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Exploiting Experts’ Knowledge
for Structure Learning of Bayesian Networks

Hossein Amirkhani, Mohammad Rahmati, Peter J.F. Lucas, and Arjen Hommersom

Abstract—Learning Bayesian network structures from data is known to be hard, mainly because the number of candidate graphs is
super-exponential in the number of variables. Furthermore, using observational data alone, the true causal graph is not discernible
from other graphs that model the same set of conditional independencies. In this paper, it is investigated whether Bayesian network
structure learning can be improved by exploiting the opinions of multiple domain experts regarding cause-effect relationships. In
practice, experts have different individual probabilities of correctly labeling the inclusion or exclusion of edges in the structure. The
accuracy of each expert is modeled by three parameters. Two new scoring functions are introduced that score each candidate graph
based on the data and experts’ opinions, taking into account their accuracy parameters. In the first scoring function, the experts’
accuracies are estimated using an expectation-maximization-based algorithm and the estimated accuracies are explicitly used in the
scoring process. The second function marginalizes out the accuracy parameters to obtain more robust scores when it is not possible to
obtain a good estimate of experts’ accuracies. The experimental results on simulated and real world datasets show that exploiting
experts’ knowledge can improve the structure learning if we take the experts’ accuracies into account.

Index Terms—Bayesian networks, structure learning, experts’ knowledge, experts’ accuracy, marginalization-based score
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1 INTRODUCTION

BAYESIAN networks are a popular class of probabilistic
graphical models that are applicable to many problems

that are characterized by uncertainty concerning multiple
variables and their relationships. At a qualitative level,
the structure of a Bayesian network describes the rela-
tionships between random variables in the form of condi-
tional independence relations. At a quantitative level, (local)
relationships between random variables are described by
(conditional) probability distributions, also called Bayesian
network parameters. To apply Bayesian networks to a par-
ticular domain, it is first necessary to learn the Bayesian
network structure and its parameters for that particular
problem domain. Alternatively, one may design a Bayesian
network structure based on experts’ knowledge alone and
then use either subjective estimates or statistical parame-
ter estimation to obtain the Bayesian network. This paper
focuses on the issue of how structure learning can benefit
from available experts’ knowledge.

During the last two decades, many Bayesian network
structure learning algorithms have been proposed (e.g. [1],
[2], [3], [4], [5], [6], [7]). One of the most widely used class
of structure learning algorithms are the score-based methods.
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They attempt to identify the model that best fits the data
by searching through the space of candidate models and
selecting the one that obtains the highest score. The search
is guided by various heuristics, very often hill-climbing [2],
but genetic algorithms [8] and particle swarm optimiza-
tion [9] have also been used. Typical scoring functions are
the Akaike information criteria (AIC) [10], the Bayesian
information criteria (BIC) [11], and the Bayesian Dirichlet
equivalence uniform (BDeu) [2] scores. The other common
approaches, often referred to as the constraint-based meth-
ods [12], estimate from the data whether certain conditional
independencies between the variables hold. Networks that
are consistent with these independencies are selected.

There are several challenges a Bayesian network struc-
ture learning algorithm encounters when trying to discover
a good model. First, the number of candidate graphs is
super-exponential in the number of variables. More pre-
cisely, the number of DAGs with n variables is greater than
2(n2) (i.e., the number of undirected graphs with n variables);
the exact number of DAGs can be computed using Robin-
son’s formula [13]. Because of the huge search space, the
learning problem is hard [14]. This implies that for more
than six variables, heuristic search is needed, and thus the
globally optimal Bayesian network may not be found. This
is complicated by the fact that in many practical learning
settings, there is little data or the data are noisy, so that the
score that is being used is not accurate. Furthermore, for
most structures there are many different Markov equivalent
graphs that encode the same independence relations, i.e.,
these structures cannot be distinguished based on data
alone. These limitations generally lead to learned models
that substantially differ from the true causal network of the
underlying problem.

Given these limitations of Bayesian network structure
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learning, some researchers have proposed the use of experts’
knowledge to bias the search procedure and reduce the
complexity of the search space [1], [15], [16], [17], [18], [19].
A shortcoming in the majority of such methods is that they
assume that there exists a completely reliable expert, and
the expert’s opinions about the structure are considered to
be consistent with the true structure. It is obvious that in a
real world setting, each expert may produce some errors in
the provided opinions. In fact, it is more realistic to assume
that we have to deal with multiple experts with varying
levels of expertise rather than an omniscient expert.

In this paper, we propose two novel scoring functions
to combine the available data with the knowledge from
multiple, possibly unreliable, experts. The main advantages
are that (i) it is not necessary to have a completely reliable
expert, (ii) experts only have to label some of the edges
(included in the graph, or not), and (iii) these scores can
deal with conflicts between experts. In the first approach,
we propose an expectation-maximization-based method for
estimating the accuracy of each expert, then this information
is explicitly used to score each structure based on both data
and experts’ opinions. In the second approach, we propose a
Bayesian alternative by taking into account the uncertainty
in the accuracy of each expert.

The first scoring function which is proposed in this
paper, which we refer to as the explicit-accuracy-based score,
builds upon the method originally proposed by [16]. The
main advantage of our approach is that we assume that
experts are heterogeneous, i.e., different experts have dif-
ferent levels of accuracy. In addition, with our second score,
referred to as the marginalization-based score, we are able to
handle the problem that the estimated experts’ accuracies
may not be so reliable, and we obtain a more robust score
by marginalizing out the experts’ accuracy parameters. Ex-
perimental results reveal that exploiting experts’ knowledge
can improve the structure learning if we take the experts’ ac-
curacies into account. Specifically, if the experts’ accuracies
can be confidently estimated, it is suggested to explicitly use
the estimated accuracies in the scoring process, otherwise,
marginalizing out the accuracy parameters yields more ro-
bust scores.

The rest of this paper is organized as follows. In Section
2, we introduce the notations and preliminaries that will
be used in subsequent sections. Specially, we present a
three-parameter-based model of experts’ accuracies in this
section. Then, in Section 3, we clarify our problem setting
based on some graphical models. Sections 4 and 5 present
our scoring functions, i.e. explicit-accuracy-based score and
marginalization-based score, respectively. Section 6 details
our experimental procedures and presents the results. Fi-
nally, Section 7 concludes the paper.

2 PRELIMINARIES

In this section, we first introduce Bayesian networks
and some Markov independence properties. Subsequently,
we briefly review score-based Bayesian network structure
learning. Finally, we present our three-parameter-based
model of experts’ accuracies, along with some further no-
tations that will be used throughout the remainder of this
paper.

2.1 Bayesian Networks

Formally, a Bayesian network, or BN for short, is a tuple
B = (G,X , P ), with G = (V,E) a directed acyclic graph
(DAG) with set of nodes V and directed edges or arcs
E ⊆ V × V , X = {X1, . . . , Xn} is a set of random variables
with a 1-1 correspondence to V , and P is a joint probability
distribution over X . An arc is denoted by (Xi → Xj) ∈ E
or (Xj ← Xi) ∈ E. In the following we assume that the
random variables Xi are all discrete. According to the chain
rule for Bayesian networks, P can be written as the product
of the probabilities of the random variables, conditioned on
their parents:

P (X1, . . . , Xn) =
n∏
i=1

P (Xi | π(Xi)),

where π(Xi) is the set of parents of Xi, i.e., the set {Xj |
(Xj → Xi) ∈ E}. The number of values that these parents
can take is denoted by qi =

∏
Xj∈π(Xi) rj , where rj is the

number of values that Xj can take.
The graph structure of G encodes a set of independence

assumptions about P which is formalized by d-separation
(directed separation): If a set of nodesX d-separates another
set of nodes Y given a set of nodes Z, then X is indepen-
dent of Y given Z, written as (X ⊥ Y | Z). D-separation is
defined as follows. Let ρ be a trail in G, i.e., a path without
considering the directions of the arcs. A trail ρ is said to be
blocked by a set of nodes Z if and only if (at least) one of the
following holds:
• ρ contains a chain U → Zi →W , such that Zi is in Z,
• ρ contains a fork U ← Zi →W , such that Zi is in Z,
• ρ contains a collider U → Zi ← W , such that neither Zi

nor any descendant of Zi is in Z.
Then, X and Y are said to be d-separated by Z if any trail
between any node in X and any node in Y is blocked
by Z. One of the special features of a Bayesian network
is that, through the notion of collider, variables that are
(conditionally) independent could become dependent by
conditioning on the collider or one of its descendants. An
undirected network, i.e., Markov random field, does not
have this property [20].

If two graphs encode the same set of independencies,
then we say that these graphs are Markov equivalent. To
represent equivalence classes of DAGs, partially directed
acyclic graphs (PDAGs) are employed, which are acyclic
graphs with both directed and undirected edges. The
completed PDAG (CPDAG) [21] – also called the essential
graph [22] – of a DAG G = (V,E) is a PDAG G′ such that
(i) it contains the same nodes as G, and (ii) for each edge
(X → Y ) ∈ E, if each graph in the equivalence class of
G has the edge X → Y , then X → Y is in G′; otherwise
X−Y is in G′. The consequence of the definition of Markov
equivalence is that some arcs have a strict orientation and
meaning, whereas in others the orientation can also be
reversed without changing the meaning.

2.2 Score-Based Structure Learning

The structure learning task is basically to find the graph,
or the structure, that fits the data best. In this paper, we
employ a score-based approach that attempts to identify
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the appropriate model by a hill-climbing search through the
space of candidate models and selecting the one with the
highest score [2]. The hill-climbing search selects at each step
the best transformation among all feasible edge removals,
edge reversals, and edge additions. Obviously, it ignores the
edge reversals and edge additions that create directed cycles
in the graph. When the score cannot be strictly improved
anymore, the search stops.

Bayesian network scores are usually based on a max-
imum likelihood principle that picks the model that best
‘fits’ the observed data. To prevent overfitting, a Bayesian
Occam’s razor [23] can be used to select the model with
the highest marginal likelihood P (D | G), i.e., where the
parameters are integrated out:

P (D | G) =

∫
P (D | G,Θ)f(Θ | G)dΘ,

with f a probability density, such that Θ are the possible
parameters for DAG G. Assuming that the conditional dis-
tributions defined in a Bayesian network are independent,
[2] showed that this implies that the prior of these condi-
tional distributions must be a Dirichlet, i.e., θij ∼ Dir(αij),
where θij represents P (Xi | π(Xi) = j) such that j is
one of the configuration of the parents of Xi, 1 ≤ j ≤ qi,
and αij is a vector of length ri. Let Nijk be the counts of
Xi = k and its parents having the value j in the data D, and
Nij =

∑ri
k=1Nijk, it can then be shown that:

P (D | G) =

|V |∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij +Nij)

ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
,

where Γ(x) =
∫∞
0
tx−1e−tdt is the Gamma function. This

score is called the BD (Bayesian Dirichlet) score. [2] also
proved that for complete graphs, the only prior that assigns
the same marginal likelihood to Markov equivalent graphs
is the prior where:

αijk = αP0(Xi = k, π(Xi) = j)

with α > 0, where P0 is a prior distribution. Finally, taking
a uniform prior for P0, i.e., P0(Xi = k, π(Xi) = j) = 1

qiri
,

we obtain a very popular score called the BDeu (Bayesian
Dirichlet equivalent uniform) score. In this score, the only
parameter which we need to choose is α, which is also
referred to as the equivalent sample size.

2.3 Edge Types, Experts’ Opinions and Accuracies
If the number of nodes in the structure is n, i.e., n = |V |,
then there areN = n(n−1)/2 different node pairs. Through-
out this paper we assume that there is a fixed ordering over
node pairs, and a fixed ordering over the nodes in each pair.
If the ith pair is (X,Y ), the status of the edge between X
and Y is indicated by gi, where
• gi =→ if (X → Y ) ∈ E,
• gi =← if (X ← Y ) ∈ E,
• gi == if neither (X → Y ) nor (X ← Y ) is in E.
According to the above notations, there are three edge

types in the structure: {→,←,=}. Note that the edge
types → and ← do not essentially differ, but depend on
the ordering over the nodes in the pairs. As an exam-
ple, consider the Bayesian network structure depicted in

X

Y Z

W

Fig. 1. Simple Bayesian network structure.

Fig. 1. Since there are 4 nodes in this graph, the number
of node pairs is N = 6. If these pairs are ordered as
(X,Y), (X,Z), (X,W), (Y,Z), (Y,W), (Z,W), we have g1 =→,
g2 =→, g3 =←, g4 ==, g5 ==, g6 ==.

We denote the prior distribution over edge types
as p = {p→, p←, p=}. For example, when p = {p→ =
0.1, p← = 0.2, p= = 0.7} it means that prior to having any
data or experts’ knowledge, we believe that 10%, 20%, and
70% of gis are respectively equal to→,←, =.

The number of experts is indicated by R. The opinion
of the ith expert regarding the jth pair is denoted by
Oij ∈ {∅,→,←,=}, where Oij = ∅ meaning that the ith
expert has not provided any opinion about the jth pair. We
use Oi to indicate all opinions provided by the ith expert,
Oj to mention the opinions provided by all experts about
the jth pair, and O to denote all provided opinions.

We model the accuracy of an expert by three parameters:
• γ1: The probability of detecting the existing edges with

correct directions,
• γ2: The probability of detecting the existing edges with

reverse directions,
• γ3: The probability of correctly detecting the absent

edges.
We add a superscript such as γi1, γi2, γi3 to denote the

accuracy parameters of the ith expert. In addition, γi indi-
cates the set containing all three accuracy parameters of the
ith expert. Finally, the accuracy parameters of all experts are
collectively denoted by boldface γ.

As an example assume that the accuracy parameters
of the ith expert are γi1 = 0.6, γi2 = 0.1, γi3 = 0.8. We can
conclude that if this expert gives an opinion about the jth
pair, the following confusion matrix shows the probabilities
of providing different opinions by this expert:


→ ← =

→ 0.6 0.1 0.3
← 0.1 0.6 0.3
= 0.1 0.1 0.8

,
where each row shows a possible value for gj and each
column indicates a possible opinion Oij . Obviously, each
row must sum to one. About the last row note that when
the expert is wrong about the absent edge gj ==, he/she
selects one of the possible edges→ or←. We consider these
two possibilities equally likely because we do not have any
evidence to favor one over the other.

3 PROBLEM SETTING

Figs. 2 to 4 depict the various problem component models.
Fig. 2 shows the factors affecting the structure G, data D,
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γ
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Fig. 2. Graphical model of the factors affecting the structure,
data, and experts’ opinions (G: graph structure; D: data; O:
experts’ opinions; p: prior distribution over edge types; K:
information that determines G; γ: accuracy of experts; ε:
noise). See text for further explanation.

and experts’ opinions O. In this model, K denotes the
set of information determining the structure. Note that the
prior distribution p can be seen as a part of K, but we
separate it because it plays a distinguished role in the next
section. According to this model, data is directly affected
by the structure and a noise factor ε. Experts’ opinions are
also directly affected by the graph structure and experts’
accuracy parameters.

Fig. 3 shows graphical models of the experts’ opinions.
The right model represents a more detailed version of the
left one. According to this figure, the opinions of each expert
are determined by the graph structure and the individ-
ual’s accuracy parameters. More precisely, according to the
detailed model, the opinion of one expert regarding one
particular node pair is influenced by the edge status of that
pair and the experts’ accuracy parameters.

Fig. 4 indicates the roles of different accuracy parameters
of an expert in determining the personal opinions. In this
figure, OiE and OiA are the opinions of the ith expert about
the existing and absent edges in G, respectively. Based on
this model, the opinions regarding existing edges are influ-
enced by γ1 and γ2 parameters, and the opinions regarding
absent edges are influenced by the γ3 parameter.

Using the d-separation rules in Bayesian networks, in-
troduced in Section 2, we can derive a set of conditional
independence statements from these models. Some of these
statements are presented in Table 1. Only those used in
the remainder of the paper are listed here, as clearly, more
statements can be read off from the graphical models. In
each of the statements in Table 1, assume that 1 ≤ i, j ≤ R,
1 ≤ x, y ≤ N , i 6= j, and x 6= y.

There is one point that must be noted about the in-
dependence statements in Table 1. Consider statement 3
as an example. According to this statement, D and γ are
independent given G. Note that based on Fig. 2, if O is
not given, D and γ are independent, regardless of whether
G is given or not. Anyway, having G does not violate
this independence, and because we need D ⊥ γ | G in the
subsequent sections, we introduce this statement instead of
D ⊥ γ. This also holds for some other statements in Table 1.

4 EXPLICIT-ACCURACY-BASED SCORE

In our first scoring function, we explicitly use the estimated
accuracy parameters of experts to quantify the quality of

γi

Oi

G

Oj

γj

pK

(a) Abstract model

Oi1 Oi2 ... OiN

pK

Oj1 Oj2
... OjN

γi γjg1 g2 ... gN

(b) Detailed model

Fig. 3. Graphical models of the experts’ opinions.

γi1, γ
i
2

OiE

G

OiA

γi3

Fig. 4. Graphical model of the roles of different accuracy
parameters.

TABLE 1
Some Independence Statements Derived from Models of

Figs. 2 to 4

Number Statement Model

1 G ⊥ γ Fig. 2
2 G ⊥ γ | p Fig. 2
3 D ⊥ γ | G Fig. 2
4 O ⊥ D | G Fig. 2
5 O ⊥ D | G, γ Fig. 2
6 Oi ⊥ Oj | G Fig. 3a
7 Oi ⊥ Oj | G, γ Fig. 3a
8 Oj ⊥ γi | G, γj Fig. 3a
9 Ojx ⊥ Ojy | G, γj Fig. 3b
10 Ojx ⊥ gy | gx, γj Fig. 3b
11 Oix ⊥ O

j
x | gx,p, γ Fig. 3b

12 Ojx ⊥ γi | gx,p, γj Fig. 3b
13 Ojx ⊥ p | gx, γj Fig. 3b
14 (γi1, γ

i
2) ⊥ γi3 Fig. 4

candidate structures. In subsection 4.1, we introduce this
scoring function assuming that there is an estimate of ex-
perts’ accuracies. Then, in subsection 4.2, an expectation-
maximization-based method is described to estimate these
parameters.
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4.1 Score Derivation
The goal of the explicit-accuracy-based scoring function is
to score a candidate structure G using the data D, experts’
opinions O, and estimated experts’ accuracies γ. A Bayesian
measure of the goodness of fit of G is its posterior probabil-
ity given D, O, and γ:

P (G | D,O,γ) ∝ P (G,D,O,γ) =

P (γ)P (G | γ)P (D | G,γ)P (O | G,D,γ).

Since P (γ) does not depend on the graph structure,
we omit it from the score. P (G | γ) is simplified to P (G)
based on statement 1 in Table 1. In addition, P (D | G,γ)
is simplified to P (D | G) according to statement 3. Fi-
nally, P (O | G,D,γ) is simplified to P (O | G,γ) using
statement 5. Therefore, the explicit-accuracy-based score is
introduced as the log of P (G | D,O,γ) and given as:

Scoreexplicit(G;D,O,γ)

= logP (G) + logP (D | G) + logP (O | G,γ). (1)

For the first two parts of this score, there are different
choices mentioned in the literature. For the prior P (G), the
simplest and most common choice, which we also use in our
experiments, is the uniform prior. It means that all structures
are equally likely a priori, and therefore we can omit it from
the score. Other choices are to provide greater penalty to
dense networks [24] and to consider the number of options
in determining the parents of each node [25]. For the second
part logP (D | G), we use the BDeu score introduced in
Section 2.

For the last part of the explicit-accuracy-based score, we
use statements 7, 8, 9, 10 from Table 1 and obtain

logP (O | G,γ) =
R∑
j=1

N∑
i=1

logP (Oji | gi, γ
j). (2)

The term P (Oji | gi, γ
j) in equation (2) is computed using

the decision tree depicted in Fig. 5. Note that we only use
the provided opinions (i.e., Oji 6= ∅) to score G. The reason
for dividing

(
1− γj3

)
by 2 in this figure is that when the

expert is wrong about an absent edge in G like X = Y ,
he/she selects one of the possible edges X → Y or X ← Y .
We consider these two possibilities equally likely because
there is no evidence to favor one over the other.

4.2 Expectation-Maximization-Based Accuracy Esti-
mation
One way to estimate the experts’ accuracies is to use the
expectation-maximization (EM) algorithm [26]. This ap-
proach has been used in the crowdsourcing literatures such
as [27], [28]. In the structure learning problem, we also previ-
ously used this algorithm to estimate the experts’ confusion
matrices [29], [30]. Here, we follow the same framework but
derive the formulas for the three-parameter-based model of
experts’ accuracies proposed in Section 2.

If we consider the prior distribution p and the experts’
accuracies γ as the parameters, the maximum-likelihood
estimate of these parameters is

(p̂, γ̂) = arg max
p,γ

{logP (O | p,γ)}.

Note that we use only the experts’ opinions O in the likeli-
hood function. Obviously, the data D can also help in this
estimation problem, but we ignore it for simplicity’s sake.

To solve this optimization problem, we consider the true
structure G as a hidden variable and use the EM algorithm.
We assume that (Oi, gi) is independent of (Oj , gj), for
each j 6= i, given (p,γ). This assumption is not true in
general, but to make the computations tractable, we ought
to consider it. With this assumption, the log-likelihood of
complete data (O,G) is

logP (O,G | p,γ) =
N∑
i=1

logP (Oi, gi | p,γ).

Since gi is a member of {→,←,=}, we can write

logP (Oi, gi | p,γ)

=
∑

k∈{→,←,=}

I(gi = k) logP (Oi, gi = k | p,γ),

where I(c) is the indicator function, which is one if the con-
dition c is satisfied and zero otherwise. We simply expand
the inner term in the above expression as

P (Oi, gi = k | p,γ) = P (gi = k | p,γ)P (Oi | gi = k,p,γ).

Using statement 2 in Table 1, we have

P (gi = k | p,γ) = P (gi = k | p) = pk. (3)

Also according to statement 11 in Table 1, we have

P (Oi | gi = k,p,γ) =
R∏
j=1

P (Oji | gi = k,p,γ). (4)

Finally, based on statements 12 and 13 in Table 1, the term
in the above equation is simplified to

P (Oji | gi = k,p,γ) = P (Oji | gi = k, γj),

which is simply computed using the decision tree in Fig. 5.
Again, note that we consider only the provided opinions
(i.e., Oji 6= ∅) in the computations.

Putting all the above together, the log-likelihood of com-
plete data is

logP (O,G | p,γ) =
N∑
i=1

∑
k∈{→,←,=}

{
I(gi = k)

×
(

log pk +
R∑
j=1

logP (Oji | gi = k, γj)

)}
. (5)

The EM algorithm iterates between two steps: an Expec-
tation step (E-step) and a Maximization step (M-step). In
the E-step, the expectation of the complete log-likelihood
is computed using the current estimate of parameters. In
the M-step, this expectation is maximized to obtain the next
estimate of the parameters.
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gi = =

Oji = gi Oji = =

Oji ∈ {→,←}

1− γj1 − γ
j
2 γj2 γj1

1−γj3
2

γj3

no yes

no yes

no yes

no yes

Fig. 5. Decision tree for computing P (Oji | gi, γ
j) for Oji 6= ∅.

The conditional expectation of the complete log-
likelihood (5) given opinions O and the current estimate of
the parameters p(t),γ(t) is

Eη[logP (O,G | p,γ)] =
N∑
i=1

∑
k∈{→,←,=}

{
Eη[I(gi = k)]

×
(

log pk +
R∑
j=1

logP (Oji | gi = k, γj)

)}
, (6)

where we denote EG|O,p(t),γ(t) by Eη for the ease of reading.
The expectation of the indicator function is the probabil-

ity of the associated event. Therefore,

Eη[I(gi = k)] = P (gi = k | O,p(t),γ(t)).

To make the computation of the above probability tractable,
we assume that

P (gi = k | O,p(t),γ(t)) = P (gi = k | Oi,p(t),γ(t)).

This informally means that the status of the edge between
two particular nodes is independent of the opinions regard-
ing other node pairs, given the opinions about that node
pair. This assumption means that that experts offer opin-
ions about individual edges without taking opinions about
other edges into account. It is based on assuming limited
understanding of the semantics of Bayesian networks, quite
common in domain experts of real-life problems.

Based on the above assumption and using Bayes’ rule,
we have

Eη[I(gi = k)]

=
P (gi = k | p(t),γ(t))× P (Oi | gi = k,p(t),γ(t))

P (Oi | p(t),γ(t))
. (7)

The numerator terms can be computed using equa-
tions (3) and (4), respectively, and the denominator is simply
a normalization factor.

The next estimates of parameters are obtained by maxi-
mizing the expectation (6). By setting the partial derivatives

of (6) with respect to each parameter equal to zero, we obtain
the following estimates for the parameters:

p
(t+1)
k =

1

N

N∑
i=1

Eη[I(gi = k)],

(γj1)(t+1) =

∑N
i=1

∑
k∈{→,←} Eη[I(gi = k)]× I(Oji = k)∑N

i=1

∑
k∈{→,←} Eη[I(gi = k)]× I(Oji 6= ∅)

,

(γj2)(t+1)

=

∑N
i=1

∑
k∈{→,←} Eη[I(gi=k)]×I(O

j
i 6=k,O

j
i∈{→,←})∑N

i=1

∑
k∈{→,←} Eη[I(gi=k)]×I(O

j
i 6=∅)

,

(γj3)(t+1) =

∑N
i=1 Eη[I(gi ==)]× I(Oji ==)∑N
i=1 Eη[I(gi ==)]× I(Oji 6= ∅)

, (8)

for k ∈ {→,←,=} and 1 ≤ j ≤ R.
In summary, the EM-based accuracy estimation algo-

rithm works as follows:

(i) Take initial estimates of the parameters p,γ.
(ii) Use equation (7) and the current estimates of the pa-

rameters to calculate estimates of the expectation of the
hidden variables gi.

(iii) Use equations (8) to obtain new estimates of the pa-
rameters.

(iv) Repeat steps (ii) and (iii) until the results converge.

The EM algorithm yields only local optima, but the con-
siderable experience with the algorithm indicates that the
results are usually satisfactory.

5 MARGINALIZATION-BASED SCORE

The scoring approach proposed in the previous section con-
sists of two steps. In the first step, the experts’ accuracies are
estimated, then in the second step, the estimated accuracies
are used to score the structures. Obviously, the reliability
of this score depends on the reliability of the estimated
accuracies in the first step. When we are not confident about
the estimated accuracies, this approach is not appropriate.
In this section, we introduce an alternative approach that is
based on marginalizing out the accuracy parameters instead
of explicitly estimating them.

Since the estimated experts’ accuracies are not explicitly
used in the marginalization-based score, only the data D
and experts’ opinions O are used for scoring a candidate
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structure G. The posterior probability of G given D and O
is a reasonable measure for this purpose:

P (G | D,O) ∝ P (G,D,O) = P (G)P (D | G)P (O | G,D).

Based on the statement 4 in Table 1, P (O | G,D)
is simplified as P (O | G). Therefore, we define our
marginalization-based score as:

Scoremarg(G;D,O) = logP (G)+logP (D | G)+logP (O | G).

Comparing the above scoring function with the explicit-
accuracy-based score (1), the only difference is the last
term. In the rest of this section, we explain how to com-
pute logP (O | G) to complete the computation of the
marginalization-based score.

According to statement 6 in Table 1,

logP (O | G) =
R∑
i=1

logP (Oi | G). (9)

To compute P (Oi | G), we marginalize out the accuracy
parameters:

P (Oi | G) =

∫ 1

0

∫ 1−γi1

0

∫ 1

0

(
P (γi1, γ

i
2, γ

i
3 | G)

× P (Oi | γi1, γi2, γi3, G)

)
dγi3 dγ

i
2 dγ

i
1. (10)

Note that the domain of integration for γi2 is not [0, 1] but is
[0, 1− γi1], because γi1 + γi2 must be lower than or equal to 1.

According to statements 1 and 14 in Table 1,

P (γi1, γ
i
2, γ

i
3 | G) = P (γi1, γ

i
2)P (γi3). (11)

In addition, based on statement 9 we have

P (Oi | γi1, γi2, γi3, G) =
N∏
j=1

P (Oij | γi1, γi2, γi3, G),

which can be written as

P (Oi | γi1, γi2, γi3, G)

= (γi1)ni1(γi2)ni2(1− γi1 − γi2)ni3(γi3)mi1

(
1− γi3

2

)mi2

,

(12)

where

• ni1 is the number of existing edges in G that are
detected by expert i with correct directions,

• ni2 is the number of existing edges in G that are
detected by expert i with reverse directions,

• ni3 is the number of existing edges in G that are
mentioned as absent edges by expert i,

• mi1 is the number of absent edges inG that are correctly
detected by expert i,

• mi2 is the number of absent edges in G that are men-
tioned as existing edges by expert i.

Plugging equations (11) and (12) into equation (10), we
get

P (Oi | G) =

(∫ 1

0

P (γi3) (γi3)mi1

(
1− γi3

2

)mi2

dγi3

)
×
(∫ 1

0

∫ 1−γi1

0

P (γi1, γ
i
2) (γi1)ni1(γi2)ni2

(1− γi1 − γi2)ni3 dγi2 dγ
i
1

)
. (13)

We denote the components of the above equation by Ii1 and
Ii2, respectively:

Ii1 =

∫ 1

0

P (γi3) (γi3)mi1

(
1− γi3

2

)mi2

dγi3,

Ii2 =

∫ 1

0

∫ 1−γi1

0

(
P (γi1, γ

i
2) (γi1)ni1(γi2)ni2

(1− γi1 − γi2)ni3
)
dγi2 dγ

i
1.

An appropriate distribution for P (γi3) in Ii1 is the Beta
distribution. If the shape parameters of this distribution are
denoted by βi1 and βi2, we have

P (γi3) =
1

B(βi1, βi2)
(γi3)βi1−1(1− γi3)βi2−1, (14)

where

B(βi1, βi2) =

∫ 1

0

tβi1−1(1− t)βi2−1dt (15)

is the Beta function. Note that the shape parameters can
be different for different experts. Nevertheless, we use the
same parameters for all experts in our experiments.

Plugging equation (14) into the definition of Ii1, we have

Ii1 =

∫ 1

0
(γi3)βi1+mi1−1 (1− γi3)βi2+mi2−1 dγi3

2mi2 ×B(βi1, βi2)
,

which can be written as

Ii1 =
B(βi1 +mi1, βi2 +mi2)

2mi2 ×B(βi1, βi2)
. (16)

After deriving a closed-form formula for Ii1, we now
turn our attention to Ii2. We use a Dirichlet distribution
Dir(αi1, αi2, αi3) for P (γi1, γ

i
2):

P (γi1, γ
i
2) =

(γi1)αi1−1(γi2)αi2−1(1− γi1 − γi2)αi3−1

B(αi1, αi2, αi3)
,

where B(αi1, αi2, αi3) is the multivariate Beta function.
Using this prior in the definition of Ii2 we have

Ii2 =
1

B(αi1, αi2, αi3)

∫ 1

0

(γi1)αi1+ni1−1

×

[∫ 1−γi1

0

(γi2)αi2+ni2−1(1− γi1 − γi2)αi3+ni3−1 dγi2

]
dγi1.

Changing the variable t in integral (15) to γi2 by substi-
tuting t =

γi2
1−γi1

, the inner integral in the above equation
is ∫ 1−γi1

0

(γi2)αi2+ni2−1(1− γi1 − γi2)αi3+ni3−1 dγi2 =

B(αi2 + ni2, αi3 + ni3)× (1− γi1)αi2+ni2+αi3+ni3−1,
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TABLE 2
Description of the Networks Used in the Simulation

Experiments

Name Description Nodes Edges

Asia Diagnosing some respiratory diseases 8 8
Insurance Evaluating car insurance risks 27 52
Alarm Monitoring patients in intensive care 37 46
Hailfinder Predicting summer hails in northern Colorado 56 66

and therefore,

Ii2 =
B(αi2 + ni2, αi3 + ni3)

B(αi1, αi2, αi3)

×
∫ 1

0

(γi1)αi1+ni1−1(1− γi1)αi2+ni2+αi3+ni3−1 dγi1,

which can be written as

Ii2 =
1

B(αi1, αi2, αi3)
×B(αi2 + ni2, αi3 + ni3)

×B(αi1 + ni1, αi2 + ni2 + αi3 + ni3). (17)

Based on equation (13), we can compute P (Oi | G) by
multiplying equations (16), (17). So,

logP (Oi | G) = logB(βi1 +mi1, βi2 +mi2)

−mi2 log 2− logB(βi1, βi2)

+ logB(αi1 + ni1, αi2 + ni2 + αi3 + ni3)

+ logB(αi2 + ni2, αi3 + ni3)

− logB(αi1, αi2, αi3).

Finally, based on equation (9) we get logP (O | G) by
summing the above expression for i = 1, . . . , R, which com-
pletes the computation of the marginalization-based score.

6 EXPERIMENTS

The developed scores are evaluated in this section using
simulated experts (subsection 6.1) and real experts (subsec-
tion 6.2).

6.1 Simulation Experiments
To evaluate the developed scores, some of the experiments
are performed on simulated experts. The merit of simulation
is that we can change the values of different parameters,
such as the experts’ accuracies or the amount of available
knowledge, and evaluate the scores under different condi-
tions. In this part of the paper, we present the setup of our
simulation experiments and discuss the obtained results.

6.1.1 Experimental Setup
We use four Bayesian networks which have been widely
used in the structure learning experiments: Asia [31], Insur-
ance [32], Alarm [33], and Hailfinder [34], briefly described
in Table 2.

Our experiments are implemented in a MATLAB en-
vironment using the Bayes net toolbox [35] and the BNT
structure learning package [36]. For each network, we gen-
erate the data samples and experts’ opinions and learn the
structure using different scoring functions. Comparing the
learned network with the gold-standard structure reveals

TABLE 3
The Accuracy Parameters Assigned to Experts in Simulated

Populations

Weak Mediocre Good
γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3

1 0.15 0.80 0.85 0.15 0.80 0.85 0.15 0.80 0.85
2 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
3 0.75 0.10 0.90 0.75 0.10 0.90 0.75 0.10 0.90
4 0.40 0.25 0.50 0.40 0.25 0.50 0.85 0.05 0.85
5 0.45 0.35 0.45 0.45 0.35 0.45 0.70 0.15 0.80
6 0.55 0.20 0.60 0.55 0.20 0.60 0.75 0.15 0.70
7 0.20 0.15 0.50 0.20 0.15 0.95 0.20 0.15 0.95
8 0.33 0.33 0.33 0.90 0.05 0.80 0.90 0.05 0.80
9 0.50 0.30 0.40 0.70 0.20 0.70 0.70 0.20 0.70
10 0.30 0.50 0.30 0.60 0.30 0.65 0.80 0.10 0.90

Mean 0.39 0.33 0.51 0.50 0.27 0.67 0.61 0.21 0.78

the effectiveness of the corresponding scoring function. In
addition to comparing the DAGs, we also compare the
CPDAGs representing the equivalence classes of the learned
structure and the gold-standard network [21]. The reason
for comparing the CPDAGs is that we do not penalize
for structural differences that cannot be distinguished only
based on data [37].

There may be three types of errors in the learned DAG
(CPDAG):
• Wrong Connection where an absent edge in the original

graph is available in the learned network,
• Missed Edge where an available edge in the original

graph is missed in the learned structure,
• Wrong Orientation where one edge has different orien-

tations in the original graph and the learned structure.
Note that, when comparing two CPDAGs such as G1

and G2, if one edge is undirected in G1 and directed in
G2, this is also considered as wrong orientation error,
since there is at least one graph in the equivalence
class of G1 where its corresponding edge has wrong
orientation than that of G2.

The total number of these errors is called the structural
Hamming distance (SHD) [37], [38].

In our simulations, we consider three different popu-
lations each with R = 10 experts. According to the ex-
perts’ accuracies, these populations are labeled as “weak”,
“mediocre” and “good”. Table 3 lists the details of the
experts’ accuracies in these populations. Three experts are
equally accurate in all populations. Three other experts are
equally accurate in the “weak” and “mediocre” populations,
but more accurate in the “good” population. The next three
experts are equally accurate in the “mediocre” and “good”
populations, but less accurate in the “weak” population.
Note that since higher γ1 and γ3 means more accurate
experts, these parameters have higher values in the “good”
population. On the other hand, since higher γ2 means less
accurate experts, this parameter has higher values in the
“weak” population.1

In our experiments, we compare six different functions:
1) Data: This function neglects the experts’ opinions and

only uses the data D to score the structures. We use
the marginal likelihood part of the BDeu score [2],
introduced in Section 2, for this purpose.

1. The detailed description of the process of simulating the experts’
opinions based on their accuracy parameters is available at http://ceit.
aut.ac.ir/∼amirkhani.

http://ceit.aut.ac.ir/~amirkhani
http://ceit.aut.ac.ir/~amirkhani
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TABLE 4
The True Probability Distributions Over Edge Types for the

Bayesian Networks Used in the Simulation Experiments

BN p→ p← p=
Asia 0.11 0.18 0.71

Insurance 0.07 0.08 0.85
Alarm 0.04 0.03 0.93

Hailfinder 0.02 0.02 0.96

2) Expert: This function neglects the data D and only uses
the experts’ opinions O to decide about the Bayesian
network structure. It uses a majority voting approach,
in which, for each pair (X,Y ), the status that the
majority of experts agree on is considered as the status
of the edge between X and Y . In the case of a tie, a
random decision is made.

3) PE: Stands for perfect experts, this scoring function
assumes that all experts are completely accurate. For
this, the explicit-accuracy-based score (1) is used, where
γ1 and γ3 parameters of all experts are set to one, and
γ2 is zero.

4) Mean: This function also exploits both data and
experts’ opinions using the explicit-accuracy-based
score (1). It considers the same accuracies for all ex-
perts to resemble the method proposed in [16]. For
the accuracy parameters, it uses the mean of true ac-
curacy parameters of all experts in each population.
More precisely, if the opinions are generated from the
“weak” population, γ1, γ2, γ3 are set to 0.4, 0.35, 0.5,
respectively. For the “mediocre” population, these pa-
rameters are set to 0.5, 0.25, 0.65, respectively. Finally,
for the “good” population, 0.6, 0.2, 0.8 are used as
the accuracy parameters for all experts. This scoring
function is included in the experiments to compare the
best achievable results from a method such as [16] that
considers the same accuracy levels for all experts with
the methods such as the EM-based method proposed
in Section 4 which try to estimate the accuracies of all
experts.

5) EM: In this function, we first estimate the experts’
accuracies using the EM-based algorithm introduced
in subsection 4.2, and then, score the structures using
the explicit-accuracy-based score (1). As the initial prior
distribution over edge types, we use p = {p→ =
0.1, p← = 0.1, p= = 0.8}, since we know that most
real world Bayesian network structures are sparse. The
true distributions for the used Bayesian networks are
presented in Table 4. For the initial accuracy parameters
γ, we assume that we have the mean of true accuracy
parameters of all experts a priori, and therefore, we
initialize γ with the values used for the Mean scoring
function. We use these initial values because we want
to provide the same prior information for both Mean
and EM scores, and can fairly compare their results.
The EM algorithm stops when the absolute change in
the estimated accuracies is smaller than 0.001.

6) Marg: This function is the marginalization-based
score introduced in Section 5. For the parameters
βi1, βi2, αi1, αi2, αi3, we use the same values for all
experts, again using the mean of true accuracy param-

eters. If the mean of true accuracy parameters of all
experts in a particular population is γ̄1, γ̄2, γ̄3, we have

βi1 = cγ̄3, βi2 = c(1− γ̄3),

αi1 = cγ̄1, αi2 = cγ̄2, αi3 = c(1− γ̄1 − γ̄2), (18)

for i = 1, . . . , R, where c is a constant coefficient. In
the following, wherever the value of c is not clearly
mentioned, its value is 10. At the end of this section, we
evaluate the influence of this coefficient and show that
its value does not have such a considerable impact on
the obtained results.

In all of the above scoring functions, for the log-
likelihood logP (D | G), the corresponding component from
the BDeu score is used, and the parameter representing the
equivalent sample size is set to 1. For the prior distribution
over structures P (G), the uniform prior is used. Finally,
as the search procedure, we use the same hill-climbing
search as [2] introduced in Section 2, starting from an empty
network.

The number of opinions is controlled by a parameter
ν ∈ [0, 1]. If there are N pairs of variables and R experts, the
total number of opinions provided by all experts is equal
to round(ν × R ×N), where the function round(x) outputs
the closest integer to x. In our experiments, the value of the
parameter ν is selected from {0.3, 0.4, 0.5, 0.6}.

For the training dataset D, two different sizes are con-
sidered: 1000 and 5000. To reduce the effect of randomness
in the reported results, we repeat each experiment 10 times
and report the average results over these iterations. In other
words, for each Bayesian network, we generate 10 different
datasets with 1000 samples and 10 different datasets with
5000 samples; and for each triple {Bayesian network, pop-
ulation, ν}, we simulate 10 different opinion sets. Then, in
each experiment, we use one dataset and one opinion set to
learn the Bayesian network structure.

6.1.2 Results and Discussion
Tables 5 to 8 show the obtained structural Hamming dis-
tances for the Asia, Insurance, Alarm, and Hailfinder net-
works, respectively. Each table includes three subtables, one
for each population. In each row, the best obtained results
are indicated by boldface values.

According to these tables, we observe that:
• The results obtained for the Expert scenario show that

using only the experts’ opinions gives rise to very low-
accurate networks, especially for large networks and
weak populations. The main reason is that, in our experi-
ments in accordance with the real world, the experts are
not forced to present their opinions regarding all parts
of the network, and we do not have enough information
to accurately decide about the parts of the network that
the majority of the experts are silent about.

• For the weak populations, the second worst results (after
the Expert scenario) are related to the PE scenario. The
reason is that when there are considerable errors in
the provided experts’ opinions, the raw usage of these
opinions (as in the PE scenario) reduces the accuracy of
the learned network.

• The third worst results for the weak populations are
related to the EM-based score. It is obvious that for the
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scores which try to explicitly use the estimated experts’
accuracies, if the estimation process is not successful,
it is not so useful to use the experts’ knowledge based
on the explicit-accuracy-based score. This is the case for
the EM-based scenario for the weak populations. In fact,
it is well known that the EM algorithm depends on the
starting point and may converge to a local optimum. On
the other hand, for the weak populations, the starting
points are really questionable (which is why we call
them weak). Therefore, the EM-based method fails to
obtain robust results for the weak populations.

• In the majority of cases for the mediocre and good
populations, the EM-based method obtains either the
best or the second best results. This is because, in
these situations, the EM algorithm starts with good
enough starting points. The conclusion is that, when
we are faced with accurate enough experts’ opinions,
the EM-based method obtains reasonable results. It may
be asked, what if we do not know anything about the
accuracy level of the opinions at hand? The EM-based
method may get stuck in a local optimum far from
true experts’ accuracies. This was the main stimulus for
proposing an alternative approach, the marginalization-
based scoring function, in Section 5. It is clear from the
tables that the marginalization-based score obtains more
robust results.

• In the majority of cases for the weak populations, the
marginalization-based score yields better results than the
other scores. On the other hand, in situations where
the marginalization-based score is not the winner, it ob-
tains acceptable results compared to the best achieved
results. Therefore, if we have no idea about the ac-
curacy levels of our experts, it is better to use the
marginalization-based score.

• In the majority of cases for the mediocre and good pop-
ulations, the results obtained by the EM-based score
are superior to those obtained by the Mean score. This
shows that if we can successfully estimate the experts’
accuracies, using these estimated values for different
experts is better than considering a constant accuracy
level for all experts.

• One may think that with larger training datasets (e.g.,
|D| = 5000 in comparison with |D| = 1000), the
structural Hamming distances will become smaller.
However, this is not always the case. It can be explained
by noting that learning Bayesian networks aims at two
goals: (1) to obtain the structure of the domain, and (2)
to obtain the probability distribution underlying the do-
main. These two goals are sometimes in conflict: adding
an extra edge to a Bayesian network may increase the
structural Hamming distance, yet resulting in a more
accurate probability distribution. This is sometimes the
case with larger datasets, where complex networks with
more wrong connections are preferred over the true net-
work, yielding a more accurate probability distribution.
There is some literature that supports this claim [16],
[39]. In these situations, the experts’ opinions can be
really useful to obtain more accurate structures of the
domain, such as for the Hailfinder network in the
Table 8.

TABLE 5
The Obtained Structural Hamming Distances for the Asia

Network

(a) Weak population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 7.2 13.6 12.0 6.8 12.7 6.7 7.0 14.4 12.3 6.2 13.5 6.5
0.4 7.2 11.2 11.0 6.0 8.7 5.7 7.0 12.3 12.1 5.9 9.0 5.3
0.5 7.2 11.1 9.4 5.0 9.2 3.8 7.0 12.2 10.2 5.2 10.3 4.1
0.6 7.2 12.0 8.8 4.3 7.3 3.9 7.0 13.7 10.0 4.4 8.4 4.5

Avg 7.2 12.0 10.3 5.5 9.5 5.0 7.0 13.2 11.2 5.4 10.3 5.1

5000

0.3 9.3 13.6 10.5 6.9 10.3 7.4 9.5 14.4 10.9 7.0 11.0 7.7
0.4 9.3 11.2 9.2 5.4 7.6 4.9 9.5 12.3 9.9 4.6 7.6 4.5
0.5 9.3 11.1 9.3 5.2 9.2 3.8 9.5 12.2 10.2 5.1 9.9 3.9
0.6 9.3 12.0 8.8 4.5 7.1 4.1 9.5 13.7 10.0 4.1 7.6 3.4

Avg 9.3 12.0 9.5 5.5 8.5 5.1 9.5 13.2 10.3 5.2 9.0 4.9

(b) Mediocre population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 7.2 8.6 4.7 3.9 5.0 2.8 7.0 9.9 5.3 3.8 5.0 2.6
0.4 7.2 7.6 5.2 5.1 5.5 4.3 7.0 8.6 5.6 4.7 5.5 4.4
0.5 7.2 5.1 3.0 2.8 3.3 1.7 7.0 6.4 2.9 2.1 3.2 1.1
0.6 7.2 4.4 2.7 2.1 2.8 1.3 7.0 5.8 3.7 1.9 3.1 1.2

Avg 7.2 6.4 3.9 3.5 4.2 2.5 7.0 7.7 4.4 3.1 4.2 2.3

5000

0.3 9.3 8.6 4.6 3.4 5.1 2.6 9.5 9.9 4.7 2.8 4.8 2.0
0.4 9.3 7.6 5.4 4.7 4.4 4.7 9.5 8.6 5.6 4.0 4.3 4.2
0.5 9.3 5.1 2.9 2.5 3.6 1.8 9.5 6.4 2.6 2.7 3.6 1.9
0.6 9.3 4.4 2.7 3.1 2.2 2.1 9.5 5.8 3.1 2.6 2.3 2.0

Avg 9.3 6.4 3.9 3.4 3.8 2.8 9.5 7.7 4.0 3.0 3.8 2.5

(c) Good population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 7.2 5.7 4.2 4.4 3.9 3.2 7.0 7.6 4.9 4.3 4.4 2.6
0.4 7.2 4.6 2.0 3.3 2.6 2.0 7.0 5.4 2.3 3.1 2.7 1.8
0.5 7.2 3.7 1.2 2.2 0.9 1.1 7.0 5.1 1.4 2.2 1.2 1.1
0.6 7.2 2.4 1.1 0.9 0.9 0.9 7.0 4.0 1.1 0.4 0.7 0.7

Avg 7.2 4.1 2.1 2.7 2.1 1.8 7.0 5.5 2.4 2.5 2.3 1.6

5000

0.3 9.3 5.7 3.9 3.9 4.2 3.5 9.5 7.6 4.1 3.5 4.4 2.8
0.4 9.3 4.6 2.8 4.1 2.2 2.7 9.5 5.4 3.0 3.6 2.0 2.3
0.5 9.3 3.7 1.4 1.2 0.8 0.3 9.5 5.1 1.3 0.7 1.1 0.1
0.6 9.3 2.4 1.1 1.2 1.1 0.9 9.5 4.0 0.7 0.6 1.0 0.5

Avg 9.3 4.1 2.3 2.6 2.1 1.9 9.5 5.5 2.3 2.1 2.1 1.4

TABLE 6
The Obtained Structural Hamming Distances for the

Insurance Network

(a) Weak population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 29.2 126.9 53.9 29.6 36.9 28.0 36.6 132.0 61.6 36.8 43.1 36.0
0.4 29.2 107.0 49.9 28.0 29.1 23.3 36.6 114.5 58.1 36.1 34.7 28.9
0.5 29.2 108.2 49.5 31.1 28.6 29.0 36.6 115.0 56.6 39.4 36.6 34.7
0.6 29.2 104.0 50.3 30.0 30.6 25.7 36.6 110.2 57.2 36.6 39.1 34.8

Avg 29.2 111.5 50.9 29.7 31.3 26.5 36.6 117.9 58.4 37.2 38.4 33.6

5000

0.3 24.8 126.9 41.8 27.4 33.9 28.6 22.8 132.0 51.7 30.2 41.6 30.4
0.4 24.8 107.0 37.7 26.0 27.1 27.3 22.8 114.5 47.0 29.9 34.2 31.2
0.5 24.8 108.2 39.8 28.7 27.6 30.0 22.8 115.0 46.7 34.5 32.7 35.3
0.6 24.8 104.0 39.9 28.0 27.1 26.5 22.8 110.2 48.2 29.4 31.5 31.9

Avg 24.8 111.5 39.8 27.5 28.9 28.1 22.8 117.9 48.4 31.0 35.0 32.2

(b) Mediocre population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 29.2 74.0 27.2 21.0 21.5 22.8 36.6 82.8 36.1 26.1 28.1 32.0
0.4 29.2 63.3 23.6 21.9 20.6 18.8 36.6 72.2 31.5 32.1 28.4 26.5
0.5 29.2 56.0 20.9 24.6 22.8 22.7 36.6 65.1 24.8 31.5 31.3 28.7
0.6 29.2 49.5 21.8 26.2 16.7 23.2 36.6 58.4 30.3 32.7 24.5 30.0

Avg 29.2 60.7 23.4 23.4 20.4 21.9 36.6 69.6 30.7 30.6 28.1 29.3

5000

0.3 24.8 74.0 21.0 19.1 21.5 19.6 22.8 82.8 28.5 21.1 25.0 22.4
0.4 24.8 63.3 22.3 24.1 24.5 20.9 22.8 72.2 29.2 28.7 26.4 24.9
0.5 24.8 56.0 20.6 26.7 21.6 20.7 22.8 65.1 26.2 30.2 26.1 24.6
0.6 24.8 49.5 21.0 23.7 16.1 19.7 22.8 58.4 27.7 27.0 19.2 24.8

Avg 24.8 60.7 21.2 23.4 20.9 20.2 22.8 69.6 27.9 26.8 24.2 24.2

(c) Good population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 29.2 57.7 18.3 21.9 18.7 19.4 36.6 67.9 25.6 30.7 24.5 26.1
0.4 29.2 43.5 13.6 19.2 14.9 17.3 36.6 54.3 21.2 27.3 21.9 26.3
0.5 29.2 28.7 7.9 21.1 14.3 19.0 36.6 41.1 11.9 27.7 21.3 25.4
0.6 29.2 20.4 5.5 16.2 12.6 13.9 36.6 29.9 7.9 23.8 19.0 19.6

Avg 29.2 37.6 11.3 19.6 15.1 17.4 36.6 48.3 16.6 27.4 21.7 24.4

5000

0.3 24.8 57.7 19.7 22.4 16.9 19.4 22.8 67.9 27.1 27.0 20.9 22.3
0.4 24.8 43.5 14.0 18.5 12.8 18.6 22.8 54.3 18.8 18.8 14.9 20.2
0.5 24.8 28.7 12.7 19.1 9.7 17.4 22.8 41.1 18.0 24.4 12.9 21.5
0.6 24.8 20.4 8.2 16.3 9.4 13.8 22.8 29.9 11.5 21.3 10.0 15.6

Avg 24.8 37.6 13.7 19.1 12.2 17.3 22.8 48.3 18.9 22.9 14.7 19.9

As our final simulation experiment, we investigate the
impact of coefficient c in equation (18) on the accuracy
of the marginalization-based score. We report the obtained
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TABLE 7
The Obtained Structural Hamming Distances for the Alarm

Network

(a) Weak population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 30.2 212.7 108.6 31.2 44.7 28.9 31.9 213.7 110.5 34.8 47.5 31.3
0.4 30.2 186.6 98.7 34.3 34.0 28.2 31.9 188.2 100.3 37.5 38.9 32.1
0.5 30.2 173.2 93.1 31.2 33.0 28.1 31.9 174.3 95.1 32.2 36.2 31.1
0.6 30.2 166.5 94.0 29.4 28.9 26.0 31.9 167.8 96.0 31.1 33.5 31.2

Avg 30.2 184.8 98.6 31.5 35.1 27.8 31.9 186.0 100.5 33.9 39.0 31.4

5000

0.3 29.5 212.7 83.8 29.9 38.4 28.4 30.5 213.7 87.0 33.2 41.3 30.5
0.4 29.5 186.6 79.9 31.1 31.5 27.8 30.5 188.2 83.0 34.0 34.9 30.5
0.5 29.5 173.2 77.0 30.2 32.6 24.8 30.5 174.3 78.9 30.9 35.0 28.3
0.6 29.5 166.5 76.8 27.0 26.4 24.8 30.5 167.8 78.8 29.6 29.0 28.0

Avg 29.5 184.8 79.4 29.6 32.2 26.5 30.5 186.0 81.9 31.9 35.0 29.3

(b) Mediocre population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 30.2 123.0 61.8 29.1 30.5 25.3 31.9 125.5 65.7 32.7 34.8 29.4
0.4 30.2 95.9 48.6 28.0 21.7 23.4 31.9 98.7 51.8 30.6 25.3 26.0
0.5 30.2 87.0 43.7 29.9 21.9 28.1 31.9 89.3 47.0 33.0 24.3 32.2
0.6 30.2 78.5 38.1 22.5 15.6 17.6 31.9 81.1 40.1 26.8 17.8 20.3

Avg 30.2 96.1 48.1 27.4 22.4 23.6 31.9 98.7 51.1 30.8 25.5 27.0

5000

0.3 29.5 123.0 52.5 27.7 26.9 26.2 30.5 125.5 56.8 30.5 30.5 31.0
0.4 29.5 95.9 42.1 28.5 20.5 22.0 30.5 98.7 46.5 31.6 23.1 24.5
0.5 29.5 87.0 41.9 28.8 24.2 29.8 30.5 89.3 45.6 31.5 26.8 33.1
0.6 29.5 78.5 36.9 22.3 17.2 19.5 30.5 81.1 40.3 25.2 19.1 22.0

Avg 29.5 96.1 43.4 26.8 22.2 24.4 30.5 98.7 47.3 29.7 24.9 27.7

(c) Good population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 30.2 87.9 38.3 21.7 17.6 17.6 31.9 90.6 42.4 25.8 21.3 21.5
0.4 30.2 62.4 26.5 20.8 16.1 18.0 31.9 65.4 28.7 25.1 19.6 21.1
0.5 30.2 37.7 13.3 16.3 8.2 10.6 31.9 40.8 15.0 19.6 10.0 12.1
0.6 30.2 36.1 15.1 15.7 8.8 9.0 31.9 39.8 17.3 18.8 9.6 11.2

Avg 30.2 56.0 23.3 18.6 12.7 13.8 31.9 59.2 25.8 22.3 15.1 16.5

5000

0.3 29.5 87.9 33.4 20.2 15.5 14.6 30.5 90.6 37.5 24.0 18.3 18.3
0.4 29.5 62.4 26.2 19.8 16.8 17.2 30.5 65.4 29.2 23.3 20.7 21.1
0.5 29.5 37.7 13.3 11.5 8.1 9.1 30.5 40.8 16.6 14.2 9.7 10.8
0.6 29.5 36.1 15.6 15.5 7.4 10.4 30.5 39.8 18.6 18.4 8.9 12.7

Avg 29.5 56.0 22.1 16.8 11.9 12.8 30.5 59.2 25.5 20.0 14.4 15.7

TABLE 8
The Obtained Structural Hamming Distances for the

Hailfinder Network

(a) Weak population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 67.0 409.5 79.1 40.6 48.0 35.0 70.1 415.9 84.4 45.5 52.5 40.5
0.4 67.0 399.9 86.4 44.2 45.1 36.3 70.1 405.5 92.3 48.9 49.7 41.5
0.5 67.0 375.3 85.5 45.0 45.0 44.3 70.1 380.9 92.2 48.9 49.2 48.7
0.6 67.0 367.6 90.3 44.2 46.1 36.1 70.1 374.1 96.7 49.4 51.3 41.5

Avg 67.0 388.1 85.3 43.5 46.0 37.9 70.1 394.1 91.4 48.2 50.7 43.1

5000

0.3 69.4 409.5 65.2 36.3 45.6 28.9 71.2 415.9 70.5 37.9 48.5 30.3
0.4 69.4 399.9 71.1 40.4 42.8 30.4 71.2 405.5 74.8 42.3 44.2 31.5
0.5 69.4 375.3 72.9 42.5 40.9 39.3 71.2 380.9 76.1 44.3 41.8 41.5
0.6 69.4 367.6 71.5 41.2 38.7 30.9 71.2 374.1 77.6 44.8 40.0 32.8

Avg 69.4 388.1 70.2 40.1 42.0 32.4 71.2 394.1 74.8 42.3 43.6 34.0

(b) Mediocre population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 67.0 282.6 57.4 37.2 34.3 30.0 70.1 291.3 62.1 41.5 38.7 35.6
0.4 67.0 196.6 43.0 33.4 31.3 27.5 70.1 206.3 47.4 39.5 37.6 33.1
0.5 67.0 191.2 45.3 31.4 27.7 26.9 70.1 200.0 48.5 36.1 33.2 32.8
0.6 67.0 158.1 39.0 32.2 29.5 30.5 70.1 168.3 46.2 38.6 36.1 36.7

Avg 67.0 207.1 46.2 33.6 30.7 28.7 70.1 216.5 51.1 38.9 36.4 34.6

5000

0.3 69.4 282.6 50.8 31.6 27.4 22.1 71.2 291.3 55.4 34.8 28.6 23.2
0.4 69.4 196.6 36.0 26.4 23.1 16.2 71.2 206.3 39.4 28.6 24.8 17.7
0.5 69.4 191.2 37.0 24.0 16.3 16.2 71.2 200.0 43.1 25.9 17.2 18.3
0.6 69.4 158.1 33.7 24.5 22.7 21.3 71.2 168.3 35.6 26.5 24.9 23.3

Avg 69.4 207.1 39.4 26.6 22.4 19.0 71.2 216.5 43.4 29.0 23.9 20.6

(c) Good population
DAG CPDAG

|D| ν Data Expert PE Mean EM Marg Data Expert PE Mean EM Marg

1000

0.3 67.0 169.7 34.7 30.2 26.9 27.7 70.1 180.0 38.8 36.0 32.8 33.6
0.4 67.0 150.3 32.7 29.3 25.6 27.4 70.1 161.2 38.0 34.3 31.1 32.9
0.5 67.0 95.2 22.7 27.5 23.4 24.2 70.1 108.4 27.3 33.7 29.5 30.3
0.6 67.0 63.2 17.1 24.4 21.7 22.5 70.1 75.9 21.5 30.6 27.8 28.6

Avg 67.0 119.6 26.8 27.9 24.4 25.5 70.1 131.4 31.4 33.7 30.3 31.4

5000

0.3 69.4 169.7 30.7 22.1 19.2 18.3 71.2 180.0 32.7 24.5 20.7 20.5
0.4 69.4 150.3 26.7 20.8 16.1 18.8 71.2 161.2 29.7 22.6 17.1 20.6
0.5 69.4 95.2 19.2 17.5 13.5 13.1 71.2 108.4 21.4 19.6 15.6 15.4
0.6 69.4 63.2 11.7 13.5 11.5 11.9 71.2 75.9 12.3 16.0 13.6 14.0

Avg 69.4 119.6 22.1 18.5 15.1 15.5 71.2 131.4 24.0 20.7 16.8 17.6

results for Asia and Alarm networks as two representative
examples. In Tables 5 and 7, the value of the coefficient c
for the marginalization-based score is set to 10. Here, we
repeat the same experiment for three completely different

TABLE 9
The Obtained Structural Hamming Distances Using the

Marginalization-Based Score with Different Values of
Coefficient c for Asia and Alarm Bayesian Networks

(a) Weak population

Asia BN Alarm BN
ν/c 0.1 1 10 100 0.1 1 10 100
0.3 7.7 7.5 6.7 6.5 29.4 29.4 28.9 29.0
0.4 5.5 5.3 5.7 6.0 28.7 29.3 28.2 32.4
0.5 4.2 4.0 3.8 5.0 29.5 29.3 28.1 29.3
0.6 4.6 4.3 3.9 4.4 28.9 26.8 26.0 25.8

Avg 5.5 5.3 5.0 5.5 29.1 28.7 27.8 29.1

(b) Mediocre population

Asia BN Alarm BN
ν/c 0.1 1 10 100 0.1 1 10 100
0.3 3.7 3.1 2.8 3.5 24.3 24.9 25.3 27.3
0.4 4.1 4.3 4.3 4.9 22.2 21.3 23.4 24.4
0.5 1.8 1.4 1.7 2.3 28.6 27.6 28.1 27.9
0.6 3.1 2.5 1.3 1.9 22.0 19.0 17.6 21.0

Avg 3.2 2.8 2.5 3.2 24.3 23.2 23.6 25.2

(c) Good population

Asia BN Alarm BN
ν/c 0.1 1 10 100 0.1 1 10 100
0.3 3.9 3.2 3.2 3.2 20.2 18.4 17.6 18.6
0.4 3.4 2.0 2.0 2.3 15.7 16.7 18.0 17.5
0.5 1.4 0.5 1.1 1.4 10.6 10.6 10.6 12.5
0.6 0.9 1.1 0.9 0.6 12.3 8.1 9.0 12.6

Avg 2.4 1.7 1.8 1.9 14.7 13.5 13.8 15.3

values from the set {0.1, 1, 100}. Table 9 shows the obtained
structural Hamming distances between the learned struc-
tures using the marginalization-based score and the original
DAGs. Clearly, the accuracy of the marginalization-based
score does not vary substantially when changing the value
of c.

6.2 Real World Experiments

To assess whether our methods of expert-opinion-guided
structure learning actually work in practice, we have carried
out an experiment with real experts. This experiment grew
out of our work in computer-aided diagnosis of breast
cancer using Bayesian networks [40], [41]. The field of
concern was the interpretation of X-ray images by clinical
radiologists, in particular X-ray images of breasts, referred
to as mammograms. Our previous research has shown that
this task can be done by means of a Bayesian network. We
expected that the radiologists would be able to draft the
structure of a Bayesian network, reflecting their knowledge
of mammogram interpretation, depending on their experi-
ence with the task. The radiologists had varying amounts
of experience in this task: from more than 20 years of
specialized experience to no specialized experience at all.
Of course, all radiologists have some knowledge of mam-
mogram interpretation.

Eight radiologists were asked to fill in the adjacency ma-
trix shown in Table 10 and seven of them responded to the
request.2 Three of the radiologists were experienced breast

2. The experts’ instruction, including the description of the variables,
is available at http://ceit.aut.ac.ir/∼amirkhani.

http://ceit.aut.ac.ir/~amirkhani
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TABLE 10
Table that the Radiologists had to Fill in as Part of the

Experiment. Entries in the Upper Triangular Part of the
Table had to be Filled in by→,←, =, or Remain Empty if

the Radiologists had no Idea what to Fill in
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Microcalcifications
Spiculation
Location
Age
Lymph Nodes
Skin Retraction
Shape
Size
Breast cancer
Fibrous Tissue Develop
Breast Density
Margin
Nipple Discharge
Architectural Distort
Metastasis
Mass

TABLE 11
The Accuracy Parameters and the Volume of Opinions

Provided by Different Experts in the Breast Cancer
Experiment

Accuracy Parameters Volume of Opinions
γ1 γ2 γ3 number ratio

1 0.17 0.06 0.93 120 1
2 0.44 0.11 0.72 120 1
3 0.50 0.08 0.50 34 0.28
4 0.50 0.17 0.73 120 1
5 0.59 0.24 0.61 104 0.87
6 0.75 0.17 0.63 60 0.5
7 0.91 0.09 0.56 43 0.36

Avg 0.55 0.13 0.67 85.86 0.72

radiologists and also had ample experience as screening
radiologists; two were starting breast and screening radi-
ologists, and two were screening radiologists but no breast
radiologists. The accuracy parameters and the number and
ratio of provided opinions by these experts are presented in
Table 11.

In our previous research, we have designed several
Bayesian network structures in collaboration with experi-
enced radiologists. These radiologists were different from
the radiologists we asked for our current experiment. None
of the radiologists had ever seen one of the Bayesian net-
works we had designed previously. One of those networks
is shown in Fig. 6. The Bayesian network model combines
clinical features with radiological examination by X-rays.
In addition, the Bayesian network integrates the results
of microcalcification analysis, which is a separate image
analysis procedure.

Training data was generated from the Bayesian network
shown in Fig. 6, which is considered as the gold-standard
structure.3 Table 12 shows the obtained structural Hamming
distances between the gold-standard structure and the struc-
tures learned using the scoring functions mentioned in sub-
section 6.1.1. In this table, |D|means the number of training
data which is selected from the set {100, 400, 700, 1000}. In
order to reduce the effect of randomness in the reported

3. This Bayesian network is available at http://www.cs.ru.nl/
∼peterl/teaching/CI/networks/bc.net.

TABLE 12
The Obtained Structural Hamming Distances for the Breast

Cancer Network with Real Experts

|D| Data Expert PE Mean EM Marg
100 13.2 32.0 26.4 9.7 25.3 10.2
400 8.5 32.0 23.4 7.2 19.6 7.2
700 6.8 32.0 22.0 5.8 18.2 5.8
1000 6.8 32.0 21.0 5.8 17.9 5.8
Avg 8.8 32.0 23.2 7.1 20.3 7.3

results, each experiment is repeated 10 times (for 10 different
training datasets) and the average results over these repeti-
tions are reported. Finally, the coefficient c in equation (18)
for the marginalization-based score is set to 100.

As it is clear from Table 12, the Mean and Marg scoring
functions obtained the best results. The success of Mean
scoring function is due to the low variance in the experts’
accuracies. More precisely, according to Table 11, the accu-
racies of different experts are not so far from the average
values and therefore, using these average values instead of
individual accuracies yielded good results.

Although Mean and Marg scores obtained similar results
in Table 12, we now show that our marginalization-based
scoring function is more reliable. Note that both functions
need an estimation of the average experts’ accuracies as in-
put. These average values are used as the individual experts’
accuracies in the Mean function, and for calculating the
parameters βi1, βi2, αi1, αi2, αi3 using equation (18) in the
Marg function. Obviously, in real world applications, there
might be some errors in the estimated average accuracies. To
compare Mean and Marg scoring functions, we studied the
behaviors for different levels of errors in this input vector.

Fig. 7 shows the mean and one standard deviation error
bars for the structural Hamming distances obtained from
Mean and Marg scores. The horizontal axis is the available
error in the input average accuracy vector, which is equal to
the sum of the absolute errors in the input vector related to
the true vector ([0.55, 0.13, 0.67]). According to this figure,
in general, the marginalization-based score obtains lower
structural Hamming distances with lower standard devia-
tions, which shows the robustness of this function compared
to the Mean scoring function.

7 CONCLUSION

This paper focused on exploiting the opinions of multiple
domain experts regarding the cause-effect relationships be-
tween random variables for structure learning of Bayesian
networks. The proposed approach enables structure learn-
ing to exploit experts’ opinions to learn more accurate
network structures than from data alone. Well-known lim-
itations of structure learning algorithms, such as the huge,
super-exponential size of the search space and the impossi-
bility to distinguish between Markov-equivalent structures
using data alone, motivated this research.

The proposed approach only takes into account realistic
assumptions of experts’ opinions. For example, experts’
opinions need not be error free, and neither have each expert
to give a complete judgment of the presence or absence of
edges, nor is it necessary that the opinions are conflict free.

http://www.cs.ru.nl/~peterl/teaching/CI/networks/bc.net
http://www.cs.ru.nl/~peterl/teaching/CI/networks/bc.net
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Fig. 6. The structure of the Bayesian network for breast cancer diagnosis.
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Fig. 7. The mean and one standard deviation error bars for
the structural Hamming distances obtained from Mean and
Marg scores as functions of the available error in the input
average accuracy vector for the breast cancer network with
real experts.

To exploit the provided opinions, we introduced two
new scoring functions to be used in the score-based
Bayesian network structure learning. The main novelty
of the proposed scores is that we take into account the
natural point of view that different experts have different
individual probabilities of correctly labeling the inclusion
or exclusion of edges in the structure. The accuracy of each
expert was modeled by three parameters. In the first scoring
function, the experts’ accuracies are first estimated using
an expectation-maximization-based algorithm. Then, the es-
timated values are explicitly used in the scoring process.
When we are confident about the estimated accuracies, this
scoring function results in robust decisions. On the other
hand, when it is not possible to find a confident estimate of
experts’ accuracies, our second score, the marginalization-
based score, which marginalizes out the accuracy parame-
ters results in more robust scores.

Some of the future research directions are (i) to work
on relaxing the assumptions made in the development
of the EM-based accuracy estimation algorithm described
in Section 4.2, (ii) to develop algorithms that use data

along with experts’ opinions to obtain improved estimates
of experts’ accuracies, (iii) to use the recently published
agreement/disagreement algorithm [42] for estimating the
experts’ accuracies in the structure learning problem, and
(iv) to exploit the experts’ opinions for constraint-based
structure learning. For example, the provided opinions can
help to obtain more accurate conditional independencies.
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