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We continue a comprehensive numerical study of semilocal string networks and their cosmological
evolution. These can be thought of as hybrid networks comprised of (nontopological) string segments,
whose core structure is similar to that of Abelian Higgs vortices, and whose ends have long–range
interactions and behavior similar to that of global monopoles. Our study provides further evidence of a
linear scaling regime, already reported in previous studies, for the typical length scale and velocity of the
network. We introduce a new algorithm to identify the position of the segment cores. This allows us to
determine the length and velocity of each individual segment and follow their evolution in time. We study
the statistical distribution of segment lengths and velocities for radiation- and matter-dominated evolution
in the regime where the strings are stable. Our segment detection algorithm gives higher length values than
previous studies based on indirect detection methods. The statistical distribution shows no evidence of
(anti)correlation between the speed and the length of the segments.
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I. INTRODUCTION

Topological defect networks [1–4] are predicted to form
in high-energy physics models of the early universe [3,5,6].
In many cases they are stable enough to survive through the
subsequent expansion history of the universe, as fossil
relics of its earlier stages. Advances in observational
astrophysics and cosmology including sensitive observa-
tions of the cosmic microwave background [7–12], pulsar
timing arrays [13,14] and more recently the detection of
gravitational waves [15,16] provide exciting opportunities
to characterize or at least constrain the physics of the early
universe through cosmic strings.
Among the various types of possible defect networks,

string-type ones are the most common (their formation
being inevitable in many models) as well as the most
interesting since (unlike other defects, such as monopoles
and domain walls) their evolution is broadly speaking
cosmologically benign. Defects of this type include the
simplest Nielsen-Olesen line-like topological defects in
field theories breaking Uð1Þ symmetry [17], coherent
macroscopic states of fundamental superstrings (known
as F-strings), and D-branes extended in one macroscopic
direction (D-strings). The latter two examples, collectively
referred to as cosmic superstrings [18], are generically

predicted in string theoretic inflationary models involving
spacetime-wrapping D-branes [6,19–21]. Various other
hybrid networks are also possible, including the semilocal
strings [22,23] that are the focus of this work.
Understanding the evolution of these defect networks,

and in particular the distinguishing features of each specific
model class, is essential in order to fully exploit the forth-
coming data. Since these are intrinsically nonlinear objects,
the quantitatively accurate modeling of defect network
evolution is a difficult problem: analytic models can be
obtained (using reasonable approximations), but any such
model will necessarily contain some free parameters which
cannot be calculated ab initio, but must be inferred by direct
comparison with sufficiently high resolution numerical
simulations—thereby calibrating the analytic model. The
canonical approach to this modeling process is embodied in
the velocity-dependent one-scale model (hereafter VOS
model) and its various extensions [24–29]. Naturally, the
complexity of the model is directly related to the complexity
of the underlying particle physics model.
In the simplest scenario, corresponding to the Nielsen-

Olesen solutions of the Abelian Higgs (hereafter AH)model
there is clear analytic and numerical evidence that in simple
radiation or matter dominated universes the network will
reach a self-similar scaling regime, characterized by a single
length-scale—the correlation length—which asymptotes to
a constant fraction of the horizon. This allows us to use
numerical simulations of limited dynamical range to infer
properties of string networks evolving in the real Universe
over much larger time scales. In practice, in a realistic
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universe containing both radiation,matter and dark energy, a
cosmic string network never reaches this asymptotic scaling
regime [30], but it approaches it relatively fast. The situation
is less clear for non-Abelian strings, as well as for cosmic
superstring networks, despite much recent activity in
this area.
Semilocal strings are a hybrid type of defect arising in

theories with both local and global symmetries [22,23]. For
example the standard semilocal model is a minimal exten-
sion of the Abelian Higgs model by a global SU(2)
symmetry. This model, which has an SU(2) doublet of
two equally charged Higgs fields under a single U(1) gauge
field, admits stable string solutions even though the vacuum
manifold is simply connected. They are also well-motivated
from the theoretical point of view, arising in supersymmetric
grand unified theories of inflation [31] and the correspond-
ing D3/D7 brane inflation models [32]. These are a natural
extension of usual inflationary models, in which the only
extra ingredient is the doubling of a hypermultiplet. Being
nontopological, semilocal strings possess remarkably dif-
ferent microphysical properties, as compared to their
topological counterparts. The most noteworthy of these is
that they form finite open segments whose ends have long-
range interactions akin to global monopoles [33].
The cosmological evolution of semilocal networks is

correspondingly distinctive. Their dynamics is dominated
by the long range forces between the monopoles which
imply that the individual segments can shrink and annihi-
late or grow by joining with other segments. The analytic
modeling of these networks in a VOS-like context was
started in [34], based on the premise that they can be
described as local strings ending on global monopoles.1 In
addition to describing the overall evolution of the network,
this also includes a phenomenological description of the
evolution of individual semilocal segments and a prelimi-
nary comparison to numerical simulations, though all these
were somewhat limited by the lack of numerical simula-
tions with adequate resolution.
More recently, we have taken advantage of progress in

computing power and started a more systematic study of
the cosmological evolution of semilocal string networks, by
presenting the first detailed numerical study of these
networks [36], exploring a broad range of relevant cos-
mological and particle physics parameters and focusing on
their large-scale properties. We have found evidence for
scaling behavior of semilocal networks, at least in the sense
that both the total string length of the network and the
number of string segments evolve towards linear scaling at
late times, and we have demonstrated consistency with the
predictions of the aforementioned VOS model.
The main bottleneck in previous works, as well as the

main source of uncertainties in our modeling—indeed

preventing a fully quantitative calibration—is our ability
to measure the transverse velocity of the string segments
and the longitudinal velocities of the monopoles in our
simulations. Addressing this issue required the introduction
and extensive testing of various numerical techniques. The
goal of this paper is to describe these techniques, discuss
their validation, and present the key results of the analysis
of the string and monopole velocities. It will be seen that
our results provide supporting evidence for the scaling of
these networks, while also providing additional insights
into the physical mechanisms underlying the dynamics of
these networks.
A novel aspect of this work is the introduction of an

algorithm that identifies the position of the cores of
semilocal string segments much more precisely than in
previous works. This allows a more accurate determination
of the length and also of the velocity of each segment and
how these evolve in time, as well as their averages and
distribution across the network. It has revealed some
interesting aspects of the velocity distribution, in particular,
that had not been reported previously. We return to this
point in the conclusions. In a subsequent paper we will use
the knowledge of the evolution of the distribution of lengths
and velocities of the semilocal segments and present the
results of detailed comparisons of our simulations with the
VOS model for semilocal strings, leading to its quantitative
calibration.

II. THE MODEL

The simplest semilocal string model Lagrangian reads
[22,23]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
½DΦ�2 − 1

4
F2 − λ

�
ΦþΦ −

η2

2

�
2
�
; ð1Þ

where Φ is a doublet of complex scalar fields Φ ¼
ðϕ1;ϕ2Þ, DΦ ¼ ð∂μ − iqAμÞΦ, F2 ¼ FμνFμν and Fμν ¼
ð∂μAν − ∂νAμÞ is the gauge field strength. The model is
invariant under SUð2Þglobal ×Uð1Þlocal [23], and after sym-
metry breaking, the particle content is two Goldstone
bosons, one scalar boson with mass ms ¼

ffiffiffiffiffi
2λ

p
η and a

vector boson with mass mv ¼ qη. After suitable rescalings:

Φ →
ηffiffiffi
2

p Φ; x →

ffiffiffi
2

p

qη
x; Aμ →

ηffiffiffi
2

p Aμ; ð2Þ

and defining

β ¼ m2
s=m2

v ¼ 2λ=q2; ð3Þ

the action can be rewritten in the numerically convenient
form

1The VOS model for global monopoles has been recently
revisited in [35].
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
½DΦ�2 − 1

4
F2 −

β

2
ðΦþΦ − 1Þ2

�
; ð4Þ

where now DΦ ¼ ð∂μ − iAμÞΦ.
Since our aim is to characterize the dynamics of a

network of semilocal strings in the early universe, we
consider a spatially flat Friedmann-Robertson-Walker
space-time with comoving coordinates:

gμν ¼ aðτÞ2ημν; ð5Þ
where ημν ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric, τ is
conformal time and aðτÞ is the cosmic scale factor. The
scale factors we will consider are those corresponding to a
radiation dominated universe (a ∝ τ) and to a matter
dominated universe (a ∝ τ2).
The equations of motion for the semilocal model in the

temporal gauge (A0 ¼ 0) read

_Πþ 2
_a
a
Π −D2Φþ a2βðjΦj2 − 1ÞΦ ¼ 0;

∂μFμν − ia2ðΦ†DνΦ −DνΦ†ΦÞ ¼ 0; ð6Þ

where _¼ d=dτ and Π ¼ _Φ, together with

∂iF0i ¼ ia2ðΠ†Φ − Π† _ΦÞ; ð7Þ
which is Gauss’s law.
Semilocal strings can be thought of as Abelian Higgs

strings embedded into a larger model. Indeed, if we set one
of the scalar fields in the Φ doublet to zero, we recover the
Abelian Higgs model exactly. The semilocal model can
also be thought of as a limiting case of the electroweak
model where the U(1) symmetry becomes global, and
semilocal strings are thus related to the Z-strings of the
electroweak model [37–40].
Unlike the Abelian Higgs strings, semilocal strings are

not topological. Therefore, semilocal strings do not nec-
essarily have to be closed or infinite, but they can form
finite string segments: they can have ends. The semilocal
string segments are linelike concentrations of magnetic
flux, and the string ends can be understood as some sort of
global monopoles, with long range interactions [33]. Note
that these monopoles are not true global monopoles; they
are, after all, string ends that behave similarly to global
monopoles. Our analysis provides further supporting evi-
dence for this interpretation.
This combination of string plus monopole provides

semilocal strings with very rich dynamics: they can shrink
and disappear, they can join neighboring segments to create
larger ones, or the ends of a segment can join each other to
form a loop. Besides their more complicated dynamics
(compared to Abelian Higgs strings or monopoles), the fact
that semilocal strings are nontopological has also important
consequences for the numerical detection of their spatial
location: there is no topological constraint that forces the

scalar field to be zero at the core of the string, and also there
is no unique winding associated with the location of the
string. One gauge invariant quantity that we will use to
decide where a semilocal string lies is the concentration of
magnetic energy.
The stability of semilocal strings is not trivial. Being

nontopological, their stability is not warranted by topology
but is instead dependent on dynamical and energetic
considerations. It is controlled by the parameter β,
c.f. Eq. (3). Semilocal strings are stable for β < 1, neutrally
stable for β ¼ 1 and unstable for β > 1 [41].

III. NUMERICAL SIMULATIONS

A. Numerical setup

Our main aim is to characterize the network of semilocal
defects. In order to do so, we have obtained the equations
of motion from the discretized version of the Hamiltonian
corresponding to the action (4), and solved them using
standard techniques (lattice-link variables and a staggered
leapfrog method) in 10243 lattices with periodic boundary
conditions, as explained in [34,36,40]. The simula-
tions were performed at the COSMOS Consortium super-
computer and i2Basque academic network computing
infrastructure.
Since we have periodic boundary conditions, the sim-

ulation time has an upper bound, given by half the light-
crossing time; for times longer than that, spurious boundary
effects kick in. As is generally the case with this type of
numerical simulation, there is a trade-off between dynami-
cal range, spatial resolution and accuracy. One wishes to
simulate the dynamics of the system for as long as possible,
and therefore needs boxes with a physical size as large as
possible. But one also wishes to simulate the equations as
accurately as possible, which means that the lattice spacing
has to be small. Thus, a compromise must be reached. We
have chosen to use a lattice spacing ofΔx ¼ 0.5 and a time-
step of Δτ ¼ 0.2, as our optimal balance between accuracy
and dynamical range.
We wish to simulate semilocal string network evolution

in the early universe, focusing on the radiation and matter
domination eras. Defect network simulations in expanding
backgrounds present us with another difficulty: the physical
size of the defects is fixed throughout the simulation, but
the size of the simulation box is growing with time.
Equivalently, viewed in comoving coordinates, the box
size is constant, but the comoving size of the defects
shrinks. Again, this would point to the necessity to simulate
the system in larger lattices, but this is not feasible. Instead,
this difficulty is overcome by employing the Press-Ryden-
Spergel (PRS) algorithm [42] whereby the defect cores are
made to “artificially” grow comovingly during the simu-
lation. This is achieved by promoting the parameters of the
model into time varying variables [26], so that the (con-
tinuum) equations of motion (6) get modified to:
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_Πþ 2
_a
a
Π −D2Φþ a2sβðjΦj2 − 1ÞΦ ¼ 0;

∂μða2ð1−sÞFμνÞ − ia2ðΦ†DνΦ −DνΦ†ΦÞ ¼ 0; ð8Þ

where the parameter s gives the level of modeling in the
PRS algorithm: s ¼ 1 gives the true equation of motion,
whereas s ¼ 0 corresponds to defects whose comoving
core size is constant. Several studies in the literature
[26,43–45] show that the s ¼ 0 case is a good approxi-
mation to the true s ¼ 1 situation, with errors often smaller
than statistical uncertainties. In the present work we
performed all simulations using s ¼ 0.
We are interested in estimating the velocity of the

network, and more precisely the velocity of the segments
and of the string–ends (monopoles). But for the purposes of
calibrating the VOS model, it is particularly useful to do
this once the system has reached scaling. As mentioned in
the Introduction, scaling is a convenient property for the
reliable study of defect networks, since we need to
extrapolate from our limited numerical simulation into
the much larger timescales relevant for defect networks
evolving in the real universe. For scaling networks, the
details of the initial conditions are not important as all
information about the initial condition is lost once scaling
has been reached. However, choosing a “good” set of initial
conditions is important in practice, as it can help the
network reach scaling as fast as possible, so that the system
can evolve in the scaling regime for as long as possible
within our finite dynamical range. The initial conditions we
chose are the same as those in [36]: the gauge field, gauge
field velocities and scalar field velocities are set to zero.
The scalar fields are chosen to lie in the vacuum manifold,
but have randomly chosen orientations [46]. Note that one
extra benefit of using the PRS algorithm with s ¼ 0 is that
scaling is reached faster, which further increases our usable
dynamical range.
We want to simulate strings that are stable and lead to

long enough segments, so that we can get a representative
statistical ensemble in our simulations. As mentioned
earlier, semilocal strings are stable for values of β < 1,
and our simulations were performed for β ¼ 0.04, 0.09,
0.15, 0.20, 0.25, 0.30, 0.35. Higher values of β show a
much more scarce network [40], and it would be much
harder to get a numerous enough ensemble of semilocal
strings. Lower values of β are also not optimal, since the
scalar string cores start to be too thick for our simulation
parameters.
For every value of β, and for both cosmologies (radiation

and matter), we have performed 7 different simulations, in
order to increase our statistics. It is numerically very
expensive to analyze and output the simulation data at
every time-step; instead, the information is output every 20
time steps once the network has approached scaling. The
times chosen to output the data range from τ ¼ 96 until
τ ¼ 256; for times earlier than τ ¼ 96 the system has not

settled into scaling well enough, and τ ¼ 256 is our limit
due to the aforementioned boundary conditions. For a
couple of cases the information has been output more
frequently too, in order to check that the time spacing
between outputs was adequate, and also to pinpoint some
issues that we will discuss later. The output information can
be used directly to estimate some of the quantities of
interest, and also can be treated further to infer other useful
quantities, as explained in the next section.

B. Algorithms to detect segments and
obtain their velocities

In this subsection we will describe the quantities that
need to be monitored in order to characterize semilocal
string networks. We will introduce algorithms for estimat-
ing string length, string velocities and monopole velocities;
some of these algorithms have already been used previ-
ously in the literature and some are introduced here for the
first time and are specific to semilocal strings. Note that this
is a general description; various caveats will be described in
more detail in the following section.
As mentioned earlier, the fact that semilocal strings are

not topological makes it much more difficult to numerically
detect their location in a simulated lattice compared to the
(much more studied) AH strings. In the AH case, the strings
have a topological constraint, and one can follow them
throughout the simulated lattice by tracking the winding of
the scalar field across each plaquette [47]. The points with
winding coincide with the zeros of the scalar field and
therefore the windings happen at the same points at which
the potential energy is concentrated. Furthermore, those are
also the regions where the density of magnetic energy is
highest. Thus, one can use any one of these features (high
magnetic field density, high potential energy density, zeros
of the scalar field, winding of the scalar field) to detect an
AH string.
In the semilocal case, there are twice as many scalar

fields, and just one gauge field. It is not clear then which
field one has to choose to follow the windings, or whether
these windings actually give the position of the string.
Besides, the field does not have to be zero when there is a
winding. Unlike in the AH case, one field can be winding
around a site, but the other field may still fulfill the
requirements to be in the vacuum of the potential energy.
Therefore, we can have a field winding, but no concen-
tration of potential or magnetic field.
In previous works [34,36,40,48], the criterion used to

decide whether a point in the lattice belongs to a semilocal
string was based on the concentration of magnetic energy
(we will describe this method in more detail below).
The procedure gives a collection of points that can be
grouped into segments by proximity, i.e., we end up with a
volume of points, which is subsequently used to estimate
length. This length can be used to check, for example, the
scaling of the network of strings. Moreover, the number of
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segments is also a good estimator for the number of
monopoles, i.e., segment ends, which is a further diagnostic
for the scaling of the network. It has always been under-
stood that this was just a first approach to obtain the length
of strings, and we will show later that this estimator was
seriously underestimating the string length.
Instead of a volume characterization of the strings, one

would rather get a one-dimensional representation of
strings, using, for example, the position of the core of
the string. We will introduce a new estimator using field
windings that will produce such a one-dimensional char-
acterization of the string. This will be invaluable for the
estimators of velocity we will describe later, and will enable
us to determine individual segment velocities for semilocal
strings for the first time.
We have also detected monopoles directly from the

simulation for the first time. The number and velocity of
monopoles are also important quantities for characterizing
our system. For example, from the total number of
monopoles N an independent measurement of the number
of segments can be inferred.
In what follows we will describe the algorithms used to

obtain lengths of segments, number of segments, number of
monopoles; velocities of segments and monopoles, net-
work velocity; and quantities used to monitor scaling.

(i) Estimation of segment lengths using the threshold of
the magnetic field:
One criterion for decidingwhether a lattice-point in

the simulation is part of a semilocal string is the
following: points where the magnetic field is higher
than a given threshold are considered to belong to
a semilocal string. In order to get a meaningful
threshold, for agivenβweconsider the corresponding

Abelian Higgs string, and calculate the maximum of
itsmagnetic fieldBmax.We also calculate the radius of
the Abelian Higgs string rAH, defined as the radius at
which the magnetic field Bthreshold (absolute value)
drops to 30%ofBmax. Armedwith the valueBmax, the
whole simulation grid is scanned at every time-step,
the value of the magnetic field is calculated at each
grid point, and if the magnetic field is higher than
that of Bthreshold, the position of that point is output.

Once all the points have been output, they are
distributed into segments. In order to do that, the
points that are adjacent to each other are grouped into
one segment. Thus, a collection of points forming the
volume of a segment is obtained. Dividing that
volume by the cross section area of the string
(calculated from rAH assuming a circular cross sec-
tion), the length of the segment is estimated. From this
procedure a distribution of segment lengths is ob-
tained at every time step. Adding up all the segments,
the total length of string in every time step LðτÞ can
also be obtained,which can be used, for example, as a
measure of scaling.

The left panel of Fig. 1 shows the positions of the
segments in a typical simulation box obtained by
plotting the points with a magnetic field higher than
30% ofBmax. This was the procedure used in previous
papers to obtain semilocal segment lengths [34,36,40].

(ii) Estimation of segment lengths using the windings of
the scalar fields:

This is a new length estimator which allows us to
obtain a one-dimensional characterization of the seg-
ments. Inorder todoso, it uses thewindings in either or
both of the scalar fields (ϕ1 and ϕ2) in the model.

FIG. 1. In the left panel, the string segments in a typical simulation box are shown; the blue points are points with a magnetic field
higher than the threshold described in the text. The right panel zooms in on a portion of one segment. The blue dots correspond again to
points with high magnetic field, and the red, cyan and black points correspond to points where the windings of the scalar fields ϕ1, ϕ2 or
both (respectively) are nontrivial. Notice how these dots are not nicely aligned in a smooth curve, but jitter around (this is the Manhattan
effect). Performing the smoothing over four nearest neighbors on each side of each point yields the black line, which is the smoothed
version of the center of the core of the segment. Actually, the black line is also formed of points, but here those points have been joined
by a line to show how they interpolate between the lattice points with winding.
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The procedure is as follows: During the simulation,
the winding of fields ϕ1 and ϕ2 is calculated at every
point, and if this winding is different from zero, that
position is output together with the value of the
magnetic field at that point. The value of the magnetic
field is needed because having the fields winding
around some plaquette does not necessarily mean that
point belongs to a string segment; it is only when the
nonzero winding happens in a region with a high
concentration of magnetic field that the position is
regarded as the core of a string.The position of the core
is given by the non-zero winding of either (or both) of
the scalar fields (within the cloud of points with
magnetic field), and following the points withwinding
one canmap the 1-D array of points defining the centre
of the string.
Actually, since there is no topological constraint and

we are following the points with nonzero windings of
one of the fields, the points may stop belonging to a
semilocal string segment (because there may not be a
high concentration of magnetic field), or the sequence
of points with windings may abruptly stop. It is worth
noting that, in principle, for a point to be part of a
semilocal string it is enough that oneof the fieldswinds
in a regionwith highmagnetic field. It is not necessary
that the other field also winds. (Nevertheless, we will
show later on that both fields seem to wind inside the
string core.) On the other hand, sometimes both fields
may be winding inside a cloud of magnetic field, but
(due to discretization issues) not exactly on the same
plaquette and theymaybedisplacedbyone lattice unit.
In order to overcome these nuisances, the points of
nonzero windings of both fields are combined. Those
points that shareneighbors aregrouped, and that ishow
we define a segment. Moreover, those points can now
be ordered. Every segment is thus formed of a (one-
dimensional) ordered collection of points where either
(or both) of the scalar fields have a nonzero winding
andmagnetic field is above some threshold, and points
are in contact with each other by pairs. Figure 1 shows
the stringpositions, obtainedby taking into account the
concentration of magnetic field (blue) and the points
where the fields arewinding (ϕ1 in red,ϕ2 in cyan and
both in black).
Since our fields are discretized on a lattice, the

determination of the center of the string suffers from
the Manhattan effect [49]: the center of the segment is
not a smooth curve, but it is actually formed by a
collection of unit steps. A smooth version of the
position of the cores would be beneficial as the
estimation of both the length and the velocity of
the segment would improve. Thus, the points in the
string segments are smoothed by averaging the posi-
tion over nearest neighbors. After trials using different
number of neighbors, averaging over 4 neighbors at

each side seems optimal: the position of the core is
smooth enough, and the structure of the segment is not
lost (as would happen by averaging over too long
distances).

The outcome of this procedure is a collection of
segments, given by a one-dimensional list of the
smoothed position of their core. The right panel of
Fig. 1 depicts a zoom into a portion of a segment,
showing how the averaged version of the core of the
string, obtained by smoothing, nicely interpolates
between the points with nonzero windings.

(iii) Estimation of the velocity of the segments:
Once the segments have been characterized by a

smooth one-dimensional array of positions, this set
of data can be used to track the history of each
segment in time, and also estimate its (transverse)
string velocity.

Consider a string segment at time τ1, and the same
segment at a later time τ2. If one is able to estimate
where each point in the segment has moved from τ1 to
τ2, we can get an ensemble average. This can be done
in the following way: choose a point x1 in the core of a
segment at time τ1, and find its distance to all points
belonging to the segment’s core at τ2. The point at
time τ2 that is closest to x1 is identified as
the point where x1 has moved to from τ1 to τ2.

2 The
velocity of point x1 is then estimated by merely
dividing the distance it has traveled by the time interval
τ2 − τ1. Performing this operation with every point
belonging to a given segment at every time step allows
us to obtain a segment velocity (an average of jvj over
all the points in the segment). The average of all the
segment velocities, which is not length-weighted,
would then be the network average velocity.

Although this procedure has some subtleties, which
we will describe in the next section, the benefits are
manifold: one can obtain individual segment velocities
at every time step.We can thus record the history of the
velocity evolution of each segment in the simulation.
Moreover, a by-product of this procedure is that one
can create amapofwhich segmentsmergewithwhich.

It is clear that for this procedure to work a one-
dimensional characterization of the string segment is
necessary, and therefore the velocity determination of
segments relies on the string length characterization
given by the windings.

(iv) Estimation of number and velocity of string-ends
(monopoles)

As mentioned in Sec. II, the field configurations at
the ends of the segments can be understood as global
monopoles [23] and, as such, they can be detected in

2We do not remove points at the later stage, so that it may
happen (and it will clearly happen for example in a collapsing
loop) that two or more points at τ1 may move to the same point τ2.
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a simulation directly from the fields. The whole
simulation lattice is scanned point by point to check
whether monopoles are present. In order to do so,
following [23], the field configurations at the string
ends are recast from the 4 real scalar fields with
SU(2) symmetry into three scalar fields, establishing
an analogy to Oð3Þ global monopoles, through

Ψ ∼Φ†σ⃗Φ; ð9Þ

where σ⃗ are the Pauli matrices. Actually, the field
configuration thus obtained is still quite noisy to
clearly detect monopoles, and we clean it further via
the transformation

Ψ → ~Ψ ¼ Ψ −∇ × ð∇ ×ΨÞ:

Once the field configuration has been treated,
the location of a monopole is determined by calcu-
lating the topological charges given by the surface
integral [3]

N ¼ 1

8π

I
dSijj ~Ψj−3ϵabc ~Ψa∂i

~Ψb∂j
~Ψc; ð10Þ

where dSij is the infinitesimal surface element.
Since we are in a discretized environment,
Eq. (10) cannot be used directly, and instead a
discretized version is used (see Appendix B in [50]).
Note that N can be positive (monopole) or negative
(antimonopole). It is not to be confused with N , the
total number of monopoles plus antimonopoles, i.e.,
the total number of segments’ ends.
When scanning through the simulation box, if the

topological charge is different from zero, the posi-
tion of the monopole together with its topological
charge is output. One can then directly obtain the
number of monopoles (or string ends) in the sim-
ulation lattice, which is an independent way of
measuring the number of string segments: the
number of segments would be roughly N =2,
although not exactly so because some segments
can be closed loops and thus have no ends. More-
over, the number of monopoles is another estimator
for checking the scaling regime.
Since the position of the monopoles (and their

topological charge) is known at every time-step,
the velocity of monopoles can also be estimated
following a procedure similar to the one described
above for segment velocities [45]: A monopole M1

is chosen at time τ1, and its distance with respect
to all monopoles at the next time τ2 is calculated.
Then, M1 is identified with the closest monopole at
time τ2. Repeating this procedure at all times, the
history of M1 can be tracked and an estimate of its

velocity can be obtained by merely dividing the
distance it has travelled by the corresponding time
interval.
Monopole velocity estimations also have their

issues, but once again the benefits are manifold: one
can obtain individual monopole velocities, both at
each time step and as the average velocity during
the life of the monopole. By averaging over all
monopoles, a monopole-network velocity can be
obtained too.

(v) Estimation of the network velocity using local lattice
variables.

There are also other types of velocity estimators
for the whole network, based on local field quantities
as described in [51–53]. These estimators are com-
puted by considering a string at rest, and performing
a Lorentz boost to it. Thanks to the different
properties of each term in the Lagrangian under
boosts, two different estimators can be written down:

hv2iF ¼ E2
W

B2
W
;

hv2iG ¼ 2GW

1þ GW
; ð11Þ

where F refers to the gauge field strength Fμν, and

GW ¼ Π2
W

ðDΦÞ2W
: ð12Þ

The subscript W denotes weighting by some
appropriate physical quantity. In the present case,
a magnetic energy weighting was used, because this
automatically ensures that only regions with non-
vanishing magnetic energy contribute to velocities.
Regions with semilocal strings have higher con-
centration of magnetic energy, and thus those
regions contribute most to the above integrals. For
a given quantity A the weighting is applied in the
following way:

AW ¼
R
d3xAWR
d3xW

ð13Þ

Using this definition for a weighted average, the
estimations above read

GW ¼ Π2
W

ðDΦÞ2W
¼

R
d3xΠ2WR

d3xðDΦÞ2W

for example. During the simulation, the quantities
needed to obtain the velocity estimators in (11) are
output.
Note that these field velocity estimators provide

information on the network as a whole, whereas the
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previously described methods for segments (and
monopoles) give information about each individual
segment (or monopole). Besides, the estimators in
Eq. (11) average over all regions with some mag-
netic energy, and thus both segments and monopoles
contribute, as well as regions where a segment may
have disappeared (or it is about to disappear) and a
temporary magnetic field density is left-over.

(vi) Monitoring scaling:
Scaling is a key property of a network of defects,

which is indispensable if one needs to extrapolate
the results of a numerical simulation (whose dy-
namic range will necessarily be small for the scales
of interest) into the history of a realistic defect
network. Scaling can be measured by the total string
length LðτÞ and by the number of monopoles N ðτÞ
(which is related to the number of segments,
≈N ðτÞ=2). Besides, the energy (T00) of the system
is also a good candidate to monitor the scaling of the
network.

IV. CAVEATS AND DIFFICULTIES OF THE
ALGORITHMS AND THE NUMERICAL SETUP

In this section we will describe some caveats and
difficulties we encountered in the simulations. These, on
the one hand, have to be dealt with in order to obtain
physically robust results, and on the other, provide insights
into how to further extend the analytic model for semilocal
strings (the last point will be addressed in a subsequent
paper).

A. Comparison between the two length estimators

In the previous sections, two different procedures for
obtaining the length of string segments have been
described: one using the threshold of the magnetic field
and the other using the windings of the scalar fields. We did
expect some mismatch between these two procedures,
mostly because the method of obtaining segment lengths
by counting points above a magnetic field threshold and
dividing the volume by the cross-section area was a rather
crude algorithm. This algorithm was used in previous
works [34,36,40] due to the difficulty of defining a semi-
local string otherwise (with windings or zeros of the scalar
field), and was believed to be a good first approximation.
Figure 2 shows the relation between the lengths of the

segments measured by using the magnetic flux and the
winding approach for β ¼ 0.20 at τ ¼ 256. The ratio
between these two quantities is almost constant, and it is
roughly a (surprisingly large) factor of 1.5 for most values
of β both in the matter and radiation cases. The factor is a
bit different for shorter segments, which is presumably due
to the fact that the segment ends play a stronger role for
shorter segments, but this is not relevant for the whole
network length, which is dominated by long segments.

There are several possible sources of uncertainty that can
help us understand the difference in the string length
obtained with the different procedures. First of all, previous
determinations discarded small “blobs,” very short seg-
ments whose length is below some threshold (a few times
the core radius). Second, the fact that cross sections are
estimated from the Abelian Higgs profile could lead to an
overall bias. There are also two possible physical effects to
take into account: one is Lorentz contraction of the seg-
ments due to their velocities, making segments narrower
than the estimated cross-section of the string; the other is
that segments are not straight, and when they bend the
strings can be considerably narrower.
There is also a clear numerical uncertainty in the

procedure of obtaining the cross section of the string.
Recall that the cross sections of the semilocal strings in the
simulations are defined to be the same as those of a straight
AH string at rest. The typical radius for AH strings range
from r04 ¼ 2.36 for β ¼ 0.04 to r35 ¼ 1.71 for β ¼ 0.35.
The lattice spacing we are using is Δx ¼ 0.5 which already
gives us a considerable error on the string radius: we
consider that points with magnetic field higher than 30% of
the maximummagnetic field belong to the string. Imagine a
string centered at a lattice-point, with radius, say, 1.4. The
string radius then does not quite cover 3 lattice units
(3 � Δx > 1.5), and therefore there are only 2 lattice points
which qualify as points of strings, but the volume of strings
obtained like that will nevertheless be divided by the true
radius, clearly underestimating the string length. Moreover,
a string will typically not be centered around a lattice-point,
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FIG. 2. In this figure the relation between the two length-
measuring approaches is shown. The horizontal axis has the
lengths measured with the magnetic flux approach, while the
vertical axis has the lengths measured with the winding approach.
Every diamond represents a segment in a simulation box for β ¼
0.20 at time τ ¼ 256. It is clear that the proportionality is almost
the same for all the segments in the network. The diagonal is
shown with a dashed line, emphasizing the bias factor between
the two approaches.
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but it will be located anywhere within a lattice-cell, making
this effect more important. Thus, the points that we
numerically decide that belong to the string are fewer than
what a more sophisticated procedure would get. We can get
an estimation of the maximum errors for the two extreme β
as follows:

r204
ðr04 − ΔxÞ2 ¼ 1.60;

r235
ðr35 − ΔxÞ2 ¼ 1.99:

This numerical bias seems to account for most of the
discrepancy between the two length estimation procedures,
while the Lorentz factor and the fact that strings are not
straight do not seem to be so important. Actually, the
Lorentz contraction of the segments is clearly not a
significant factor to take into account since the velocity
values we obtain later on are rather low to obtain a Lorentz
factor capable of explaining the difference. In Table I, the
total length in segments for every β is shown. We conclude
then that the string segments length estimated in previous
works by (some of) us has been overestimated by roughly a
factor of 1.5 (the average ratio between the values in Table I
are 1.56 for Radiation and 1.55 for matter).
When using the approach based on obtaining volumes of

points and then dividing by string cross sections, there was
also some nuisance with very small segments, which were
dubbed blobs in [36]. These were very small regions with
some magnetic flux, possibly as a leftover of a recently
collapsed segment. There was some uncertainty in how to
remove those blobs. With the new winding approach, this
problem of blobs has disappeared. In any case, we have
checked that the number of monopoles obtained by the
winding approach, and by the magnetic field approach
(removing blobs) is very similar.
One very nice check that our new length estimators work

well can be found in Fig. 3. There, we plot the positions of
the strings obtained by the winding procedure, and the
positions of the monopoles obtained by calculating the

monopole charge. In principle, these two procedures are
independent, but the positions of the strings and monopoles
(string-ends) are aligned very nicely.
From the length estimators (of both monopoles and

strings) two different VOS-type length scale parameters can
be obtained:

γL ≡ 1

τ

ffiffiffiffi
V
L

r
; γM ≡ 1

τ

�
V
N

�
1=3

ð14Þ

where L is the estimation of the string length, and N is the
estimation of number of monopoles (double the number of
segments). We show the values of those parameters in
Table II in Sec. V, but we would like to point out that these
values are compatible (within errors) with the values
obtained in [36], for both γL and γM. Note that, in viewTABLE I. The total lengths in τ ¼ 256 for every β we simulated

and for radiation and matter epochs. Lwinding denotes the length
estimator using the windings of the scalar fields, whereas Lmagnetic

denotes the length estimator using a threshold of magnetic field.
Note that these numbers correspond to a single simulation per
value of β.

Radiation Matter

β Lwinding Lmagnetic Lwinding Lmagnetic

0.04 6166.44 3895.33 12303.07 8014.28
0.09 6903.84 4673.61 10780.82 7266.59
0.15 5246.97 3476.99 9267.51 6099.45
0.20 5221.27 3546.95 7447.93 4865.46
0.25 4450.95 2948.52 6147.42 3853.46
0.30 2546.31 1585.21 4562.78 2901.85
0.35 2095.5 1173.86 3405.10 2119.90

FIG. 3. In this figure one can see the box after the characteri-
zation. The black lines represent the string segments detected
using the windings, where each point is smoothed using the four
nearest neighbors in each direction. The red dots represent the
antimonopoles and the blue ones the monopoles.

TABLE II. Values of the VOS-type length estimators for the
total length of segments γL and the total number of monopoles
γM (14) in the box for every β.

Radiation Matter

β γL γM γL γM

0.04 0.38� 0.05 0.48� 0.04 0.28� 0.02 0.41� 0.02
0.09 0.40� 0.04 0.43� 0.02 0.33� 0.02 0.38� 0.02
0.15 0.47� 0.09 0.40� 0.02 0.40� 0.04 0.35� 0.03
0.20 0.52� 0.08 0.41� 0.04 0.46� 0.04 0.37� 0.02
0.25 0.61� 0.09 0.42� 0.05 0.54� 0.06 0.37� 0.02
0.30 0.81� 0.09 0.46� 0.05 0.65� 0.09 0.37� 0.03
0.35 1.06� 0.09 0.49� 0.05 0.78� 0.09 0.41� 0.03
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of our results, the values for γL in [36] should be corrected
by a 1ffiffiffiffiffi

1.5
p coming from the factor 1.5 difference in the length

estimator, but even without the factor, the values lie within
1-σ from each other.
In the rest of this work, we will only use the length

estimator which relies on the windings approach. The
reason for calculating segment lengths using the threshold
of the magnetic field was for ease of comparing with
previous works; it will not be used in the rest of this paper.

B. Identification of semilocal segments

As has been already explained, the position of a semi-
local string is difficult to pinpoint because there is no
topological obstruction for the scalar to acquire a nonzero
value around a winding (one field may wind and the other
may climb the potential) and there is no requirement for
semilocal strings to be closed or infinite. Actually, it is finite
semilocal string segments that we are studying.
One way of detecting the strings, explained above, is by

following the windings of both scalar fields ϕ1 and ϕ2, and
checking where those windings happen within regions of
high magnetic field. In the left panel of Fig. 4 we show the
windings of both fields in the simulation box, without
taking into account the values of the magnetic field:
windings of ϕ1 in blue and of ϕ2 in green. Actually, there
are several regions where the two fields wind in the same
plaquette (or at a difference of 1 plaquette), and those are
plotted in red.
The first thing we notice is that each of the fields (ϕ1 and

ϕ2) creates a network of closed or infinite “strings,” very
much like an Abelian Higgs network. But unlike in the
Abelian Higgs case, a winding of a scalar field does not
necessarily mean that there is a string forming; there is not
necessarily a corresponding concentration of magnetic or
potential energy. Where do semilocal strings form then? In

the right panel we plot the same windings, but also the
regions where there is a high concentration of magnetic
field. This shows that semilocal strings are actually the
regions where both fields wind, which makes sense because
in that case the scalar field has to be approximately zero
there and therefore the magnetic field can be large in those
regions.
Note that, although this network formed from points with

windings of ϕ1, points with windings of ϕ2 and semilocal
strings is reminiscent of a p-q string network [21,54], where
the Y-junctions correspond to monopoles, this analogy is
misleading. The winding of a single field does not
necessarily imply any physical concentration of energy,
so there is no string tension that can be associated
unambiguously with these “strings.”

C. Apparent superluminal velocities

The preliminary results on velocities (for both segments
and monopoles) obtained by most of the direct algorithms,
as well as from estimators based on local field quantities,
cf. Eq. (11) give rather modest velocities. However, on a
few occasions, we obtained values higher than the speed of
light c; in some very few extreme cases as large as 10c. In
principle, as we explain below, this need not signal a
breakdown of causality, and it can be an artefact of the way
we measure velocities. The dynamics is local and causal at
the level of the fields.
A more detailed analysis showed that superluminal

values for velocities were only obtained when using the
estimators (described above) which try to track the seg-
ments and the monopoles in each time step as the network
evolves. We also found out that the procedure needed some
more careful handling, due to the following caveats:

(i) Segment velocities:
Imagine a segment that has closed into a loop at

time τ1, and disappears before the next time τ2 when

FIG. 4. In the left panel the windings of both fields are shown, without taking into account the magnetic field: blue for windings of ϕ1,
green for windings in ϕ2 and red for windings in both. As one can see each one of the fields creates a network of closed or infinite
strings. On the right panel, we plot the same windings, but also the regions where there is concentration of magnetic field (orange). This
figure shows that semilocal strings are actually the regions where both fields wind.
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the box will be reanalyzed. Then, all the points
belonging to the loop at time τ1 will not have a close-
by point to match with at τ2. However, our code will
find the closest segment at time τ2, even though that
will correspond to another segment, presumably
further than causality allows. Therefore, the calcu-
lated velocity for the loop will be very high, but
clearly it is not physical; it is a shortcoming of the
procedure. One way of dealing with this is by
applying a cutoff, and disregarding all velocities
higher than that cutoff, but this has the danger of
possibly losing some dynamics (if the cutoff is too
strict), or considering too many unphysical cases (if
the cutoff is too weak). Another possibility to avoid
these problems is by performing the identification
between segments at different times backwards, i.e.,
choosing a point at τ2 and looking at all points at τ1
to match it to.
However, if we revert to the backward identifi-

cation, we may run into another problem: Imagine
now a segment that is going to join to another
segment, and for the sake of explaining this issue
assume that, with the exception of the segment’s
ends (which are traveling towards each other), the
string is at rest. At time τ1 the two segments are
separated by some distance, but at time τ2 all that
distance is filled with string. All the points that
have filled that gap at time τ2 will have their closest
point at the ends of the segments at time τ1 and
therefore the velocity we get for those points is not
the velocity of the segment. If at all, that velocity
will be related to the segment end (monopole)
velocity. This is avoided by calculating velocities
forward (from τ1 to τ2).
Clearly, choosing the forward or backward

approach may solve one of the two previous prob-
lems, but not both.

(ii) Monopole velocities:
Throughout the simulation monopole-antimono-

pole pairs annihilate: if a monopole M1 annihilates
with an antimonopole between times τ1 and τ2, our
procedure will not have the information to know that
monopole M1 has annihilated. Instead, the pro-
cedure will try to match it to another monopole
(the one nearest to it), and the velocity obtained will
be incorrect (and possibly supeluminal).
Other types of misidentification issues may also

occur occasionally: There are some detection prob-
lems when a string segment collapses into itself, as
the fields are reconfiguring to the new situation and
radiating energy away. In this case, the field con-
figuration at the string ends is related to the merging
of a monopole and an antimonopole, and our
detection algorithm fails (either by detecting spuri-
ous monopoles, or by failing to detect any charge
at all).

Moreover, if at the moment when the identifica-
tion algorithm is run a monopole passes through a
face of the lattice, the algorithm may miss to detect
it, because the topological charge will be divided
into two different cells of the lattice. The way we
have chosen to overcome this difficulty is by
checking whether the monopole can be matched
to a monopole in a subsequent time-step τ3, and to
compare the distances obtained. If the distance to the
monopole at τ3 is smaller than to that at τ2 (and is
actually physical), the intermediate step is by-
passed. The fact that the charge of the monopole
is recorded is of help when there are monopoles and
antimonopoles nearby: the topological charge of a
monopole does not change during its evolution, i.e. a
monopole does not become an antimonopole, and
therefore the number of possible candidates to match
to a given monopole is halved.

After this refinement of segment and monopole velocity
estimators, most of the instances where superluminal veloc-
ities were obtained have been cured. However, there remains
some cases where superluminal velocities appear, corre-
sponding to a few instances of merging of segments as
mentioned above. These superluminal velocities appear at a
few points of a string segment close to the end of the string,
and also obviously at the monopoles. For the segments of
strings, the superluminal velocities appeared only in the
backward direction, and their effect is to increase artificially
the velocity of the segment (since the segment velocity is an
average of the velocities of the segment points).
We individually looked at those cases, in order to

determine whether those high velocities where physical
or had their origin on the shortcomings of our algorithms,
and found that the reason for these apparently superluminal
velocities was that the field configuration between the two
monopoles that are about to merge is such that it is
energetically favourable for a new segment to form in
between the two advancing ones. In some sense, a new
segment appears “out of thin air,” such that it seems that the
monopole has instantaneously moved considerably. The
monopole does not pull from the string and creates string as
it moves; instead, a chunk of string is formed and the
monopole makes a jump forward. One way to understand
this is to think about the field dynamics in the plane
orthogonal to the string that is about to form (see [55]).
Consider the extreme case of a z-independent field con-
figuration that is going to become a straight string in the z
axis. Initially the magnetic field in the x–y plane is
dispersed over a relatively large area, so its value is below
the threshold where our algorithm would recognize the
presence of a string, and it is accreting into a smaller area
around the z axis—a region with a lower value of the scalar
field than the surroundings. At some point the magnetic
field grows above the threshold and we see the whole string
appear in a single time step.
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In other words, if the points of windings of ϕ1 and ϕ2 are
almost parallel, it may be favorable for a collection of
points to become part of a string all together. Since our
simulation only takes snapshots every 20 time steps, this
process can remain unnoticed, and the end result is that the
segment has apparently grown superluminaly, whereas the
reality is that a new segment has been formed. This can also
be understood by considering that the newly formed string
segment has its corresponding monopole-antimonopole
pair on its ends. The newly formed monopole (say)
annihilates with the advancing antimonopole, and the
newly formed segment merges with one of the old ones.
It is worth reminding the reader at this stage that we are

not simulating segments and monopoles. We are simulating
fields, and the monopoles and segments are consequences
of them. Thus, a monopole does not really move, but it is
the movement of the fields which leads to the apparent
movement of the monopole. When a new segment forms,
the physics of the fields is causal, but the consequence may
seem to be a monopole moving ultrarelativistically, when,
in essence, it is a different monopole.
Figure 5 shows one such situation. The two depicted

fragments belong to segments that were behaving normally
(i.e., not ultrarelativistically), until they got ready to merge.
When they get close to each other, the dynamics of the
fields leads to the merging as soon as possible: segment
ends grow by creating small segments in the ends, and even
in between the segments a new string is formed (shown as
single points in the figure). Our algorithm is not able to
catch these instances, and instead, velocities faster than
light are reported.
The question remains now how to automatically factor

out those instances, which would clearly corrupt the
estimator and give much higher velocities than the true
physical one. Learning from our previous experience on
segment velocities, we apply the following method to
disregard those unphysical velocities: For points that move
very fast (in practice we chose velocities faster than 0.5c),
the velocities obtained by going “forward” (from τ1 to τ2)

and “backward” (from τ2 to τ1) are compared. If the
difference is higher than 50% of the value of either of
the velocities, we disregard it. We have tested that this is
preferable to setting a hard cutoff, because the results clearly
do depend on the cutoffs, and we do not want to artificially
enforce that the velocities be subluminal in case this should
result from the physics. The monopoles associated to these
segment ends are also removed from the analysis.

V. NUMERICAL RESULTS

In this section we report on the results obtained from our
simulations, after carefully accounting for the caveats
described in the previous section.
We first checked that the simulations reached the scaling

regime. Scaling can be checked by the evolution of the
energy of the system, as mentioned earlier, by checking that

T−1=2
00 is linear with time τ. This is a measure that depends

only on the values of the fields as simulated, without further
treatment. We show the scaling on our simulations using
the energy as a measure of scaling in Fig. 6.
There are also two other diagnostics for scaling that

depend on the total length of string L and the total number
of monopoles N . One can obtain a VOS-type length scale

by the following combinations
ffiffiffi
V
L

q
and on ðVN Þ1=3. These

quantities are derived, meaning that one has to extract this
information from the simulation using estimators, and
therefore, in some sense, they are more indirect than using
the energy to check for scaling. We show the behaviour of
these quantities in Fig. 7 for two extreme cases (radiation
and β ¼ 0.04) and (matter and β ¼ 0.35). These curves
show that the system does indeed reach scaling fairly early.
The slope of the curves related toL andN is what was used
above Eq. (14) to determine the VOS-type scaling param-
eters. The values of γL and γN can be found in Table II for
every β studied.
One of the main results in this work is the values of the

velocities of the semilocal network, both for strings and for

FIG. 5. In this figure we show the merging of two string segments, in what our algorithm would report as ultrarelativistic velocities.
Initially the separation between both string-ends is d ¼ 30 and in less than Δτ ¼ 10 both segments have merged. This process can be
understood as small string segments being formed both close to the string ends, as well as in between both strings (depicted by those
single points in between strings).
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monopoles, using our different estimators. In Table III we
show the velocity values for every β in the radiation and
matter dominated epochs obtained by following the posi-
tions of each string segment and monopole, and averaging

over all cases (the errors given are statistical errors).
Overall one can see that the velocities in radiation are
somewhat higher than the velocities in matter, as expected
due to a lower damping term in the former epoch. More

FIG. 6. This figure shows that our simulations reach a scaling regime for all β. The left panel shows the case of radiation domination,
the right panel the case of matter domination.

FIG. 7. Scalings in total string length and monopole number for β ¼ 0.15 in radiation era (left) and for β ¼ 0.35 in matter era (right).

TABLE III. Average velocities for segments (vL) and monopoles (vM) obtained by following the positions of the
segments and the monopoles during the simulation. The errors are statistical errors obtained by averaging. The
velocities in radiation are noticeably higher than in matter, but there does not seem to be a strong dependence on β
for the velocities.

Radiation Matter

β vL vM vL vM

0.04 0.345� 0.010 0.574� 0.010 0.266� 0.010 0.505� 0.010
0.09 0.338� 0.010 0.583� 0.010 0.265� 0.010 0.510� 0.010
0.15 0.337� 0.010 0.600� 0.012 0.262� 0.011 0.509� 0.010
0.20 0.337� 0.010 0.591� 0.010 0.260� 0.010 0.519� 0.010
0.25 0.337� 0.010 0.591� 0.010 0.261� 0.010 0.520� 0.010
0.30 0.342� 0.014 0.596� 0.010 0.259� 0.010 0.524� 0.010
0.35 0.337� 0.013 0.600� 0.012 0.262� 0.011 0.521� 0.012
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interestingly, there does not seem to be a strong depend-
ency of the velocities on β; indeed, note that all these values
are equivalent within their statistical errors.
In Table IV we show the velocities obtained by local field

estimators, cf. Eq. (11). Note that these estimators do not
distinguish between strings and monopoles, and give one

number for the average network velocity for semilocal
strings as a whole. Once again, we obtain that velocities
during radiation are faster than in matter; and we also note
that both local field estimators give equivalent velocities. In
this case there seems to be a trend, and velocities seem to
decrease for increasing β.
The procedure of following the positions of the string

segments and of the monopoles does not only yield a
network velocity, but it also allows us to obtain the velocity
of each segment and monopole. We can thus follow the
history of each segment and monitor whether they merge
with other segments, disappear, or just continue to evolve in
the network. This is very interesting information from the
point of view of the VOS model, because we can now tell if
there is a correlation between string segment size and its
velocity, for example.
In the subsequent figures we only report the results for

β ¼ 0.04 and radiation domination. The situation with
other β and matter domination is analogous; figures for
other values of β are provided as Supplemental Material
[56] to this paper. The choice of β ¼ 0.04 to show the
results in the main body of the paper was made since the

TABLE IV. Velocities obtained from local field estimators,
Eq. (11), for all β and radiation and matter dominations.
Velocities in radiation domination are higher than in matter
domination. Now there is moderately robust statistical evidence
that the velocity of the network decreases for increasing β.

Radiation Matter

β vF vG vF vG

0.04 0.57� 0.02 0.55� 0.02 0.41� 0.01 0.41� 0.01
0.09 0.57� 0.02 0.56� 0.02 0.42� 0.01 0.41� 0.01
0.15 0.55� 0.02 0.55� 0.01 0.41� 0.01 0.41� 0.01
0.20 0.53� 0.02 0.53� 0.02 0.40� 0.01 0.40� 0.01
0.25 0.51� 0.02 0.51� 0.02 0.39� 0.01 0.39� 0.01
0.30 0.49� 0.02 0.50� 0.02 0.38� 0.01 0.38� 0.01
0.35 0.47� 0.02 0.48� 0.02 0.36� 0.02 0.37� 0.02
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FIG. 8. This plot shows the distribution of segments with respect to velocity for simulation in radiation domination and β ¼ 0.04 for
all seven simulations. Each point represents a segment in the network, where in the x-axis the length of the segment divided by time is
shown and its velocity in the y-axis. This is the case where segments flow through the network, i.e., they do interact with any other
segment in the next time step.
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FIG. 9. This figure is similar to Fig. 8, but in this case the segments that are plotted are those that mergewith other segments before the
next time step.
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number of segments for this β is higher, and thus the
different phenomena can be more easily appreciated.
We show in Figs. 8 and 9 the velocity versus length

distribution for some time steps. In these figures, each point

corresponds to a segment, and these are distributed accord-
ing to their length divided by time (x axis) and velocity
(y axis) for three different times (τ ¼ 116, 176, 236). These
segments have been divided into two groups according to
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FIG. 10. These histograms show the distribution of the segments during the network evolution for β ¼ 0.04 in the radiation dominated
era for all seven simulations, where the segments are binned in 10 bins with uniform width. The top panels show the fractional
distribution of the number of segments n with their lengths divided by time, whereas the bottom panels show the analogous distribution
for the total lengths divided by time Ln=τ. The colors represent different types of segments, depending on their future behaviour: in blue
segments which are flowing, in green segments that aremerging and in yellow segments that are collapsing before the next time-step. We
write arrows to remark that in those instances, there are a few (one or two) segments in that bin, which are hard to see in the top panels,
but can be seen in the bottom ones. Note that in the last time step we have no information whether the segments will flow, merge or
collapse, so we just choose to show them as flow segments.
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their behavior in the next time step: On the one hand, in
Fig. 8 we plot the segments which do not interact with other
string segments in the next time step, i.e., segments which
flow through the network. On the other hand, in Fig. 9 we

show the segments that do merge with other segments
before the next time step.
It is worth mentioning that the points are scattered

around a central value, which is roughly the same for all
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FIG. 11. These histograms show the velocity v distribution of the segments (top) and monopoles (bottom) during their evolution, for
radiation and β ¼ 0.04. The velocities are binned in 10 bins with uniform width. The color code is analogous to that of Fig. 10: blue
corresponds to strings that do not interact with other strings before the next time step (flow), green is for strings which merge with other
segments and yellow is for strings that disappear before the next time step because the segment collapses. Note that in the last time step
of segment velocities we have no information whether the segments will flow, merge or collapse, so we just choose to show them as flow
segments. Note also that unlike in the segment case, where the velocity has been calculated forward and backward, for monopoles we
have only calculated the velocity forward, and therefore we do not have information to compute the velocity at the last time step.
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times and all lengths, specifically v ∼ 0.35. The scatter is
larger around short segments, mainly because there are
many more short than long segments. This is rather clear in
the flow case, because there are more segments in this case
than in the merge case; though we could say that this is
generic for all cases.
This information can be shown also, maybe in a more

compact way, in the form of histograms; these are in some
sense the marginalized distribution functions of Figs. 8
and 9. For example, in the top panel of Fig. 10 we show the
distribution of the lengths divided by time of the number of
segments during the evolution for β ¼ 0.04 in radiation
domination. The segments are binned in 10 bins with
uniform width, and we show together three cases: in blue
we depict the segments which are flowing, in green the ones
that are merging and in yellow we show the segments that
collapse. Remember that those behaviors are determined
only for the reported time step, i.e., a segment that flows at a
given time-step can be merging on the next one. Note that
in the last time step we have no information whether the
segments will flow, merge or collapse, so we just choose to
show them as flow segments. In the bottom panel we show
the same histogram, but instead of showing the number of
segments in each bin, we also account for the length-
per-time of the strings; we add up the total length-per-time
of the segments in each bin, and show that length-per-time
in each bin.
The histograms with information about velocities can be

seen in Fig. 11. The top panel shows the distribution of
number of segments per velocity (for β ¼ 0.04 in radiation
domination, as before). The bottom panel shows the
corresponding distribution for monopoles. These velocities
are computed instantaneously, i.e., they are the velocities
obtained by measuring the distance traveled by monopoles
between two adjacent time steps (not by averaging over the
whole history of the monopole). Note that there is no

information for time τ ¼ 256 because we have no “next
time step” to compute the velocity with. The color code is
the same is in the previous figure: in blue we depict the
strings (segments or monopoles, correspondingly) which
are flowing, in green the ones that are merging and in
yellow we show the strings that collapse before the next
time step.
The histograms are consistent with a scaling behavior of

the segment distributions. The length distributions show
that, logically, only short segments collapse before the next
time step. However, mergings happen for all string lengths.
There is no preference on the velocity of the collapsing
segments: there are collapsing segments with a wide variety
of velocities. The velocities follow approximate Gaussian
distributions, centered in the average velocity, correspond-
ing to the velocities of Table III.
The monopole velocity histograms also show a (wider)

Gaussian-like distribution, with instances in which monop-
oles approach v ¼ 1 (though this may be an artefact of our
algorithms, as explained in Sec. IV C). It is easy to
convince oneself that the averages of these velocities agree
with the ones in Table III. It is worth noticing that the
velocities of monopoles that are about to annihilate are
rather high: most of the times they are higher than the
average velocities of the segments. Therefore, even though
the segment velocities for collapsing segments show no
evidence of a bias, the monopole velocities do. This could
be understood by realizing that the monopole velocity only
takes into account the string-ends, whereas in the segment
velocity, the whole segment contributes, and apparently
only the segment ends get high velocities in collapse.
Finally, it is interesting to investigate what the pattern of

merging of different segments is. In order to do so, we
chose one of the largest segments at the last time step for
β ¼ 0.04, and traced back its history to see what were its
“constituents.” This information can be found in Fig. 12, in

FIG. 12. The “family tree” of a segment for β ¼ 0.04 in radiation. The number inside the box denotes the length of each segment, and
time runs upwards.
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the form of a “family tree.” This shows that at very early
times, many mergings happen. This does not mean that
many segments have joined at the same time; most likely
the segments have been joining by pairs, but our choice of
time steps to measure the network is too coarse to
distinguish all these mergings. The sum of the length of
the constituents does not match the final segment; clearly,
this is because segments can grow or shrink in their
evolution. Also, there are some segments that remain quite
solitary for most of their life. This exercise of following the
family history of a segment highlights once more the
complicated dynamics of semilocal string networks.

VI. CONCLUSIONS AND DISCUSSION

In this work we have further investigated the evolution of
networks of semilocal strings using field theoretical sim-
ulations. We have estimated the length and velocity of the
semilocal strings (including the string ends, which can be
understood as global monopoles) using different estima-
tors, coming from both direct field theory based diagnostics
and from identifications of the position of the strings. As
well as characterizing the network of defects, these mea-
sures are indispensable to obtain a VOS-type effective
model for semilocal strings. Before this work, the velocities
of semilocal strings (both as a network and as individual
segments, as well as the monopoles) were unknown.
The VOS-type length estimators for string segments and

monopoles (14) can be found in Table II. These values had
already been computed in a previous work [36] using a
different technique. In [36] the semilocal string segments
were defined as collections of adjacent points with a
magnetic field higher than some threshold, and that volume
of points was divided by an estimate of the cross section of
the strings to get a length. In this work we repeated this
analysis and compared it to the new length estimator, which
is based on following the points with windings in the
simulation. We found that these two length estimators do
not match, and that there is roughly a factor 1.5 difference
between the two length estimators. We identified the source
of error as a numerical error on the estimation of the string
cross-section, and therefore the values for the length
estimators that we obtain in the present work can be
considered as corrections to the ones in [36]. However,
the differences obtained lie within the 1-σ uncertainties. It
should also be noted that the length corresponding to the
monopoles γN is roughly equivalent in both works, since
the number of segments (monopoles) does not depend on
the error corresponding to the cross-section of the strings.
One big advantage of being able to characterize the

semilocal strings by the points (plaquettes) with winding is
that we get a one-dimensional description for the position
of the strings. This allows us to follow string segments
and monopoles throughout the simulation, map their
history, and get an estimate on the velocity. Table III shows
the values of the network velocities for segments and

monopoles in the radiation and matter eras, for all values of
β under study. The velocities for radiation domination are
higher than the corresponding velocities in matter domi-
nation, for all β. It is worth pointing out that there is little
dependence on β for these numbers, especially for the
velocity of the segments.
The velocities can also be estimated using field-theoretical

estimators of Eq. (11), and the result can be found in Table IV.
The velocities obtained with both local-field estimators agree
with each other, and as in the previous case, the velocities in
radiation are higher than in matter. These values obtained
from the field-estimators are somewhat different from the
ones obtained from the positions of the defects. In fact, the
field estimators do not distinguish between strings and
monopoles, and they give a single number for the whole
network. Unsurprisingly, in all cases the values lie in between
the velocities of strings and monopoles.
Contrary to the velocities obtained from the positions,

the values in Table IV show a trend with β. One cannot but
speculate that this difference is the result of several factors
in the simulation box: the ratios of densities of strings and
monopoles depend on β (for lower β strings are longer), the
tension of the strings (for lower β strings are lighter), the
tendency of strings to collapse or merge... Moreover, it has
been noted before that the estimation of defect velocities
using directly the position of the defects underestimates the
velocities [26,45,52], and the reason for this is not
completely clear.
Even though there are some discrepancies in the values of

thevelocities, one huge advantage of being able to follow the
positions of the strings is that we can obtain the history and
the velocities for individual segments. Figures 8 and 9 show
the scatter plot of segment length versus segment velocity,
for cases when the segments do not interact with other
segments in the following time step, and for cases where the
segments merge with other segments, respectively.
It was somewhat surprising to see that the values of the

velocities where scattered around a central value for all
values of the length of the strings. In other words, we found
no correlation between the length and the velocity of the
segments. This is a hint that the VOS effective model may
need to be revisited to take this into account, also in view on
the recent revision of the VOS model for monopoles in
[35]. Moreover, one could have wondered whether it is
more preferable for short segments to collapse and for
longer ones to merge. These plots show that mergings
happen for all segment sizes, not only for longer ones.
The histograms where the length of the strings per bin

are depicted (Fig. 10 bottom) show that actually most of the
string length is not in the shortest segments; there is more
length in the second and/or third bins. This histogram also
shows more clearly that there are very long segments which
do merge with other ones. This interesting behavior is also
shown in the family tree-like figure Fig. 12. There we can
see many mergings at the beginning of the simulation, then
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some quiet period, before mergings happen also toward the
end of the simulation. The lengths of the segments that take
part in mergings are very varied, and there is no correlation
between segment size and their future behavior.
Monopole velocities show, however, that segments that

are going to collapse do it generally at somewhat higher than
average velocities. The distribution is not so clearly
Gaussian; there is more noise, and some monopoles are
very fast. One has to be cautious here and remember all the
caveats we have to overcome to obtain velocities of seg-
ments. The instances where monopole velocities were very
close to unity (and sometimes seemingly faster than that) are
due to the merging/collapsing of segments, and the short-
comings of our algorithm or interpretation of those events.
One of the most challenging aspects in this work has

been, actually, the correct estimation of the velocity of
segments and monopoles close to mergings. The naïve
estimators of velocity gave instances of extremely high
velocities. After we corrected for the obvious caveats (such
as trying to get the velocity of a segment that had collapsed
by trying to find the collapsed segment in the next time step
and obviously failing) many of those very fast segments
disappeared. But there were still some cases where the
velocity was too high, higher than what one would naively
expect from the causality of the field equations, and from
what the field-estimators for velocities were showing.
The reason for this apparently superluminal behavior is

that, close to segment mergings, if the field configuration is
favourable, new string segments appear “out of the blue.”
This is not a case of a monopole moving toward an
antimonopole and creating string as it evolves; it is rather
a new segment appearing, and giving the illusion of a very
fast movement of the monopole/segment (in some sense,
the far end of the string is a new monopole altogether, and
the old monopole has annihilated with the newly formed
antimonopole). This behavior is completely consistent with
causal dynamics; it is the effect of the magnetic field
accreting to form the new string segment. It has been
studied in two-dimensional simulations in [55,57] and is
also seen in the case of a global monopole whose cores are
pinned down while letting the radial field gradients bunch
into a string-like region that subsequently decays and
disappears, taking the monopole with it [58–60].

Some of our conclusions are expected to be relevant for
the VOS analytic model for semilocal strings. In particular,
our results suggest that—unlike in the Abelian Higgs case,
where smaller loops are faster—the velocity of semilocal
segments is relatively insensitive to the size of the seg-
ments. Also, if we assume that network velocities are
subluminal, the effective model has to account for the
possibility of segments growing out of thin air, because
otherwise the speed at which segments merge and collapse
may be underestimated.
This work on the characterization of semilocal strings

has highlighted even more how rich the dynamics of this
model is, and how complicated the life of a semilocal
network can be.
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