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Abstract Identification of subgroups of patients for whom
treatment A is more effective than treatment B, and vice
versa, is of key importance to the development of personal-
ized medicine. Tree-based algorithms are helpful tools for
the detection of such interactions, but none of the available
algorithms allow for taking into account clustered or nested
dataset structures, which are particularly common in psy-
chological research. Therefore, we propose the generalized
linear mixed-effects model tree (GLMM tree) algorithm,
which allows for the detection of treatment-subgroup inter-
actions, while accounting for the clustered structure of a
dataset. The algorithm uses model-based recursive partition-
ing to detect treatment-subgroup interactions, and a GLMM
to estimate the random-effects parameters. In a simulation
study, GLMM trees show higher accuracy in recovering
treatment-subgroup interactions, higher predictive accuracy,
and lower type II error rates than linear-model-based recur-
sive partitioning and mixed-effects regression trees. Also,
GLMM trees show somewhat higher predictive accuracy
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than linear mixed-effects models with pre-specified inter-
action effects, on average. We illustrate the application
of GLMM trees on an individual patient-level data meta-
analysis on treatments for depression. We conclude that
GLMM trees are a promising exploratory tool for the
detection of treatment-subgroup interactions in clustered
datasets.

Keywords Model-based recursive partitioning ·
Treatment-subgroup interactions · Mixed-effects models ·
Classification and regression trees

Introduction

In research on the efficacy of treatments for somatic
and psychological disorders, the one-size-fits-all paradigm
is slowly losing ground, and personalized or stratified
medicine is becoming increasingly important. Stratified
medicine presents the challenge of discovering which
patients respond best to which treatments. This can be
referred to as the detection of treatment-subgroup interac-
tions (e.g., Doove, Dusseldorp, Van Deun, & VanMechelen,
2014). Often, treatment-subgroup interactions are studied
using linear models, such as factorial analysis of vari-
ance techniques, in which potential moderators have to be
specified a priori, have to be checked one at a time, and
continuous moderator variables have to be discretized. This
may hamper identification of which treatment works best
for whom, especially when there are no a priori hypotheses
about treatment-subgroup interactions. As noted by Krae-
mer, Frank, and Kupfer (2006), there is a need for methods
that generate instead of test such hypotheses.

Tree-based methods are such hypothesis-generating
methods. Tree-based methods, also known as recursive
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partitioning methods, split observations repeatedly into
groups so that they become increasingly similar with respect
to the outcome within each group. Several tree-based meth-
ods take the mean of a continuous dependent variable or
the majority class of a categorical dependent variable as the
outcome, one of the earliest and most well-known exam-
ples being the classification and regression tree (CART)
approach of Breiman, Friedman, Olshen, and Stone (1984).
Other tree-based methods take the estimated parameters of
a more complex model, of which the RECPAM (recursive
partition and amalgamation) approach of Ciampi (1991) is
the earliest example.

Due to the recursive nature of the splitting, the rectan-
gular regions of a recursive partition can be graphically
depicted as nodes in a decision tree, as shown in the artificial
example in Fig. 1. The partition in Fig. 1 is rather simple,
based on the values of two predictor variables: duration and
anxiety. The resulting tree has a depth of two, as the longest
path travels along two splits. Each of the splits in the tree is
defined by a splitting variable and value. The first split in the
tree separates the observations into two subgroups, based on
the duration variable and a splitting value of eight, yielding
two rectangular regions, represented by node 2 and node 5.
Node 2 is an inner node, as the observations in this node are
further split into terminal nodes 3 and 4, based on the anxi-
ety variable. The observations in node 5 are not further split
and this is therefore a terminal node.

If the partition in Fig. 1 would be used for prediction of
a new observation, the new observation would be assigned
to one of the terminal nodes according to its values on

the splitting variables. The prediction is then based on the
estimated distribution of the outcome variable within that
terminal node. For example, the prediction may be the node-
specific mean of a single continuous variable. In the current
paper, we focus on trees where the terminal nodes con-
sist of a linear (LM) or generalized linear model (GLM),
in which case the predicted value for a new observation is
determined by the node-specific parameter estimates of the
(G)LM, while also adjusting for random effects.

Tree-based methods are particularly useful for
exploratory purposes because they can handle many poten-
tial predictor variables at once and can automatically detect
(higher-order) interactions between predictor variables
(Strobl, Malley, & Tutz, 2009). As such, they are pre-
eminently suited to the detection of treatment-subgroup
interactions. Several tree-based algorithms for the detec-
tion of treatment-subgroup interactions have already been
developed (Dusseldorp, Doove, & Van Mechelen, 2016;
Dusseldorp & Meulman, 2004; Su, Tsai, Wang, Nickerson,
& Li, 2009; Foster, Taylor, & Ruberg, 2011; Lipkovich,
Dmitrienko, Denne, & Enas, 2011; Zeileis, Hothorn, &
Hornik, 2008; Seibold, Zeileis, & Hothorn, 2016; Athey &
Imbens 2016). Also, Zhang, Tsiatis, Laber, and Davidian
(2012b) and Zhang, Tsiatis, Davidian, Zhang, and Laber
(2012a) have developed a flexible classification-based
approach, allowing users to select from a range of statistical
methods, including trees.

In many instances, researchers may want to detect
treatment-subgroup interactions in clustered or nested
datasets, for example in individual-level patient data

0 5 10 15

0
5

1
0

1
5

duration

a
n
x
ie

ty

node 3

node 4

node 5

duration

1

8 8

anxiety

2

10 10

3 4

5

Fig. 1 Example recursive partition defined by two partitioning variables (duration and anxiety). In the left panel, the partition is depicted
as a set of rectangular areas. In the right panel, the same partition is depicted as a tree
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meta-analyses, where datasets of multiple clinical trials on
the same treatments are pooled. In such analyses, the nested
or clustered structure of the dataset should be taken into
account by including study-specific random effects in the
model, prompting the need for a mixed-effects model (e.g.,
Cooper & Patall 2009; Higgins, Whitehead, Turner, Omar,
& Thompson, 2001). In linear models, ignoring the clus-
tered structure may lead, for example, to biased inference
due to underestimated standard errors (e.g., Bryk & Rauden-
bush, 1992). For tree-based methods, ignoring the clustered
structure has been found to result in the detection of spu-
rious subgroups and inaccurate predictor variable selection
(e.g., Sela & Simonoff, 2012; Martin, 2015). However, none
of the purely tree-based methods for treatment-subgroup
interaction detection allow for taking into account the clus-
tered structure of a dataset. Therefore, in the current paper,
we present a tree-based algorithm that can be used for the
detection of interactions and non-linearities in GLMM-type
models: generalized linear mixed-effects model trees, or
GLMM trees.

The GLMM tree algorithm builds on model-based
recursive partitioning (MOB, Zeileis et al., 2008), which
offers a flexible framework for subgroup detection. For
example, GLM-based MOB has been applied to detect
treatment-subgroup interactions for the treatment of depres-
sion (Driessen et al., 2016) and amyotrophic lateral sclerosis
(Seibold et al., 2016). In contrast to other purely tree-based
methods (e.g., Zeileis et al., 2008; Su et al., 2009; Dus-
seldorp et al., 2016), GLMM trees allow for taking into
account the clustered structure of datasets. In contrast to pre-
viously suggested regression trees with random effects (e.g.,
Hajjem, Bellavance, & Larocque, 2011; Sela & Simonoff,
2012), GLMM trees allow for treatment effect estima-
tion, with continuous as well as non-continuous response
variables.

The remainder of this paper is structured into four sections:
In the first section, we introduce the GLMM tree algo-
rithm using an artificial motivating dataset with treatment-
subgroup interactions. In the second section, we compare
the performance of GLMM trees with that of three other
methods: MOB trees without random effects, mixed-effects
regression trees (MERTs) and linear mixed-effects mod-
els with pre-specified interactions. In the third section, we
apply the GLMM tree algorithm to an existing dataset
of a patient-level meta-analysis on the effects of psycho-
and pharmacotherapy for depression. In the fourth and last
section, we summarize the results and discuss limitations
and directions for future research. In the Appendix, we pro-
vide a glossary explaining abbreviations and mathematical
notation used in the current paper. Finally, a tutorial on
how to fit GLMM trees using the R package glmertree

is included as supplementary material. In the tutorial, the

artificial motivating dataset is used, allowing users to recre-
ate the trees and models to be fitted in the next section.

GLMM tree algorithm

Artificial motivating dataset

We will use an artificial motivating dataset with treatment-
subgroup interactions to introduce the GLMM tree algo-
rithm. This dataset consists of a set of observations on N =
150 patients, who were randomly assigned to one of two
treatment alternatives (Treatment 1 or Treatment 2). The
treatment outcome is represented by the variable depression,
quantifying post-treatment depressive symptomatology. The
potential moderator variables are duration, age, and anxiety.
Duration reflects the number of months the patient has been
suffering from depression prior to treatment, age reflects
patients’ age in years at the start of treatment, and anxi-
ety reflects patients’ total scores on an anxiety inventory
administered before treatment. Summary statistics of these
variables are provided in Table 1. Each patient was part of
one of ten clusters, each having a different value for the
random intercept, which were generated from a standard
normal distribution and uncorrelated with the partitioning
variables.

The outcome variable was generated such that there
are three subgroups with differential treatment effective-
ness, corresponding to the terminal nodes in Fig. 1: For
the first subgroup of patients (node 3) with short duration
(≤ 8) and low anxiety scores (≤ 10), Treatment 1 leads to
lower post-treatment depression than in Treatment 2 (true
mean difference = 2). For the second subgroup of patients
(node 4) with short duration but high anxiety scores (> 10),
post-treatment depression is about equal in both treatment
conditions (true mean difference = 0). For the third sub-
group of patients (node 5) with long duration (> 8 months),
Treatment 2 leads to lower post-treatment depression than
Treatment 1 (true mean difference = −2.5). Thus, dura-
tion and anxiety are true partitioning or moderator variables,
whereas age is not. Anticipating the final results of our
analyses, the treatment-subgroup interactions are depicted

Table 1 Summary statistics for partitioning and outcome variables in
the artificial motivating dataset

min max M SD

Depression 3 16 9.12 2.66

Age 18 69 45.00 9.56

Anxiety 3 18 10.26 3.05

Duration 1 17 6.97 2.90
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in Fig. 4, which shows the GLMM tree that accurately
recovered the treatment-subgroup interactions.

Model-based recursive partitioning

The rationale behind MOB is that a single global GLM (or
other parametric model) may not describe the data well, and
when additional covariates are available it may be possi-
ble to partition the dataset with respect to these covariates,
and find better-fitting models in each cell of the partition.
For example, to assess the effect of treatment, we may first
fit a global GLM where the treatment indicator has the
same effect/coefficient on the outcome for all observations.
Subsequently, the data may be partitioned recursively with
respect to other covariates, leading to separate models with
different treatment effects/coefficients in each subsample.

More formally, in a single global GLM, the expectation
μi of outcome yi given the treatment regressor xi is modeled
through a linear predictor and suitable link function:

E[yi |xi] = μi, (1)

g(μi) = x�
i β, (2)

where x�
i β is the linear predictor for observation i and g

is the link function. β is a vector of fixed-effects regres-
sion coefficients. For simplicity, in the current paper we
focus on two treatment groups and no further covariates in
the GLM, so that in our illustrations xi and β both have
length 2. For the continuous response variable in the moti-
vating data set, we employ the identity link function and
assume a normal distribution for the error (denoted by εi =
yi − μi) with mean zero and variance σ 2

ε . Thus, the first
element of β then corresponds to the mean of the linear pre-
dictor in the first treatment group and the second element
corresponds to the mean difference in the linear predictor
between the first and second treatment groups. However, the
model can easily accommodate additional treatment con-
ditions and covariates, as well as binary or count/Poisson
outcome variables.

Obviously, such a simple, global GLM will not fit the
data well, especially in the presence of moderators. For
expository purposes, however, we take it as a starting point
to illustrate MOB. The global GLM fitted to the motivating
example dataset is depicted in Fig. 2. As the boxplots show,
there is little difference between the global effects of the two
treatments and there is considerable residual variance.

The MOB algorithm can be used to partition the dataset
using additional covariates and find better-fitting local mod-
els. To this end, the MOB algorithm tests for parameter
stability with respect to each of a set of auxiliary covariates,
also called partitioning variables, which we will denote

Treatment 1 Treatment 2

2

17

Fig. 2 Example of a globally estimated GLM based on the artifi-
cial motivating dataset (N = 150). The x-axis represents treatment
group, the y-axis represents treatment outcome (post-treatment
depression). The dot for Treatment 1 represents the first element
of the fixed-effects coefficient vector β, the slope of the regression
line represents the second element of β

byU . When the partitioning is based on a GLM, instabilities
are differences in β̂ across partitions of the dataset, which
are defined by one or more auxiliary covariates not included
in the linear predictor. To find these partitions, the MOB
algorithm cycles iteratively through the following steps
(Zeileis et al., 2008): (1) fit the parametric model to the
dataset, (2) statistically test for parameter instability with
respect to each of a set of partitioning variables, (3) if there
is some overall parameter instability, split the dataset with
respect to the variable associated with the highest instability,
(4) repeat the procedure in each of the resulting subgroups.

In step (2) a test statistic quantifying parameter instabil-
ity is calculated for every potential partitioning variable. As
the distribution of these test statistics under the null hypoth-
esis of parameter stability is known, a p value for every
partitioning variable can be calculated. Note that a more in-
depth discussion of the parameter stability tests is beyond
the scope of this paper, but can be found in Zeileis and
Hornik (2007) and Zeileis et al. (2008).

If at least one of the partitioning variables yields a
p value below the pre-specified significance level α, the
dataset is partitioned into two subsets in step (3). This par-
tition is created using Uk∗ , the partitioning variable with
the minimal p value in step (2). The split point for Uk∗ is
selected by taking the value that minimizes the instability
as measured by the sum of the values of two loss functions,
one for each of the resulting subgroups. In other words, the
loss function is minimized separately in the two subgroups
resulting from every possible split point and the split point
yielding the minimum sum of the loss functions is selected.
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In step (4), steps (1) through (3) are repeated in each parti-
tion, until the null hypothesis of parameter stability can no
longer be rejected (or the subsets become too small).

The partition resulting from application of MOB can be
depicted as a decision tree. If the partitioning is based on
a GLM, the result is a GLM tree, with a local fixed-effects
regression model in every j -th (j = 1, . . . , J ) terminal
node:

g(μij ) = x�
i βj (3)

To illustrate, we fitted a GLM tree on the artificial moti-
vating dataset. In addition to the treatment indicator and
treatment outcome used to fit the earlier GLM, we specified
the anxiety, duration and age variables as potential partition-
ing variables. Figure 3 shows the resulting GLM tree. MOB
partitioned the observations into four subgroups, each with
a different estimate βj . Age was correctly not identified
as a partitioning variable and the left- and rightmost nodes
are in accordance with the true treatment-subgroup interac-
tions described above. However, the two nodes in the middle

represent an unnecessary split and thus do not represent true
subgroups, possibly due to the dependence of observations
within clusters not being taken into account.

Including random effects

For datasets containing observations from multiple clusters
(e.g., trials or research centers), application of a mixed-
effects model would be more appropriate. The GLM in
Eq. 2 is then extended to include cluster-specific, or random
effects:

g(μi) = x�
i β + z�

i b (4)

For a random-intercept only model, zi is a unit vector of
length M , of which the m-th element takes a value of 1, and
all other elements take a value of 0; m (m = 1, . . . , M)
denotes the cluster which observation i is part of. Fur-
ther, b is a random vector of length M , each m-th element
corresponding to the random intercept for cluster m. For
simplicity, we employ a cluster-specific intercept only, but
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Fig. 3 GLM tree grown on the artificial motivating dataset. The
x-axes in the terminal nodes represent the treatment group, the y-
axes represent the treatment outcome (post-treatment depression).

Three additional covariates (pre-treatment anxiety, duration, and
age) were used as potential splitting variables, of which two
(duration and age) were selected
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further random effects can easily be included in zi . Further-
more, within the GLMM it is assumed that b is normally
distributed, with mean zero and variance σ 2

b and that the
errors ε have constant variance across clusters. The param-
eters of the GLMM can be estimated with, for example,
maximum likelihood (ML) and restricted ML (REML).

Although the random-effects part of the GLMM in Eq. 4
accounts for the nested structure of the dataset, the global
fixed-effects part x�

i β may not describe the data well.
Therefore, we propose the GLMM tree model, in which the
fixed-effects part may be partitioned as in Eq. 3 while still
adjusting for random effects:

g(μij ) = x�
i βj + z�

i b (5)

In the GLMM tree model, the fixed effects βj are local
parameters, their value depending on terminal node j , but
the random effects b are global. To estimate the parameters
of this model, we take an approach similar to that of the
mixed-effects regression tree (MERT) approach of Hajjem
et al. (2011) and Sela and Simonoff (2012). In the MERT
approach, the fixed-effects part of a GLMM is replaced by a
CART tree with constant fits in the nodes, and the random-
effects parameters are estimated as usual. To estimate a
MERT, an iterative approach is taken, alternating between
(1) assuming random effects known, allowing for estimation
of the CART tree, and (2) assuming the CART tree known,
allowing for estimation of the random-effects parameters.

For estimating GLMM trees, we take this approach two
steps further: (1) Instead of a CART tree with constant fits
to estimate the fixed-effects part of the GLMM, we use a
GLM tree. This allows not only for detection of differences
in intercepts across terminal nodes but also for detection of
differences in slopes such as treatment effects. (2) By using
generalized linear (mixed) models, the response may also
be a binary or count variable instead of a continuous vari-
able. The GLMM tree algorithm takes the following steps
to estimate the model in Eq. 5:

Step 0: Initialize by setting r and all values b̂(r) to 0.
Step 1: Set r = r+1. Estimate a GLM tree using z�

i b̂(r−1)

as an offset.
Step 2: Fit the mixed-effects model g(μij ) = x�

i βj +z�
i b

with terminal node j (r) from the GLM tree estimated
in Step 1. Extract posterior predictions b̂(r) from the
estimated model.

Step 3: Repeat Steps 1 and 2 until convergence.

The algorithm initializes by setting b to 0, since the ran-
dom effects are initially unknown. In every iteration, the
GLM tree is re-estimated in step (1) and the fixed- and
random-effects parameters are re-estimated in step (2). Note
that the random effects are not partitioned, but estimated
globally. Only the fixed effects are estimated locally, within
the cells of the partition. Convergence of the algorithm is

monitored by computing the log-likelihood criterion of the
mixed-effects model in Eq. 5. Typically, this converges if
the tree does not change from one iteration to the next.

In Fig. 4, the result of applying the GLMM tree algo-
rithm to the motivating dataset is presented. In addition to
the treatment indicator, treatment outcome and the potential
partitioning variables, the GLMM tree algorithm has also
taken a random intercept with respect to the cluster indicator
into account. As a result, the dependence between obser-
vations is taken into account, the true treatment subgroups
have been recovered and the spurious split involving the
anxiety variable no longer appears in the tree.

Simulation-based evaluation

To assess the performance of GLMM trees, we carried
out three simulation studies: In Study I we assessed
and compared the accuracy of GLMM trees, linear-model
based MOB (LM trees) and mixed-effects regression trees
(MERTs) in datasets with treatment-subgroup interactions.
In Study II, we assessed and compared the type I error
of GLMM trees and linear-model based MOB in datasets
without treatment-subgroup interactions. In Study III, we
assessed and compared the performance of GLMM trees
and linear mixed-effects models (LMMs) with pre-specified
interactions in datasets with piecewise and continuous inter-
actions. As the outcome variable was continuous in all
simulated datasets, the GLMM tree algorithm and trees
resulting from its application will be referred to as LMM
tree(s).

General simulation design

In all simulation studies, the following data-generating
parameters were varied:

1. Sample size: N = 200, N = 500, N = 1000.
2. Number of potential partitioning covariates U1 through

UK : K = 5 and K = 15.
3. Intercorrelation between the potential partitioning

covariates U1 through UK : ρUk,Uk′ = 0.0, ρUk,Uk′ =
0.3.

4. Number of clusters: M = 5, M = 10, M = 25.
5. Population standard deviation (SD) of the normal distri-

bution from which the cluster-specific intercepts were
drawn: σb = 0, σb = 5, σb = 10.

6. Intercorrelation between b and one of the Uk variables:
b and all Uk covariates uncorrelated, b correlated with
one of the Uk covariates (r = .42).

Following the approach of Dusseldorp and Van Meche-
len (2014), all partitioning covariates U1 through UK were
drawn from a multivariate normal distribution with means
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Fig. 4 GLMM tree of the motivating example dataset. The x-axes represent the treatment group, the y-axes represent the treatment outcome
(post-treatment depression). Three covariates (anxiety, duration and age) were used as potential splitting variables, and the clustering structure
was taken into account by estimating random intercepts

μU 1 = 10, μU 2 = 30, μU 4 = −40, and μU 5 = 70. The
means of the other potential partitioning covariates (U3 and,
depending on the value of K , also U6 through U15) were
drawn from a discrete uniform distribution on the inter-
val [−70, 70]. All covariates U1 through U15 had the same
standard deviation: σU k = 10.

To generate the cluster-specific intercepts, we partitioned
the sample into M equally sized clusters, conditional on one
of the variables U1 through U5, producing the correlations
in the sixth facet of the simulation design. For each clus-
ter, a single value bm was drawn from a normal distribution
with mean 0 and the value of σb given by the fifth facet of
the simulation design. If b was correlated with one of the
potential partitioning variables, the correlated variable was
randomly selected.

For every observation, we generated a binomial variable
(with probability 0.5) as an indicator for treatment type.
Random errors ε were drawn from a normal distribution
with με = 0 and σε = 5. The value of the outcome vari-
able yi was calculated as the sum of the random intercept,
(node-specific) fixed effects and the random error term.

Due to the large number of cells in the simulation design,
the most important predictors of accuracy were determined
by means of ANOVAs and/or GLMs. The most important
predictors of accuracy where then assessed through graphi-
cal displays. The ANOVAs and GLMs included main effects
of algorithm type and the parameters of the data-generating

process, as well as first-order interactions between algo-
rithm type and each of the data-generating parameters.

Software

R (R Core Team, 2016) was used for data generation and
analyses. The partykit package (version 1.0-2; Hothorn
& Zeileis, 2015, 2016) was employed for estimating LM
trees, using the lmtree function. For estimation of LMM
trees, the lmertree function of the glmertree package
(version 0.1-0; Fokkema & Zeileis, 2016; available from
R-Forge) was used. The significance level α for the param-
eter instability tests was set to 0.05 for all trees, with a
Bonferroni correction applied for multiple testing. The lat-
ter adjusts the p values of the parameter stability tests by
multiplying these by the number of potential partitioning
variables. The minimum number of observations per node
in trees was set to 20 and maximum tree depth was set to
three, thus limiting the number of terminal nodes to eight in
every tree.

The REEMtree package (version 0.9.3; Sela & Simonoff,
2011) was employed for estimating MERTs, using default
settings. For estimating LMMs, the lmer function from
the lme4 package (version 1.1-7; Bates, Mächler, Bolker,
& Walker, 2015; Bates et at., 2017) was employed,
using restricted maximum likelihood (REML) estima-
tion. The lmerTest package (version 2.0-32; Kuznetsova,
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Brockhoff, & Christensen, 2016) was used to assess
statistical significance of fixed-effects predictors in LMMs
in Study III. The lmerTest package calculates effective
degrees of freedom and p values based on Satterthwaite
approximations.

Study I: Performance of LMM trees, LM trees,
and MERTs in datasets with treatment-subgroup
interactions

Method

Treatment-subgroup interaction design For generating
datasets with treatment-subgroup interactions, we used a
design from Dusseldorp and Van Mechelen (2014), which
is depicted in Fig. 5. Figure 5 shows four terminal sub-
groups, characterized by values of the partitioning variables
U2, and U1 or U5. Two of the subgroups have mean differ-
ences in treatment outcome, indicated by a non-zero value
of βj1, and two subgroups do not have mean differences in
treatment outcome, indicated by a βj1 value of 0.

In this simulation design, some of the potential parti-
tioning covariates are true partitioning covariates, the others
are noise variables. Therefore, in addition to the General
simulation design, the following facet was added in this
study:

6. Intercorrelation between b and one of the Uk variables:
b and all Uk covariates uncorrelated, b correlated with
one of the true partitioning covariates (U1, U2 or U5), b
correlated with one of the noise variables (U3 or U4).
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j0 17.5

j1 5.0

dj 1.0
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j1 0.0
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j1 0.0
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7

Fig. 5 Data-generating model for treatment-subgroup interactions.
U1, U2, and U5 represent the (true) partitioning variables; β represents
the (true) fixed effects, with βj0 representing the intercept and βj1
representing the slope; parameter dj denotes the node-specific stan-
dardized mean difference between the outcomes of Treatment 1 and 2
(i.e., βj1/σε)

To assess the effect of the magnitude of treatment-effect
differences, the following facet was added in this study:

7. Two levels for the mean difference in treatment out-
comes: The absolute value of the treatment-effect dif-
ference was varied to be |βj1| = 2.5 (corresponding to
a medium effect size, Cohen’s d = 0.5; Cohen, 1992)
and |βj1| = 5.0 (corresponding to a large effect size;
Cohen’s d = 1.0).

For each cell of the design, 50 datasets were generated. In
every dataset, the outcome variable was calculated as yi =
x�
i βj + z�

i bm + εi .

Assessment of performance Performance of the algo-
rithms was assessed by means of tree size, tree accuracy,
and predictive accuracy. An accurately recovered tree was
defined as a tree with (1) seven nodes in total, (2) the first
split involving variable U2 with a value of 30 ± 5, (3) the
next split on the left involving variable U1 with a value of
17 ± 5, and (4) the next split on the right involving variable
U5 with a value of 63± 5. The allowance of ±5 equals plus
or minus half the population SD of the partitioning variable
(σUk

).
For MERT, the number of nodes and tree accuracy was

not assessed, as the treatment-subgroup interaction design
in Fig. 5 corresponds to a large number of regression tree
structures, that would all be different but also correct. There-
fore, performance of MERTs was only assessed in terms of
predictive accuracy.

Predictive accuracy of each method was assessed by
calculating the correlation between true and predicted
treatment-effect differences. To prevent overly optimistic
estimates of predictive accuracy, predictive accuracy was
assessed using test datasets. Test datasets were generated
from the same population as training datasets, but test
observations were not drawn from the same clusters as the
training observations, but from ‘new’ clusters.

The best approach for including treatment effects in
MERTs is not completely obvious. Firstly, a single MERT
may be fitted, where treatment is included as one of the
potential partitioning variables. Predictions of treatment-
effect differences can then be obtained by dropping test
observations down the tree twice, once for every level of
the treatment indicator. Secondly, two MERTs may be fit-
ted: one using observations in the first treatment condition
and one using observations in the second treatment condi-
tion. Predictions of treatment-effect differences can then be
obtained by dropping a test observation down each of the
two trees. We tried both approaches: the second approach
yielded higher predictive accuracy, as the first approach
often did not pick up the treatment indicator as a predictor.
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Therefore, we have taken the second approach of fitting two
MERTs to each dataset in our simulations.

Results

Tree size The average size of LMM trees was 7.15 nodes
(SD = 0.61), whereas the average size of LM trees was
8.15 nodes (SD = 2.05), indicating that LM trees tend to
involve more spurious splits than LMM trees. The effects
of the most important predictors of tree size are depicted in
Fig. 6. The average size of LMM trees was close to the true
tree size in all conditions. In the absence of random effects,
this was also the case for LM trees. In the presence of ran-
dom effects that are correlated to a (potential) partitioning
variable, LM trees start to create spurious splits, especially
with larger σb values. In the presence of random effects that
are uncorrelated to the other variables in the model, LM

trees lack power to detect treatment-subgroup interactions
if sample size is small (i.e., N = 200). With larger sample
sizes, LM trees showed about the true tree size, on aver-
age. Tree size of MERTs was not assessed, as a single true
tree size for MERTs could not be derived from the design in
Fig. 5.

Accuracy of recovered trees The estimated probability
that a dataset was erroneously not partitioned (type II error)
was 0 for both algorithms. For the first split, LMM trees
selected the true partitioning variable (U2) in all datasets,
and LM trees in all but one datasets. The mean splitting
value of the first split was 29.94 for LM as well as LMM
trees, which is very close to the true splitting value of 30
(Fig. 5).

Further splits were more accurately recovered by LMM
trees yielding 90.40% accuracy for the full partition
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comparted to only 61.44% for LM trees. The effects of the
four most important predictors of tree accuracy are depicted
in Fig. 7. In the absence of random effects, LM and LMM
trees were about equally accurate. In the presence of ran-
dom effects, LM trees were much less accurate than LMM
trees when random effects were correlated with a partition-
ing covariate. When random intercepts were not correlated
with one of the Uk variables, LMM trees outperformed LM
trees only when sample size was small (i.e., N = 200).
Tree accuracy of MERTs was not assessed, as a single accu-
rate tree structure for MERTs could not be derived from the
design in Fig. 5.

Predictive accuracy The predicted treatment-effect differ-
ences of LMM trees show an average correlation of 0.93
(SD = .13) with the true differences. LM trees and MERTs
show lower accuracy, with an average correlations of 0.88
(SD = .19) and 0.75 (SD = .21), respectively. The most

important predictors of predictive accuracy are depicted
in Fig. 8. Performance of all three algorithms improves
with increasing sample size and treatment-effect differ-
ences. Furthermore, LMM trees and MERTs are not much
affected by the presence and magnitude of random effects in
the data. LMM trees perform most accurately in most con-
ditions and are never outperformed by the other methods.
MERTs perform the least accurate in most conditions and
never outperform the other methods, but the differences in
accuracy become less pronounced with larger sample and
effect sizes.

Study II: Type I error of LM and LMM trees

Method

Design In the second simulation study, we assessed the
type I error rate of LM and LMM tree. In the datasets
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in this study, there was only a main effect of treatment
in the population. Put differently, there was only a single
global value of βj = β in every dataset. A type I error
was defined as the proportion of datasets without treatment-
subgroup interactions which were erroneously partitioned
by the algorithm.

To assess the effect of the treatment-effect difference β,
in addition to the General simulation design, the following
facet was added in this study:

7. Two levels for β, the global mean difference in treat-
ment outcomes: β = 2.5 (corresponding to a medium
effect size, Cohen’s d = 0.5) and β = 5.0 (correspond-
ing to a large effect size; Cohen’s d = 1.0).

For each cell in the simulation design, 50 datasets were
generated. In every dataset, the outcome variable was calcu-
lated as yi = x�

i β + z�
i bm + εi .

Assessment of performance To assess the type I error
rates of LM and LMM trees, tree sizes were calculated and
trees of size > 1 were classified as type I errors. The nom-
inal type I error rate for both LM and LMM trees equals
0.05, corresponding to the pre-specified significance level α
for the parameter instability tests.

Results

In datasets without treatment-subgroup interactions, aver-
age tree size was 1.09 (SD = 0.44) for LMM trees, and 2.02
(SD = 1.68) for LM trees. The average type I error rate was
only 0.04 for LMM trees, and 0.33 for LM trees. Main pre-
dictors of type I error are depicted in Fig. 9, which shows
that LMM trees have a type I error rate somewhat below
the pre-specified α level in all conditions. The same goes
for LM trees, when random effects are absent, or uncorre-
lated to one of the partitioning covariates. When the random
intercept is correlated with one of the potential partitioning
covariates, the type I error rapidly increases for LM trees.
With increasing sample size or random-effects variance, LM
trees will yield a larger number of spurious splits.

Study III: Recovery of piecewise and continuous
interactions by LMM trees and LMMs
with pre-specified interactions

Method

Interaction design The interactions in Study I (Fig. 5) can
be referred to as piecewise interactions, as their effect is a
stepwise function of the moderator (partitioning) variables.
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Trees are preeminently suited for recovering such piece-
wise or subgroup interactions, but may have difficulty when
the true interactions are continuous functions of moderator
variables (for example, U1 · U2). At the same time, linear
regression models with pre-specified interaction terms may
perform well in recovering continuous interactions, but may
have difficulty in recovering piecewise interactions. There-
fore, in the third simulation study, in addition to theGeneral
simulation design described above, the following facet was
added:

7. Three levels for interaction type: continuous, piecewise
and combined piecewise-continuous interactions.

To generate datasets with purely piecewise interactions,
the same partition as in Study I (Fig. 5) was used. In other
words, the outcome variable in this design was calculated as
yi = x�

i βj + z�
i b + εi , with the value of βj depending on

the values of U2, U1 and U5.
For generating datasets with both piecewise and contin-

uous interactions, the partition as depicted in Fig. 5 was
also used. In addition, the fixed-effects part x�

i βj in each
of the terminal nodes now comprised continuous main and
(treatment) interaction effects of the partitioning variables.
In other words, the partitioning variables U2, U1 and U5

also appear in the linear predictor xi , as part of the terms
presented in Table 2. The corresponding node-specific βj

parameters are also presented in Table 2. The βj values
were chosen to yield the same treatment-subgroup means
as in Fig. 5. The interaction terms were created using cen-
tered Uk variables, calculated by subtracting their variable
means. Again, the outcome variable was calculated as yi =
x�
i βj + z�

i b + εi .
In datasets with purely continuous interactions, β has

a global value and no subscript, comprising only purely

Table 2 Fixed-effects terms in simulations with continuous and com-
bined continuous and piecewise interaction designs

Term β β3 β4 β6 β7

intercept 27 27 27 27 27

U2 0.100 0.100 0.100 0.100 0.100

U2 · U1 −0.357 −0.357 0 0 0

U2 · U5 0.357 0 0 0 0.357

U2 · U1 · treatment −0.151 −0.151 0 0 0

U2 · U5 · treatment 0.151 0 0 0 0.151

Note: All values in the table represent fixed-effects linear regression
coefficients. The intercept represent the first value of β or βj , values in
the rows below represent the slopes for each of the main or interaction
effect described in the ’Term’ column. Subscripted β values refer to
the terminal nodes in Fig. 5 for the combined piecewise and continuous
interaction design; β without subscript refers to the global coefficients
in the continuous interaction design
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continuous main and interaction effects, as shown by terms
and the single column for β in Table 2. The outcome
variable was calculated as yi = x�

i β + z�
i b + εi .

Furthermore, in this simulation study, the number of cells
in the design was reduced by limiting the fourth facet of
the data-generating design to a single level (M = 25 clus-
ters), as Study I and II indicated no effects of the number
of clusters. The fifth facet of the data-generating design was
limited to two levels (σb = 2.5 and σb = 7.5). For every
cell of the design, 50 datasets were generated.

LMMs with pre-specified interactions LMMs were esti-
mated by specifying main effects for all covariates Uk

and the treatment indicator, first-order interactions between
all pairs of covariates Uk , and second-order interactions
between all pairs of covariates Uk and treatment. Contin-
uous predictor variables were centered by subtracting the
mean value, before calculating and including the interaction
term in the LMM.

Assessment of performance Predictive accuracy was
assessed in terms of the correlation between the true and
predicted treatment-effect differences in test datasets. As
full LMMs may be likely to overfit, LMMs were refitted on
the training data, using only the predictors with p values <

0.05 in the original LMM. Predictions for test observations
were obtained using the refitted LMMs.

Results

On average, LMM trees showed somewhat higher accu-
racy: the average correlation between true and predicted
treatment-effect differences was 0.54 (SD = .40) for LMM
trees and 0.51 (SD= .43) for LMMs. The effects of the most
important predictors of predictive accuracy are depicted
in Fig. 10. As Fig. 10 indicates, LMM trees show high-
est predictive accuracy in datasets with purely piecewise
interactions, whereas LMMs show highest predictive accu-
racy in datasets with purely continuous interactions. LMM
trees perform poorly only when interactions are purely lin-
ear, whereas LMMs perform poorly when interactions are
not purely continuous. Strikingly, Fig. 10 suggests that
LMMs perform somewhat more accurately in the presence
of purely piecewise interactions than in the presence of
partly continuous interactions, but only with larger sample
sizes and a smaller number of potential moderator variables.

Performance of both LMM trees and LMMS improves
with increasing sample size. Furthermore, performance of
LMM trees is not affected by the number of covariates,
whereas the predictive accuracy of LMMs deteriorates when
the number of covariates increases, especially when the
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true interactions are not purely continuous. This indicates
that LMM trees are especially useful for exploratory pur-
poses, where there are many potential moderator variables.
In addition, LMM trees may often provide simpler mod-
els: Whereas the LMMs included 12.30 significant terms
on average, LMM trees had 3.38 inner nodes on aver-
age, requiring only about 3–4 variables to be evaluated for
making predictions.

Application: Individual patient-level meta-analysis
on treatments for depression

Method

Dataset To illustrate the use of GLMM trees in real data
applications, we employ a dataset from an individual-patient
data meta-analysis of Cuijpers et al. (2014). This meta-
analysis was based on patient-level observations from 14
RCTs, comparing the effects of psychotherapy (cognitive
behavioral therapy; CBT) and pharmacotherapy (PHA) in
the treatment of depression. The study of Cuijpers et al.
(2014) was aimed at establishing whether gender is a predic-
tor or moderator of the outcomes of psychological and phar-
macological treatments for depression. Treatment outcomes
were assessed by means of the 17-item Hamilton Rating
Scale for Depression (HAM-D; Hamilton, 1960). Cuijpers
et al. (2014) found no indication that gender predicted or
moderated treatment outcome.

In our analyses, post-treatment HAM-D score was the
outcome variable, and potential partitioning variables were
age, gender, level of education, presence of a comorbid anx-
iety disorder at baseline, and pre-treatment HAM-D score.
The predictor variable in the linear model was treatment
type (0 = CBT and 1 = PHA). An indicator for study was
used as the cluster indicator.

In RCTs, ANCOVAs are often employed, to linearly con-
trol post-treatment values on the outcome measure for pre-
treatment values. Therefore, post-treatment HAM-D scores,
controlled for the linear effects of pre-treatment HAM-D
scores were taken as the outcome variable. All models were
fitted using data of the 694 patients from seven studies, for
which complete data was available. Results of our analysis
may therefore not be fully representative of the complete
dataset of the meta-analysis by Cuijpers et al. (2014).

Models and comparisons As the outcome variable is
continuous, we employed an identity link and Gaussian
response distribution. The resulting GLMM trees will there-
fore be referred to as LMM trees. To compare the accuracy
of LMM trees, we also fitted LM trees and LMMs with pre-
specified interactions to the data. In the LMMs, the outcome
variable was regressed on a random intercept, main effects

of treatment and the potential moderators (partitioning vari-
ables) and interactions between treatment and the potential
moderators. As it is not known in advance how to interact
the potential moderators, higher-order interactions were not
included.

Effect size To provide a standardized estimate of the treat-
ment effect differences in the final nodes of the trees, we
calculated node-specific Cohen’s d values. Cohen’s d was
calculated by dividing the node-specific predicted treatment
outcome difference by the node-specific pooled standard
deviation.

Predictive accuracy Predictive accuracy of each method
was assessed by calculating the average correlation between
observed and predicted HAM-D post-treatment scores,
based on 50-fold cross validation.

Stability The results of recursive partitioning techniques
are known to be potentially unstable, in the sense that small
changes in the dataset may substantially alter the variables
or values selected for partitioning. Therefore, following
Philipp, Zeileis, & Strobl (2016), subsampling is used to
assess the stability of the selected splitting variables and
values. More precisely, variable selection frequencies of the
trees are computed from 500 subsamples, each comprising
90% of the full dataset.

Results

Figures 11 and 12 present the LM and LMM trees fitted on
the IPDMA data. The LM tree (Fig. 11) selected level of
education as the first partitioning variable, and presence of
a comorbid anxiety disorder as a second partitioning vari-
able. By taking into account study-specific intercepts, the
LMM tree (Fig. 12) indicates that the first split in the LM
tree may be spurious and selected presence of a comorbid
anxiety disorder as the only partitioning variable. The ter-
minal nodes of Fig. 12 show a single treatment-subgroup
interaction: for patients without a comorbid anxiety disor-
der, CBT and PHA provide more or less the same reduction
in HAM-D scores (Cohen’s d = 0.05). For patients with a
comorbid anxiety disorder, PHA provides a greater reduc-
tion in HAM-D scores (Cohen’s d = 0.39). The estimated
intraclass correlation coefficient for the LMM tree was .05.

The study-specific distributions of educational level and
treatment outcome may explain why the LMM tree did not
select level of education as a partitioning variable. Most
(55) of the 74 observations with level of education ≤ 1
were part of a single study, which showed a markedly lower
mean level of education (M = 2.57, SD = 1.02; 128
observations) compared to the other studies (M = 3.78,
SD = 0.53; 566 observations), as well as a markedly higher
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Fig. 11 LM tree for prediction of treatment outcomes in the IPDMA dataset. The selected partitioning variables are level of education and the
presence of a comorbid anxiety disorder. Upper terminal nodes: y-axes represent post-treatment HAM-D scores, x-axes represent treatment levels
(cognitive behavior therapy, CBT vs. pharmacotherapy, PHA). Lower terminal nodes represent subgroup-specific descriptive statistics

mean level of post-treatment HAM-D scores (M = 11.20,
SD = 6.87) compared to the other studies (M = 7.78,
SD = 5.95).

The LMM with pre-specified treatment interactions
yielded three significant predictors of treatment outcome:
like in the LMM tree, an effect of the presence of a comor-
bid anxiety disorder was found (main effect: b = 2.29, p =
0.002; interaction with treatment: b = −2.10, p = 0.028).
Also, the LMM indicated an interaction between treatment
and age (b = .10, p = 0.018).

Assessment of predictive accuracy by means of 50-fold
cross validation indicated better predictive accuracy for the
LMM tree than for the LM tree and the LMM. The corre-
lation between true and predicted post-treatment HAM-D
total scores averaged over 50 folds was .272 (SD = .260)
for LMM tree, .233 (SD = .252) for the LMM with pre-
specified interactions and .190 (SD = .290) for the LM
tree.

Table 3 presents statistics on the variables selected for
partitioning in subsamples of the dataset. Presence of a

comorbid anxiety disorder was selected for partitioning in
themajority of LMM trees grown on subsamples of the dataset,
while the other variables were selected in at most 4% of
the subsamples. As the comorbid anxiety disorder variable
involved only a single splitting value, further assessment of
the stability of splitting values was not necessary.

Discussion

Summary

We presented the GLMM tree algorithm, which allows for
estimation of a GLM-based recursive partition, as well as
estimation of global random-effects parameters. We hypoth-
esized GLMM trees to be well suited for the detection of
treatment-subgroup interactions in clustered datasets. We
confirmed this through our simulation studies and by apply-
ing the algorithm to an existing dataset on the effects of
depression treatments.
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Fig. 12 LMM tree for prediction of treatment outcomes in the IPDMA
dataset. The selected partitioning variable is the presence of a comor-
bid anxiety disorder. Upper terminal nodes: y-axes represent post-
treatment HAM-D scores, x-axes represent treatment levels (cognitive
behavior therapy, CBT vs. pharmacotherapy, PHA). Lower terminal
nodes represent subgroup-specific descriptive statistics

Our simulations focused on the performance of the
GLMM tree algorithm in datasets with continuous response
variables. The resulting LMM trees accurately recovered

Table 3 Variable selection statistics for the LM and LMM trees in the
IPDMA dataset

Selection frequency

Variable LM tree LMM tree

Education .956 .014

ComorbidAnxietyDisorder .398 .528

HRSDt0 .034 .002

Age .000 .022

Gender .002 .004

Note. Frequencies are calculated over 500 random subsamples of the
complete dataset. Frequencies do not add up to 1, as trees may involve
multiple or no splits

the subgroups in 90% of simulated datasets with treatment-
subgroup interactions, outperforming LM trees without
random effects. In terms of predictive accuracy, LMM
trees outperformed LM trees as well as MERTs, predicting
treatment-effect differences in test data with .94 accuracy,
on average. In datasets without treatment-subgroup effects,
LMM trees showed a rather low type I error rate of 4%,
compared with a type I error rate of 33% for LM trees.

Better performance of LMM trees was mostly observed
when random effects were sizeable and correlated with
potential partitioning variables. In those circumstances,
LM trees are likely to detect spurious splits and sub-
groups. Especially with smaller effect and sample sizes (i.e.,
Cohen’s d = .5 and/or N = 200), LMM trees outperformed
the other tree methods. As such effect and sample sizes are
quite common in multi-center clinical trials, the GLMM tree
algorithm may provide a useful tool for subgroup detection
in those instances.

In the absence of random effects, LM and LMM trees
yielded very similar predictive accuracy. This finding is
of practical importance, indicating that application of the
GLMM tree algorithm will not reduce accuracy when in
fact, random effects are absent from the data.

Compared to LMMs with pre-specified interactions,
LMM trees provided somewhat better accuracy, on aver-
age. LMM trees performed much better than LMMs when
interactions were at least partly piecewise. However, the per-
formance of LMM trees deteriorated when the interactions
were purely continuous functions of the predictor variables,
in which case LMMs with pre-specified interactions per-
formed very well. The performance of LMMs deteriorated
with a larger number of predictor variables, whereas the
performance of LMM trees was not affected by this, con-
firming our expectation that LMM trees are better suited for
exploration than LMMs.

In the Application, we found the LMM tree yielded
somewhat higher predictive accuracy, while using a smaller
number of variables than the LM tree and the LMM with
pre-specified interactions. The LMM trees obtained over
repeated subsamples of the training data proved to be rela-
tively stable.

Limitations and future directions

Recursive partitioning methods were originally developed
as a non-parametric tool for classification and regression,
assuming the mechanism that generated the data unknown
(e.g., Breiman, 2001). The GLMM tree algorithm takes
MOB trees and GLMMs as building blocks and thereby
inherits some of their sensitivity to model misspecifications.

As with GLMMs, misspecification of the random effects
may negatively affect the accuracy of GLMM trees. Previ-
ous research on GLMMs has shown that misspecifying the
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shape of the random-effects distribution reduces the accu-
racy of random-effects predictions, but has little effects
on the fixed-effects parameter estimates (e.g., Neuhaus,
McCulloch, & Boylan, 2013). This indicates that for
GLMM trees, misspecification of the shape of the random-
effects distribution will affect random-effects predictions,
but will have little effect on the estimated tree. The incor-
rect specification of a predictor as having a fixed instead
of a random effect may be more likely to result in spuri-
ous splits or poorer parameter estimates. Therefore, to check
for model misspecification, users are advised to visually
inspect residuals and predicted random effects. The tutorial
included in the supplementary material shows how residuals
and random effects predictions can be obtained and plotted.

As with MOB trees, GLMM trees will perform best
when the true data structure is tree-shaped. Trees may need
many splits to approximate structures with a different shape,
which may be more unstable under small perturbations.
Therefore, in the Application we have shown how tree
stability can be assessed using the methods developed by
Philipp et al. (2016). Furthermore, when relevant partition-
ing variables are omitted, GLMM tree can only approximate
the subgroups using the specified variables. Although our
simulations did not involve scenarios where relevant parti-
tioning variables were omitted, the results of Frick, Strobl,
and Zeileis (2014) indicate that MOB trees can detect
parameter instability even when covariates are only loosely
connected to the group structure.

GLMM trees rely more on user specification of predictor
variables than methods like CART and MERT. On the one
hand, this increases the danger of model misspecification.
On the other hand, it increases power and accuracy if the
fixed-effects predictor variable(s) are correctly specified.
For example, the best approach for assessing treatment-
effect differences with MERTs is not completely obvious.
We tried two approaches in our simulations: firstly, fitting
a single MERT with the treatment indicator as one of the
potential partitioning variables and secondly, fitting sepa-
rate MERTs for each level of the treatment indicator. With
the first approach, MERTs often did not detect the treatment
indicator as a predictor variable in datasets with treatment-
subgroup interactions. The second approach yielded better
accuracy, indicating that MERTs profit from user specifica-
tion of the relevant predictor variable(s). The GLMM tree
algorithm provides a straightforward approach for includ-
ing relevant fixed-effects predictor variables in the model.
Our results suggest this yields higher predictive accuracy if
the model is correctly specified. However, our simulations
have not assessed the effect of misspecification of the fixed-
effects predictor variable(s) and such misspecification may
reduce predictive accuracy.

For recursive partitioning methods fitting local para-
metric models only, the danger of model misspecification

may be limited (e.g., Ciampi, 1991; Siciliano, Aria, &
D’Ambrosio, 2008; Su, Wang, & Fan, 2004). GLMM trees,
however, fit a global random-effects model in addition to
local fixed-effects regression models and may therefore be
less robust against model misspecification. For example,
the global random-effects model assumes a single random-
effects variance across terminal nodes. If the random-effects
variance, however, does vary across terminal nodes, this
may negatively affect the performance of the parameter
stability tests. Further research on the effects of model
misspecifications on the performance of GLMM trees is
therefore needed.

In the Introduction, we mentioned several existing tree-
based methods for treatment-subgroup interaction detection.
These methods have different objectives and there is not yet
an agreed-upon single best method. In a simulation study,
Sies and Van Mechelen (2016) found the method of Zhang
et al. (2012a) to perform best, followed by MOB. How-
ever, the method of Zhang et al. performed worst under
some conditions of the simulation study in terms of the
type I error rate. Further research comparing tree-based
methods for treatment-subgroup interaction detection is
needed, especially for clustered datasets, as our simulations
and comparisons mostly focused on LMM trees and LM
trees.

Conclusions

Our results indicate that GLMM trees provide accurate
recovery of treatment-subgroup interactions and prediction
of treatment effects, both in the presence and absence of ran-
dom effects and interactions. Therefore, GLMM trees offer
a promising method for detecting treatment-subgroup inter-
actions in clustered datasets, for example in multi-center
trials or individual-level patient data meta-analyses.
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Appendix

Glossary

Abbreviations

CART: Classification and regression trees.
GLM: Generalized linear model.
GLMM: Generalized linear mixed model.
IPDMA: Individual patient data meta analysis.
LM: Linear model.
LMM: Linear mixed model.
MERT: Mixed-effects regression tree.
ML: Maximum likelihood.
MOB: Model-based recursive partitioning.
RECPAM: Recursive partition and amalgamation.
REML: Restricted maximum likelihood.

Notation

βj column vector of fixed-effects coeffi-
cients in terminal node j

bm column vector of random-effects coeffi-
cients in cluster m

dj standardized mean difference of treat-
ment outcome in terminal node j

ε deviation of observed treatment outcome
y from its expected value

1, . . . , i, . . . , N index for observation
1, . . . , j, . . . , J index for terminal node
1, . . . , k, . . . , K index for partitioning variable
1, . . . , m, . . . , M index for cluster
r index for iteration
Uk (potential) partitioning variable k

xi column vector of fixed-effects predictor
variable values for observation i

yi treatment outcome for observation i

zi column vector of random-effects predic-
tor variable values for observation i
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