) and allows for the configura-
tion of each component solver. Plingeling, on the other hand, does not support the configuration of each component solver. 
As before, we considered the hard combinatorial instance set.

We started with the portfolio identified by parHydra-MP(8). clasp’s multi-threading architecture performs preprocess-
ing before threading is used. Hence, we ignored the preprocessing parameters identified in the parHydra-MP(8) portfolio, 
adding them again to the configuration space as global parameters. Since the communication of clause sharing induces 
greater variation in solving behavior, we used 50 CPU hours as the configurator’s time budget.

Table 5 shows the performance of clasp’s default portfolio with clause sharing, Default-MP(8)+CS; the portfolio originally 
returned by parHydra, which does not perform clause sharing, parHydra-MP(8); the application of clasp’s default clause 
sharing and preprocessing settings to the original parHydra portfolio, parHydra-MP(8)+defCS; and the parHydra portfolio 
with newly configured clause sharing and preprocessing settings, parHydra-MP(8)+confCS. As confirmed by these results, 
the use of clause sharing led to significant performance gains; furthermore, while the additional gains through configuring 
the clause sharing and preprocessing mechanisms were too small to reach statistical significance, parHydra-MP(8)+confCS 
solved two more instances than Default-MP(8)+CS and parHydra-MP(8)+defCS.
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Table 5
Runtime statistics of clasp’s parHydra-MP(8) portfolio with default clause 
sharing (defCS) and configured clause sharing (confCS) on the test instances 
of the hard combinatorial set. The performance of a solver is shown in bold-
face if its performance was at least as good as that of any other solver, 
up to statistically insignificant differences (according to a permutation test 
with 100 000 permutations and significance level α = 0.05).

clasp variant #TOs PAR10 PAR1

Default-MP(8) 96 2950 358
Default-MP(8)+CS 90 2763 333

parHydra-MP(8) 96 2945 353
parHydra-MP(8)+defCS 90 2777 347
parHydra-MP(8)+confCS 88 2722 346

We note that there is potential for performance to be improved even further if clause sharing were configured alongside 
the portfolio itself. For example, clasp’s default portfolio contains configurations that are unlikely to solve instances directly, 
but that generate useful clauses for other clasp instances.5 Clearly, our methodology for configuring clause sharing will 
not identify such configurations. Configuration of clause sharing can be directly integrated in Global and parHydra by 
adding the corresponding parameters to the configuration space, because the solvers actually run in parallel. However, since 
clasp with clause sharing is highly non-deterministic, the configuration process would require a larger time budget for 
constructing the portfolio. In a similar vein, some results in the literature indicate that the collaboration of SAT solvers via 
clause sharing performs better if the solvers use similar strategies, e.g., the same solver with a fixed configuration runs 
several times in parallel but with different seed (cf. Plingeling). If the configuration of the portfolio is performed alongside 
the configuration of the clause sharing policy, such homogeneous portfolios would also belong to the configuration space of 
our ACPP methods. We plan to investigate other approaches in future work.

3.2.9. Conclusion
Given a solver with a rich design space (such as Lingeling and clasp), all our ACPP methods were able to generate 

8-core parallel solvers that significantly outperformed their sequential counterparts. We have thus demonstrated that our 
ACPP methods are able to automatically build parallel portfolio solvers, without the need for costly, hand-crafted parallel 
implementations. However, our scalability analysis indicates that hardware restrictions lead to substantial overhead as more 
processor cores are used, and the scalability of our ACPP methods depends on the richness of the given sequential solver’s 
design spaces and the existence of complementary designs within these spaces. We were also able to verify that clause 
sharing can be used to further improve the performance of an ACPP solver, especially when configuration is performed 
alongside the component solver instances.

4. Parallel portfolio configuration with multiple sequential solvers

So far, we have shown that our procedures were able to construct effective parallel portfolios based on single solvers 
with rich design spaces. There is considerable evidence from the literature and from SAT competitions that strong portfolios 
can also be built by combining entirely different solvers in their default configurations (see, e.g., SATzilla [72], ppfolio [63]
and pfolioUZK [70]). For instance, ppfolio was obtained simply by combining the best solvers from the previous competition 
into a parallel portfolio. pfolioUZK included more state-of-the-art solvers from 2011 and relied on additional experiments 
to find the best combination of solvers in a portfolio. Neither portfolio considers the configuration space of the component 
solvers and therefore both can be seen as simple baselines for other parallelization approaches, including ours. However, 
ppfolio and pfolioUZK use Plingeling as a portfolio component. Since we aim to investigate the strength of our ACPP methods 
without additional human expert knowledge on parallel solving, we first consider only sequential solvers as the basis for 
our ACPP approach. This section and the following section investigates the extension of our automatic techniques to the 
construction of portfolios based on the configuration spaces spanned by such solver sets.

4.1. Approach

As long as all of our component solvers are sequential, we can simply use the ACPP procedures defined in Section 3. 
We can accommodate the multi-solver setting by introducing a solver choice parameter for each portfolio component (see 
Fig. 1), and ensuring that the parameters of solver a ∈ A are only active when the solver choice parameter is set to use a. 
This is implemented by using conditional parameters (see the PCS format of the Algorithm Configuration Library [43]). 
Similar architectures were used by SATenstein [47] and Auto-WEKA [66].

We have so far aimed to create portfolios with size equal to the number of available processor cores. But as observed in 
Section 3.2.7, each component solver used within a parallel portfolio incurs some overhead. A similar observation was made 

5 Personal communication with the main developer of clasp, Benjamin Kaufmann.
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Fig. 1. Using a solver choice parameter, we can specify a single configuration space that spans multiple solvers.

by the developer of pfolioUZK (personal communication) and prompted the decision for pfolioUZK to use only 7 components 
on an 8-core platform. To allow our portfolios to make the same choice, we included “none” as one of choices available for 
each portfolio component.

4.2. Experiments

While we would presumably have obtained the strongest parallel solver by allowing our portfolio to include a very wide 
range of modern SAT solvers, this would have made it difficult to answer the question how our automated methods compare 
to human expertise in terms of the performance of the parallel portfolios thus obtained. In particular, we were interested 
in pfolioUZK [70], a parallel solver that won the parallel track of the 2012 SAT Challenge with application instances. To 
compare our automatic methods with the manual efforts of pfolioUZK’s authors, we thus chose the same set of solvers they 
considered as the basis for our experiments.

4.2.1. Solvers
pfolioUZK uses satUZK, Lingeling, TNM, and MPhaseSAT_M on the same core in its sequential version (Default-SP) 

and uses satUZK, glucose, contrasat and Plingeling with 4 threads and clause sharing in its 8-process parallel version 
(Default-MP(8)+CS). In all cases, solvers are used in their default configurations. However, in designing pfolioUZK [70], 
Wotzlaw et al. considered the following, larger set of component solvers:

• contrasat [68]: 15 parameters
• glucose 2.0 [6]: 10 parameters for satelite preprocessing and 6 for glucose
• Lingeling 587 [13]: 117 parameters
• march_hi 2009 [33]: 0 parameters
• MPhaseSAT_M [19]: 0 parameters
• satUZK [28]: 1 parameter
• sparrow2011 [67]: 0 parameters6

• TNM [50]: 0 parameters

Overall, the configuration space we considered has 150 parameters for each portfolio component (including the top-level 
parameter used to select a solver), and thus 1200 parameters for an 8-component parallel portfolio.

4.2.2. Instances and setup
We evaluated pfolioUZK as well as our Global and parHydra approaches on the same 300 application test instances of 

the 2012 SAT Challenge as used before. Otherwise, our experimental setup was as described in Section 3.2.

4.2.3. Results and interpretation
The first part of Table 6 shows the results of pfolioUZK in its sequential and parallel versions. Recall that pfolioUZK uses 

Plingeling with clause sharing as a component solver. Sequential pfolioUZK experienced 115 more timeouts than its parallel 
version; indeed, it was only ranked 16th in the sequential application track of the 2012 SAT Challenge.

The second part of Table 6 summarizes the performance of our ACPP solvers (which do not use Plingeling as a com-
ponent solver). parHydra-MP(8) performed best; indeed, there was no significant difference between parHydra-MP(8) and 
pfolioUZK-MP(8) in terms of timeout and PAR10 scores. This indicates that our ACPP approach was indeed able to match 
the performance of parallel portfolios manually constructed by experts, even with the disadvantage of being prohibited 

6 Although sparrow2011 should be parameterized [67], the source code and binary provided with pfolioUZK does not expose any parameters.
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Table 6
Runtime statistics for 8-processor parallel solvers on the application test set. The performance 
of a solver is shown in boldface if it was not significantly different from the best performance 
(according to a permutation test with 100 000 permutations at significance level α = 0.05). 
The best ACPP portfolio on the training set is marked with a dagger (†).

8-Processor parallel solver #TOs PAR10 PAR1

pfolioUZK-ST 150 4656 606
pfolioUZK-MP(8)+CS 35 1168 223

Global-MP(8)(pfolioUZK w/o Plingeling) 44 1463 275
parHydra-MP(8)(pfolioUZK w/o Plingeling) 39† 1297† 244†

from using Plingeling and thus clause sharing. Global-MP(8) performed significantly worse than pfolioUZK-MP(8), but not 
significantly worse than parHydra-MP(8) in terms of timeout and PAR10 scores.

Although we allowed our portfolio-building procedures to choose “none” for any component solver, this option was never 
selected.

4.2.4. Conclusion
We have demonstrated that by exploiting the configuration spaces of a set of complementary solvers, even-better-

performing ACPP solvers can be obtained, compared to those constructed from a single parametric SAT solver such as 
Lingeling (compare Table 2 and Table 6). To produce such an ACPP solver, we did not need to modify our ACPP methods, 
but instead used conditionals in our configuration space to distinguish between the design spaces of the individual solvers. 
Although we did not use parallel solvers with clause sharing (such as Plingeling) in our portfolio, our parHydra method was 
able to generate a parallel solver without clause sharing that nevertheless performed as well as pfolioUZK.

5. Parallel portfolio configuration with multiple sequential and parallel solvers

Our results reported in Section 3.2.8 confirm the intuition that clause sharing is an important ingredient of high-
performance parallel solvers. This section extends the scope of our ACPP methods to allow inclusion of parallel solvers 
that perform clause sharing as portfolio components. This way, we combine our automatic methods with the human expert 
knowledge inherent in existing clause sharing mechanisms to boost performance even further.

5.1. Approach: parHydrab

To add parallel solvers as components in our ACPP approach, we consider each of them by adding multiple copies of 
the same solver, where each copy represents one thread of the parallel solver. Thereby, we mark parameters that have to 
be joined to be used across different cores; for example, the number of threads of a parallel solver. In contrast to other 
approaches that use scheduling (e.g., [53]), we do not have to decide on which core a solver runs, but only how many cores 
it will utilize.

The parHydra approach has a drawback when used to configure parallel SAT solvers. This can be seen when considering 
the solvers Lingeling and Plingeling. First of all, the components of Plingeling are not parameterized, and we can only choose 
the number of threads it is assigned. If the portfolio can also consist of configured versions of Lingeling, which subsumes 
single-core Plingeling, and the configurator is run for long enough, there is no reason for the parHydra approach to choose 
Plingeling as a component, unless Plingeling already belongs to the previous iteration’s portfolio (in which case the benefits 
of clause sharing can make themselves felt). Obviously then, an argument by induction shows that Plingeling will never be 
preferred by parHydra, revealing a disadvantage of its greedy optimization strategy. In contrast, Global does not have this 
problem, but has difficulties dealing with the large configuration space encountered here.

To overcome both of these limitations and effectively interpolate between parHydra and Global, we introduce a new 
approach, which we call parHydrab (Algorithm 3). In brief, unlike parHydra, parHydrab simultaneously configures b pro-
cesses in each iteration. Specifically, in Lines 2 and 3, parHydrab iterates up to the desired number of component solvers 
with a step size of b; in Line 5, the algorithm configurator is used to find a portfolio of b configurations with b times 
the configuration time budget and adds them to the current portfolio c( j)

1:i′ . After the n independent runs of the algorithm 
configurator (Lines 4 and 5), the best performing portfolio ĉ1:i′ is selected in Line 6, and in Line 7, the initial incumbent for 
the next iteration is selected based on the marginal contribution to the currently selected portfolio. The parameter b con-
trols the size of the configuration space in each iteration. Since the configuration space grows exponentially with b but we 
allow configuration time to grow only linearly, the algorithm configurator has a harder task under parHydrab than under
parHydra. However, for sufficiently small b, this additional cost can be worthwhile, because of parHydrab ’s reduced ten-
dency to stagnate in local minima.
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Algorithm 3: Portfolio Configuration Procedure parHydrab

Input : set of parametric solvers a ∈ A with configuration space Ca; desired number k of component solvers; number b of component solvers 
simultaneously configured per iteration; instance set I; performance metric m; configurator AC ; number n of independent configurator 
runs; total configuration time t

Output : parallel portfolio solver with portfolio ĉ1:k
1 i := 1
2 while i < k do
3 i′ := i + b − 1
4 for j := 1..n do

5 obtain portfolio c( j)
1:i′ := ĉ1:i−1||c( j)

i:i′ by running AC on configuration space {ĉ1:i−1} × (
∏i′

l=i

⋃
a∈A{(c) | c ∈ Ca}) and initial incumbent 

ĉ1:i−1||cinit on I using m for time t · b/(k · n)

6 let ĉ1:i′ ∈ arg min
c( j)

1:i′ | j∈{1...n} m(c( j)
1:i′ , I) be the configuration that achieved best performance on I according to m

7 let cinit ∈ arg min
c( j)

i:i′ | j∈{1...n} m(ĉ1:i′ ||c( j)
i:i′ , I) be the configuration that has the largest marginal contribution to ĉ1:i′

8 i := i + b

9 return ĉ1:k

5.2. Experiments

We used the set of solvers described in Section 4.2, with the addition of Plingeling. We added parHydrab to the set 
of ACPP methods considered and allowed b ∈ {2, 4}. We use the same setup as before, except that we allowed a 20-hour 
configuration budget per configured process, twice as much as before, to take into consideration the greater variation in 
solving behavior of Plingeling which induces a harder configuration task.

We compared our results to a variety of state-of-the-art solvers from the 2012 SAT Challenge on this benchmark set. We 
considered two state-of-the-art sequential solvers: glucose (2.1) [6] (winner of the single-engine application track—like all 
other competition results cited below, in the 2012 SAT Challenge); and SATzilla-App [74], which is SATzilla trained on appli-
cation instances (winner of the sequential portfolio application track). We also considered the following high-performance 
parallel solvers7:

• clasp (2.1.3) [26];
• Plingeling (ala) [14] and Plingeling (aqw) [15]8;
• ppfolio [63] (bronze medal in the parallel track);
• PeneLoPe [5] (silver medal in the parallel track);
• and again pfolioUZK [70] (winner of the parallel track).

The first part of Table 7 summarizes the performance results for these solvers: first the sequential solvers in 
their default configurations (Default-SP), then the parallel solvers using clause sharing in their default configurations 
(Default-MP(8)+CS), and finally our ACPP solvers based on the component solvers of pfolioUZK. As already discussed, the 
performance of the sequential pfolioUZK did not achieve state-of-the-art performance; this distinction goes to glucose for a 
single solver, and SATzilla for a portfolio-based algorithm selector.

pfolioUZK and clasp performed significantly better than ppfolio, PeneLoPe and Plingeling; we observed no significant per-
formance difference between pfolioUZK and clasp in terms of any of the scores we measured. (Even with further, extensive 
experiments, we have not been able to determine why clasp performed significantly worse than pfolioUZK and Lingeling in 
the 2012 SAT Challenge.)

parHydra4-MP(8) produced the best parallel portfolio solver overall, which turned out to be significantly faster than 
pfolioUZK. The portfolio solvers produced by parHydra-MP(8) and parHydra2-MP(8) exhibited no significant performance 
differences from pfolioUZK. Furthermore, parHydra4-MP(8) also solved more instances than Plingeling(aqw), although Plin-
geling(aqw) won the 2013 SAT competition and the solvers in parHydra4-MP(8) were mostly published in 2011, which 
gives Plingeling(aqw) an advantage of two additional years of development.

Taking a closer look at these portfolio solvers, parHydra2-MP(8), parHydra4-MP(8) and Global-MP(8) allocated three 
cores to Plingeling. As expected, parHydra-MP(8) did not include Plingeling in its portfolio; however, it did include three vari-
ants of Lingeling. All four portfolio solvers used at most seven processes by selecting “none” on one process; Global-MP(8)

selected “none” twice.

7 We did not consider the parallel algorithm selection solvers p3S and parCSHC, since the only versions available are optimized for a mixed set of SAT 
instances (application, handcrafted and random) and there is no trainable version available. Therefore, we had no way of performing a fair comparison 
between those methods and our ACPP portfolios.

8 The work we describe in this study took more than a year. In the meantime, the 2013 SAT Competition took place and the new Plingeling version aqw 
won the gold medal in the parallel track.
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Table 7
Comparison of parallel solvers with 8 processors on the test set of application. The performance of a 
solver is shown in boldface if its performance was at least as good as that of any other solver, up 
to statistically insignificant differences (according to a permutation test with 100 000 permutations at 
significance level α = 0.05). The best ACPP portfolio on the training set is marked with a dagger (†).

Solver #TOs PAR10 PAR1

Single threaded solvers: Default-SP

pfolioUZK-ST 150 4656 606
glucose-2.1 55 1778 293
SATzilla-2012-APP 38 1289 263

Parallel solvers with default config: Default-MP(8)

Plingeling(ala)+CS 53 1730 299
PeneLoPe+CS 49 1563 240
ppfolio+CS 46 1506 264
clasp+CS 37 1203 204
pfolioUZK-MP8+CS 35 1168 223
Plingeling(aqw)+CS 32 1058 194

ACPP solvers including a parallel solver
parHydra-MP(8)(pfolioUZK) 34 1143 225
parHydra2-MP(8)(pfolioUZK) 32 1082 218
parHydra4-MP(8)(pfolioUZK) 29† 992† 209†

Global-MP(8)(pfolioUZK) 35 1172 227

5.3. Comparison with sequential portfolio solvers

As illustrated in Table 7, our ACPP portfolios outperformed SATzilla—the winning sequential portfolio solver of the SAT 
Challenge 2012. However, SATzilla used a different set of component solvers. Therefore, one might wonder how well a 
sequential portfolio solver could perform when using our ACPP methods to obtain a configured portfolio. For all sequential 
portfolio solvers, such as algorithm selection or scheduling systems, without communication between the components, the 
best possible performance is achieved by the virtual best solver (VBS). We thus compared such a VBS to our ACPP method. 
Specifically, we assessed the performance of all components of our best-performing parallel portfolio that does not use 
any parallel solvers: parHydra-MP(8)(pfolioUZK w/o Plingeling) (see Table 6). In contrast to parHydra-MP(8)(pfolioUZK w/o 
Plingeling), which gave rise to 39 timeouts, the VBS of parHydra-MP(8)(pfolioUZK w/o Plingeling)’s components gave rise 
to 35 timeouts. This performance difference arises due to hardware overhead, as discussed earlier. Comparing this VBS 
performance with our parHydra4-MP(8) with 29 timeouts (see Table 7), we conclude that no sequential portfolio solver 
would have been able to outperform our parHydra4-MP(8) portfolios. parHydra4-MP(8) has a speedup of 1.18 on PAR10
(VBS: 1173 vs. parHydra4-MP(8): 992) and 1.09 on PAR1 (VBS: 228 vs. parHydra4-MP(8): 209).

5.4. Scaling to more than 8 cores

Our ACPP methods are able to take advantage of an arbitrary number of cores, as long we can find a sufficient number 
of complementary solver configurations within the given configuration space. The comparison of parHydra-MP(8) with only 
Lingeling (Section 3.2) and with the solvers of pfolioUZK demonstrated that a more extensive configuration space with several 
solvers can lead to better performance (compare Tables 2 and 7). However, parHydra4-MP(8)(pfolioUZK) used only 7 out of 
8 available CPU cores. This indicates that the configuration space of parHydra4-MP(8)(pfolioUZK) was relatively exhausted, 
to the point where running a further solver produced less benefit than incurring additional hardware overhead.

Looking at the training performance of parHydra4-MP(8)(pfolioUZK), we note that the improvement between the first 
and second iterations (first and last four components, respectively) of parHydra4-MP(8) was less than 10%. The performance 
improvement achieved by the more fine-grained parHydra2-MP(8)(pfolioUZK) between its third and fourth iterations was 
even lower, less than 3%. Indeed, the majority of our SMAC runs (7 out of 10) found similarly performing portfolios after 
their last iterations (with a difference of less than 1 CPU seconds), and one of these 7 portfolios showed the overall best 
performance on our training set. Therefore, given the configuration space we studied, we do not expect the potential for 
substantial performance improvements by leveraging more than 8 cores.

Using a parallel solver with clause sharing in our ACPP portfolios, we expect that performance could always be improved 
by increasing the number of parallel threads. Therefore, we studied the effect of increasing the number of parallel threads 
of Plingeling (ala) in parHydra4-MP(8)(pfolioUZK) by using more than 8 cores. Since the machines we used for our previous 
experiments had only 8 cores, we used another cluster for the following experiment, consisting of machines with 64 GB 
memory and two Intel Xeon E5-2650v2 8-core CPUs with 2.60 GHz and 20 MB L2 cache each, running 64-bit Ubuntu 14.04 
LTS.

Table 8 shows the scalability of Plingeling (ala) and parHydra4-MP(8)(pfolioUZK) in steps of 4 processes, since 
parHydra4-MP(8)(pfolioUZK) also adds 4 components at a time. On this new hardware, we observed that hardware over-
head influenced performance less than in our previous experiments. parHydra4-MP(8)(pfolioUZK) reached a performance 
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Table 8
Comparing Plingeling(ala) and parHydra4-MP(8) with increasing number of cores where 
parHydra4-MP(8) with more than 8 cores used more threads for Plingeling.

#Processes Plingeling(ala) parHydra4-MP(8)

#TOs PAR10 PAR1 #TOs PAR10 PAR1

4 27 938 209 34 1137 219
8 30 1009 199 22 766 172

12 28 950 194 22 761 167
16 28 949 193 25 845 25

peak at 12 processes and performed worse when using all 16 cores. Furthermore, parHydra4-MP(8)(pfolioUZK) did not 
solve more instances when using additional Plingeling threads; we note that the original parHydra4-MP(8) already used 3
threads for Plingeling. However, the average runtime (PAR1) of parHydra4-MP(8)(pfolioUZK) slightly improved between 8
and 12 cores. Running only Plingeling had similar effects; Plingeling performance improved as cores were added up to 12
and then stagnated.

Based on these results, we conjecture that the number of CPU cores at which hardware overhead becomes important is 
higher on newer hardware; indeed, perhaps future hardware architectures will permit running even larger parallel portfolios 
on one machine without significant hardware overhead. We also observe that adding a reasonable number of additional 
threads to Plingeling did not substantially improve the performance of parHydra-MP(8)(pfolioUZK).

5.4.1. Conclusion
Using our extended parHydrab method and a parallel solver with clause sharing, we were able to automatically gen-

erate an ACPP solver that outperformed pfolioUZK and reached the performance level of Plingeling(aqw), which is based 
on considerably more advanced solving strategies than are used in the baseline portfolio from pfolioUZK. This shows that 
the combination of our automatic ACPP methods and expert knowledge can be used not only to generate efficient parallel 
solvers, but also to automatically (albeit slightly) improve Plingeling(aqw), the 2013 state of the art in parallel SAT solving.

6. Conclusions and future work

In this work, we demonstrated that sequential algorithms can be combined automatically and effectively into parallel 
portfolios, following an approach we call Automatic Construction of Parallel Portfolios (ACPP). This approach enables solver 
developers to leverage parallel resources without having to be concerned with synchronization, race conditions or other 
difficulties that arise in the explicit design of parallel code. Of course, inherently parallel solving techniques (e.g., based on 
clause sharing) can further improve the performance of our ACPP portfolios. In this view, ACPP can also be used to support a 
human developer by determining a well-performing parallel portfolio which can provide a base for (i) adding clause sharing, 
(ii) identifying complementary configurations or (iii) as starting point for further manual fine-tuning and development of 
new techniques.

We investigated two different ACPP procedures: (i) configuration in the joint configuration space of all portfolio com-
ponents (Global); and (ii) iteratively adding one or more component solvers at a time (parHydra). We assessed these 
procedures on widely studied classes of satisfiability problems: the application and hard combinatorial tracks of the 2012
SAT Challenge. Overall, we found that parHydra was the most practical method. The configuration space of Global grows 
exponentially with the size of the portfolio; thus, while in principle it subsumes the other methods, in practice, it tended to 
find worse portfolios than parHydra within available time budgets. In contrast to Global, parHydra was able to find well-
performing portfolios on all of our domains; using pfolioUZK’s solvers on application instances, it even was able to reach the 
performance level of Plingeling(aqw), which won the 2013 parallel track. We expect that as additional highly parametric SAT 
solvers become available, parHydra will produce even stronger parallel portfolios.

In future work, it would be interesting to investigate how information exchange strategies such as clause sharing can be 
integrated more deeply into our procedures. This could be done, e.g., by combining our ACPP approach with HordeSAT [9], 
a modular, massively parallel SAT solver with clause sharing that can make use of arbitrary CDCL solvers. Since parameters 
governing such information exchange are global (rather than restricted to an individual component solver), we also intend 
to investigate improved methods for handling global portfolio parameters. Finally, we plan to investigate ways of reusing 
previously-trained portfolios for building new ones, for instance, in cases where the instance set changes slightly or new 
solvers become available.
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Appendix A. Clustering approach

Algorithm 4: Portfolio Configuration Procedure Clustering

Input : parametric solvers with configuration space C ; desired number k of component solvers; instance set I; performance metric m; 
configurator AC ; number n of independent configurator runs; total configuration time t; feature normalizer F N; cluster algorithm C A; 
features f (i) for all instances i ∈ I

Output : parallel portfolio solver with portfolio ĉ S

1 normalize features with F N into feature space f ′
2 cluster instances with C A in normalized feature space f ′ into k clusters S
3 foreach s ∈ S do
4 for j := 1..n do

5 obtain configuration c( j)
s by running AC with configuration space C on Is using m for time t/(k · n), where Is denotes all instances in 

cluster s

6 let ĉs ∈ arg min
c( j)

s | j∈{1...n} m(c( j)
s , I) be the configuration which achieved best performance on I according to m

7 let ĉ S be the portfolio consisting the configurations for each clusters
8 return ĉ S

ISAC [45,56] is a second method for automatically designing portfolio-based algorithm selectors. It works by clustering 
a set of instances in a given (normalized) instance feature space and then independently configuring the given highly 
parameterized algorithm on each instance cluster (see Algorithm 4). We adapted ISAC to the ACPP problem by generalizing 
it in two ways. First, ISAC uses a linear normalization of the features, whereas we leave this decision as a parameter open 
to the user, allowing linear, standard (or so-called z-score), or no normalization. In general the best normalization strategy 
may vary between feature sets, and there is no way to assess cluster quality before configuration experiments are complete. 
Second, we controlled the number of clusters via a parameter, allowing us to set it to the number of cores targeted by the 
parallel portfolio. Hence, we do not have to use a clustering method to determine how many clusters to choose (e.g., ISAC
uses g-means). To avoid suggesting that ISAC’s authors endorsed these changes, we refer to the resulting method using the 
neutral moniker Clustering.

Table A.9 shows results of Clustering in addition to Table 2. We note that Clustering-MP(8) clusters the training 
instances based on instance features; thus, normalizing these features in different ways can result in different instance 
clusters. There is no way to assess cluster quality before configuration experiments are complete; one can only observe the 
distribution of the instances in the clusters. For example, the instances in the training set of the application distribution 
for Clustering-None-MP(8) were distributed across clusters of sizes 2, 2, 3, 11, 13, 18, 21, and 30; we observed qual-
itatively similar distributions for Clustering-Linear-MP(8) and Clustering-Zscore-MP(8). This is potentially problematic, 
because running a configurator on sets of 2 or 3 instances can lead to overfitting and produce configurations whose per-
formance does not generalize well to new instances. One reason for these small clusters could be related to our instance 
selection technique (see Section 3.2.3), which reduced the number of training instances to speed up the configuration 
process. However, the instance selection technique we used already provides a mechanism to improve the distribution of 
the instances in the feature space. Kadioglu et al. [45] described how ISAC removes such small clusters by merging them 
into larger clusters. However, in the case of parallel portfolios, the number of clusters is fixed, because the number of 
clusters has to match the desired portfolio size, in order to ensure maximal utilization of the given parallel computing 
resources.

For both solvers, linear feature normalization (Clustering-Linear-MP(8)) produced clusters that were insufficiently com-
plementary, and hence led to relatively poor performance. (We note that linear normalization is used in ISAC.) Using 
clustering without feature normalization (Clustering-None-MP(8)) led to surprisingly strong performance in the case of 
Lingeling on the application instances, but failed to reach the performance of Default-MP(8)+CS for clasp on the hard com-
binatorial scenario. Similarly, the use of z-score normalization (Clustering-Zscore-MP(8)) did not produce portfolios that 
consistently reached the performance of Default-MP(8)+CS.

Table A.9
Runtime statistics on the test set from application and hard combinatorial SAT instances achieved 
by Clustering with different feature normalization strategies, Clustering-None-MP(8): no normalization, 
Clustering-Linear-MP(8): linear normalization ([0, 1]), Clustering-Zscore-MP(8): z-score normalization. The 
performance of a solver is shown in boldface if it was not significantly different from the best performance, and is 
marked with an asterisk (∗) if it was not significantly worse than Default-MP(8)+CS (according to a permutation 
test with 100 000 permutations and significance level α = 0.05).

Solver set Lingeling (application) clasp (hard combinatorial)

#TOs PAR10 PAR1 #TOs PAR10 PAR1

Clustering-None-MP(8) 47∗ 1571∗ 302∗ 107 3257 368
Clustering-Linear-MP(8) 61 1970 323 114 3476 398
Clustering-Zscore-MP(8) 51∗ 1674∗ 297∗ 99 3035 362



288 M. Lindauer et al. / Artificial Intelligence 244 (2017) 272–290
Table A.10
Runtime statistics for 8-processor parallel solvers on the application test set. The performance 
of a solver is shown in boldface if it was not significantly different from the best performance 
(according to a permutation test with 100 000 permutations at significance level α = 0.05).

8-Processor parallel solver #TOs PAR10 PAR1

Clustering-None-MP(8)(pfolioUZK w/o Plingeling) 42 1390 256
Clustering-Linear-MP(8)(pfolioUZK w/o Plingeling) 48 1581 285
Clustering-Zscore-MP(8)(pfolioUZK w/o Plingeling) 52 1676 272

Table A.10 shows results of Clustering in addition to Table 6. All Clustering approaches performed significantly worse 
than the best ACPP approach (parHydra-MP(8)).

As we previously observed with portfolios based on Lingeling, Clustering-None-MP(8) (no feature normalization) per-
formed best among the Clustering approaches. However, this time, Clustering-Zscore-MP(8) performed worse than 
Clustering-Linear-MP(8). This indicates that the quality of the clusters depends not only on the instance set but also 
on the configuration space of the portfolio (which, indeed, is disregarded by the Clustering approach).

The Clustering approach cannot be effectively applied to sets of component solvers that include parallel solvers. When 
the configuration of each component solver is performed independently of all other solvers, there is no way to direct a 
configurator to consider synergies between solvers, such as those arising from clause sharing. Therefore, an unparameter-
ized, parallel solver with clause sharing, such as Plingeling, will never be selected. Thus, we did not consider a variant of
Clustering in the experiments of Section 5.2.
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