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Abstract  

Mendelian randomization (MR) provides us the opportunity to investigate the causal 

paths of metabolites in type 2 diabetes and glucose homeostasis. We developed and tested 

an MR approach based on genetic risk scoring for plasma metabolite levels, utilizing a 

pathway-based sensitivity analysis to control for non-specific effects. We focused on 124 

circulating metabolites which correlate with fasting glucose in the Erasmus Rucphen 

Family study (n = 2,564) and tested the possible causal effect of each metabolite with 

glucose and type 2 diabetes and vice versa. We detected fourteen paths with potential 

causal effects by MR, following pathway based sensitivity analysis. Our results suggest 

that elevated plasma triglycerides might be partially responsible for increased glucose 

level and type 2 diabetes risk, which is consistent with previous reports. Additionally, 

elevated high-density lipoprotein (HDL) components i.e. S-HDL-triglycerides might have 

a causal role of elevating glucose levels. In contrast, large (L) and extra-large (XL) HDL 

lipid components i.e. XL-HDL-cholesterol, XL-HDL-free cholesterol, XL-HDL-

phospholipids, L-HDL-cholesterol and L-HDL-free cholesterol as well as HDL-

cholesterol seem to be protective against increasing fasting glucose, but not against type 2 

diabetes. Finally, we demonstrate that genetic predisposition to type 2 diabetes associates 

with increased levels of alanine, and decreased levels of phosphatidylcholine alkyl-acyl 

C42:5 and phosphatidylcholine alkyl-acyl C44:4. Our MR results provide novel insight 

into promising causal paths to and from glucose and type 2 diabetes and underline the 

value of additional information from high resolution metabolomics over classical 

biochemistry. 
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Introduction 

Type 2 diabetes is a progressive metabolic disease characterized by hyperglycemia, 

initially as a result of insulin resistance and in later stages also as a result of insulin 

insufficiency. Type 2 diabetes is also associated with dyslipidemia, including higher 

circulating concentrations of triglycerides and lower concentrations of high-density 

lipoprotein (HDL) cholesterol. In addition, several circulating molecules have previously 

been shown to be dysregulated in type 2 diabetes, including phospholipids, branched-

chain amino acids, keto-acid metabolites and other metabolites such as acyl-carnitines (1-

3). However, the causal paths between these metabolites and glucose/type 2 diabetes in 

human remain unclear from observational studies, and require randomized controlled 

trials that are difficult to conduct. 

As an alternative, Mendelian randomization (MR) is an instrumental variable method that 

has gained in popularity over the last decade, to investigate causal effects of traits using 

genetic predictors. MR uses the principle that the allocation of genetic variants, that 

affect a specific trait, from parents to offspring is random and unrelated to factors other 

than the trait (4). Furthermore, associations between the genotype and the outcome will 

not be affected by reverse causation because disease will occur after the meiosis. MR has 

previously been used to determine whether metabolic markers such as classical blood 

lipids are causally involved in type 2 diabetes (5-11) and has yielded contradicting results. 

One reason for this could be that these studies are affected by the heterogeneous nature of 

the metabolic markers chosen, such as in the example of total HDL cholesterol, which in 

reality consists of a collection of different sized HDL particles possibly with different 

functions. This may dilute the causal effects of SNPs when only combined (total) HDL is 

Page 4 of 68Diabetes



5 

 

considered. However, false signals may also be due to pleiotropic effects of the chosen 

genetic variants leading to possibly invalid instrumental variables. As high-throughput 

analyses techniques improve, the quantification of circulating molecules is becoming 

ever more detailed and precise. For instance, instead of LDL-cholesterol, HDL-

cholesterol and total triglycerides (TG) determined by routine clinical biochemistry, 

lipoprotein particle size distribution and content as well as tens of biochemical 

components can now be measured using Nuclear Magnetic Resonance (NMR) 

spectroscopy and Mass Spectrometry (MS) based approaches (12; 13). These additional 

measures offer an opportunity to gain novel insight into the pathogenesis of diseases like 

type 2 diabetes. With the knowledge of genetic determinants of metabolites gained from 

genome-wide association studies (GWAS) (14-16), one can use MR for causal inference 

given the specific conditions encoded in Figure 1. In the present study, with the aim of 

unraveling potentially causal metabolic paths that underlie the observed associations, we 

used genetic predictors from published metabolite GWAS, guided by pathway-based 

evidence to select instrumental variables, and performed MR between selected metabolic 

markers and glucose/type 2 diabetes. 

Materials and Methods 

Study population 

The observational associations between metabolites and fasting glucose/type 2 diabetes 

were tested in the Erasmus Rucphen Family (ERF) study which is a prospective family 

based study with 3,465 individuals in the Southwest of the Netherlands. The study 

protocol for ERF was approved by the medical ethics board of the Erasmus Medical 

Center Rotterdam, the Netherlands (17). The baseline demographic data and 
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measurements of the ERF participants were collected between 2002 and 2006. Venous 

blood samples were collected after at least eight hours fasting. The detailed description of 

the ERF study and related measurements were reported previously (17). Type 2 diabetes 

was defined according to a fasting plasma glucose ≥ 7·0 mmol/L and/or anti-diabetic 

treatment. The analytical sample included 2,564 non-diabetic and 212 diabetic 

participants.  

Metabolite measurements 

Metabolic markers were measured by five different metabolomics platforms using the 

methods which have been described in earlier publications (15; 16; 18; 19). In total 562 

metabolic markers including sub-fractions of lipoproteins, triglycerides, phospholipids, 

ceramides, amino acids, acyl-carnitines and small intermediate compounds, which 

throughout this article will be referred as “metabolites”, were measured either by NMR 

spectrometry or by MS. The platforms used in this research are: (1) Liquid 

Chromatography-MS (LC-MS, 116 positively charged lipids, comprising of 39 

triglycerides, 47 phosphatidylcholines, 8 phosphatidylethanolamines, 20 sphingolipids, 

and 2 ceramides, available in up to 2,638 participants) measured in the Netherlands 

Metabolomics Center, Leiden using the method described before (18); (2) Electrospray-

Ionization MS (ESI-MS, in total 148 phospholipids and sphingolipids comprising of 16 

plasmologens, 72 phosphatidylcholines, 27 phosphatidylethanolamines, 24 sphingolipids, 

9 ceramides, available in up to 878 participants), measured in the Institute for Clinical 

Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany using 

the method described previously (14); (3) Small molecular compounds window based 

NMR spectroscopy (NMR-COMP, 41 molecules comprising of 29 low-molecular weight 
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molecules and 12 amino acids available in up to 2,639 participants) measured in the 

Center for Proteomics and Metabolomics, Leiden University Medical Center (19; 20); (4) 

Lipoprotein window-based NMR spectroscopy (NMR-LIPO, 104 lipoprotein particles 

size sub-fractions comprising of 28 VLDL components, 30 HDL components, 35 LDL 

components, 5 IDL components and 6 plasma totals, available in up to 2,609 participants) 

measured in the Center for Proteomics and Metabolomics, Leiden University Medical 

Center and lipoprotein sub-fraction concentrations were determined by the Bruker 

algorithm (Bruker BioSpin GmbH, Germany) as detailed in Kettunen et al (16); (5) 

AbsoluteIDQTM p150 Kit of Biocrates Life Sciences AG (153 molecules comprising of 

14 amino acids, 91 phospholipids, 14 sphingolipids, 33 acyl-carnitines and hexose 

available in up to 989 participants) measured as detailed in publication from Draisma et 

al (15) and the experiments were carried out at the Metabolomics Platform of the 

Genome Analysis Center at the Helmholtz Zentrum München, Germany as per the 

manufacturer’s instructions. The laboratories had no access to phenotype information.  

Statistical methods 

We assessed the pairwise partial correlation between each metabolite and each glycemic 

trait (i.e. fasting glucose, fasting insulin, HOMA-IR, BMI and WHR) in the non-diabetic 

participants group. We included age, sex and lipid lowering medication as covariates. 

Bonferroni correction was applied based on the number of independent vectors in the 

data. By the Matrix Spectral Decomposition (MSD) method (21), we estimated 191 

independent vectors using the pairwise bivariate correlation matrix of the 562 metabolites. 

A P-value < 5.24 × 10
-5

 (0.05/191/5) adjusted by number of independent vectors and 

number of outcomes was used as the threshold for metabolome-wide significance. The 

Page 7 of 68 Diabetes



8 

 

metabolites associated with glucose in the ERF study were taken forward (n = 124) as 

candidates for MR. In this set of 124 metabolites, we also tested the association with type 

2 diabetes using logistic regression.  

Mendelian randomization  

For each metabolite associated with glucose, we performed two-sample bi-directional 

MR. The same method on two-sample MR has been performed in the previous MR 

studies on type 2 diabetes (6; 9; 22). We tested if genetically varying levels of a particular 

metabolite affect the risk for elevated glucose and type 2 diabetes (we call this the 

forward approach) and if genetically increased risk of type 2 diabetes or elevated glucose 

is associated with circulating levels of a particular metabolite (we call this the backward 

approach). The associations between the instrumental variables and the exposure and the 

outcome are estimated from different studies, either the metabolite GWAS (14-16; 19) or 

fasting glucose/type 2 diabetes GWAS published by MAGIC and DIAGRAM consortium 

(23; 24), using the genetic risk score method. The effect of the genetic risk score was 

constructed by summing up the weighted effects of genome wide significant SNPs on the 

exposure variable, in relation to their effects on the outcome, as detailed in a previous 

publication (6). This was performed using summary statistics level data utilizing the 

method described by Dastani et al (25) and implemented in the R-package “gtx”. Figure 2 

shows the overview of the instrumental variable construction. All SNPs were mapped to 

human genome build hg19. Given that MR assumes no pleiotropic effect beyond that on 

the risk factor of interest (i.e. exposure), we excluded the top SNPs from previously 

published body-mass index (BMI) and WHR GWAS (26; 27), and any SNPs within a 1 

Mbp window distance of these, from the genetic score. We additionally excluded the 

Page 8 of 68Diabetes



9 

 

genetic loci (1 Mbp window) of glucose, type 2 diabetes, insulin and HOMA-IR 

extracted from previous publications (23; 24; 28) in the forward MR and the genetic loci 

(1 Mbp window) of the particular metabolite of interest, using the published GWAS 

information in the backwards MR (see Supplemental Table 1 for list of genetic loci 

excluded at this stage). We restricted the SNP lists to a set of independent SNPs in low 

linkage disequilibrium (pairwise R
2
 < 0.05) for each test (29) based on the genotype data 

in ERF. SNPs with disproportionate effects in the risk score were excluded to reduce 

pleiotropy (see Supplemental Table 2 for list of SNPs excluded at this stage). Genetic risk 

scores comprising > 5 SNPs which explain > 1% of variance in exposure were taken 

forward. This effort yielded 20 metabolite-glucose/type 2 diabetes sets in the forward 

MR and 76 glucose-metabolite sets and 79 type 2 diabetes-metabolite sets in the 

backward MR. A false discovery rate (FDR) of 0.05 was used as the significance 

threshold for the four series (i.e. metabolite-glucose, metabolite-type 2 diabetes, glucose-

metabolite and type 2 diabetes-metabolite series). 

Pathway-based sensitivity analysis 

Although we applied several restrictions on the SNPs in the genetic risk scores as 

explained above, the instrumental variable assumption that the locus is associated with 

the outcome only via the association with the exposure (Figure 1) is still hard to justify in 

practice. We harnessed the extensive background biological knowledge available to make 

the additional semi parametric assumption to get the MR estimates of the causal effect. 

That is, for each set, we evaluated whether we could identify the gene in proximity to the 

locus that could explain the change in exposure levels. If a gene codes for an enzyme that 

catalyzes the exposure or a related compound, or if it is present in a signaling cascade 
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that affects the exposure, we assumed that the link between the instrumental variable and 

the exposure was direct and not mediated by the outcome. For the forward approach, we 

checked the biological link between the locus and the target metabolite and for the 

backward approach the link with glucose. As the pathway in the disease type 2 diabetes is 

complex, we did not check the biological link with type 2 diabetes in the backward 

approach. If the gene directly links to the exposure, the related SNPs are taken forward to 

calculate the genetic risk score. Then, MR is performed for any genetic risk score 

(comprising > 5 SNPs) which explains > 1% of variance in exposure. To explore 

potential mechanistic links between the locus and the exposure, we used an automated 

workflow that was developed in house to gather gene-specific knowledge of all genes in 

proximity to each locus. In detail, we downloaded a number of online databases from the 

respective ftp servers and integrated them offline in Matlab®. Subsequently, for each 

SNP we selected genes within a window of 100kbp, with coordinates based on the 

dbSNP (30), and NCBI Gene (http://www.ncbi.nlm.nih.gov/gene; GRCh37), and genes 

whose expression is affected by the locus (GTEx-eQTL). Then, for each gene we 

gathered protein-related knowledge from UniProtKB (31) and affected pathways from 

ConsensusPathDB (32). Finally, for each protein we investigated metabolic activity by 

checking if it concerned a transporter protein in TCDB (33), or enzyme in ExPASy (34), 

and, if so, what the catalyzed metabolic reaction was in the KEGG database (35). For the 

KEGG database the last freely available version was used. The database integration 

pipeline generated one HTML file for each locus, containing gene-specific knowledge 

and hyperlinks to the original database entries, which was then inspected for finding a 

mechanistic link with the exposure. The strength of this approach is that it identifies loci 
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for which the instrumental variable assumption can be validated using genetic and 

biochemical evidence from online databases. We have successfully applied this workflow 

in earlier studies (19; 36-38). Heemskerk et al gives the best example of the power of our 

method (37), where we re-analyzed published results of a GWAS on metabolite levels 

(39) and confirmed the annotation by an in vitro experiment. 

Results 

Observed associations 

Characteristics of the present study population are given in Table 1. Participants with 

type 2 diabetes were older, tended to be more often male, and more likely to be on lipid-

lowering medication. They had higher BMI, WHR, systolic blood pressure, triglycerides, 

fasting glucose, insulin, HOMA-IR, and lower HDL-cholesterol, adiponectin and LDL-

cholesterol.  

We identified 124 metabolites that observationally associate with fasting glucose in the 

control population with P-value < 5.24 × 10
-5 

(Figure 3). These consisted of 36 

phospholipids (Figure 3A), 20 triglycerides (Figure 3B), 24 small molecular compounds 

(Figure 3C) and 44 lipoprotein particle sub-fractions (Figure 3D). Correlation coefficients, 

P-values as well as the overlap with previous research for all 124 metabolites are given in 

Supplemental Table 3. A clustered heatmap of correlation structure in-between the 124 

selected metabolites are shown in Supplemental Figure 1. Among the 124, 112 of them 

also associated with type 2 diabetes (P < 0.05), and their associations with type 2 diabetes 

and glucose were in the same direction. In addition to that, their associations with BMI, 

WHR, fasting insulin and HOMA-IR were in line with the direction of their associations 

with glucose. Out of the 124 metabolites, 90 of them correlated positively and 34 
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correlated negatively with fasting glucose. We observed negative correlation between 

glucose and alkyl-acyl and diacyl phosphatidylcholines, mostly of the poly-unsaturated 

type, lysophosphatidylcholines, mostly of the saturated type and parts of the lipoprotein 

sub-fractions from LDL and HDL. These lipoprotein sub-fractions particularly consisted 

of lipid components of extra-large (XL) and large (L) LDL particles, XL-HDL and L-

HDL particles as well as total HDL measurements. The second cluster of metabolites 

which we observed to correlate positively with glucose included several phospholipids; 

phosphatidylethanolamines, and lysophosphatidylcholines. Amino acids and low-

molecular weight compounds also correlated positively with glucose, in addition to lipid 

side-groups, and triglycerides. Finally, from the lipoprotein sub-fractions, small (S), 

extra-small (XS), medium (M) and XL-VLDL particles, as well as the total VLDL 

components, followed by IDL and LDL-triglycerides, XS-LDL to M-LDL particle 

components, as well as the ApoA1 and triglyceride content of S-HDL particles were 

correlated positively with fasting glucose in the non-diabetic population.  

Mendelian randomization 

Table 2 shows the significant results from the association of the relevant metabolites with 

fasting glucose using MR. Among the 20 eligible metabolite-glucose/type 2 diabetes sets, 

genetically decreased levels of eight metabolites associated significantly with fasting 

glucose (FDR < 0.05). These include XL-HDL-cholesterol (FDR = 0.03), XL-HDL-

phospholipids (FDR = 2.76 × 10
-3

), XS-VLDL-phospholipids (FDR = 0.04), XL-HDL-

free cholesterol (FDR = 0.01), L-HDL-cholesterol (FDR = 0.01), L-HDL-free cholesterol 

(FDR = 2.76 × 10
-3

), HDL-cholesterol (FDR = 0.04), and IDL-phospholipids (FDR = 

0.04). After the pathway-based subset analysis, a causal role for IDL-phospholipids was 
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not supported (FDR = 0.17). At the same time, pathway-based sensitivity analysis 

revealed possibly causal roles for three additional metabolic markers, including S-VLDL-

triglycerides (FDR = 0.04), S-HDL-triglycerides (FDR = 0.04), and plasma-triglycerides 

(FDR = 0.04). Table 3 shows the suggested causal effects of metabolites on type 2 

diabetes, i.e. XS-VLDL-phospholipids, IDL-phospholipids and plasma-triglycerides. 

Interestingly, the statistical significance for both XS-VLDL-phospholipids and IDL-

phospholipids in the initial results are filtered out after the sensitivity analysis (FDR: XS-

VLDL-phospholipids 0.03 vs 0.31; IDL-phospholipids 0.01 vs 0.24), while plasma-

triglycerides shift to being borderline significant (FDR = 0.07 vs 0.046). The results from 

the full lists of performed forward MR tests are given in Supplemental Table 4 and the 

SNPs included in the all the genetic risk scores are given in Supplemental Table 5. 

The significant results of the backward MR are shown in Table 4. We found that genetic 

predisposition to type 2 diabetes is associated with lower levels of phosphatidylcholine 

alkyl-acyl 42:5 (FDR = 0.02) and phosphatidylcholine alkyl-acyl 44:4 (FDR = 0.02) and 

higher levels of alanine (FDR = 0.02). The details of all the tested SNP sets are shown in 

Supplemental Table 6 and Supplemental Table 7. No possible causal role for glucose was 

supported. As the genetic risk scores of the glucose explained less than 1% of variance, 

the backward MR with pathway analysis is not performed. Figure 4 displays the 

suggested paths discovered by the MR approach after the pathway-based sensitivity 

analysis. Overall, the associations estimated by MR were in the consistent direction with 

the observed associations in ERF.  

Discussion 

We selected 124 metabolites that are correlated with glucose in the non-diabetic 
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population and, using MR, we tested if this metabolic profile points to any causal paths 

involved in glucose level or type 2 diabetes. Combining metabolomics and MR, we 

detected fourteen candidate causal associations; ten metabolites influencing fasting 

glucose, one influencing type 2 diabetes and three influenced by type 2 diabetes.  

Our initial observational association tests yielded correlation estimates within the 

expected range of power calculations for the 124 glucose-associated metabolites. To our 

knowledge, 35 of these metabolites were previously published to be associated with 

glucose or type 2 diabetes, including 31 concordant and 4 discordant results 

(Supplemental Table 3) in studies with very limited sample size (40; 41). Our significant 

results on subfractions of lipoproteins yielded resolution on the established association of 

dyslipidemia, especially for the HDL subfractions.  

One of our main findings is that genetically increased cholesterol, free cholesterol and 

phospholipid content of circulating XL-HDL and L-HDL particles together with XS-

VLDL-phospholipids associate with decreased glucose level. Our second finding is that 

triglyceride content of S-HDL and S-VLDL particles as well as total plasma triglycerides 

seem to have a glucose increasing causal effect and considering the total triglycerides, 

this effect has been extended to the outcome type 2 diabetes. Finally, we showed that 

genetic predisposition to type 2 diabetes associates with lower levels of two alkyl-acyl 

phosphatidylcholines and higher level of alanine. Our report is the first one using higher 

resolution (metabolomics driven) lipoprotein based exposure variables. Hence no other 

study exists for comparison except for HDL-cholesterol, LDL-cholesterol and total 

triglycerides which, from routine biochemistry, have been previously studied as exposure 

variables for MR to understand their causal effects on type 2 diabetes and glucose (An 
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overview is given in Table 5). Our method is similar to the method of White et al (9) and 

Fall et al (6) in terms of the application of the genetic risk score function utilizing the 

DIAGRAM/MAGIC datasets. White et al (9) showed that high levels of all three blood 

lipids (HDL-cholesterol, LDL-cholesterol and plasma triglycerides) were genetically 

associated with a lower risk of diabetes, although the results for triglycerides were 

inconsistent. However, the study did not consider the genetic variants that might be 

involved in the confounding phenotypes such as BMI, WHR, nor did they exclude the 

SNPs that are involved in type 2 diabetes directly. Fall et al (6) showed that the 

association between total HDL-cholesterol risk score and low fasting glucose was 

attenuated when adjusted for the effects of SNPs on LDL-cholesterol, triglycerides and 

surrogates of adiposity. Different from the two studies mentioned above, current MR was 

done in a broad spectrum of metabolites included a detailed sub-classification of 

lipoproteins that have not been tested before. Using such high resolution phenotypes, we 

demonstrate that decreasing effect of HDL-cholesterol on fasting glucose is more specific 

to the L-HDL or XL-HDL subclasses, whereas for S-HDL-triglycerides, an increasing 

effect exists. These results advocate that a higher resolution of high density in 

lipoproteins may reveal the observed epidemiological associations or biological functions 

of HDL-cholesterol more accurately and will uncover the mystery of complex lipids such 

as HDL. Certain HDL sub-fractions and characteristics of these sub-fractions may have 

independent associations with glucose, particularly for the small vs large size particles. 

Such a different role for HDL-triglycerides and HDL-large fractions occurred upon 

sleeve gastrectomy of obese patients and was associated with reduced insulin resistance 

and HDL remodeling (42). In addition, as experimentally shown, HDL indeed may 
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mediate glucose regulation in the pathophysiology of T2DM (43). Suggested mechanisms 

include (44): (i) Insulin secretion from pancreatic beta cells combating cellular lipid 

accumulation and lipotoxicity (45), endoplasmic reticulum stress and apoptosis (46; 47); 

(ii) Insulin-independent glucose uptake by muscle via the AMP-activated protein 

kinase(48), calcium/calmodulin activated protein kinase(49); (iii) and insulin sensitivity 

(50). The ILLUMINATE trial (51) demonstrated that in a subgroup of diabetic 

participants statin treatment led to increased glucose levels, while this effect was not 

observed in participants treated with combination of statin and CETP-inhibitor 

torcetrapib, suggesting that CETP inhibition and consequent HDL cholesterol elevation 

may improve glycemic control in diabetic patients. It is of note that CETP gene is a major 

determinant of XL-HDL and was included in our MR experiment. 

We have detected three associations potentially pointing out an influence of type 2 

diabetes over the metabolome. The first two are long chain polyunsaturated alkyl-acyl 

phosphatidylcholines which are decreased in type 2 diabetes. This is interesting 

considering our previous report which showed that three shorter chain polyunsaturated 

alkyl-acyl phosphatidylcholines are increased in type 2 diabetes patients and decreased in 

patients using the glucose lowering drug metformin (52). The other molecule affected by 

diabetes was alanine, which is a non-essential amino acid and can be synthesized in the 

body from pyruvate and branched chain amino acids such as valine, leucine, and 

isoleucine. Alanine has been previously implicated in glucose response (53). The enzyme 

alanine aminotransferase (ALT) catalyzes the conversion of alanine to pyruvate and 

glutamate and high levels of ALT indicate liver damage.  

Our study differs from previous reports in three ways. Firstly, we used a bidirectional 
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approach and included a wide range of molecular markers to be tested, using high 

resolution phenotypes, measured by MS or NMR. Secondly, we exploited pathway 

knowledge that was gathered through an automated workflow to perform subset analysis 

in MR. Statistical methods that deal with pleiotropy in MR analyses, such as the Egger 

regression method (9; 54; 55), exist but are still being refined. They all rely on additional 

strong assumptions about the unobserved pleiotropy, such as the InSIDE assumption, and 

are sensitive to violations of these assumptions. They also suffer from a lack of power. 

However, one can harness the available genetic and biological knowledge in online 

databases in order to maximize the uniqueness of the genetic risk score for the exposure 

variable for this purpose and to validate the chosen instruments. It has to be mentioned 

that although powerful for most metabolites, our approach with the genetic and biological 

knowledge is also firstly conservative because it ultimately relies on the 

comprehensiveness of the content of the databases that are included. As a consequence, 

all loci for which no strong evidence is present that a nearby gene directly affects the 

exposure, e.g. because the involved gene is affected through a yet unknown regulatory 

mechanism, are excluded. Considering glucose for which the instrumental strength was 

initially lower compared to the others, the pathway approach yielded lower explained 

variance in exposure (R
2
 < 1%). While one can argue that this would lead to lack of 

power, it may also reflect the fact that such polygenic traits like glucose may not be the 

most suitable exposure variables for an MR analysis. To limit this, we utilized the large-

population-based GWAS of broad-spectrum metabolites and fasting glucose/type 2 

diabetes with the combined instrument MR approach (25). We want to point out that 

although we controlled the pleiotropic effects between the outcome and exposure by (1) 
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excluding the known predictors, (2) heterogeneity tests and (3) finally by pathway 

analysis, we cannot exclude a correlation between the genetic instruments tested, 

especially for the HDL subfractions, for which the genes coding overlap. Whilst effect 

alleles were weighted by their original effects estimates from each GWAS (of exposure 

variables), there was strong overlap in the SNPs used for different lipid subfractions, 

meaning the genetic instruments were not highly specific to these subfractions.  

In conclusion, using MR, the present study provide evidence for potentially causal 

metabolic paths of glucose homeostasis and type 2 diabetes. Our results indicate that 

increase of large HDL particles might have decreasing effect on glucose, while increase 

of small HDL particles have increasing effect, refining earlier MR findings suggesting a 

possible causal effect of HDL on glucose levels, as well as pointing these particles out as 

targets for glucose management. We further found evidence that type 2 diabetes may alter 

levels of alkyl-acyl phosphatidylcholines and alanine which also here can be translated 

into prevention of disease complications and prognosis.  
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Table 1 Characteristics of the study population 1 

 

Controls  

n=2,564 

Cases 

n=212 P-value P-value*  

Male [n (%)] 1132 (44.1) 108 (50.9) 0.059 0.20  

Age (years) 48.2 ± 14.3 59.8 ± 11.8 6.4 × 10
-32

 2.1 × 10
-12

  

Body mass index (kg/m2) 26.7 ± 4.6 30.0 ± 5.9 3.4 × 10
-13

 3.7 × 10
-12

  

Waist-to-hip ratio 0.86 ± 0.10 0.95 ± 0.10 9.5 × 10
-27

 2.6 × 10
-17

  

Systolic blood pressure (mmHg) 139 ± 20 154 ± 21 7.3 × 10
-19

 8.2 × 10
-6

  

Diastolic blood pressure (mmHg) 80.3 ± 10.0 82.9 ± 9.9 4.5 × 10
-4

 0.11  

LDL-cholesterol (mmol/l) 3.8 ± 1.0 3.2 ± 1.0 4.8 × 10
-15

 1.0 × 10
-9

  

Triglycerides (mmol/l) 1.2 (0.8, 1.6) 1.6 (1.1, 1.9) 2.0 × 10
-10

 5.1 × 10
-6

  

HDL-cholesterol (mmol/l) 1.3 ± 0.4 1.1 ± 0.3 2.7 × 10
-11

 5.6 × 10
-8

  

Fasting glucose (mmol/l) 4.5 ± 0.7 7.4 ± 2.2 9.4 × 10
-44

 1.5 × 10
-54

  

Fasting insulin (mU/L) 11 (8, 15) 16 (11, 22) 1.2 × 10
-7

 9.0 × 10
-7

  

HOMA-IR 2.3 (1.6, 3.1) 5.0 (3.7, 7.4) 1.5 × 10
-23

 2.5 × 10
-24
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Lipid lowering medication [n (%)] 265 (10.3) 99 (46.7) 7.2 × 10
-20

 1.5 × 10
-22

  

Data are means ± standard deviations (SD), medians (inter-quartile range) or percentages. Triglycerides, fasting insulin, adiponectin, 2 

and HOMA-IR were natural logarithm transformed prior to analysis. P-value: T-test and Chi-squire test were used in continuous 3 

variables and categorical variables, respectively. P-value*: Logistic regression was used with adjusting age, sex and lipid lowering 4 

medication.  5 
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Table 2 Mendelian randomization of metabolites (exposure) on fasting glucose (outcome) 6 

 

 

Outcome 

Fasting glucose 

 

Fasting glucose* 

 

 

R
2 

(%) n β FDR 

 

R
2 

(%) n β FDR 

E
xp
o
su
re

 

S-VLDL-triglycerides 4.80 13 0.06 0.08 

 

3.92 10 0.08 0.04 

XS-VLDL-phospholipids 7.97 23 -0.06 0.04 

 

6.30 15 -0.07 0.04 

IDL-phospholipids 7.16 26 -0.06 0.04 

 

4.84 15 -0.05 0.17 

XL-HDL-cholesterol 4.25 10 -0.09 0.03 

 

4.25 10 -0.09 0.03 

XL-HDL-free cholesterol 6.48 16 -0.09 0.01† 

 

6.48 16 -0.09 0.01† 

XL-HDL-phospholipids 10.21 22 -0.08 2.76 × 10
-3

†
 

 

9.61 19 -0.09 1.72 × 10
-3

† 

L-HDL-cholesterol 7.58 17 -0.08 0.01† 

 

7.41 16 -0.08 0.01† 

L-HDL-free cholesterol 7.58 18 -0.09 2.76 × 10
-3

† 

 

7.27 16 -0.10 1.72 × 10
-3

† 

HDL-cholesterol 4.84 10 -0.07 0.04 

 

4.67 9 -0.07 0.04 

S-HDL-triglycerides 3.97 11 0.07 0.08 

 

3.52 9 0.09 0.04 

Plasma-triglycerides 3.93 11 0.07 0.08 

 

2.78 7 0.10 0.04 

The Mendelian randomization sets with FDR < 0.05 with respect to either outcome is shown in this table. R
2
 (%): the percentage of 7 

explained variance in the exposure by genetic risk score. n: the number of SNPs in the genetic risk score. β: the weighted effect of the 8 
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genetic risk score of exposure on outcome FDR: A false discovery rate on the number of Mendelian randomization sets adjusted P-9 

value. * results of pathway-based analysis. † the Mendelian randomization sets with P-value < Bonferroni P-value 2.5 × 10
-3

 (0.05/20). 10 

11 
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Table 3 Mendelian randomization of metabolites (exposure) on type 2 diabetes (outcome)  12 

 

 

Outcome 

 Type 2 diabetes 

 

Type 2 diabetes* 

  R
2
 (%) n β FDR 

 

R
2
 (%) n β FDR 

E
xp
o
su
re

 

XS-VLDL-phospholipids 8.02 23 -0.08 0.03 

 

6.34 15 -0.06 0.31 

IDL-phospholipids 7.18 26 -0.09 0.01 

 

4.86 15 -0.07 0.24 

Plasma-triglycerides 4.21 12 0.08 0.07 

 

3.16 8 0.12 0.046† 

The Mendelian randomization sets with either FDR < 0.05 are shown in this table. R
2
 (%): the percentage of explained variance in the 13 

exposure by genetic risk score. n: the number of SNPs in the genetic risk score. β: the weighted effect of the genetic risk score of 14 

exposure on outcome. FDR: A false discovery rate on the number of Mendelian randomization sets adjusted P-value. * results of 15 

pathway-based analysis. † the Mendelian randomization sets with P-value < Bonferroni P-value 2.5 × 10
-3

 (0.05/20). 16 

  17 
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Table 4 Mendelian randomization of fasting glucose/type 2 diabetes (exposure) on metabolites (outcome)  18 

 

 

Exposure 

Fasting glucose  Type 2 diabetes 

R
2
 (%) n β FDR 

 

R
2
 (%) n β FDR 

O
u
tc
o
m
e 

PC alkyl-acyl C42:5 0.83 13 NP NP  1.51 32 -0.08 0.02† 

PC alkyl-acyl C44:4 1.10 15 0.02 0.95  1.51 32 -0.08 0.02 

Alanine 1.06 14 0.06 0.48  1.48 31 0.08 0.02 

The Mendelian randomization sets with either FDR < 0.05 are shown in this table. PC: Phosphatidylcholine. R
2
 (%): the percentage of 19 

explained variance in the exposure by genetic risk score. n: the number of SNPs in the genetic risk score. β: the weighted effect of the 20 

genetic risk score of exposure on outcome. FDR: A false discovery rate on the number of Mendelian randomization sets adjusted P-21 

value. NP: Not performed. † the Mendelian randomization sets with P-value < Bonferroni P-value 6.33 × 10
-4 

(0.05/79).  22 
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Table 5 Review of the previous MR in metabolites or lipids and type 2 diabetes (T2D) or glucose 23 

Study Methods Exposure Outcome OR/β (95%CI) P-value 

Instrumental variables 

and pleiotropy control 

Luca 

LA(22) 

Two-sample MR 

Isoleucine 

T2D 

(n=315,571) 

1.44 (1.22, 1.17) 2.0 × 10
-5 

1) Independent 

SNPs from 

GWAS meta-

analysis. 

2)Control for 

pleiotropy. 

Leucine 1.73 (1.28, 2.34) 3.4 × 10
-4

 

Valine 1.45 (1.18, 1.77) 3.4 × 10
-5

 

Marott 

SC, 

2016(8) 

Two-stage least-

squares regression 

HDL-C 

T2D 

(n=93,097) 

0.86 (0.43, 1.72) 0.68 

3 variants from ABCA1, 

CETP 

TG 

T2D 

(n=97,199) 

1.05 (0.88, 1.24) 0.60 

4 variants from TRIB1, 

APOA5, LPL. 

White J, 

2016 (9) 

Conventional 

two-sample MR; 

Multivariate MR; 

LDL-C 

T2D 

(DIAGRAM) 

0.79 (0.71, 0.88) P < 0.05 1) Independent 

SNPs from 

GLGC GWAS. 

HDL-C 0.83 (0.76, 0.90) P < 0.05 

TG 0.83 (0.72, 0.95)* P < 0.05 
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MR-Egger 2) gtx package 

with pleiotropic 

control. 

Haase CL, 

2015(5) 

Two-stage least-

squares regression 

HDL-C 

T2D 

(n=47,627) 

0.93 (0.78, 1.11) 0.42 

9 variants from ABCA1, 

CETP, LCAT, LIPC, 

APOA1. 

Fall T, 

2015(6) 

Two-sample MR 

LDL-C 

T2D 

(DIAGRAM) 

-0.03 (-0.19, 0.12)*
 

0.67
 

1) Independent SNPs 

with large effect on the 

lipid and smaller effect 

on other lipid fractions 

from GLGC GWAS. 2) 

gtx package with 

pleiotropic control. 

FG (MAGIC) 0 (-0.03, 0.03)*
 

0.85 

HDL-C 

T2D 

(DIAGRAM) 

-0.19 (-0.38, -0.01)* 0.04 

FG (MAGIC) -0.02 (-0.06, 0.01)* 0.24 

Andersso

n C, 

2015(10) 

Two-stage least-

squares regression 

LDL-C Incident T2D 0.85 (0.76, 0.96) 0.009 

GRS from 37 LDL-C 

related SNPs without any 

pleiotropic control. 
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* β (95%CI). 24 

  25 

Islam M, 

2012(11) 

Two-stage least-

squares regression 

TG T2D (n=2,111) 0.04 (0.014, 0.072)* 0.004 

Included 10 independent 

SNPs from previous 

studies (excluded FADS1 

and GCKR). 

De Silva 

NM, 

2011(7) 

Two-stage least-

squares regression 

TG 

T2D (n=8,335) 0.99 (0.97, 1.01) 0.26 

Included 10 independent 

SNPs from previous 

studies (excluded FADS1 

and GCKR).  
FG (n=8,271) 0 (-0.01, 0.01)* 0.88 
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Figure 1 Overview of the Mendelian randomization process 26 

 27 

 28 
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Figure 2 Data handling, quality checks and exclusions during Mendelian randomization 29 

 30 

*MAGIC and DIAGRAM sets are imputed based on HapMap2 and therefore do not include 31 

indels.  32 
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Figure 3 Metabolites correlated with markers of T2DM and anthropometric risk factors  33 

 34 

 35 

A: Phosphatidylcholines; B: Triglycerides; C: small molecules and amino acids; D: 36 

lipoproteins. The associations between metabolites and continuous variables were 37 

performed by partial correlation in the non-diabetic population. The color in the figure 38 

displays the value of correlation coefficient. The associations between metabolites and 39 

type 2 diabetes status were performed by logistic regression. The color in the figure 40 

displays the standardized effect of metabolites on type 2 diabetes. Age, sex and lipid 41 

lowering medication are considered as covariates. FG: fasting glucose. FI: fasting insulin. 42 

HOMA-IR: homeostasis model assessment of insulin resistance. BMI: body mass index. 43 

WHR: waist-to-hip ratio. *: 0.05 < P-value < 5.24 × 10
-5

 (0.05/191/5). •: P-value < 0.05 44 

& P-value ≥ 5.24 × 10
-5

. (B): Selected measurement is from the Biocrates platform when 45 

the same metabolite is also captured by the LC-MS/NMR-COMP/NMR-LIPO platform. 46 

(E): Selected measurement is from the ESI-MS platform when the same metabolite is 47 

also captured by the LC-MS platform. 48 

 49 

  50 
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Figure 4 Suggested causal paths for glucose homeostasis and type 2 diabetes after 51 

pathway-based sensitivity analysis. 52 

 53 

 54 

FG: fasting glucose; TG: triglycerides; C: cholesterol; FC: free cholesterol; P: 55 

phospholipids; PCae: phosphatidylcholine alkyl-acyl. The gene names above the 56 

metabolite names indicate the loci where the SNPs used in the genetic risk score are 57 

located. 58 

 59 

 60 

 61 

 62 

 63 
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Figure 1 Overview of the Mendelian randomization process  
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� � � �Figure 2 Data handling, quality checks and exclusions during Mendelian randomization .  
*MAGIC and DIAGRAM sets are imputed based on HapMap2 and therefore do not include indels.  

 
438x253mm (72 x 72 DPI)  

 

 

Page 56 of 68Diabetes



  

 

 

Figure 3 Metabolites correlated with markers of T2DM and anthropometric risk factors  
 

A: Phosphatidylcholines; B: Triglycerides; C: small molecules and amino acids; D: lipoproteins. The 

associations between metabolites and continuous variables were performed by partial correlation in the non-
diabetic population. The color in the figure displays the value of correlation coefficient. The associations 
between metabolites and type 2 diabetes status were performed by logistic regression. The color in the 
figure displays the standardized effect of metabolites on type 2 diabetes. Age, sex and lipid lowering 

medication are considered as covariates. FG: fasting glucose. FI: fasting insulin. HOMA-IR: homeostasis 
model assessment of insulin resistance. BMI: body mass index. WHR: waist-to-hip ratio. *: 0.05 < P-value 
< 5.24 × 10-5 (0.05/191/5). : P-value < 0.05 & P-value  5.24 × 10-5. (B): Selected measurement is from 

the Biocrates platform when the same metabolite is also captured by the LC-MS/NMR-COMP/NMR-LIPO 
platform. (E): Selected measurement is from the ESI-MS platform when the same metabolite is also 

captured by the LC-MS platform.  
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Figure 4 Suggested causal paths for glucose homeostasis and type 2 diabetes after pathway-based 
sensitivity analysis.  

 
FG: fasting glucose; TG: triglycerides; C: cholesterol; FC: free cholesterol; P: phospholipids; PCae: 

phosphatidylcholine alkyl-acyl. The gene names above the metabolite names indicate the loci where the 
SNPs used in the genetic risk score are located.  
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Supplemental Figure 1 Clustered correlation between the glucose-related metabolites. 

 

The correlations between the glucose-related metabolites are performed in the non-diabetic 

population. The color in the figure displays the value of correlation coefficient. *: P-value < 

0.001 (0.05/50), 50 is the independent equivalents from the 124 metabolites; •: correlation 
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P-value < 0.05 & P-value ≥ 0.001. (B): Selected measurement is from the Biocrates platform 

when the same metabolite is also captured by the LC-MS / NMR-COMP/ NMR-LIPO 

platform. (E):  Selected measurement is from the ESI-MS platform when the same metabolite 

is also captured by the LC-MS platform. 
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Supplemental table 1 SNPs that are excluded from the genetic risk score because of their major 

association to outcome phenotypes or possible confounders BMI and WHR 

 

BMI: body mass index. WHR: waist-to-hip ratio. T2DM: type 2 diabetes.  

 

Please find the table (Suppl_t_1) in the link 

https://www.dropbox.com/s/cd0xp33gube4rky/Supplementary_tables_LIU_J_revised.xlsx?dl=0  
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Supplemental table 2 SNPs that are excluded from the genetic risk score because of disproportionate 

weights in the genetic risk score, as detected by the gtx function 

 

T2DM: type 2 diabetes. R2 (%):  the percentage of explained variance in the exposure by genetic risk 

score. 

 

Please find the table (Suppl_t_2) in the link 

https://www.dropbox.com/s/cd0xp33gube4rky/Supplementary_tables_LIU_J_revised.xlsx?dl=0  
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Supplemental table 3 All 124 metabolites' correlation coefficients, p-values as well as the overlap with 

previous research 

 

R: correlated coefficient. HOMA-IR: Homeostatic model assessment insulin resistance; BMI: body mass 

index; WHR: waist-to-hip ratio; T2DM: type 2 diabetes.  ESI-MS: Electrospray Ionisation-Mass 

Spectrometry; LC-MS:  Liquid Chromatography-Mass Spectrometry; NMR-COMP: Small Compound Nuclear 

Magnetic Resonance Spectroscopy; NMR-LIPO: Lipoprotein Nuclear Magnetic Resonance Spectroscopy. (P): 

positive association; (N): negative association. 

 

Please find the table (Suppl_t_3) in the link 

https://www.dropbox.com/s/cd0xp33gube4rky/Supplementary_tables_LIU_J_revised.xlsx?dl=0  
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Supplemental table 4 Results of Mendelian randomization of metabolites on fasting glucose/T2DM 

(forward approach) 

 

® Pathway based sensitivity analysis. T2DM: type 2 diabetes. R2 (%):  the percentage of explained variance 

in the exposure by genetic risk score. FDR: false discovery rate. NP: not performed. 

 

Please find the table (Suppl_t_4) in the link 

https://www.dropbox.com/s/cd0xp33gube4rky/Supplementary_tables_LIU_J_revised.xlsx?dl=0  
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Supplemental table 5 SNP lists included in exposure genetic risk score in Mendelian randomization of 

metabolites on fasting glucose/T2DM (forward approach) 

 

T2DM: type 2 diabetes. MAF: minor allele frequency. Standardized effect is the t-statistic in the 

association analysis. (NA): no genes confirmed by the outcome in the pathway analysis. ? The gene in the 

pathway analysis is not confirmed.  R2 (%):  the percentage of explained variance in the exposure by 

genetic risk score. NP: not performed. 

 

Please find the table (Suppl_t_5) in the link 

https://www.dropbox.com/s/cd0xp33gube4rky/Supplementary_tables_LIU_J_revised.xlsx?dl=0  
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Supplemental table 6 Mendelian randomization of fasting glucose/T2DM on metabolites (backward 

approach) 

 

® Pathway based sensitivity analysis. T2DM: type 2 diabetes. FDR: false discovery rate. NP: not performed. 

R2 (%):  the percentage of explained variance in the exposure by genetic risk score. As the genetic risk 

scores of the glucose explained less than 1% of variance, the backward MR with pathway analysis is not 

performed. 

 

Please find the table (Suppl_t_6) in the link 

https://www.dropbox.com/s/cd0xp33gube4rky/Supplementary_tables_LIU_J_revised.xlsx?dl=0  
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Supplemental table 7 SNP lists included in exposure genetic risk score in Mendelian randomization of 

fasting glucose/T2DM on metabolites (backward approach) 

 

T2DM: type 2 diabetes. MAF: minor allele frequency. Standardized effect is the t-statistic in the 

association analysis. (NA): no genes confirmed by the outcome in the pathway analysis. ? The gene in the 

pathway analysis is not confirmed. Only fasting glucose was done the pathway analysis. NP: not 

performed. R2 (%):  the percentage of explained variance in the exposure by genetic risk score. 

 

Please find the table (Suppl_t_7) in the link 

https://www.dropbox.com/s/cd0xp33gube4rky/Supplementary_tables_LIU_J_revised.xlsx?dl=0  
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