'Q-wires': Synthesis, electrochemical properties and their application in electro-enzymology
Rossius, S.G.H.

Citation

Version: Not Applicable (or Unknown)
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/57991

Note: To cite this publication please use the final published version (if applicable).
The handle http://hdl.handle.net/1887/57991 holds various files of this Leiden University dissertation.

Author: Rossius, S.G.H.
Title: Q-wires': Synthesis, electrochemical properties and their application in electro-enzymology
Issue Date: 2017-09-26
Appendix 1 (A) Cyclic voltammograms of a heptanethiol-modified electrode at different potential ranges in 50 mM MOPS pH 7.2, 5 mM EDTA, 50 mM succinate, 20°C; scan rate: 10 mV/s (B) Voltammograms after addition of *E. coli* succinate dehydrogenase (black solid line; before addition: gray line); inhibited signal after addition of oxaloacetic acid (40 mM; black dashed line) (C) ‘Catalytic’ current (solid minus dashed black line in B)
Appendix 2 (A) Cyclic voltammograms of a U_{0^-}- and heptanethiol-modified electrode at different potential ranges in 50 mM MOPS pH 7.2, 5 mM EDTA, 50 mM succinate, 20°C; scan rate: 10 mV/s (B) Catalytic voltammogram after addition of *E. coli* succinate dehydrogenase (black solid line; before addition: gray line); inhibited signal after addition of oxaloacetic acid (40 mM; black dashed line) (C) Catalytic current (solid minus dashed black line in B) and its derivative (gray line)
Appendix 3 (A) Cyclic voltammograms of a U_{1-} and heptanethiol-modified electrode at different potential ranges in 50 mM MOPS pH 7.2, 5 mM EDTA, 50 mM succinate, 20°C; scan rate: 10 mV/s (B) Catalytic voltammogram after addition of *E. coli* succinate dehydrogenase (black solid line; before addition: gray line); inhibited signal after addition of oxaloacetic acid (40 mM; black dashed line) (C) Catalytic current (solid minus dashed black line in B) and its derivative (gray line)
Appendix 4 (A) Cyclic voltammograms of a U₃⁻ and heptanethiol-modified electrode at different potential ranges in 50 mM MOPS pH 7.2, 5 mM EDTA, 50 mM succinate, 20°C; scan rate: 10 mV/s (B) Catalytic voltammogram after addition of *E. coli* succinate dehydrogenase (black solid line; before addition: gray line); inhibited signal after addition of oxaloacetic acid (40 mM; black dashed line) (C) Catalytic current (solid minus dashed black line in B) and its derivative (gray line)
Appendix 5 (A) Cyclic voltammograms of a U_{SAT}^- and heptanethiol-modified electrode at different potential ranges in 50 mM MOPS pH 7.2, 5 mM EDTA, 50 mM succinate, 20°C; scan rate: 10 mV/s (B) Catalytic voltammogram after addition of *E. coli* succinate dehydrogenase (black solid line; before addition: gray line); inhibited signal after addition of oxaloacetic acid (40 mM; black dashed line) (C) Catalytic current (solid minus dashed black line in B) and its derivative (gray line)
Appendix 6 (A) Catalytic voltammograms of *E. coli* fumarate reductase (enriched membrane suspension) before (solid line) and after inhibition with ZnSO$_4$ (16 mM; dashed line); buffer: 50 mM MOPS pH 7.2, 5 mM EDTA, 100 mM fumarate, 20°C; scan rate: 2 mV/s; electrode modifications: M_3 and mercaptohexanol (B) Catalytic current (solid minus dashed line in A) and its derivative (gray line)
Appendix 7 (A) Catalytic voltammograms of *E. coli* cytochrome *b*$_{o3}$ (purified) before (solid black line) and after inhibition with KCN (100 µM; dashed line); gray line: before addition of enzyme; buffer: 50 mM MOPS pH 7.2, 5 mM EDTA, lauryl maltoside, 20°C; scan rate: 5 mV/s; electrode modifications: U$_{SAT}$ and heptanethiol (B) Catalytic current (solid black line minus dashed line in A) and its derivative (gray line)