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66 CHAPTER 5. MODELING & SIMULATION OF 3G AIR INTERFACE LOAD

This chapter outlines the approach developed together with the Radio Network
Strategy and Design department of T-Mobile Netherlands, part of the Deutsche
Telekom group, in order to forecast the Air-Interface load in their 3G network, which
is used for planning network upgrades and budgeting purposes. It is based on large
scale intelligent data analysis and modeling at the level of thousands of individual
radio cells resulting in 30,000 models produced in one day. It has been embedded into
a scenario simulation framework that is used by end users not experienced in data
mining for studying and simulating the behavior of this complex networked system,
as an example of a systematic approach to the deployment step in the KDD process.
This system was a part of a standard business process in T-Mobile Netherlands for
more than two years. This operator became a competence center for predictive
modeling for micro-simulation of 3G air interface load for three other operators
of the Deutsche Telekom group. A similar approach, based on different network
parameters was also developed by the operator for 4G networks.

5.1 Introduction

This chapter reports on a deployed data mining application that has been developed
by one of the largest European telecom operators and has been in continuous use for
more than two years. In order to accommodate the continuing strong increase of mo-
bile internet traffic, the operator’s Radio Network Department had to continuously
monitor and upgrade the 3G Radio Access Network. This required an Air-Interface
load forecast for every radio cell in the network, including indications of denial or
interruption of delivering service. However, such a detailed forecast was not readily
available. Furthermore, there was a need to simulate different scenarios for different
parts of the network. Given the complexity of the problem, the dimension of the net-
work and the repetitiveness of the task, a manual approach was out of the question.
Hence, the research question for this chapter is:

How can data mining be used to predict 3G mobile network interface load and simulate it
under different scenarios?

In this chapter we present a fully automated approach that generates multi-
variate linear regression models on a grand scale, using primarily open source tools.
The key business benefit of this research is that it solved a very complex and high
impact business problem that could not be approached by using general planning
approaches.

Traditional approaches for mobile network load forecasting have a number of
practical issues. These are most often analytical or Monte Carlo based approaches
(Méder and Staehle, 2004). The load formula used is typically a general purpose
analytical model, derived from physics knowledge and theory rather than from
modeling on actual data, let alone being based on data from a specific operator.
Furthermore, the inputs required are difficult to measure and forecast, or do not relate
to changes in customer behavior such as call usage, which is easier to understand and



5.1. INTRODUCTION 67

use for scenario purposes. Our approach makes it easier to translate customers and
their usage into network load. To our knowledge, this is the first time a data mining
approach has been used for Air Interface load prediction of a 3G mobile network.

In terms of business benefits, the exact return is confidential, but cellular network
infrastructure forms a major part of an operator’s investment budget, and this is a
key system for tactical and strategic network investment decisions. In the group
where this operating company belongs, up to 50% of wireless CAPEX investments
are going into the radio access. For reference, operators worldwide invest more than
20 billion USD into cellular network infrastructure. Our methodology is first and
foremost intended to ensure that capacity is added in time and at the right place,
thus avoiding inefficient investments and poor customer experience due to traffic
congestion, which can ultimately lead to churn. Last but not least, Internet access is
recognized as a right by law in several countries, as a part of the rights to Freedom and
Expression of Opinion. By adding capacity at the right places, operators provide a
valuable social service, given the growing importance of communications and social
media in everyday life. This is a data mining application in telecommunications that
does not raise the usual privacy concerns; on the contrary it serves a social function
by mediating high quality internet access.

An early version of our approach has been published in Radosavljevik, van der
Putten and Kyllesbech Larsen (2012). Since then, our system has been rolled out
in full use in T-Mobile Netherlands, the operator where it was developed. None
of the other operator companies in the Deutsche Telekom group used a similar fine
grained approach. Therefore, a more universal approach applicable to the other
operators, too had to be developed. This involved dealing with complexities such
as different network equipment vendors using different performance management
systems and lack of certain measurements we have introduced in Radosavljevik et al.
(2012). Nevertheless, the results of our new approach were very positive. Hence,
this operator became a competence center for predictive modeling of 3G Air Interface
load and it was performing this task for operators of the same telecommunications
group in four countries.

Whilst the core intelligent data analysis algorithms used were not novel, we
applied these on a large scale by modeling individual radio cells across a variety of
dimensions (Section 5.3 motivates why we modeled at cell level). This has also been
embedded into a simulation framework targeted at non-data miners using tools they
are familiar with to enable them to run low level simulation scenarios. Hence, the
goal is to provide a case example of an embedded, deployed intelligent data analysis
system, dealing with real world aspects such as scale and having major business
impact. Extensive simulations have been carried out by the operating companies
using the system, and also novel use cases for scenario simulation analysis have been
developed and applied.

As discussed, the technical novelty is not determined by the complexity of the
base estimators used. We used simple linear regression models as data inspection
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has shown that the behavior to be predicted is primarily linear, and experiments
confirmed that complex algorithms actually performed worse given the high variance
associated with these models. This is not uncommon in real world data mining
problems (van der Putten and van Someren, 2004). What makes this problem out
of the ordinary is the massive number of models. For each of cell in the network
we create four models to predict different kinds of outcomes, resulting in a total of
30,000-100,000 models, depending on the amounts of cells in the network. Model
parameters are estimated using ten-fold cross validation, which increases the number
of models estimated to over 1 million. This process is repeated on a regular basis,
given that the customer base and behavior, as well as the cellular network itself
change constantly.

Finally, we did not just deploy the forecasted loads. The underlying regres-
sion formulas were provided by the data miners to the end user analysts as simple
spreadsheets, which enabled them to tune various simulation and forecasting scenar-
ios without further involvement from the data miners. This turned out to be not just
a practical benefit, but a major opportunity for the business as a range of simulation
use cases were explored that were not envisioned by the data miners up front.

We think that this approach, including the concept of decoupling data mining
from forecasting and simulation processes, can easily be replicated and applied to
problems from other industries. Examples of this are problems that require similar
predictive models and simulation of networked systems on a large scale, such as for
instance sensor networks, retail outlet planning, supply chain logistics and revenue
predictions for products with a complex billing process (which we have already
applied, see chapter 6).

The rest of the chapter is structured as follows. Section 5.2 describes the load
parameters. Section 5.3 discusses the complex nature of network load and how to
approximate it, including our motivation for modeling at the granular cell level.
Section 5.4 describes the construction of the load formulas and forecasting of future
network load using simulation, as well as other simulation scenarios. Limitations
and future work are discussed in Section 5.5. Finally, we present our conclusions in
Section 5.6.

5.2 Defining the Load Parameters

In this section we will describe how we measured the load for a cell, plus the underly-
ing attributes that we used to predict future load. Both output and input parameters
were measured per individual cell per hour.

5.2.1 Output Parameters

The communication between a network site/tower (radio network element that pro-
vides access to the mobile network) and a user’s mobile device is separated into
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downlink communication- directed from the site to the mobile device and uplink
communication- directed from the mobile device to the site. Each physical site con-
tains radio antennae that typically create three geographic cells of the mobile network.
These cells share the physical resources of the network site.

Therefore, the Air-interface load for a cell consists of the Downlink Load (DL)
and Uplink Load (UL). Multiple measures of both DL and UL can be devised. A
cell is considered to be in overload if either the uplink or the downlink load is above
a certain threshold. When a cell is in overload, customers demanding its radio
resources cannot be served adequately. Obviously, all network sites containing cells
in overload require an adequate upgrade.

Most of the background literature on telecom networks is related to network opti-
mization or load control rather than load prediction (Geijer Lundin, Gunnarsson and
Gustafsson, 2003; Muckenheim and Bernhard, 2001; Natalizio, Marano and Molinaro,
2005; Yates, 1995). In our previous research (Radosavljevik et al., 2012) we used the
following measurements of load as output parameters: Count of RAB (Radio Access
Bearer) Releases Due To Interference (Yates, 1995), Average Noise Rise (Geijer Lundin
et al., 2003) and Average Noise Rise on Channels Dedicated to Release 99 Capable
Devices (refers to lower data transfer speed up to 384 Kbps). Two additional uplink
measures were considered: Count of RAB (Radio Access Bearer) Setup Failures and
Count of RRC (Radio Resource Control) Setup Failures. These measurements were
discarded at later stages of the process due to a very low number of models that
could be generated because of too many zero-values.

In Radosavljevik et al. (2012), we used the following parameters as measures
for downlink load: Percentage of Consumed Downlink Power (Muckenheim and
Bernhard, 2001) and Count of “No Code Available” Situations (Natalizio et al., 2005).

However, some of these measures were specific to Nokia Data Warehouse (Nokia
Siemens Networks, 2008), a performance management tool deployed at T-Mobile
Netherlands where our research originated, or were not measured by other operators
that were looking to use our system. Therefore, we used universal measurements,
which are applicable to performance management systems of other vendors, such
as Ericsson (Ericsson, 2013), Huawei (Huawei, 2013) or MyCom (MyCom, 2013).
Therefore, in our new approach we picked measurements that are both compliant
to the 3gpp Mobile Broadband Standard (3gpp, 1999) and universally defined and
measured across the operators which are part of the Deutsche Telekom group.

Percentage of Uplink Load, also known as UL Carrier Load Percentage (3gpp,
1999) is the ratio between the total received power level on that carrier and the
maximum acceptable level of interference.

1

MeanRTWP-MinRTWP )
10 10

UL_LOAD =100+ (1 — (5.1)

where MeanRTWP is mean Received Total Wideband Power per cell; MinRTWP is
minimum Received Total Wideband Power per cell, used as the noise floor. In other
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words MeanRTWP is mean of the power assigned to users, while MinRTWP is the
power measured when no users are using cell resources.

Percentage of Downlink Load, also known as DL Carrier Load Percentage (3gpp,
1999) is the ratio between the total transmitter power level on that carrier and the
maximum acceptable transmitter power.

MeanTCP—MaxTxPower

DL_LOAD = 100 % 10"~ 0" (5.2)

where MeanTCP is mean Total Transmitted Power per cell; MaxTxPower is maximum
transmit power of the cell. In other words MeanTCP is mean of the power assigned
to users, while MaxTxPower is the cell power capacity.

We used two additional measures for downlink load, based on code capacity,
namely Code Utilization and Count of "No Code Available” Situations. Each cell has
256 codes that can be assigned to a mobile device for a voice call or a data session.
The higher the downlink bandwidth required, the higher the number of codes will be
assigned. For example, voice calls require 12.2 Kbps (translates into 2 codes), while
Data Sessions can require up to 14.4 Mbps (which would consume all the codes of
that cell).

Code Utilization Measures the fraction of codes used vs. codes available at the
cell. It is averaged over an hour.

Count of "No Code Available” Situations -After all the codes have been assigned,
the next device that requests a code from the cell, gets a “no code available” message
and cannot use the cell resources. This variable measures the count of occurrences of
this message per hour, and will be abbreviated as NCA.

5.2.2 Input Parameters

In Table 5.1 we provide a list of input parameters, as well as the description for each
parameter we used for modeling. All these variables are measured per hour. Even
though we included input parameters related to voice services, most of the input
parameters are related to consumption of data services, because they require more
cell resources. Forecasts for future values of the input parameters were available at
the operator. In our earlier research on this topic (Radosavljevik et al., 2012), we used
additional measures from the network management tool Nokia Data Warehouse.
However, due to constraints mentioned in Subsection 5.2.1, namely different perfor-
mance management tools from different vendors, not all of these could be measured.
Therefore, in comparison with our previous research, we reduced the input parame-
ter set by excluding the following measures: Average Soft Handover Overhead Area
(measures the intersection of coverage of the particular cell with other cells), Average
Proportion of Voice Traffic originated in that cell (as opposed to traffic originated in
other cells and handed over to that cell), Average Proportion of Data Traffic orig-
inated in that cell, Average Voice Call Users, Maximum HSUPA users, Maximum
HSDPA users and Total Active RABs, as they could not be measured.
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Table 5.1: List of Input Parameters

Variable

Description

Average Count of Release 99 Up-
link users

Average number of users that consumed uplink cell resources
on a R99 capable device (up to 384 Kbps).

Average Count of Release 99
Downlink users

Average number of users that consumed downlink cell resources
on a R99 capable device (up to 384 Kbps).

Average Count of HSUPA users

Average number of users that consumed uplink cell resources
on a HSUPA (High Speed Uplink Packet Access) capable device
(up to 5.76 Mbps).

Average Count of HSDPA users

Average number of users that consumed downlink cell resources
on a HSDPA (High Speed Downlink Packet Access) capable de-
vice (up to 14.4 Kbps).?

Count of RRC attempts

Radio Resource Control (RRC) attempts are related to the signal-
ing exchange between the mobile device and the network cells.
There can only be one RRC connection open per mobile device
at a time.

Count of Data Session RAB At-
tempts

Radio Access Bearer (RAB) is necessary to be assigned to a user
in order to make voice call or a data session. Multiple RABs can
be assigned to the same device. This variable measures the RAB
attempts (not necessarily successful) for a data session in a cell
in an hour.

Count of Voice Call RAB At-
tempts

This variable measures the RAB attempts (not necessarily suc-
cessful) for a voice call in a cell in an hour. It is the only variable
that addresses usage of voice services exclusively.

Average Downlink Throughput

Average per hour of the sum of downlink bandwidths consumed
by all users served by the cell.

Average Uplink Throughput

Average per hour of the sum of uplink bandwidths consumed
by all users served by the cell.

71

2 Most of the current mobile devices are HSDPA capable. Theoretically, even higher speed scan be
achieved for both HSUPA and HSDPA. But, an HSDPA device can also be assigned to a R99 downlink
(slower) channel, if there are no HSDPA cell resources available.



72 CHAPTER 5. MODELING & SIMULATION OF 3G AIR INTERFACE LOAD

5.3 Approximating the Load

Traditional approaches for mobile network load forecasting are most often analytical
or Monte Carlo based approaches (Mdder and Staehle, 2004). However, the inputs
required are difficult to measure and forecast, or do not relate to customer behavior
such as call usage which is easier to understand and use for scenario purposes.

Most of the data mining literature on load forecasting is related to electrical
networks. A good overview is presented in Feinberg and Genethliou (2010). Various
methods have been deployed for this purpose: regression models, time series, neural
networks, expert systems, fuzzy logic etc. The authors state a need for load forecasts
for sub-areas (load pockets) in cases where the input parameters are substantially
different from the average, which is a case similar to different cells in a mobile telecom
network.

Related to mobile telecommunications, data traffic load (which is different than air
interface load) focusing on a highly aggregated link has been forecasted in Svoboda,
Buerger and Rupp (2008), comparing time series (moving averages and dynamic
harmonic regression) with linear and exponential regression. Also, Support Vector
Regression was used by Bermolen and Rossi (2009) for link load prediction in fixed
line telecommunications.

In order to forecast the future load for each cell in the network, it is necessary to
understand the relationship between the input parameters (causing the load situa-
tion) and the current load. The input parameters in case of the Air Interface load are
all parameters which can be made accountable for the load situation in the cell (Sec-
tion 5.2). Therefore, the load parameter (output) can be expressed as L = f(x1, x2,, X,).
Ideally, the load of each cell x in a given time could be expressed as the sum of all
users consuming resources of that cell at the particular time multiplied by the amount
of resources they use plus the interference between that cell and all the other cells in
the network (in practice limited to the neighboring cells):

m n Z
L(x) = Z Z User; = Resource; + Z inter ference(x, ) (5.3)

i=0 j=1 y=1

where m is the count of users that are using the resources of cell x, n is the count of
resources of the cell x, z is count of all cells in the network and interference(x, y) is the
interference measured between cell x and y. Unfortunately, there was no tool that
would provide such a detailed overview.

In order to approximate the load function, we recorded the different load param-
eters (outputs) and input parameters described in Section 5.2, on an hourly basis
during 1,5-8 weeks, depending on the operator. This provided approximately be-
tween 200 and 1,000 instances per cell or 20,000,000 instances in total on a network
of 20,000 cells.

One of the choices to be made was whether a distinct formula for every cell shall
be built or - alternatively - a common formula valid for all cells should be used. The
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Figure 5.1: Actual Load vs. Linear approximation

approach where a model is created for each cell was chosen, due to the network
experts’ conviction that each cell is different, and a unified approach simply would
not work, because some of the parameters influencing the load of each cell were
immeasurable and unpredictable.

Next, the domain experts were intrinsically interested in being able to model
cells that actually do not behave like other cells, especially when these are highly
loaded. Furthermore, there would be a challenge in normalizing with respect to the
varying capacity of the cells, i.e. what where the cell sized to handle. Finally, we
hypothesized that not just model parameters could differ by cell, but also the optimal
selection of features, similar to the concept of load pockets explained by Feinberg
and Genethliou (2010).

The choice of linear regression (Witten and Frank, 2005) was made due to several
reasons. First of all, even though the distribution of the values of each of the load
measures we were trying to predict varied between close to linear and close to
exponential, we were only interested in the higher values of the load curve, and
this can be approximated quite well with linear regression, as shown on Figure 5.1.
For this purpose, before constructing the regression formulas, we removed all zero
instances. Furthermore, linear regression is a very fast algorithm compared to other
methods, which is very useful when it is necessary to develop a large number of
models in a short time. Even though it is imaginable that better results might be
achieved by using non-linear regression, regression trees, or other algorithms, this
might not be necessary in most cases (Figure 5.1).

Also, simple low variance methods such as linear regression frequently perform
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much better in practice than more complicated algorithms, which can very often
over fit the data (e.g. high variance algorithms such as neural networks). In other
words, in real world problems variance is typically a more important problem than
bias when it comes to data preparation and algorithm selection (van der Putten and
van Someren, 2004). Trials on a smaller sample were already made with regression
trees, but apart from the visibly increased time consumption, the accuracy did not
improve. On the contrary, in some instances it decreased.

Last but not least, linear regression is easy to implement, easy to explain and its
results and models are easy to export for other use. Exporting the models to Excel
was of crucial value, as analysts would use them in order to predict the future load of
each cell, by scaling the input parameters, based on internal forecasting models. In
other words, this allowed non data miners to simulate future network load based on
changes in the various types of network traffic, using simple tools they are familiar
with.

5.4 Building the Load Formulas

In this section we will describe how the models were being generated and put to
work. This includes the tools that were used, a detailed description of the approach,
the results of this mass modeling process, the process of forecasting the future load
and additional simulation scenarios.

5.4.1 Tools

The tools used in this research are either open source, or can be found in the IT
portfolio of any telecom operator. These are the following.

Radio Network Performance Management System. As stated above, this re-
search was using data from four different operators of the Deutsche Telekom group.
Most of them had radio networks produced by different vendors, which meant that
also different Radio Network Performance Management Systems were used for data
collection of both the input and the output parameters. In this research, we used Per-
formance Management Systems of Nokia (Nokia Siemens Networks, 2008), Ericsson
(Ericsson, 2013), Huawei (Huawei, 2013) and MyCom (MyCom, 2013), depending
on the operator. These software tools were already a part of the Network/IT infras-
tructure of the operators. They contain technical parameters related to the mobile
network performance. The most important feature of these tools for our research
was that they contained hourly aggregates of all the input and output parameters we
used (Section 5.2). These are the only domain specific tools from our process.

Load Prediction and Simulation Data Mart. This is an Oracle Database 10g-
64 bit v10.2.0.5.0 (Oracle, 2011) used for all our task specific data preparation and
manipulation.
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Due to the fact that the necessary input and output parameters were stored at
different tables in the respective Performance Management Systems, we needed a
separate database where we could manipulate the data easier (e.g. merge tables,
create indexes, and build the final flat table). In the case of Nokia Data Warehouse
(Nokia Siemens Networks, 2008) this reduced the duration of the data collection and
data preparation process from two weeks to one day by productizing data collection.
Because we were rebuilding and rescoring models on a continuous and automated
basis, this was a key improvement. Any other database platform (commercial or open
source) could have been used. We opted for Oracle based on license availability.

WEKA 3.6.4 x64 (Hall et al., 2009), an open source data mining platform, was
used for building the linear regression formulas and validating them. Of course, any
other tool capable of deriving linear regression could also be used for this purpose.
That said, our approach showed that even a research focused open source tool like
WEKA can be used in critical commercial settings, at high complexity (e.g. 20.000
cells, 4 models each, around 1000 instances each).

Strawberry Perl for Windows v5.12.3 (Strawberry Perl, 2011) is an open source
scripting language which we used in order to create the script that is the core of this
approach. Our script created WEKA input files by querying the Oracle database,
generated the regression models by executing calls to WEKA, and stored the re-
gression formulas and the cross-validation outputs (Correlation Coefficient, Mean
Absolute Error, Root Mean Squared Error, Relative Absolute Error, Root Relative
Squared Error, and Total Number of Instances used to build the model) in csv files.

MS Excel 2010 (Microsoft Corporation, 2010), part of MS Office 2010, was used
to predict the future load of cells, using the regression formulas created by WEKA
and extrapolations of the input values built using scaling factors based on hand-
set/Internet usage developments (internal to the operator).
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5.4.2 Process Description

A graph of how our approach used these tools to derive and store the regression
models is presented on Figure 5.2. First, the data was extracted from the Network
Performance Management Tools, e.g. Nokia Data Warehouse (NDW). The core of
our approach is a Perl (Christiansen and Torkington, 2003) script that automated the
derivation of regression formulas for each cell. This script executed calls to WEKA
and queried the Oracle Database. It works in the following manner:

1. Get list of cells from the database
2. For each cell

2.1 Run a query on the database to isolate only the data related to that cell (all the
input and output parameters).

2.2 Make separate files for each of the load output parameters
2.3 For each of the load output parameters

2.3.1 Filter out all instances where the load is 0.

2.3.2 Select only relevant variables for the regression formula of that cell, using a
wrapper approach

2.3.3 Build the linear regression formula and store it in a separate file.
2.3.4 Use 10-fold cross-validation to validate the model.

2.3.5 Store the formula, the number of instances used to build the regression
formula, the correlation between the predicted and actual value for load, the
Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) as
reported from the cross-validation.

While generating the models/regression formulas, we used a wrapper (Kohavi
and John, 1997) approach. Wrapper approaches automatically select the best vari-
ables for predicting the outcome, taking into account the algorithm to be used, which
in our case was linear regression.

Wrapper approaches do not necessarily perform better or worse than filter ap-
proaches (Tsamardinos and Aliferis, 2003). Our motivation to use the wrapper ap-
proach was to avoid human interaction with the model building process as much as
possible, which obviously makes the process much faster.

It is worthwhile mentioning that the optimal feature and linear regression model
selection were performed using 10-fold cross validation (Witten and Frank, 2005).
This was done in order to balance between cells with large sample of non-zero
instances and cells with a smaller sample. The reported correlation coefficient, MAE
and RMSE are averages from the 10 repetitions. Using 10-fold cross validation
already provided a good estimate of the accuracies of these formulas. Of course,

1We did not want noisy data. Cells/instances with no load are of no interest.
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we did test them on completely new data sets, not only to confirm the accuracies
achieved, but also to find out when is a good time to update the model. We expect
that updates should be necessary every few months, because of the reconfiguration
of the network, additions of new cells and upgrades to the existing ones.

5.4.3 Results and Discussion

Using this process we were able to run 30,000 regressions per day, by just one click.
This does not necessarily result in 30,000 models, because in some cases it was
impossible to derive a formula due to the large number of instances that were filtered
out for zero load. But, in order to measure the load of a cell, it is sufficient that a model
is generated for at least one output variable. Cases of cells where it was not possible
to generate a model for any of the outcome variables were rare. Furthermore, cells
that did not show any load by the means of the output variables were not of interest
for our problem situation. For practical purposes, we will only present the modeling
results for two of the four output variables we used to describe the air interface load
in Section 5.2. We chose to present the results for the uplink and downlink load. All
tables have the same structure. In the first column we list bands (intervals) of the
output variables Downlink Load and Uplink Load, respectively. The second column
contains the count of cells that fall into the respective bands. The third column
presents the average count of non-zero instances (NZI) in each band. In other words,
it presents the number of instances used to build the regression, because we only
took non-zero output values into account. The fourth column presents the average
Correlation Coefficient (CC) between the predicted and actual values of the variables
in the particular band. These Correlation Coefficients are the result of the 10-fold
cross validation. The last column presents the ratio between the number of formulas
that were generated and the total count of cells in each band. Namely, for certain cells
it was not possible to build the regression because of a very low number of non-zero
instances.

The results of the Regression Modeling for Downlink and Uplink load for four
different countries are shown in Tables 5.2-5.9. In Tables 5.2 and 5.3 we present
the modeling results of T-Mobile Netherlands, the same operator published in Ra-
dosavljevik et al. (2012). However, the operator was still undergoing a full network
swap during our research, which means every cell in the network was either already
replaced or about to be replaced by a new one from a different network equipment
vendor. At the moment of research, this operator was running both networks in par-
allel, which created an additional level of complexity. The results presented in Tables
5.2 and 5.3 are referring to the modeling process on the swapped part of the network
using the new vendor’s equipment. Hence, the total number of cells is smaller than
reported in Radosavljevik et al. (2012). For this reason, and the fact that we are pre-
senting different output variables in this chapter, the results of Radosavljevik et al.
(2012) and these results should not be compared.
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Table 5.2: Regression Modeling Results for Downlink Load (DL) for Country Operator 1

Ave Count of Avg Models Built
Downlink Load Count of Cells & Correlation |vs. Number of
NZI . .
Coefficient Cells
DL<1 642 / / /
1<=DL<5 132 504.2 0.906 99%
5<=DL<10 450 528.5 0.92 100%
10 <= DL <20 2995 507.7 0.914 100%
DL >=20 4120 511.1 0.955 100%
Table 5.3: Regression Modeling Results for Uplink Load (UL) for Country Operator 1
Ave Count of Avg Models Built
Uplink Load Count of Cells gNZI Correlation |vs. Number of
Coefficient Cells
UL<1 643 579 0.254 1%
1<=UL<5 693 513.94 0.536 96%
5<=UL<10 2880 522.06 0.676 100%
10 <= UL <20 3405 516.14 0.756 100%
UL >= 20 718 503.05 0.776 99%

Table 5.4: Regression Modeling Results for Downlink Load (DL) for Country Operator 2

Ave Count of Avg Models Built
Downlink Load Count of Cells g -ounto Correlation |vs. Number of
NZI ..
Coefficient Cells
DL<1 683 / / /
1<=DL<5 2379 155.4 0.777 80%
5<=DL<10 9406 247.9 0.824 96%
10 <= DL <20 4550 271.7 0.846 95%
DL >= 20 1697 284.7 0.872 92%

Table 5.5: Regression Modeling Results for Uplink Load (UL) for Country Operator 2

Ave Count of Avg Models Built
Uplink Load Count of Cells & Correlation |vs. Number of
NZI ..

Coefficient Cells
UL<1 431 172.8 0.554 17%
1<=UL<5 138 247.5 0.649 84%
5<=UL <10 909 273.9 0.565 87%
10 <=UL <20 9649 294.7 0.617 95%
UL >= 20 7816 288.8 0.801 98%
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Table 5.6: Regression Modeling Results for Downlink Load (DL) for Country Operator 3

Ave Count of Avg Models Built
Downlink Load Count of Cells & Correlation |vs. Number of
NZI . .
Coefficient Cells
DL <1 387 / / /
1<=DL<5 2447 142.5 0.854 84%
5<=DL<10 2428 155.9 0.907 95%
10 <= DL <20 2114 175.5 0.935 99%
DL >=20 746 184.6 0.945 100%
Table 5.7: Regression Modeling Results for Uplink Load (UL) for Country Operator 3
Ave Count of Avg Models Built
Uplink Load Count of Cells gNZI Correlation |vs. Number of
Coefficient Cells
UL<1 160 56.6 0.382 11%
1<=UL<5 715 120.6 0.482 77%
5<=UL<10 1909 146.4 0.546 92%
10 <= UL <20 3195 162.4 0.677 98%
UL >= 20 2143 171.2 0.668 96%

Table 5.8: Regression Modeling Results for Downlink Load (DL) for Country Operator 4

Ave Count of Avg Models Built
Downlink Load Count of Cells 8 Correlation |vs. Number of
NZI ..

Coefficient Cells
DL<1 5 952.4 0.449 100%
1<=DL<5 604 949.7 0.705 100%
5<=DL<10 3801 958 0.776 100%
10 <= DL <20 4802 957.9 0.807 100%
DL >= 20 1020 958.2 0.848 100%

Table 5.9: Regression Modeling Results for Uplink Load (UL) for Country Operator 4

Ave Count of Avg Models Built
Uplink Load Count of Cells & Correlation |vs. Number of
NZI ..
Coefficient Cells
UL <1 0 / / /
1<=UL<5 0 / / /
5<=UL <10 674 948.2 0.461 98%
10 <=UL <20 4187 955.5 0.598 100%
UL >= 20 5371 957.2 0.669 100%
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The results can be evaluated by using two criteria: the Average Correlation
Coefficient and the Ratio of The Models Built (the last two columns in Tables 5.2 to
5.9). The Ratio of the Models built for both Downlink Load and Uplink Load grew
alongside the number of non-zero instances for operators in all four countries, which
was to be expected. We chose the Correlation Coefficient because it is a relative
measure and therefore more intuitive than the Mean Average Error or the Root Mean
Square Error. The Correlation Coefficient was also much easier to explain to the
end users than the latter two error measures. As mentioned above, we report the
Average Correlation Coefficient of each load band. The confidence intervals for the
Average Correlation Coefficient at 95% confidence level were not wider than + 0.02
for any operator in any of the Downlink or Uplink load bands, due to the relatively
low standard deviations.

Furthermore, because of the choice we made at the beginning of the research, to
focus on the higher levels of load and eliminate the zero values, the Average Correla-
tion Coefficient between actual and predicted values also grows as the load is higher,
both for Downlink and Uplink Load. In the lowest load bands, the performance
of the models is not good. However, this was of no interest, as these were not the
situations that we were trying to predict. These cells were not likely to be in overload
in the foreseeable future.

However, when analyzing the Average Correlation Coefficient (ACC) between
the predicted and actual values there is a visible difference between Downlink and
Uplink load: The ACC for Downlink Load (Tables 5.2, 5.4, 5.6, 5.8) was much higher
than the ACC for Uplink Load (Tables 5.3, 5.5, 5.7, 5.9). Uplink Load seems more
difficult to predict using linear regression. There are two possible reasons for this: A
crucial input parameter (predictor) may be missing; or the Uplink Load has less of a
linear nature.

Last but not least, model performance across operators cannot be compared due
to differences in network vendors, software versions, geography, population density
and smartphone penetration rates (which cause higher network load). The impor-
tance of the smartphone penetration and population density was also confirmed by
the automated feature selection, where variables such as the combined throughput
(uplink or downlink), which is highly influenced by smartphones and the number
of HSDPA/HSUPA users per hour (which are smartphone users) were the most often
selected when building the respective load formulas.

5.4.4 Forecasting the Load

Once the load formulas have been derived it was possible to forecast the future load
situation if the changes in the describing parameters are known. These changes of
the input parameters were described by means of scaling factors. The scaling factors
were calculated by using a traffic forecast model developed by the operator (out of



5.4. BUILDING THE LOAD FORMULAS 81

scope of this research). A cell was marked for upgrade? if any of the four output
variables used as measures of Uplink or Downlink load, was above a predefined
critical value.

This is done in the following way:

1. For each output variable

2.1 For each cell

2.3.1 Select the top 100 instances of the output variable and its corresponding
values for the input variables.

2.3.2 Make averages of these input variables.

2.3.3 Scale the input variables up or down, according to scaling factors developed
by a traffic model.

2.3.4 Feed the scaled values of the input parameters into the regression formula for
the output variable for that cell

2.3.5 If the resulting value is higher than the critical threshold for that output
variable, the cell should be upgraded.

The forecasting model provided better and more sophisticated forecasts and as
such supported better network investment decisions, which account for the major
part of the entire operator CAPEX cost. In simple terms, no money was wasted
by investing in unnecessary network upgrades, providing two benefits: lower cost
and redirecting investments into areas that had a higher impact on positive network
experience for the customers.

In addition, note that this part of the process was performed in a tool as simple
as MS Excel. This was a key driver for the business success of the solution. In
our experience the importance of the Deployment step in the data mining process is
generally underestimated. By providing not just the scores but also the underlying
models in a format and tool that was immediately usable and tunable to end users
who are not data miners, the solution was readily accepted and also used in new
ways not necessarily intended by the data miners, for instance detailed simulation
scenarios. In our view, this approach may be applicable to many other domains.

5.4.5 Applications- Simulation Scenarios

Initially, the only application of this research envisioned by the authors was the
deployment scenario for forecasting future load and predicting necessary network
upgrades due to “regular” traffic growth, as described in Subsection 5.4.4. This has
already been used in four country operators belonging to the Deutsche Telekom
group.

However, due to the flexibility of the approach, meaning using simple tools such
as Microsoft Excel for implementation, the system developed a life of its own: the

2Technically speaking, the network site which generates the cell is upgraded, not the cell itself
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end users in T-Mobile Netherlands, the operator where this research was originally
developed, started creating simulation scenarios suited for different needs.

Step 2.3.3 of the algorithm described in the previous subsection mentions feeding
scaling factors for the input parameters based on a traffic model. What if this traffic
model was to be replaced by a different one? In that case, a new simulation scenario
would be generated. Using our approach, all it takes to generate a new scenario is
to change the values of the input parameters in MS Excel. The output of the model
(Downlink and Uplink Load) would be automatically recalculated and the user could
immediately see the effect. We will explain a few actual use case scenarios in the
following paragraphs.

One of the first use cases generated was to predict future network load and eval-
uate network investments, based on proactive localized marketing campaigning. It
was a co-operation between the Marketing and Network Technology Department.
The Marketing Department provided their campaign description and expected bene-
fits, namely new customers and increased service usage, which were trended in terms
of the input parameters described in Section 5.2. These were fed into the model as
described in Subsection 5.4.4, so the increased future load could be predicted and
the necessary network improvements can be made, even before the marketing cam-
paign was launched. A very similar scenario was in use for opening new stores,
due to the fact that increased number of customers was expected when opening a
brick-and-mortar store. This allowed for the network to be prepared to accept the
new customers without impacting the experience of the existing ones.

Another very powerful application of this model was evaluating a business case
for adding a new wholesale client- or an MVNO (Mobile Virtual Network Operator).
This is an operator that does not own a network; instead a MVNO is renting the
network of a bigger telecom operator in order to provide services. In this case, the
localized traffic growth for predicting the future load was based on the location (or the
evaluation of) the customers of the MVNOs and their respective service usage. These
were then trended and fed into our model (via MS Excel) in order to evaluate the
necessary network improvements, so that no degradation of service for the customers
of the host operator would occur. However, these upgrades come at a certain cost,
which is attributed to accepting the MVNO onto the host network. If the benefits
(revenues) generated by accepting the MVNO are lower than the costs incurred, the
business case is negative and therefore, rejected. This approach was used in the
country where the research originated to reject a business case for adding an MVNO.
Furthermore, a MVNO business case was evaluated for another operator from the
same telecom group.

Last but not least, this approach was used as one of the criteria to determine the
strategy for the network swap and deployment of LTE (4G) network in T-Mobile
Netherlands B.V. As mentioned in Subsection 5.4.3, the operator was undertaking a
major network infrastructure investment, namely replacing the entire radio network
(every site) in order to modernize it and allow for deployment of 4G. Of course an
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undertaking of this size cannot be performed all at once; hence clusters of cells were
being planned for replacement at a certain time. Our load prediction method was one
of the criteria used for giving priority to certain clusters, thus reducing the need of
unnecessary investments into the “old” network. The underlying assumptions here
were that the “new” generation radio network would have more efficient resource
use and therefore could handle the load better, and that a certain amount of customers
would start using 4G services, therefore offloading the 3G network.

5.5 Limitations and Future Work

The regression formulas developed by this approach can be used on a long term
basis only if the mobile network stays the same (is frozen) over a longer period. But,
this is not the case. The cellular network is a system of very complex dynamics.
The many changes that occur, such as hardware and software updates, network
reconfigurations and optimizations, as well as network upgrades and roll-out of new
sites, which reduce the load of the existing ones, cannot be taken into account in
advance. It is necessary to collect a new data set and rebuild the regression formulas,
in order to incorporate all these changes into the model. This is why the process
described in this chapter was scheduled for execution every 3-4 months.

Next, we intend to improve the predictions for uplink load. One method would be
searching for additional input parameters to improve the performance of predicting
uplink load using linear regression. Alternatively, we could look for a substitute
for linear regression better suited for modeling uplink load on the cells where linear
regression does not deliver. However, this algorithm should not substantially slow
down the whole process and must be easily transferable to MS Excel, in order to keep
the flexibility and the ease of building simulation scenarios.

Further evaluation of the quality of the derived load formulas of course also
involves the comparison of the predicted load with the actually measured load in the
future. However, it should be noted that there are a lot of factors impeding a direct
comparison. As stated above, all changes to the settings of a cell within the forecasting
timeframe affect the load formula, which means that after such changes the derived
formula is - at least to some degree - no longer correct. For this reason it will be
challenging to really quantify the accuracy of the predictive model. Developing a
fair method of evaluation, which would incorporate the network changes, would be
beneficial. In terms of the core algorithms, we do want to keep the benefit of using a
simple, fast and robust low variance approach such as linear regression.

However, we do plan to explore a methodology that would allow us to combine
a global network model with local models for each cell, for instance multitask or
transfer learning (Caruana, 1997). In principle, we have almost infinite data available
for most cells, so local models cannot be improved by a global model. Nevertheless,
there could be an exception for a non-select small number of cells. Next, a clustering
approach could be devised to group cells with similar formulas or levels of load,
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thereby generating new knowledge for the telecom domain experts.

Furthermore, we do intend to investigate additional simulation scenarios for our
approach, beyond those described in Subsection 5.4.5. Last but not least, this research
has been implemented in four operators of this telecom group. Other operators from
the same group are planned to follow, with their own use cases and applications.

5.6 Conclusions

In this chapter we presented a very simple yet effective approach of deploying data
mining in commercial surroundings. Unfortunately, data mining is still seen as a
black box in many industries, telecom not excluded. Even though some data mining
activities are taken, typically in the Marketing/Customer Retention field, there is a
myriad of other possibilities in business where data mining can be applied. In our
opinion, it is better to start with simple methods, such as linear regression, because
it is easier to understand them. Once these simple approaches gain acceptance,
and familiarize companies with data mining, opportunities to apply more advanced
techniques will arise.

In our result section we showed that it is easier to accomplish a target, if one is
focused on it. Namely, with our approach we wanted to target cells where some
load (non-zero load) occurs, in order to predict the part that really matters more
correctly: the high end part of the load curve (the cells in overload). In other words,
as the network load grew, so did the quality of the model’s predictions. We willingly
sacrificed the models” performances within cells with very low load, because they
are of no interest.

Next, one of the key values of the approach is that a large number of regression
models (close to 30,000 per day) were developed in a very short period of time with
minimum human interaction. In order to do this, we deployed a simple algorithm
such as linear regression, motivated by its speed and other benefits explained earlier,
a wrapper feature selection, in order to avoid human interaction, and 10-fold cross
validation which makes the models statistically sound. Manually, this task would
be impossible. Obviously, the possibility to generate these formulas was crucial to
the operator. At the moment, the commercial tools for this purpose offer only load
predictions based on single variable regressions (MyCom, 2013), which is not as
robust as our approach.

Typically, planning network upgrades is a reactive process. Our approach makes
it proactive, which was acknowledged by the operator, who has fully integrated our
approach into its network upgrade planning and budgeting activities. Of course, due
to the fast pace network changes, the formulas would need to be upgraded every
3-4 months, but this was also scheduled as a part of the standard process. Due to
confidentiality, we cannot disclose the exact return of this project, but given that the
network is the key resource of an operator, the investments into its upgrades are
quite sizeable. To our knowledge, this is the first time a telecom operator has applied
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data mining in order to create a proactive network upgrade management process.
This allowed the operator to manage network performance better and avoid extreme
congestion situations, which can result in degraded customer experience and loss
of reputation for the operator. As mentioned at the beginning, the research was
performed at Deutsche Telekom, a large telecom operator group with branches in
many European countries. Our research was used in four of the countries where this
group is present.

Potentially the greatest benefit of our approach is the decoupling of the data
mining process from simulation scenarios. This was accomplished by exporting the
models into Excel sheets after they have been have been generated by our data min-
ing process. Then, the end users, a team of radio network analysts who are not data
miners, were able to use these formulas resulting from a data mining process for
forecasting the future network load. This allowed them to simulate multiple traffic
scenarios by scaling the current input parameters, which was as simple as chang-
ing values in their respective columns in Excel. These scenarios included “regular
growth” scenarios, evaluations of network investments necessary to accommodate
localized user growth due to targeted marketing campaigns, adding a new whole-
sale client (an MVNO- Mobile Virtual Network Operator) and prioritizing clusters
for deployment of new technologies such as LTE/4G.

Next, we would like to point out the possibility of applying our research onto
problems other than telecom network load. This approach would be applicable to
any other industry where large scale regression models are necessary. This can be
accomplished simply by replacing the data source, in this case the Radio Network
Performance Management Tools, with a data source suitable for the industry that
would like to apply our research. The decoupling of the data mining process from the
simulation scenarios makes our approach more general to situations where detailed
simulations are necessary, but the domain experts are not data miners. We already
tested this approach for cluster based revenue predictions, which is a topic from the
finance domain (see chapter 6).

Last but not least, perhaps one of the most interesting aspects of our approach
is the extremely low cost. Given that we used the existing IT infrastructure (Server,
Radio Network Performance Management Tools, Oracle, Excel) combined with open
source tools (WEKA, Perl), the only costs that incurred were the Processing Time
Cost (of the Server) and the labor cost of the employees in this project. Also, the
Oracle Database that we used can be replaced with a less expensive or free database
alternative in order to further reduce the cost, in case the potential user of our
approach does not have an Oracle License. These amounts are insignificant compared
to the actual investments being made into the network.

Addressing the research question posed in section 5.1, we have shown how data
mining can be used to predict 3G mobile network interfaceload, and simulate it under
different scenarios. In a nutshell, we have used relatively simple algorithms to create
a large number of predictive models, therefore making possible predicting the load
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on a cell level. We have used tools known to the end users to deploy these models,
allowing them to use different scenarios for the input parameters. Acceptance was
gained by decoupling the data mining process from the end users, but keeping the
transparency that linear regression offers combined with tooling familiar to them.



