
Shipley et al. 
 

1 
 

Predicting habitat affinities of plant species using commonly measured 1 

functional traits 2 

Bill Shipley and Michael Belluau, Département de biologie, Université de Sherbrooke, Sherbrooke (Qc) 3 
J1K J1K 2R1 Canada Bill.Shipley@USherbrooke.ca; Michael.Belluau@USherbrooke.ca  4 

Dr. Ingolf Kühn, Dept. Community Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, 5 
Theodor-Lieser-Str. 4, 06120 Halle , Germany. ingolf.kuehn@ufz.de 6 
 7 
Nadejda A. Soudzilovskaia, Conservation Biology Department, Institute of Environmental Sciences, CML, 8 
Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands n.a.soudzilovskaia@cml.leidenuniv.nl 9 

Michael Bahn, Institute of Ecology, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria, 10 
Michael.Bahn@uibk.ac.at 11 

Josep Penuelas: CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès (Catalonia), Spain; 12 
CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain, josep.penuelas@uab.cat 13 

Jens Kattge, Max Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745 Jena, Germany AND 14 
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 15 
Leipzig, Germany; jkattge@bgc-jena.mpg.de 16 

Lawren Sack, Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 17 
Charles E. Young Drive South, Los Angeles, California, USA 90025 lawrensack@ucla.edu 18 

Jeannine Cavender-Bares, Department of Ecology, Evolution and Behavior, University of Minnesota, 19 
Saint Paul MN, USA; cavender@umn.edu 20 

Wim A. Ozinga, Team Vegetation, Forest and Landscape Ecology, Alterra, Wageningen UR, PO Box 47  21 

NL-6700 AA Wageningen , The Netherlands wim.ozinga@wur.nl 22 

Benjamin Blonder, Environmental Change Institute, School of Geography and the Environment, 23 
University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. bblonder@gmail.com. 24 

Peter M. van Bodegom, Institute of Environmental Sciences, CML, Leiden University, Einsteinweg 2, 25 
2333 CC Leiden, The Netherlands  p.m.van.bodegom@cml.leidenuniv.nl 26 

Peter Manning, Senckenberg Gesellschaft für Naturforschung, Biodiversity and Climate Research Centre 27 
(BiK-F), Senckenberganlage 25, D-60325 Frankfurt, Germany, peter.manning@ips.unibe.ch 28 

Thomas Hickler, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 29 
D-60325 Frankfurt am Main, Germany & Department of Physical Geography, Geosciences, Goethe-30 
University Frankfurt am Main, Germany; thomas.hickler@senckenberg.de 31 

Enio Sosinski, Embrapa Clima Temperado, Pelotas, RS, Brazil, 96010-971 enio.sosinski@embrapa.br 32 

 33 

Valério De Patta Pillar, Department of Ecology, Universidade Federal do Rio Grande do Sul 34 

mailto:Bill.Shipley@USherbrooke.ca
mailto:Michael.Belluau@USherbrooke.ca
mailto:ingolf.kuehn@ufz.de
mailto:n.a.soudzilovskaia@cml.leidenuniv.nl
mailto:Michael.Bahn@uibk.ac.at
mailto:lawrensack@ucla.edu
mailto:wim.ozinga@wur.nl
mailto:bblonder@gmail.com
mailto:p.m.van.bodegom@cml.leidenuniv.nl
mailto:thomas.hickler@senckenberg.de
mailto:enio.sosinski@embrapa.br


Shipley et al. 
 

2 
 

Porto Alegre, RS, 91540-000, BRAZIL vpillar@ufrgs.br 35 

Vladimir Onipchenko, Geobotany department, Moscow State University vonipchenko@mail.ru 36 

 37 

Words: 6845 38 

Figures: 3 39 

Tables: 1 40 

  41 

mailto:vpillar@ufrgs.br
mailto:vonipchenko@mail.ru
0001292
Cuadro de texto
This is the accepted version of the following article: Shipley, B. et al. "Predicting habitat affinities of plant species using commonly measured functional traits" in Journal of Vegetation Science, vol. 28, issue 5 (Sep. 2017), p. 1082-1095, which has been published in final form at DOI 10.1111/jvs.12554. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."



Shipley et al. 
 

3 
 

Abstract 42 

Questions: : Heinz Ellenberg classically defined “indicator” scores for species representing their typical 43 

positions along gradients of key environmental variables, and these have proven very useful for 44 

designating ecological distributions. We tested a key tenent of trait-based ecology, i.e., the ability to 45 

predict ecological preferences from species’ traits. More specifically, can we predict Ellenberg indicator 46 

scores for soil nutrients, soil moisture and irradiance from four well-studied traits: leaf area, leaf dry 47 

matter content, specific leaf area and seed mass? Can we use such relationships to estimate Ellenberg 48 

scores for species never classified by Ellenberg? 49 

Location: Global  50 

Methods: Cumulative link models were developed to predict Ellenberg nutrients, irradiance and 51 

moisture values from Ln-transformed trait values using 922, 981 and 988 species respectively.  We then 52 

independently tested these prediction equations using the trait values of 423 and 421 new species that 53 

occurred elsewere in Europe, North America and Morocco and whose habitat affinities we could classify 54 

from independent sources as 3-level ordinal ranks related to soil moisture and irradiance.  The traits 55 

were specific leaf area, leaf dry matter content, leaf area and seed mass. 56 

Results: The four functional traits predicted the Ellenberg indicator scores of site fertility, light and 57 

moisture with average error rates of < 2 Ellenberg ranks out of 9.  We then used the trait values of 423 58 

and 421 species respectively that occurred (mostly) outside of Germany but whose habitat affinities we 59 

could classify as 3-level ordinal ranks related to soil moisture and irradiance.  The predicted positions of 60 

the new species, given the equations derived from the Ellenberg indices, agreed well with their 61 

independent habitat classifications, although our equation for Ellenberg irrandiance levels performed 62 

poorly on the lower ranks. 63 



Shipley et al. 
 

4 
 

Conclusions: These prediction equations, and their eventual extensions, could be used to provide 64 

approximate descriptions of habitat affinities of large numbers of species worldwide. 65 

Key words: environmental gradients, habitat affinities, soil moisture, soil nutrients, habitat fertility, 66 

shade, wetlands, understory plants, SLA, LDMC, leaf size, seed size. 67 

 68 

  69 
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Introduction 70 

Plant ecology, emerging from plant geography, has existed as an academic discipline for more 71 

than a century (Warming et al. 1909).  A major recurring theme in this discipline is that plant species are 72 

differentially distributed along important abiotic gradients with respect to the most common 73 

environmental variables that control plant growth and survival.  Given this history, one might think that 74 

basic information concerning the range and modal values of most plant species along such abiotic 75 

gradients (i.e. their habitat “affinities”) would be generally available.  In fact, such basic ecological 76 

information is often missing with the exception of species like aquatics, desert species, or understory 77 

herbs that are restricted to clearly differentiated habitats.  78 

One exception is the German flora. Heinz Ellenberg (1988, 1978, 1992), working with this flora, 79 

defined a series of ordinal scales for seven major environmental variables (irradiance level; soil 80 

moisture, pH, nitrogen availability, soil salinity; average yearly temperature and continentality).  He then 81 

assigned a single “indicator” score for each species with respect to each environmental value identifying 82 

position along the environmental gradient at which the species was most common.  These indicator 83 

scores can be viewed collectively as very approximate descriptions of the mode of the realized 84 

Hutchinsonian niche (Hutchinson 1957) of each species.  The scales are ordered and go from one (lowest 85 

level) to nine (highest level) except for moisture which goes to 12.  We use three Ellenberg indicator 86 

scores that are directly linked to resource capture: “nitrogen” (better interpreted as a description of site 87 

productivity or soil nutrient levels), “irradiance” and “moisture”. Ellenberg values have proven very 88 

popular since Ellenberg’s (1988, 1978) original references have been cited over 7000 times in the 89 

ecological literature.  90 

These ordinal scales, and the indicator value assigned to a species for a given scale, were not 91 

based on direct physical measurements of the environment but rather on Ellenberg’s own field 92 
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observations with input from his collaborators.  Ellenberg indicator scores, being based on expert 93 

opinion rather than direct physical measurement of the abiotic variables, require the sort of extensive 94 

and exhaustive knowledge of a local flora that takes a lifetime to obtain, and that few people possess. 95 

Their subjective nature also makes them  very difficult to generalize to new geographical locations in a 96 

way that is comparable (Valladares et al. 2008). Strictly speaking, since these are expert opinions rather 97 

than objective measurements, the only people who could to truly extend such indicator scores to new 98 

locations would be Heinz Ellenberg (who died in 1997), or someone who trained with him. Similar, but 99 

not identical, schemes have been produced for other European countries such as Austria (Karrer 1992), 100 

Switzerland (Landolt 1977) Italy (Guarino et al. 2012, Pignatti 2005) and Poland (Zarzycki et al. 2002) .  101 

Despite the subjective nature of Ellenberg indicator scores, a number of independent 102 

publications have shown that average Ellenberg numbers, based on weighted or unweighted vegetation 103 

relevés, do correlate well with more explicit environmental measurements (Bartelheimer et al. 2014, 104 

Carpenter et al. 2014, Douma et al. 2012, Ertsen et al. 1998, Franzaring et al. 2007).  Mean Ellenberg 105 

indicator scores of plots in a large vegetation dataset representing all terrestrial habitats across the 106 

Netherlands were also highly correlated to the position of plots across the main gradients in species 107 

composition as revealed by ordination models (Ozinga et al. 2005).  Although Ellenberg indicator scores 108 

are only approximate and non-metric descriptions of the mode of a species’ distribution along such 109 

environmental gradients, they might better integrate the effect of temporal and spatial variation of such 110 

environmental conditions on plant performance in ways that more explicit but short-term 111 

environmental measurements cannot.  Some of the environmental properties referenced by Ellenberg 112 

indicator scores can be measured using well-established methods and are sufficiently stable in time and 113 

well-defined (soil pH or salt content) that they can be directly measured using samples taken at a single 114 

point in time.  Habitat affinities based on such direct measurements are rare in practice because one 115 

must take them over large spatial extents in order to properly quantify the distribution of a species 116 
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along such gradients and to identify the values at which a species reaches maximum abundance.  Other 117 

variables, such as soil moisture, irradiance level or temperature, can be measured using well-established 118 

methods.   However, they are so temporally and spatially variable that one would require both spatially 119 

extensive sampling and long-term monitoring in order to quantify them in a way that is meaningful to 120 

plant performance; such studies are even rarer.  Finally, even if the above practical problems can be 121 

overcome, there does not even exist a generally-accepted method of quantifying an important soil 122 

property like soil nutrient availability (or “fertility”), which is determined by a complicated interaction of 123 

both a number of soil properties (Fujita et al. 2013) and plant and fungal properties that enable uptake 124 

of different limiting nutrients.  Such difficulties explain, in large part, why we do not yet possess even 125 

basic information concerning the habitat affinities of most plant species and why we are unlikely to fill 126 

this knowledge gap in the near future. If this is true, then can we generalize this expert knowledge to 127 

new geographical areas?  128 

One method, developed by Hill et al (1999) for the British flora, uses co-occurrence data of 129 

vegetation, in conjunction with the Ellenberg indicator scores of the subset of species for which this 130 

information is available, to generalize to new species and to adjust the values of other species as 131 

needed.  Although this method worked well for the British flora, which contains many species in 132 

common with the German flora, it would not work when extrapolating to geographical areas with few or 133 

no species for which Ellenberg numbers are available.  Another method (Klaus et al. 2012) of 134 

generalizing Ellenberg numbers to new locations was based on calibration curves linking Near Infrared 135 

Spectrometric signatures (NIRS) of vegetation samples in Germany with averaged Ellenberg values of 136 

these samples.  In this paper we evaluate a trait-based method for predicting Ellenberg indicator scores 137 

and evaluate its potential to predict habitat affinities of new species around the world for which 138 

Ellenberg indicator scores do not exist. 139 
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A functional trait is any phenotypic attribute, measurable on an individual plant, that affects its 140 

growth, survival or reproductive success and thus its fitness in a given environmental context (Violle et 141 

al. 2007).  Extrapolating to all individuals of a given species in a local area, such functional traits affect 142 

the demographic performance of the species and so a basic postulate of trait-based ecology is that a 143 

species’ demographic performance along major environmental gradients is partly determined by the 144 

values of at least some of its functional traits at some stage in its ontogeny (Grime 1979).  Ideally, when 145 

estimating a species’ habitat from its traits, one would choose traits that are simultaneously the most 146 

important mechanistic determinants of plant fitness along the chosen environmental gradients, are 147 

widely measured for many plant species, and are easily measurable for new species.  In practice these 148 

criteria are often strongly conflicting.  For instance, the ability to survive and grow in drying soils is partly 149 

determined by physiological properties related to leaf gas exchange, turgor maintenance, and the 150 

hydraulic conductivity of water through its roots, stem and leaves (Bartlett et al. 2012).  However, such 151 

traits are not currently available for most species, necessitating approaches from more widely measured 152 

traits for large-scale prediction, such that additional traits can be utilized as they become available. 153 

In this study we evaluate four widely measured traits (leaf area, leaf dry matter content, specific 154 

leaf area and seed mass) as predictors of Ellenberg indicator scores for light, soil moisture and soil 155 

nutrient availability.  Average values of each of these traits are already available for large numbers of 156 

plant species worldwide, each can be quickly and easily measured with minimal cost, and each has been 157 

shown to vary along these environmental gradients for at least some sites and combinations of species 158 

as reviewed in Garnier and Navas (2013).  For instance, small leaf size has often been associated with 159 

dry (Greive 1956, Monk 1966, Scoffoni et al. 2011) and/or nutrient-poor soils (McDonald et al. 2003).  160 

Species having large leaves or large SLA are often associated with low light conditions (Hodgson et al. 161 

2011).  Increasing SLA and decreasing LDMC have been associated with higher soil fertility (Hodgson et 162 
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al. 2011).  Larger seeds have been associated with dry, poorer soils and more shaded habitats 163 

(Tautenhahn et al. 2008). 164 

Methods 165 

Data base for developing prediction equations 166 

The trait data for specific leaf area (SLA, mm2 mg-1), leaf dry matter content (LDMC, g g-1), leaf 167 

area (LA, mm2) and seed mass (SM, mg) were previously published values obtained from the TRY 168 

database (Kattge et al. 2011), www.try-db.org, accessed 10/07/2013. We calculated the mean value for 169 

each species across all observations of the species in TRY. We used Ellenberg indicator scores that can 170 

be directly related to resource availability: irradiance (light) level, soil nutrients and moisture, which take 171 

integer values from 1 to 9.  Although the full range of Ellenberg indicator scores for moisture go to 12, 172 

we excluded aquatics, thus limiting this indicator range to 9.  Note that Ellenberg (1978) originally 173 

described one of his indices an index of soil nitrogen but this index is more properly interpreted as a 174 

more general description of soil fertility, soil nutrient availability or site productivity (Hill et al. 1999, 175 

Schaffers et al. 2000) and is here called a “nutrient” index.  These Ellenberg indicator scores are ordinal 176 

scores and their English descriptions are given in Appendix 1.  The TRY database contains Ellenberg 177 

numbers for 1835 species. 178 

We chose four traits that previous authors have associated with one or more of these resources 179 

and that were sufficiently documented in the TRY database along with the Ellenberg values: specific leaf 180 

area (SLA, mm2 mg-1), leaf dry matter content (LDMC, g g-1), leaf area (LA, mm2) and seed mass (SM, mg).  181 

We then calculated the mean value of each trait.  Other plant traits from the TRY database that can 182 

reasonably be linked to these resource gradients, such as leaf nitrogen concentration, leaf thickness, net 183 

photosynthetic rate or leaf lifespan, did not have sufficient coverage with respect to the Ellenberg 184 

indicator scores and so were not included in this analysis.  For instance, the total number of species with 185 

http://www.try-db.org/
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complete data with respect to Ellenberg nutrients goes from 922 using our chosen four traits to 399 if 186 

we include leaf nitrogen content and to only 55 if we also include leaf lifespan.  Finally, since the 187 

relationships between traits and habitat affinities might differ between different basic plant types, we 188 

included the “graminoid/herb/shrub/tree” classification in TRY as a categorical factor.  A few species, 189 

classified as “ferns” were excluded since they do not have a seed size.  A few species, ambiguously 190 

classified as “herb/shrub” or “shrub/tree”, were classified as “herbs” and “trees” respectively.  The 191 

number of species having complete coverage for all four traits and each Ellenberg score, as well as the 192 

distribution of species among the different Ellenberg scores, are given in Table 1.  Of the three Ellenberg 193 

scores, the distribution of species for Ellenberg irradiance was the most problematic, since 86% of the 194 

981 species had Ellenberg scores of 6 or more. 195 

Statistical analysis and development of the prediction equations 196 

Since the Ellenberg values are only ordered ranks, we used cumulative link models to predict 197 

these Ellenberg scores from the four traits.  This was done using the clm function of the ordinal library 198 

(Christensen 2015) of R.  Cumulative link models are generalizations of maximum likelihood logistic 199 

regression to more than two ordered states (Agresti 2002).  Given an Ellenberg scale with 9 ordered 200 

states (j=1,9), the probability that species i will be found in a state less than, or equal to level j, given its 201 

trait values is given in Equation 1.  Here we present only the simplest version in Equation 1 but this can 202 

be generalized to include the “plant form” factor and any combination of interaction terms, just as in 203 

any other generalized linear model.  LSi is the latent score for species I, i  is the intercept, or “threshold 204 

value”, i.e. the value of the latent score for which a species has a higher probability of being classified in 205 

state j than in a lower state, and 's  are partial slopes.  The latent score can be interpreted as the 206 

predicted position of a species along the unmeasured latent environmental gradient, measured on a 207 

continuous scale as defined by the traits, and which is then divided into ordinal classes as represented 208 
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by the Ellenberg indicator scores.  The probability of a species i being associated with each state j of an 209 

Ellenberg scale is given in Equation 2.   210 
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To use these prediction equations for a new species, once parameterized, one would first enter 213 

its trait values in equation 1a to get the latent score (LSi), then enter this latent score into equation 1b to 214 

obtain the probability that this species has an Ellenberg indicator value of j or less.  To obtain the 215 

probability that the species has an Ellenberg indicator value of exactly j, one would apply equations 216 

2a,b,c.  A worked example is provided in Appendix 1.  These calculations are automated using the 217 

“predict” function associated with the clm function in R.  Although a very large number of possible 218 

models can be generated given four traits plus the categorical “plant type” including all possible 219 

interactions, we present two for each Ellenberg indicator variable: (i) a simplified model involving only 220 

the four traits as main effects for each of the four plant types and (ii) the best model, based on AIC 221 

values and obtained using the “stepAIC” function in the MASS library of R (Venables et al. 1994).  Given 222 

the large sample sizes and resulting statistical power, this second model was invariably more 223 

complicated and involved several higher-order interaction terms. 224 

Evaluating predictive error 225 

The above equations only predict the probability that any species will be classified into each 226 

level of a given Ellenberg scale.  By multiplying each level (j=1 to 9) to the predicted probability (pij) of a 227 
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species i being classified into each level, i.e. (
î ij

j

s j p   ) we get the mean predicted Ellenberg score 228 

for each species, which varies continuously from 1 to 9.  To determine how well the average predicted 229 

score of the species agrees with the actual scores (si) , we estimated the distribution of errors as the 230 

percentage of species having a given difference between the observed(sj) and predicted scores and the 231 

mean predictive error (MPE, Equation 3) of cross-validated models (see below), which measures the 232 

average error (number of Ellenberg levels) between the observed (s) and predicted scores. 233 
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Independent validation of the prediction equations 235 

We evaluated the predictive ability of our equations with respect to independent observations 236 

in two ways.  First, we used cross-validation; i.e. we randomly chose 80% of our data to fit the equation 237 

and then used these parameterized equations to predict the mean Ellenberg scores of the remaining 238 

20%, after which we calculated the mean predictive error.  We did this 100 times, each time randomly 239 

subdividing the data into the calibration and evaluation subsets.  This determines the likely error rate 240 

when extending the equations to new species whose Ellenberg values are known. 241 

However, the main objective of the study was to extend our predictive ability to species that 242 

were never classified by Ellenberg, including species that are found outside of central Europe.  We 243 

therefore identified species for which we had trait data but for which Ellenberg values did not exist, and 244 

for which we could obtain habitat descriptions.  Such habitat descriptions are very approximate 245 

(“understory species”, “typically found in wetlands” etc.) and not as detailed as those of Ellenberg.  We 246 

therefore concentrated on species with clearly different habitat affinities.  First, we identified 1134 247 

species in the TRY database for which there was information on all four traits but for which Ellenberg 248 

scores were missing.  Of these 1134 new species, we then identified 55 species, mostly in North 249 
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America, for which available habitat descriptions (local floras, field guides, online sites such as that 250 

managed by the United States Department of Agriculture) clearly indicate that they are most commonly 251 

found in wet, but not permanently inundated, soils (approximately Ellenberg moisture values of >6) and 252 

43 species that are most commonly found in shaded or partially shaded habitats (approximately 253 

Ellenberg irradiance values of <5).  Next, using the same 1134 species from the TRY database, we 254 

combined this with the BiolFlor data base (Klotz et al. 2002; www.ufz.de/biolflor). We used the BiolFlor 255 

information on “phytosociological affinity” of the plant species following Schubert et al. (2001) and 256 

classified each of the phytosociological classes (i.e. habitat types) either as  “wet” or “shaded” with 257 

values “yes”, “no”, “indifferent” or “unknown”, respectively. Then we simply counted the number of 258 

“yes” and “no” occurrences of the species in the habitat types, because species can occur in several 259 

habitats. Knowing the species from extensive field experience, classifying species with more “yes” than 260 

“no” counts for “wet” habitats and more or equal counts of “yes” compared to “no” for shaded habitats 261 

proved to yield sensible results in classifying them. This gave us a further 55 and 296 species classified as 262 

occurring or not occurring on wet soils, 87 and 264 species classified as occurring or not occurring in 263 

shaded habitats. Finally, we used the data set of Frenette-Dussault et al. (2013) consisting of 34 species 264 

of the Moroccan steppe, close to the Saharan desert,  which has very dry and nutrient-poor soils and 265 

uniformly low and sparse vegetation growing in full sun. The predicted mean Ellenberg scores (Eqn. 1) 266 

for all of these species with respect to soil moisture and light were then calculated.  267 

 If the prediction equations can be generalised then the predicted mean Ellenberg scores of 268 

these species with respect to Ellenberg moisture should be lowest for the Moroccan species, be higher 269 

for the TRY “non-wetland” species, and be highest for the “wetland” species.    If the prediction 270 

equations can be generalised then the mean Ellenberg scores with respect to irradiance should be 271 

lowest for the “shade” species, be larger for the “non-shade” species, and be highest for the Moroccan 272 

species.  Finally, the mean Ellenberg nutrient scores should be lower in the Moroccan steppe species 273 
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than in the other species.  Since the mean predicted Ellenberg  scores for both moisture and light were 274 

approximately normally distributed, we tested the hypothesised differences in the latent scores using 275 

one-way ANOVA followed by Tukey post-hoc tests. 276 

Results 277 

Table 2 presents the cumulative link models.  Two models are presented for each gradient: a 278 

“simplified” model (i.e. each trait without interactions between them, but including differences in slopes 279 

between plant types) and the model having the best AIC score, which is always more complicated.  All 280 

coefficients in these models, except for thepartial  slope associated with seed mass for the Ellenberg 281 

nutrient scores, are significantly different from zero (p<0.05). The average predictive error of these 282 

models, based on 100 independent cross-validation runs, varied between 1.3 (light) to 1.8 (nutrients, 283 

moisture) Ellenberg ranks.  Table 3 presents the distribution of errors for each model and Figure 1 shows 284 

the predicted vs. observed cross-validated values for the AIC-selected models.  Between 70% (soil 285 

fertility and moisture) and 90% (irradiance) of the cross-validated predictions were within one Ellenberg 286 

rank of the actual value and at least 90% were within two Ellenberg ranks.  The prediction errors for the 287 

simplified models were very similar to the more complicated models, showing that the more 288 

complicated models, while capturing statistically significant effects, provided only minor improvements 289 

in predictive ability. 290 

In order to illustrate the trait – environment relationships predicted by the models, we plotted 291 

the predicted Ellenberg scores as a function of the levels of variation in each trait for each plant type 292 

while fixing the other traits at there mean values.  The results are shown in Figures 2 – 4.  In general, 293 

both increasing leaf size and decreasing LDMC (i.e. less dense leaf tissues) indicated habitat preferences 294 

for soils that were wetter and with more nutrients, i.e. more productive habitats.  These two traits did 295 

not respond strongly to changing irradiance levels.  The only exceptions were in the trees, whose LDMC 296 
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values increased with increasing habitat productivity and the graminoids, whose leaf areas decreased 297 

with increasing light levels.  298 

 Increasing SLA (panel C of figures 2-4) coincide with an affinity for habitats having wetter, more 299 

fertile soils and also lower light levels.  Two partial exceptions were seen in the graminoid species and 300 

the trees.   SLA in the graminoid species and trees was relatively unresponsive to soil nutrient levels and 301 

SLA actually decreased with increasing moisture levels in the graminoids. 302 

Seed size was the least informative trait with respect to the three Ellenberg gradients.  It 303 

decreased with increasing soil moisture (except for the herbs) but was largely unresponsive to soil 304 

nutrients and decreased only slightly (and not at all for the herbs and shrubs) with increasing light levels. 305 

Next, we predicted the mean Ellenberg scores for those species that were never classified by 306 

Ellenberg.  Of the 1134 species in the TRY data base for which Ellenberg numbers were missing but for 307 

which we had values for the four traits, we were able to classify 125 species as commonly occurring in 308 

“wet” soils and 264 species as commonly occurring in drier soils (i.e. not “wet” habitats).  Similarly, we 309 

could classify 91 species as commonly occurring in “shaded” habitats and 296 species as commonly 310 

occurring in non-shaded habitats (i.e. “open” habitats).  We further included the 34 species that occur in 311 

the Moroccan steppe, which is a very dry, nutrient poor and open habitat, giving a total of 423 and 421 312 

species classified with respect to soil wetness and habitat light levels, respectively. The average 313 

predicted Ellenberg scores for soil moisture increased as predicted (Figure 5): Moroccan species < dry 314 

species (TRY) < wet species (TRY).  These mean Ellenberg scores differed significantly (F2,370=15.40, 315 

p=3.7e-07) and each was different from the others based on a Tukey post-hoc test. The average predicted 316 

Ellenberg scores for light also increased as predicted (Figure 5): Moroccan species> open species (TRY)> 317 

shade (forest) species (TRY).  These mean Ellenberg scores differed significantly (F2,370=31.99, p=2.2e-16) 318 

and each was different from the others based on a Tukey post-hoc test. Finally, the average predicted 319 
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Ellenberg scores for nutrients were significantly lower in the Moroccan steppe species than for those of 320 

the other species (F1,371=80.62, p= 2.2e-16) .  321 

Discussion 322 

Trait – environment relationships 323 

Our models predicted that herbaceous species having very small, dense leaves with a low SLA 324 

plus (to a lesser degree) larger seeds are more likely be found on the driest and the most infertile soils.  325 

In fact, the models for soil moisture and soil nutrients (Ellenberg’s N) were quite similar even though the 326 

two sets of Ellenberg scores are only moderately correlated (Spearman r=0.36).  Although these 327 

qualitative trait – environment trends have been repeatedly reported in the literature, the trees – and 328 

especially the graminoids - responded rather differently.  Increasing SLA in these species was indicative 329 

of dryer sites (decreased Ellenberg moisture) but changed little with respect to habitat soil nutrients 330 

(Ellenberg N).  A possible explanation can be found by decomposing SLA into its components (Vile et al. 331 

2005).  SLA is approximately equal to 1/(LDMC*T) (Shipley et al. 2002) for typical laminar leaves, where 332 

T is leaf lamina thickness; it follows that Ln(SLA)~-Ln(LDMC)-Ln(T).  The negative relationship between 333 

SLA and LDMC can therefore be modulated by changes in lamina thickness and it has already been 334 

shown that, although graminoids and herbs have largely overlapping ranges of SLA, the relative 335 

importance of LDMC vs. T in determining this range is quite different (Pyankov et al. 1999).  With respect 336 

to increasing Ellenberg nutrients, graminoids decreased LDMC (which would increase SLA) but must 337 

have also increased lamina thickness (which would decrease SLA).  As a result, SLA was largely 338 

insensitive to habitat nutrient levels. With respect to increasing Ellenberg moisture, graminoids did not 339 

change LDMC and so the increased lamina thickness actually decreased SLA.   340 

The main response to increasing light levels in the herbs was to decrease SLA even though leaf 341 

size and LDMC responded only slightly.  Again, a large decrease in SLA without a correspondingly large 342 
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increase in LDMC means that the decrease in SLA in the herbs was mostly driven by increasing lamina 343 

thickness as irradiance levels increased.  For the graminoids and trees, the decrease in SLA with 344 

increasing light levels was accompanied by an increase in LDMC, and so lamina thickness for these plant 345 

types did not change as much.  The response of the trees (and somewhat for the shrubs) to levels of 346 

habitat irradiance should be interpreted with care since most measurements of SLA in trees are taken 347 

on sun leaves.  These differences in response between plant types are further complicated by the fact 348 

that the number herb species (691) was much greater than that of the shrubs (44), trees (31) or 349 

graminoids (156) and the range of trait variation in the plant types other than the herbs was often quite 350 

limited, as seen in Figures 1 -3.   351 

Predictive accuracy and generality 352 

Through cross-validation we predicted Ellenberg scores that were within 2 ranks of the observed 353 

values in over 90% of the cases.  Given that the ranks range from 1 to 9, this means that we could 354 

distinguish between low, medium and high scores but not within adjacent ranks.  In 40-64% of the cases 355 

(depending on the Ellenberg characteristic), the exact score was predicted, with Ellenberg irradiance 356 

having the highest accuracy.  However, these summary statistics do not provide a complete view of the 357 

predictive accuracy of our models. 358 

First, the increased predictive accuracy for Ellenberg irradiance is a consequence of the fact that 359 

most species had Ellenberg irradiance scores of 6 or more (plants generally occurring in well-lit places or 360 

in only partial shade).  As Figure 1 shows, our equations do a poor job of differentiating between 361 

Ellenberg irradiance levels of 5 or less.  In part this is because so few species had such scores (Table 1) 362 

that such species had little weight in the model estimation.  However, another reason is because there 363 

might actually be little real difference in these first five ranks, at least with respect to the chosen traits.  364 

An Ellenberg irradiance rank of 5 is a “semi-shade plant, rarely in full light, but generally with more than 365 
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10% relative illumination when trees are in full leaf”.  In other words, ranks 1 -5 all indicate species that 366 

are generally found in forested understories. 367 

Second, as Figure 1 shows, our equations predict values that are higher than observed for the 368 

lowest Ellenberg scores and values that are lower than observed for the highest Ellenberg scores.  In 369 

part, this is due to low representation of species at these extremes (Table 1) but it is also due to an 370 

unavoidable mathematical bias.  Since these are ordinal scales that are bounded by 1 and 9, any 371 

prediction error at these bounds must increase the predicted values at the lower bound and decrease 372 

them at the upper bound and this will necessarily generate such a bias.  One should therefore use Figure 373 

1 to modify predicted Ellenberg values. 374 

There are some obvious sources of error in these data.  First, a substantial proportion of the 375 

unexplained variation is probably due the arbitrary nature of the original Ellenberg values, leading to 376 

errors in classification of the habitat affinities of the species.  Second, the Ellenberg indicator scores do 377 

not include information on niche breadth.  Although Ellenberg’s classification was based on a lifetime of 378 

experience, the habitat descriptions for each class are sufficiently vague, and the field distributions of 379 

many species with respect to these habitat descriptions are sufficiently difficult to determine, that many 380 

species could probably be assigned to several adjacent Ellenberg classes with equal confidence.  It is 381 

therefore not surprising that our prediction equations cannot discriminate between adjacent Ellenberg 382 

classes.  Third, the trait values used in the analysis are estimates of species’ means obtained from a 383 

heterogeneous collection of values uploaded to the TRY database; we do not know how closely the 384 

species’ trait means calculated from the TRY database correspond to the true species’ trait means 385 

(Cordlandwehr et al. 2013) and, of course, intraspecific trait variation is completely ignored.  A necessary 386 

consequence of errors in the predictor variables (i.e. the species’ means for each trait) is also to reduce 387 

the predictive ability of the model.  Finally, these equations treat each environmental gradient 388 
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separately but these are correlated in nature and the actual habitat affinities of species would reflect 389 

correlated trait adaptations to all environmental gradients.  Beyond these sources of error, it is surely 390 

true that more (or better) traits would further improve the predictive ability of our equations  391 

The main goal of this research was to determine the degree to which our easily measured and 392 

widely available trait values could be used to predict the habitat affinities of species not already 393 

classified by Ellenberg values and, especially, species for which no habitat affinities are available.  Can 394 

one use these equations to predict the Ellenberg habitat affinities of species not classified by Ellenberg, 395 

especially of species outside of Central Europe?  Strictly speaking, it is impossible answer this question 396 

since these numbers represent Ellenberg’s expert opinion rather than some independently measurable 397 

attribute.  However, if our equations are generalizable, we should be able to correctly differentiate 398 

between species that typically occupy clearly different points along the underlying environmental 399 

gradients.  Our results (Figure 5) suggest that this is possible.  With respect to soil fertility our equations 400 

assigned the Moroccan steppe species to Ellenberg levels of 1 (“extremely infertile sites”) to 3 (“more or 401 

less infertile sites”) while the heterogeneous collection of other species had a median score of around 5 402 

(“sites with intermediate fertility”).  With respect to soil moisture and irradiance our equations 403 

performed more poorly.  Although the order of the predicted ranks for the “wetland”, “non-wetland” 404 

and “steppe” species was correct, the median moisture score for the “wetland” species was ~5.5 when it 405 

should have been around 7 (“plants typically found on constantly moist or damp”) or more.  This level of 406 

error was also seen in the cross-validated estimates (Figure 1).  Similarly, although the order of the 407 

predicted ranks for the “steppe”, “open” and “forest” species was in correct, and while the “steppe” and 408 

“open habitat” species were assigned reasonable irradiance ranks, the species described as understory 409 

plants were incorrectly assigned Ellenberg ranks of between 6 and 7 when they should have received 410 

ranks of 5 or less.  Our equations did particularly poorly when identifying understory species (Figure 1). 411 
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We therefore propose our equations as a general, but only very approximate, method of 412 

describing the likely habitat affinities of soil moisture, soil nutrients and irradiance levels for species 413 

lacking such information.  When distribution models already exist that include information on the 414 

relevant abiotic gradients for a given species then these would likely provide better predictions than 415 

would our equations.  Species distribution models (Elith et al. 2009, Peterson 2011) provide an alternate 416 

approach for estimating the realized niche of species. Because of the growing availability of species 417 

occurrence data and environmental layers  (Maldonado et al. 2015), habitat models can now be readily 418 

constructed for many species. However, these models tend to be more appropriate at larger spatial 419 

scales and often describe only large-scale climate variables like temperature and precipitation.   420 

Currently, such distribution models exist for only a tiny fraction of plant species.  Since it is much easier 421 

to obtain information on a few static traits than to construct a species distribution model, we expect 422 

that our prediction equations will still be useful for the majority of species.  Ultimately, as trait 423 

databases like TRY continue to accumulate trait information on more species, one may be able to use 424 

our equations to product coarse habitat descriptions for many thousands of species.   425 
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Appendix 1.  Ellenberg scores for irradiance level (“light"), moisture and soil fertility and a worked 548 

example of calculations. 549 
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Table 1.  The number of species (% of total) having complete information on the four traits and for 551 

which the Ellenberg scores for nutrients, moisture and light are known. 552 

 553 

Ellenberg score Soil nutrients Habitat moisture Irradiance level 

1 48 (5.2%) 2 (0.2%) 1 (0.1%) 

2 141 (15.3%) 36 (3.6%) 6 (0.6%) 

3 127 (13.8%) 130 (13.2%) 19 (1.9%) 

4 128 (13.9%) 214 (21.7%) 60 (6.1%) 

5 141 (15.3%) 228 (23.1%) 51 (5.2%) 

6 111 (12.0%) 107 (10.8%) 141 (14.4%) 

7 118 (12.8%) 88 (8.9%) 317 (32.3%) 

8 85 (9.2%) 92 (9.3%) 276 (28.1%) 

9 23 (2.5%) 91 (9.2%) 110 (11.2%) 

Total 922 988 981 

  554 
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Table 2:  Results of the cumulative link model (Equations 1 and 2), giving the probabilities that a species 555 

with given ln-transformed values of leaf area (LA, mm2), leaf dry matter content (LDMC, g g-1), specific 556 

leaf area (SLA, mm2 mg-1) and seed mass (SM, mg) would be classified in each of the nine ordinal 557 

Ellenberg classes for site irradiance level (light), site soil nutrients, and soil moisture level.  Shown are 558 

the maximum likelihood values for each of four plant types (H= herb, G=graminoid, S=shrub, T=tree. of 559 

the partial slopes associated with each of the four ln-transformed traits and their interactions which 560 

together give the latent score.  Also shown are the “threshold values” or intercepts; thus “x|y” (eg. 1|2) 561 

gives the value of the latent score, calculated from the partial slopes and trait values, at which a species 562 

is more likely to be in Ellenberg state 2 rather than 1.  Two sets of models are shown: a simplified model 563 

that doesn’t include interactions between traits and the best model as determined by AIC values.  MPE 564 

gives the mean predictive error for each model. 565 

Simplified model without interactions 

Term Ellenberg nutrients Ellenberg light Ellenberg soil moisture 

  G H S T G H S T G H S T 

intercept 0 0.5 0.47 3.83 0 -3.57 -8.36 -8.41 0 

-

7.14 

-

3.95 

-

3.23 

ln(LA) 0.67 0.44 0.59 0.38 -0.77 -0.17 -0.21 -0.75 0.16 0.21 0.06 0.37 

ln(LDMC) 

-

1.52 

-

0.65 0.04 1.33 -0.48 -0.39 -2.84 1.03 

-

0.48 

-

0.18 0.41 0.53 

ln(SLA) 0.73 1.4 1.45 0.82 -2.16 -2.15 -1.41 0.9 

-

0.63 1.32 1.22 0.42 

ln(SM) 0.1 0.09 

-

0.14 

-

0.12 0.04 -0.09 -0.18 -0.08 -0.3 

-

0.15 

-

0.14 

-

0.17 

Threshold coefficients 

1|2 5.27 -18.41 -7.41 

2|3 7.2 -16.45 -4.41 

3|4 8.12 -15.09 -2.68 

4|5 8.88 -13.72 -1.43 

5|6 9.68 -13.11 -0.37 

6|7 10.37 -12.05 0.18 

7|8 11.41 -10.41 0.74 

8|9 13.18 -8.45 1.6 

AIC 3568.02 3061.75 3773.2 

MEP 1.81 1.3 1.8 

Best model using AIC 
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Term Ellenberg nutrients Ellenberg light Ellenberg soil moisture 

  G H S T G H S T G H S T 

intercept 0 2.13 6.95 1.13 0 59.57 42.52 173.73 0 

-

9.15 

-

7.05 

-

4.32 

A=ln(LA) 0.82 

-

0.04 

-

0.66 1.06 8.73 0.17 3.46 17.9 

-

1.84 

-

1.84 

-

1.84 

-

1.84 

B=ln(LDMC) 

-

8.94 

-

5.12 0.48 

-

9.22 

-

42.12 3.27 4.05 127.52 3.82 3.99 4.66 4.18 

C=ln(SLA) 0.25 1.66 1.96 0.54 19.52 -2.04 3.74 -33.31 

-

4.94 

-

2.35 

-

2.31 

-

3.18 

D=ln(SM) 0.52 0.52 0.52 0.52 -28.3 3.54 

-

11.51 -41.67 

-

0.08 

-

0.38 0.25 0.05 

A*B 0.64 0.17 

-

0.46 1.04 6.12 -0.51 -0.03 -17.34 

-

0.94 

-

0.94 

-

0.94 

-

0.94 

A*C 0.24 0.24 0.24 0.24 -3.36 -0.11 -1.44 4.94 0.7 0.7 0.7 0.7 

A*D 

-

0.04 

-

0.04 

-

0.04 

-

0.04 4.02 -0.98 0.47 5.57 

-

0.07 

-

0.07 

-

0.07 

-

0.07 

B*C 1 1 1 1 14.5 -0.8 -1.55 -38.38 

-

1.56 

-

1.56 

-

1.56 

-

1.56 

B*D 

-

0.24 

-

0.24 

-

0.24 

-

0.24 

-

26.05 0.95 

-

18.64 -35.12 

-

1.32 

-

1.63 

-

0.95 

-

1.02 

C*D 

-

0.19 

-

0.19 

-

0.19 

-

0.19 8.39 -1.26 3.65 13.17 

-

0.42 

-

0.42 

-

0.42 

-

0.42 

A*B*C         -2.16 0.4 -0.1 5.3 0.32 0.32 0.32 0.32 

A*B*D         3.52 -0.43 1.7 4.48 0.08 0.08 0.08 0.08 

A*C*D         -1.14 0.33 -0.15 -1.79 0.08 0.08 0.08 0.08 

B*C*D         7.74 -0.33 6.11 11.39 0.27 0.27 0.27 0.27 

A*B*C*D         -1 0.15 -0.56 -1.46         

Threshold coefficients 

1|2 9.54 43 -19.7 

2|3 11.5 44.96 -16.59 

3|4 12.43 46.34 -14.8 

4|5 13.2 47.83 -13.52 

5|6 14.01 48.5 -12.43 

6|7 14.72 49.62 -11.86 

7|8 15.76 51.36 -11.29 

8|9 17.55 53.42 -10.4 

AIC 3559.16 3054.74 3744.86 

MEP 1.77 1.27 1.76 
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Table 3.  Levels of prediction error in cross-validated data (100 independent runs, 20% of data for each 568 

run) for the Ellenberg scores of soil nutrients, habitat moisture, and irradiance, each having 9 levels.  The 569 

first column (“Error” is the difference in the observed and predicted Ellenberg score; thus, 1=the 570 

predicted score is within 1 score of the real score, etc.  Subsequent columns give the percent of the 571 

cross-validated observations having this level of prediction error (cumulative percent error).  These error 572 

rates are given for both the AIC-selected models and the simplified models. 573 

Error soil nutrients Habitat moisture Irradiance level 

 AIC-selected simplified AIC-selected simplified AIC-selected simplified 

0 39.5  38.4 45.2 41.6 63.7 59.1  

1 34.3 (73.8) 34.9 (73.2) 28.0 (73.2) 29.6 (71.2) 26.1 (89.9) 29.4 (88.5) 

2 16.9 (90.7) 16.9 (90.1) 17.1 (90.3) 19.8 (91.0) 6.7 (96.5) 8.0 (96.5) 

3 6.8 (97.5) 7.3 (97.4) 7.1 (97.4) 6.8 (97.8) 2.4 (98.9) 2.4 (98.9) 

4 2.3 (99.8) 2.4 (99.8) 2.2 (99.6) 2.0 (99.9) 1.1 (100.0 1.1 (100.0) 

5 0.2 (100.0) 0.2 (100.0) 0.4 (100.0) 0.1 (100.0) 0 0 
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Figure 1.  The observed Ellenberg indicator values for soil nutrient, soil moisture and irradiance plotted 575 

against the mean Ellenberg indicator values predicted by four traits: specific leaf area, leaf dry matter 576 

content, leaf area and seed mass.  Results based on 922 (nutrients), 981 (moisture) and 988 (irradiance) 577 

species.578 
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Figure 2. The predicted Ellenberg indicator values for soil nutrient status as a function of each plant trait.  581 

Results are shown for four plant types (H: herbs, G: graminoids, S: shrubs, T: trees).  Each line shows the 582 

response for that trait when holding constant the other traits at their mean values in the data set.  The 583 

mean value of each trait is shown by the dot on the x-axis.. 584 
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Figure 3. The predicted Ellenberg indicator values for soil moisture status as a function of each plant 587 

trait.  See Figure 1 for details. 588 
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Figure 4. The predicted Ellenberg indicator values for irradiance as a function of each plant trait.  See 591 

Figure 1 for details.592 
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Figure 5.  Predicted mean Ellenberg indicator values for soil nutrient and moisture status, as well as site 595 

irradiance.  Predictions were obtained for species that had never been classified by Ellenberg.  Species 596 

classified as being from the dry, infertile Moroccan steppe or not (soil nutrients), as being wetland, non-597 

wetland or Moroccan steppe species (soil moisture) and as being forest understories, open habitats or 598 

from the Moroccan steppe. 599 
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