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We discuss the cosmological implications of nonlocal modifications of general relativity containing
tensorial structures. Assuming the presence of standard radiation- and matter-dominated eras, we show that,
except in very particular cases, the nonlocal terms contribute a rapidly growing energy density. These
models therefore generically do not have a stable cosmological evolution.

DOI: 10.1103/PhysRevD.95.043539

I. INTRODUCTION

Most extensions of general relativity are manifestly local.
A priori, however, we need not impose this restriction. Like
general relativity itself, most proposed theories of modified
gravity are nonrenormalizable, which is often a sign of new
physics at high energies. From a local high-energy theory,
nonlocalities often appear in the effective theory describing
low-energy physics. For example, nonlocalities appear
generically when massless or light degrees of freedom are
integrated out of a local fundamental theory [1–4].
Nonlocal modifications of general relativity constructed

out of inverse differential operators give rise to infrared
effects that become relevant at large temporal and spatial
scales. The consequences of these nonlocalities are far-
reaching and could provide a dynamical explanation for
dark energy. Numerous examples of this line of thinking can
be found in the literature [5–11]. Most of the existing
nonlocal gravity models are purely phenomenological and
are constructed out of nonlocal operators involving the Ricci
scalar only for reasons of simplicity [12–15]. It is still an open
question whether we should expect these particular nonlocal
structures, as opposed to something more complicated,
to arise in the low-energy limit of fundamental theories.
Tensorial extensions involving elements such as the Ricci or
the Riemann tensors should not be a priori excluded.
Adding nonlocal interactions can also improve some of

general relativity’s more undesirable properties, and these
seem to specifically require tensorial nonlocalities. For
example, in order to alleviate the ultraviolet divergences of

general relativity, one has to modify the graviton propa-
gator, which requires a tensorial term in the action [16].
Considerable recent progress has been made in ghost-free
ultraviolet nonlocal gravity [17,18]. Furthermore, nonlocal
modifications of general relativity could degravitate a
large cosmological constant, providing an appealing
solution to the problem of why a large vacuum energy
does not gravitate [8]. For the purposes of degravitation, it
is likely insufficient to rely on scalar degrees of freedom
introduced via nonlocal scalar curvature terms. Tensorial
nonlocalities, by contrast, could help implement a consis-
tent degravitation mechanism, as is the case in the frame-
work of massive gravity where nonlocalities modify the
tensor propagator [10,19].
The cosmological consequences of tensorial nonlocal-

ities involving inverse powers of the d’Alembertian
operator were considered in Refs. [20–22]. Tensor non-
localities in these models were shown to contain rapidly
growing modes, leading to instabilities in the background
expansion.1 Note, however, that the inverse d’Alembertian
operators considered in these references are certainly not
the most general possibility that can be implemented at
each order in curvature. It is possible that other well-
motivated differential operators might lead to a somewhat
different evolution that is consistent with observations.
In this work we extend the analysis of Refs. [20,21] to

general nonlocal tensorial actions at quadratic order in the
curvature invariants and investigate whether these
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1Note that these instabilities are not directly related to unitarity
violation. This can be seen by considering a nonlocal term of
the form Gαβðm2=□2ÞRαβ, which results in a massive graviton
propagator of a unitary form (cf. Ref. [9], where this model
corresponds to α ¼ 0 and is shown to be unitary.). However, as
the action contains, in addition to scalar terms, the tensorial term
Rαβðm2=□2ÞRαβ, it will be cosmologically unstable, as can be
seen from Ref. [20] and from the following.
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modifications are phenomenologically viable. This paper is
organized as follows. In Sec. II, we introduce our tensorial
nonlocal model. The cosmological consequences of this
model during radiation (RD) and matter domination (MD)
are discussed in Sec. III. Finally, the conclusions are
presented in Sec. IV.

II. THE Rαβ△
−1Rαβ MODEL

Consider the most general action quadratic in the
curvature invariants [16] for some differential operator △,

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð−Rþ Rfð△ÞRþ Rαβgð△ÞRαβ

þ Rμναβhð△ÞRμναβÞ þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð1Þ

whereMPl ≡ ð8πGÞ−1=2 is the reduced Planck mass andLm
is the matter Lagrangian minimally coupled to gravity.
Different nonlocal theories are characterized by different
choices of the operator △ and of the functions f, g and h.
In the case △ ¼ □, the above action is the most general
parity-invariant quadratic curvature action; see Ref. [23]
for derivation of the field equations. We generalize this by
allowing for more general differential operators, in par-
ticular, those with curvature dependence. Note that we
would recover the results of Refs. [16,23] for the quadratic
truncation of the theory.
It is well motivated to consider more general forms for

the operator △; in fact the main rationale for the usual
choice △ ¼ □ is just simplicity. For the nonlocally
modified theory to be consistent on suitable backgrounds,
one may need to implement a regularization [24,25]. For
example, Ref. [25] considered a curvature-dependent regu-
larization of the form ð□þ P̂Þ−1 with2

P̂≡ Pαβ
μν ¼ aRðαðμβÞ

νÞ þ bðgαβRμν þ gμνRαβÞ
þ cRðμ

ðαδ
νÞ
βÞ þ dRgαβgμν þ eRδμναβ; ð2Þ

and a, b, c, d, and e arbitrary constants. For example, in the
de Donder gauge the graviton kinetic operator3 would

correspond to a ¼ −2, b ¼ 0, c ¼ 2, d ¼ 1=3, and
e ¼ −4=3.
In the following, we also allow the differential part of the

operator to assume a more generic form, involving combi-
nations of the curvature invariants and covariant derivatives
∇ that arise in explicit loop computations. We consider
simple forms for the functions g and h,

gð△Þ≡ M̄1
2

6△
; hð△Þ≡ M̄2

2

6△
; ð3Þ

with M̄1 and M̄2 mass scales to be determined by
observations. These two properties allow us to simplify
the action (1) for a Friedman-Lemaître-Robertson-Walker
(FLRW) background

ds2 ¼ H−2dN2 − a2dx2; ð4Þ

where N ≡ ln a is the number of e-folds, a is the scale
factor, andH ≡ _a=a stands for the Hubble rate with the dot
denoting derivative with respect to cosmic time. Indeed,
by noticing that for an FLRW metric in four dimensions
the Weyl tensor

Cμναβ ≡ Rμναβ − ðgμ½αRβ�ν − gν½αRβ�μÞ þ
1

3
gμ½αgβ�νR ð5Þ

vanishes, and using the fact that△ is by construction metric
compatible, we can write

Cμναβ△
−1Cμναβ ¼ 0 ⟶

Rμναβ△
−1Rμναβ ¼ −

1

3
R△−1Rþ 2Rαβ△

−1Rαβ: ð6Þ

Substituting this relation into Eq. (1) we obtain the
simplified action

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð−Rþ RFð△ÞRþ Rαβgð△ÞRαβÞ

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð7Þ

where we have defined Fð△Þ≡ fð△Þ − M̄2

18
△−1 with M̄2

being a linear combination of M̄2
1 and M̄2

2. For cosmologi-
cal backgrounds, the Riemann tensor does not explicitly
contribute to the background evolution4; all the dynamical
information can be encoded in nonlocal terms constructed
out of Ricci scalars and Ricci tensors only.
The RFð△ÞR part of Eq. (7) has been extensively studied

the literature for several choices of Fð△Þ and △

[12,15,26–28]. In this work we concentrate on the phe-
nomenological consequences of the tensorial structure
Rαβgð△ÞRαβ. In particular, we consider the action

2Here and in the following, (μν) denotes symmetrization over
the indices and [μν] denotes the antisymmetrization.

3In an isotropic and homogeneous background, the action of
this operator on a tensor reduces to the action of the scalar
operator on each component of the tensor [22], suggesting that
the cosmological tensorial instability might be removed by
dressing the inverse d’Alembertian into its appropriate tensor
representation. Strictly speaking, this would take us beyond the
starting point action (1) [or, otherwise, we would consider the
four indices in the representation of the ð1=ΔÞμναβ implicitly
shuffling those of the Rμν]. Explicit construction of such models
can be considered as a topic of future study; in this article we
focus on the action of a general scalar (derivative) operator 1=Δ
on the (Ricci) tensor Rαβ.

4Note however that it contributes at the level of perturbations.
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S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
−Rþ M̄2

6
Rαβ△

−1Rαβ

�

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð8Þ

with

△≡m4 þ α1□þ α2□
2 þ β1Rαβ∇α∇β þ β2R□

þ γð∇αRαβÞ∇β; ð9Þ

and α1, α2, β1, β2, γ, m constant parameters. Up to the m4

term, the differential operator (9) is the most general fourth-
order operator containing at least one covariant derivative
acting on the function following it. This choice of operator
has a special physical motivation in the celebrated con-
formal anomaly [29,30], in which quantum effects break
the conformal symmetry of massless fields coupled to
gravity. In this case the trace of the energy-momentum
tensor receives a nonvanishing contribution from the
counterterms introduced by renormalization. The form of
this contribution is highly nontrivial and depends on the
particle content. In four dimensions, the effective action
induced by the conformal anomaly is given by [30]

SA ¼ −
1

8

Z
d4x

ffiffiffiffiffiffi
−g

p �
E −

2

3
□R

�
△−1

4

×

�
b0
�
E −

2

3
□R

�
− 2bC2

μναβ

�
; ð10Þ

where E≡ R2
μναβ − 4R2

μν þ R2 is the Gauss-Bonnet term,
C2
μναβ ¼ R2

μναβ − 2R2
μν þ R2=3 is the square of the Weyl

tensor, b and b0 are numbers that depend on the particle
content of the theory, and △4 is defined as

△4 ¼ □2 þ 2Rαβ∇α∇β −
2

3
R□þ 2

3
ð∇αRαβÞ∇β: ð11Þ

This operator is just a particular case of the operator (9)
with m ¼ 0, α1 ¼ 0, α2 ¼ 1, β1 ¼ 2, β2 ¼ −2=3 and
γ ¼ 2=3.5

The equations of motion associated to the nonlocal
action (8) can be obtained by following a standard
procedure for the study of nonlocal theories. We localize
the action by introducing two auxiliary fields Sαβ and Kαβ,
defined as solutions of the differential equations

△Sαβ ¼ Rαβ; □Sαβ ¼ Kαβ: ð12Þ

After variation of our nonlocal action (8) with respect to
the metric gμν and taking into account the identity
δð△−1Þ ¼ −△−1δð△Þ△−1 (see Refs. [25,31] for details)
we get the modified Einstein equations

Rαβ −
1

2
gαβR ¼ 1

M2
Pl

ðTαβ þ TNL
αβ Þ; ð13Þ

where Tαβ is the energy-momentum tensor associated to the
matter LagrangianLm, which is by construction covariantly
conserved,∇αTα

β ¼ 0. The interaction term TNL
αβ arises from

the variation of the nonlocal term Rαβ△
−1Rαβ and can be

naturally split into six pieces,

TNL
αβ ¼TNLð0Þ

αβ þTNLð1Þ
αβ þTNLð2Þ

αβ þTNLð3Þ
αβ þTNLð4Þ

αβ þTNLð5Þ
αβ ;

ð14Þ

where we have defined

1

2M4
TNLð0Þ
αβ ≡ 1

2
RμνSμνgαβ − 2Rμ

αSμβ −□Sαβ − gαβ∇μ∇νSμν þ 2∇μ∇αS
μ
β; ð15Þ

1

2α1M4
TNLð1Þ
αβ ≡ 1

2
gαβ∇σSμν∇σSμν −∇αSμν∇βSμν − 2Sμν∇ν∇αSμβ þ 2Sμα∇ν∇βSνμ ð16Þ

− 2∇μSμν∇αSβν þ 2∇νS
μ
α∇βSνμ þ

1

2
gαβSμν∇σ∇σSμν; ð17Þ

1

2α2M4
TNLð2Þ
αβ ≡ 2Kβν∇μ∇αSμν þ 2∇αSμν∇μKβν − 2∇μSμν∇αKβν − 2Sμν∇μ∇αKβν

− 2Kμν∇μ∇αSβν − 2∇αSβν∇μKμν þ 2∇μSβν∇αKμν þ 2Sβν∇μ∇αKμν

− 2∇αSμν∇βKμν þ gαβ∇σSμν∇σKμν þ
1

2
gαβSμν□Kμν þ

1

2
gαβKμν□Sμν; ð18Þ

5Note that even though the form of the operator (9) is motivated by the form of the conformal anomaly operator △4, the action (1)
considered in this paper is not of the form of the action (10).
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1

2β1M4
TNLð3Þ
αβ ≡ −2Rασ∇μSμν∇σSβν þ 2Rβσ∇μSαν∇σSμν þ 2RβσSαν∇μ∇σSμν þ 2RασSμν∇β∇σSμν

þ 1

2
Rαβ∇σSμν∇σSμν þ

1

2
RαβSμν□Sμν −

1

2
∇σ∇αðSμν∇β∇σSμνÞ − 2RασSμν∇μ∇σSβν

−
1

2
gαβ∇σ∇τðSμν∇σ∇τSμνÞ þ SμαS

μ
βð∇σ∇τRστÞ −

1

2
∇σ∇βðSμν∇α∇σSμνÞ

þ 1

2
□ðSμν∇α∇βSμνÞ − Rασ∇βSμν∇σSμν − 2ð∇μRμσÞðSνα∇σSβνÞ

− 2ð∇μRασÞðSμν∇σSβνÞ þ 2ð∇μRβσÞðSαν∇σSμνÞ þ 2ð∇μRμσÞ∇σðSανSνβÞ

− ð∇σRσαÞðSμν∇βSμνÞ þ
1

2
ð∇σRαβÞðSμν∇σSμνÞ; ð19Þ

1

2β2M4
TNLð4Þ
αβ ≡ Sνα□RSβν − RSνβ□Sαν þ Sβν∇μ∇αRSμν þ∇αRSμν∇μSβν −∇μRSμν∇αSβν

− SμνR∇μ∇αSβν − Sμν∇μ∇αRSβν −∇αRSβν∇μSμν

þ∇μRSβν∇αSμν þ RSβν∇μ∇αSμν −∇βRSμν∇αSμν þ RαβðSμν□SμνÞ

þ 1

2
gαβ∇σRSμν∇σSμν þ

1

2
gαβRSμν□Sμν þ gαβ□ðSμν□SμνÞ −∇α∇βðSμν□SμνÞ; ð20Þ

1

2γM4
TNLð5Þ
αβ ≡ 1

2
gαβ∇τðSμνRτσ∇σSμνÞ −

1

2
∇τðSμνRαβ∇τSμνÞ

þ Sμνð∇τRτα∇βSμνÞ þ Sμνð∇βRατ∇τSμνÞ

þ 1

2
∇σ∇α∇βðSμν∇σSμνÞ −

1

2
gαβ∇σ∇τ∇σðSμν∇τSμνÞ −∇σðSανSνβð∇μRμσÞÞ; ð21Þ

with M4 ≡ 1
12
M̄2M2

Pl.

III. Rαβ△
−1Rαβ COSMOLOGY

Finding exact solutions for the complicated set of equa-
tions derived in the previous section is certainly not an
easy task. Inwhat follows,we adopt the approach ofRef. [20]
and assume that the energy density contributed by nonlocal
effects is subdominant, so that we have the standard
radiation- and matter-dominated eras (TNL

αβ ≪ Tαβ). We
investigate the stability of various regions of parameter
space, defined as the presence or absence of growing modes
in the energydensity contributedby thenonlocal interactions.
We assume α1 ¼ m ¼ 0, which allows us to find certain

analytic solutions. We have carried out a preliminary
numerical study for nonvanishing values of α1 and m
and found that the inclusion of these parameters does not
significantly modify the results presented below. A full
numerical study of the parameter space is beyond the scope
of this work.

A. Radiation-dominated era

During radiation domination, the Ricci scalar is 0 and the
terms proportional to R□ and ð∇σRστÞ∇τ in Eq. (9) vanish
(the latter due to the Bianchi identity). On top of that, the
symmetry of the FLRW metric (4) allows us to reduce

the tensor Sμν in Eq. (12) to a simple diagonal form,
Sνμ ¼ diagðS1;−S2;−S2;−S2Þ, that depends on two (homo-
geneous) scalar functions S1 and S2. Taking into account
these simplifications, the set of equations (12) can be
rewritten as

α2S
ð4Þ
þ − 6α2S

ð3Þ
þ þ 3β1S00þ − 11α2S00þ þ ð60α2 − 9β1ÞS0þ

þ 8ðβ1 − 4α2ÞSþ ¼ 4a4

Ω0
R
; ð22Þ

α2Sð4Þ− − 6α2Sð3Þ− þ ð3β1 þ 5α2ÞS00− þ ð12α2 − 9β1ÞS0− ¼ 0;

ð23Þ
where 0≡ d=dN denotes derivatives with respect to the
number of e-folds N, Ω0

R is the current value of the critical
radiation density, and we have defined two dimensionless
variables

Sþ ≡ ðS1 þ S2ÞH2
0; S− ≡ ðS1 − 3S2ÞH2

0; ð24Þ
in terms of the Hubble parameter today, H2

0 ¼ H2a4=Ω0
R.

Note that for α2 ¼ 0, the fourth-order differential equa-
tions (22) and (23) reduce to second-order differential
equations admitting the simple solution
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Sþ ¼ a
3
2

�
c1 sin

�
1

2

ffiffiffi
5

3

r
ln a

�
þ c2 cos

�
1

2

ffiffiffi
5

3

r
ln a

��

þ a4

5β1Ω0
R
; ð25Þ

S− ¼ 1

3
~c1a3 þ ~c2; ð26Þ

where c1, c2, ~c1, and ~c2 are integration constants to be fixed
by initial conditions. In the general case α2 ≠ 0, the
solution of Eqs. (22) and (23) is

Sþ ¼ a3=2
�
c1a−q− þ c2aq− þ c3a−qþ þ c4aqþ

−
a5=2

Ω0
Rð24α2 − 5β1Þ

�
; ð27Þ

S− ¼ 2a3=2−y=2

3 − y
~c1 þ

2a3=2þy=2

3þ y
~c2 þ

1

3
~c3a3 þ ~c4; ð28Þ

where

q∓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49α2 − 6β1 ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið44α2 − 9β1Þð12α2 − β1Þ
pq
2

ffiffiffiffiffi
α2

p ;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25α2 − 12β1

p
ffiffiffiffiffi
α2

p ; ð29Þ

and ci and ~ci (i ¼ 1;…; 4) are integration constants. Note
that in both cases the leading contributions in Sþ, S− at
large values of the scale factor a take the power-law forms

Sþ ≈ ~AaA; S− ≈ ~BaB; ð30Þ
with A and B being positive constants related only to the
model parameters fα2; β1g, and ~A and ~B coefficients keeping
track of the integration constants ci and ~ci (i ¼ 1;…; 4),
i.e., keeping track of the initial conditions. Inserting
these asymptotic expressions into Eq. (14) and
comparing the result with the standard form Tμ

ν¼
diagðρNL;−pNL;−pNL;−pNLÞ for a perfect fluid, we can
derive approximate expressions at the lowest order inΩ0

R for
the nonlocal energy density ρNL and the nonlocal equation
of state wNL ≡ pNL=ρNL during radiation domination,

ρNL ≈ −3M4Ω0
Rð ~AðAþ 4ÞaA−4 þ ~BðBþ 1ÞaB−4Þ; ð31Þ

wNL ≈−
1

3

ðA−1Þ ~AðAþ4ÞaA−4þ ~BðB2−1ÞaB−4
~AðAþ4ÞaA−4þ ~BðBþ1ÞaB−4 : ð32Þ

The behavior of wNL at large values of a depends on the
relation between A and B, i.e., on the precise choice of
the model parameters fα2; β1g. For B < A, the equation of
state asymptotically approaches wNL ¼ − 1

3
ðA − 1Þ, while

forB > A it instead evolves towardswNL¼−1
3
ðB−1Þ. Note

that, contrary to the nonlocal energy density ρNL, the asym-
ptotic values of wNL do not depend on the initial conditions.

For α2 ¼ 0 we have A ¼ 4 and B ¼ 3 [cf. Eqs. (25) and
(26)]. These asymptotic values translate into a constant
nonlocal energy density ρNL and a cosmological-
constantlike equation of state wNL ¼ −1. Therefore,
nonlocal contributions with α2 ¼ 0 can in principle lead
to a viable cosmology, as long as the radiation energy density
is dominant over ρNL for the entire radiation-dominated era.6

The situation changes completely in the α2 ≠ 0 case.
Demanding the absence of a growing mode in Eq. (31)
imposes A, B ≤ 4. By considering Eqs. (27) and (29) with
the restriction B ≤ 4, we get the constraints

α2 > 0; β1 ∈
�
0;
25

12
α2

�
: ð33Þ

Unfortunately, these two conditions are never satisfied for
A ≤ 4. Indeed, a simple inspection of Eq. (27) shows that
in order to keep A ≤ 4 we must have qþ þ 3=2 ≤ 4 and
q−þ3=2≤4, or equivalently β1 ≤ 24=5α2 and β1 ≥ 24=5α2,
in clear contradiction with each other and with (33).
The growing modes become rapidly dominant unless the
prefactor of the nonlocal contribution in the action is
largely suppressed.7

FIG. 1. Functional behavior of the nonlocal energy density ρNL
versus the number of e-folds N during radiation domination
for an operator △ ¼ α1□þm4 and different values of m. All
quantities are expressed in units with H0 ¼ 1. Note that the
dimensionful parameter α1 is not an independent parameter:
together with M̄, it fixes the amplitude of nonlocal effects and
does not modify the dynamics. In this plot, we set M̄ ¼ H0 and
α1 ¼ H2

0. The late-time evolution of the nonlocal energy density
develops a damped oscillatory pattern in the vicinity of N ¼ 0
when our radiation-domination ansatz for the scale factor a is no
longer applicable. The average of this quantity over an oscillation
period scales as a−8, i.e., faster than the radiation fluid (ρR ∼ a−4).
A similar damping during radiation domination would require
values of m comparable to the Hubble rate during that era.

6Note that this conclusion holds only for α1 ¼ 0. As shown in
Ref. [20], the α1 ≠ 0 scenario contains growing modes and leads
to an unstable cosmology.

7Note that instabilities associated with tensorial structures
appear also in ultraviolet extensions of general relativity. In the
case of Starobinsky inflation, the problem of instabilities coming
from the tensorial components is addressed by introducing a
hierarchy between energy scales of the R2 and RμνRμν terms [32].
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This conclusion does not seem to be modified for an
operator △ ¼ α1□þm4 with values of m and α1 of order
H0 and H2

0, respectively. As shown in Fig. 1, the evolution
of the nonlocal energy density in this case develops a
damped oscillatory pattern in the vicinity of N ¼ 0, when
our radiation-domination ansatz for the scale factor a
is no longer applicable. A similar damping during radiation
domination would require values of m comparable to the
Hubble rate at that era.

B. Matter-dominated era

Can the instabilities generated during radiation domina-
tion be suppressed during the subsequent evolution of the
Universe? To answer this question we study the behavior
of a subdominant nonlocal tensorial contribution during
matter domination (ρM ≫ ρNL). Taking into account the
definitions in (24) (with H2

0 ¼ H2a3=Ω0
M), we can write

the differential equations in (12) as

4α2S
ð4Þ
þ −12α2S

ð3Þ
þ þ6β1S00þ−73α2S00þ−12β2S00þ

−3S0þð9β1−6γ−41α2þ6β2Þ

þ16Sþð3β1þ7α2þ6β2Þ¼
12a3

Ω0
M

; ð34Þ

4

3
α2Sð4Þ− − 4α2Sð3Þ− − ð3α2 − 2β1 þ 4β2ÞS00−

− ð9β1 − 6γ − 9α2 þ 6β2ÞS0− ¼ −
4a3

Ω0
M
; ð35Þ

with Ω0
M being the critical matter density today. As in the

case of radiation domination, if we choose α2 ¼ 0, then
Eqs. (34) and (35) are reduced from fourth-order to second-
order differential equations. These equations can be solved
analytically,

Sþ ¼ 4a3

Ω0
Mð7β1 − 22β2 þ 18γÞ þ c1ap− þ c2apþ ; ð36Þ

S− ¼ 4a3

9Ω0
Mðβ1 þ 6β2 − 2γÞ þ ~c1

2ðβ1 − 2β2Þ
3ð3β1 þ 2β2 − 2γÞa

~y þ ~c2;

ð37Þ

with

p� ¼ 9β1 þ 6β2 − 6γ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−47β21 þ 108β1ðβ2 − γÞ þ 548β22 − 72β2γ þ 36γ2

p
4ðβ1 − 2β2Þ

; ~y ¼ 3ð3β1 þ 2β2 − 2γÞ
2ðβ1 − 2β2Þ

: ð38Þ

The detailed solution of Eqs. (34) and (35) for the α2 ≠ 0
case is cumbersome and largely irrelevant for the following
discussion. On general grounds, the leading contributions
to Sþ and S− at large values of the scale factor a can be
parametrized as8

FIG. 2. Functional behavior of the nonlocal energy density ρNL
versus the number of e-folds N during matter domination for an
operator△ ¼ α1□þm4 and different values of m. All quantities
are expressed in units with H0 ¼ 1. Note that the dimensionful
parameter α1 is not an independent parameter. Together with M̄ in
the action, it fixes the amplitude of nonlocal effects and does not
modify the dynamics. In this plot we set M̄ ¼ H0 and α1 ¼ H2

0.
The late-time evolution of the nonlocal energy density develops a
damped oscillatory pattern. The average of this quantity over an
oscillation period scales as a−6, i.e., faster than the matter fluid
(ρM ∼ a−3). Note that whenm is of the order of the Hubble rate at
matter-radiation equality, this could alleviate the previous growth
during radiation domination.

8Our results cover the tensorial action induced by the con-
formal anomaly and the extension of the Maggiore-Mancarella
model considered in Ref. [21]. For the parameters associated
to the conformal anomaly (α1 ¼ 0, α2 ¼ 1, β1 ¼ 2, β2 ¼ −2=3,
γ ¼ 2=3), one obtains

Sþ ¼ a
3
4

�
c1a−

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
133−4

ffiffiffiffiffiffi
385

pp
þ c2a

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
133−4

ffiffiffiffiffiffi
385

pp
þ c3a−

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
133þ4

ffiffiffiffiffiffi
385

pp

þ c4a
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
133þ4

ffiffiffiffiffiffi
385

pp
−
2a9=4

9Ω0
M

�
;

S− ¼ 2 ~c1a
1
2 þ 2

3
~c2a

3
2 þ ~c3aþ ~c4 −

2a3

15Ω0
M
;

while for the case △ ∝ □2 (α1 ¼ β1 ¼ β2 ¼ γ ¼ 0, α2 ≠ 0)
considered in Ref. [21] we find

Sþ ¼ a−
1
4
ð3þ ffiffiffiffiffiffi

137
p Þ

�
c2a

ffiffiffiffi
137

p
2 þ c3a3 þ c4a

1
2
ð6þ ffiffiffiffiffiffi

137
p Þ

þ c1 −
3a

1
4
ð15þ ffiffiffiffiffiffi

137
p Þ

44Ω0
M

�
;

S− ¼ −
2

3
~c1a−

3
2 þ 2

3
~c2a

3
2 þ ~c3

3
a3 þ ~c4 −

36 ln a − 44

243Ω0
M

a3:
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Sþ ≈ ~CaC; S− ≈ ~DaD; ð39Þ

with the positive constants C and D encoding information
about the model parameters, and the prefactors ~C and ~D
tracing the initial conditions. Note that the a3 dependence
of the source term in Eqs. (34) and (35) forces C and D to
be asymptotically larger or equal to 3. Using Eq. (14), we
can derive the nonlocal energy density

ρNL ≈
M4ðΩ0

MÞ2
32

ð ~Ea2C−6 þ ~Fa2D−6Þ; ð40Þ

with ~E and ~F being some constants built from the free
parameters of the theory and the initial conditions. Since
the exponents C and D satisfy always the condition C,
D ≥ 3, we have either a constant or growing nonlocal
energy density ρNL. Therefore, the instabilities arising
during radiation domination cannot be suppressed in the
matter-dominated era. Note that this result also holds for
the operator△ ¼ α1□þm4 with nonvanishing values ofm
and α1, with numerical results presented in Fig. 2.
For the sake of completeness, we present in Table I the

asymptotic values of the nonlocal equation of state wNL
when only one of the parameters in the operator (9) is
different from 0. The values associated to the conformal
anomaly operator (11) are also displayed. This helps us to
see in a qualitative way the contribution coming from the
different operators in (9) when the condition TNL

αβ ≪ Tαβ is
satisfied.9

IV. CONCLUSIONS

In this paper, we have explored the stability of a general
class of tensorial nonlocal extensions of general relativity.
Our result is a direct answer to Ref. [20], where the authors
conjectured that the instabilities arising in the tensorial
Rαβ□

−1Rαβ model might be cured by a generalization of the
d’Alembertian operator to α1□þm4 or to the conformal
anomaly operator △4. We have found that the growing
mode and the associated instabilities of tensorial nonlocal
models cannot be generically avoided by introducing the
most general nonlocal operator at second order in covariant
derivatives.
This conclusion holds also for a restricted version of the

operator, namely α1□þm4, if the scale m is chosen to
be of the order of the Hubble rate today. One could
alternatively consider scenarios in which m is comparable
to the Hubble rate at matter-radiation equality. In those
cases, an oscillatory pattern arises that could be compatible
with our requirement that the nonlocal contribution to the
cosmic expansion be subdominant to the matter contribu-
tion. This might give rise to phenomenologically interest-
ing features in the form of an oscillating early dark energy.
In the presence of growing modes, terms at higher and

higher order in curvature are expected to become relevant,
compromising the validity of the effective action (8).
Although one cannot exclude the possibility of some
cancellation mechanism among the various terms, a non-
perturbative study within the effective nonlocal theory is
quite difficult. We believe that the instabilities associated to
tensorial nonlocalities should instead be addressed in the
framework of local field theories by considering mecha-
nisms able to generate well-behaved nonlocal actions in the
infrared.
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TABLE I. Characteristic values of the nonlocal equation of
state wNL during RD and MD when only one of the parameters in
the nonlocal operator (9) is different from 0. Note that the
operators associated to β2 and γ vanish exactly during radiation
domination. The values associated to the conformal anomaly
operator (11) are also presented.

Model wNLðRDÞ wNLðMDÞ
α1 −1.25 −1.45
α2 −1.79 −2.45
β1 −1 −2
β2 0 −1
γ 0 −1
m 5=3 1
△4 −1.55 −1.92

9Note that this can always be achieved by fine-tuning the mass
scale M̄ in Eq. (8).
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