How performing PCA and CFA on the same data equals trouble
Overfitting in the assessment of internal structure and some editorial thoughts on it
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We regularly receive papers at EJPA where a principal component analysis (PCA) or
exploratory factor analysis (EFA)* is performed, followed by a confirmatory factor analysis
(CFA) on the same (or partially overlapping) data. On the one hand, we are thankful for these
submissions as they simplify the often tedious editorial task, by providing good grounds for
on-desk rejection (see also Greiff & Ziegler, 2017). But when such grounds for rejection are
all too regularly employed, they may instill a feeling of unease in the editor: Am | turning into
a sour, nitpicking bureaucrat? Am | too strict and stuck with my own ideas of what good
science is? Can we not let the data speak for itself?

To confront such feelings of unease, we wanted to see whether the consequences of
performing PCA and CFA on the same dataset are indeed so dire and justify rejection. To this
end, we ran an experiment with simulated data and would like to share the results in this
editorial. With the results of the simulation in mind, we will give some editorial advice on
how authors can avoid trouble coming along with combining PCA and CFA. The R code and
output for the experiment are provided in the online supplementary material.

Experiment

We randomly generated values for 25 completely uncorrelated, standard normally
distributed item scores for 300 observations each. For illustrational purposes, we first
calculated the inter-item correlations of these items that, importantly, are uncorrelated in
the population. Figure 1 depicts a histogram of the resulting correlations. The sample
correlations are indeed distributed around a mean of 0, but note that some values approach
.2 and -.2, which would be interpreted as a small to medium effect size.

' We fully agree with readers who take offense in the confusion of principal component analysis and
exploratory factor analysis. The two are different techniques, involving different assumptions, estimation
methods, and different interpretations of the results. We will discuss the differences in the subsection ‘Some
nitpicking all the same’
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Figure 1. Histogram of inter-item correlations for the 25 item scores.

For the sake of the example, let us forget that we know the variables are in fact uncorrelated
in the population. Instead, we take the position of a researcher who just sees the data and
performs a PCA on them. Figure 2 depicts the resulting scree plot.
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Figure 2. Scree plot resulting from PCA on the 25 uncorrelated items.

We perform a rough visual scree test (Cattell, 1966) to select the number of components to
retain. That is, taking a look at Figure 2, we select components until the eigenvalues show a
sudden drop and start to level off. We therefore proceed with a two-component solution.
The varimax rotated loadings of the two-component solution are presented in Table 1. We
retain items with loadings > .40. Many items do not correlate that strongly with either
component and, against the backdrop of these results, should be discarded. In addition,
some of the items may need reverse coding, because of negative loadings.



Table 1

Standardized component loadings. Boldfaced loadings have absolute values > .40.

Item Componentl Component 2

x1 0.19 -0.25
X2 0.10 0.44
x3 0.40 0.13
x4 -0.02 -0.58
x5 -0.19 -0.22
X6 0.15 0.10
X7 -0.03 -0.15
x8 -0.16 0.25
x9 0.14 -0.04
X10 0.39 -0.02
x11 0.41 0.03
x12 -0.21 -0.23
x13 -0.04 0.42
x14 -0.17 0.38
x15 0.48 0.01
x16 -0.23 0.10
x17 0.43 0.10
x18 0.11 -0.17
x19 -0.06 0.05
x20 0.22 0.04
x21 -0.33 -0.05
x22 0.09 0.24
x23 0.44 -0.11
x24 -0.18 0.12
x25 0.01 0.53

As mentioned before, we see evidence for a 2-factor solution after the initial PCA. In order to
further validate this result, we now proceed with conducting a CFA — of note, in doing so we
use the same sample of 300 observations on which we conducted the PCA.

For the CFA, we specify two latent factors and specify loadings in accordance with Table 1.
That is, x3, x11, x15, x17 and x23 are assumed to load on the first factor, whereas x2, x4, x13
and x25 are assumed to load on the second factor. The remaining items are omitted from
the model. Furthermore, we allow the correlation between factors to be estimated freely, as
is common in psychological research.



Strikingly, the resulting model shows very good fit to the data. The chi-square test and other
fit indices indicate excellent fit: )(2 (26) = 16.925; p = .911; CFl = 1.000; RMSEA < .001; SRMR =
.034.

The estimated factor loadings are presented in Table 2. The absolute values of the
standardized loadings range from .19 to .49, indicating substantial correlations between the
items and factors, which could be interpreted as further evidence for the appropriateness of
the two-factor model. The p values of the loadings range from .039 to .144. Although only
one loading is significant at the alpha = .05 level, the p values are still rather low, given that
the null hypothesis is true in the population (the true correlation between items is zero, so
the true correlation between items and factors must also be zero).

Table 3 presents the estimated factor (co)variances, which provide the clearest indication
that the data were actually generated from a population model of zero correlations: the
factor (co)variances are and the p value clearly indicate that they do not differ significantly
from zero.

Table 2

Estimated factor loadings and standard errors.

Factor Item Loading (SE) pvalue Standardized
loading
Factor 1 X3 1.00 (-----) - .189
X11 1.84(1.22)  .131 349
X15 1.83(1.21)  .131 343
X17 1.52 (1.04) 144 .280
X23 1.66 (1.12) .140 294
Factor 2 X2 1.00 (-----) - .267
X4 -2.01 (1.06) .059 -.490
X13 0.89 (0.50) .075 234
X25 1.51(0.73) .039 .365
Table 3

Estimated factor (co)variances

Factor (co)variance (SE)  p value
Factor 1 0.037 (0.040) .362
Factor 2 0.065 (0.049) .187

Factor1 &2 0.001 (0.008) .907




Interpretation

The little experiment above has shown us that performing PCA and CFA on the same data
can indeed have dire consequences: It yields deceivingly optimistic model fit indices and
parameter estimates. One may wonder how we could obtain such excellent model fit indices
with data that were generated as to be uncorrelated? The answer is two-fold:

Firstly, because of capitalizing on chance characteristics of the data. We performed an
exploratory analysis, found patterns that in reality only reflected sampling fluctuations and
used those as a hypothesis for a confirmatory analysis on the same data. This is also called
overfitting, which yields inflated estimates of model fit and parameter estimates. Obviously,
we are not the first to write about this topic. In fact, a vast body of literature has been
devoted to overfitting, or capitalizing on the idiosyncrasies of the sample at hand. Excellent
further readings on this relevant topic are Babyak (2004) or Yarkoni and Westfall (in press).

Secondly, model fit indices in SEM are a function of how well sample covariances are
reproduced by the fitted model. If the sample covariances are small (relative to the sample
variances), which they are in our example, it will be easy for any model to reproduce them
well and show excellent model fit. For some important further thoughts on model fit see the
recent editorial by Greiff and Heene (2017).

We should note that the results we obtained in the experiment are not coincidental:
replicating the same procedure for generating and analyzing data as above yields similar,
overly optimistic results in terms of model fit, parameter estimates and test statistics. Of
note, with increasing sample size, the risk of overfitting decreases, as sample correlations
approximate the population mean more and more closely as sample size increases.

Of course, objections may be raised to our experiment. For example, that a Kaiser-Meyer-
Olkin test should be performed prior to performing PCA (maybe also prior to CFA), that most
loadings were not statistically significant so the model fit is not that good, that selecting 9
items out of 25 is quite extreme, or that a zero-correlation population model is not
representative for psychological research. We agree with such objections. In fact, here we
merely aimed at providing an example of how exploration and confirmation using the same
data yields overly optimistic, misleadingly meaningful results. Applying such procedures to
datasets from real-world studies will also yield overly optimistic results.

Some nitpicking all the same

Admittedly, this little experiment does not provide a rigorous test of our being nitpicking
bureaucrats or not (though some may argue that the mere fact of undertaking this
endeavor proves that we are). Therefore, we would like to also stress here that PCA should
never be referred to as (exploratory) factor analysis. Regularly, manuscripts submitted to
EJPA state that factor analysis was performed, while the method section reports the use of



PCA. Although PCA and EFA share similarities, they are mathematically and conceptually
different: principal components represent a parsimonious summary of the item scores,
whereas common factors are assumed to underlie or cause the observed item scores. In
other words, whereas EFA implies a reflective measurement model, PCA implies a formative
measurement model. A reflective model assumes a direct effect from the construct on the
item scores, while a formative model assumes item scores to be the causes of a construct.
Both views on psychological assessment can be equally valid and often yield similar
parameter estimates, but they are very different from a psychometric perspective. An
enlightening and in-depth discussion of such measurement models is provided by Edwards
and Bagozzi (2000).

Furthermore, we would like to stress that assessing the internal structure of a psychological
measure through exploratory analyses is in most cases uncalled for. Although this point has
already been stressed in earlier editorial(s) (e.g., Ziegler, 2014), exploratory approaches such
as PCA still regularly appear to be the first weapon of choice of researchers who want to
assess internal structure. The message therefore bears repeating: an exploratory approach is
appropriate when the number of factors and the allocation of items to factors are unknown.
In most cases, however, measures were designed to capture specific (sub)constructs,
providing a clear hypothesis that would best be tested with a confirmatory technique.

Some advice for authors, reviewers and editors

Obviously, overfitting yields unreliable results and should be avoided, both on a general level
and, of course, also for submissions to EJPA. This editorial is meant to increase awareness of
this issue and, at the same time, to offer guidance to authors considering submission of their
work to EJPA. Therefore, we will conclude this editorial with some initial thoughts we
suggest that authors follow:

1. Refrain from performing exploratory and confirmatory analyses on the same dataset
as this yields high danger of overfitting, in particular in smaller data sets;

2. Refrain from performing exploratory analyses to assess internal structure as much as
possible;

3. If the goal of your study requires both exploration and confirmation, and sample size
is large enough, perform each on separate data, for instance by splitting the data set;

4. When evaluating the results of a CFA, do not only focus on model fit indices, but also
inspect parameter estimates (factor loadings, factor (co) variances, residual
variances), their standard errors and p values.
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How performing PCA and CFA on the same data equals trouble

Supplementary material
Data generation

We start by setting the random seed to make sure the results are random but can be reproduced exactly. We
generate a data matrix with 25 uncorrelated columns (variables X1 through X15) and 300 rows (observations):
set.seed(403612)

n <- 300

p <- 25

data <- matrix(rnorm(n*p), nrow = n, ncol = p)

colnames(data) <- pasteO("x", 1:p)

We take a look at the item correlations, first:

hist(cor(data) [upper.tri(cor(data))], main = "", xlab = "Item correlations")
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Although the data were generated from a population model of zero correlations, some sample correlations
deviate substantially from zero, some even approaching .2 and -.2. For now, we forget that we know the
variables are in fact uncorrelated and perform a PCA on the data.

PCA

We perform the PCA using the R package psych (Revelle 2017):



library (psych)

VSS.scree(data, main = "")
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We employ the elbow criterion, where we add componenents until the eigenvalues (or variance explained)
shows a sharp decrease and levels off. Therefore, we continue by requesting the two-component solution for

further exploration and interpretation. We employ the default rotation method, which is varimax:

principal(data, nfactors = 2)

## Principal Components Analysis
## Call: principal(r = data, nfactors = 2)
## Standardized loadings (pattern matrix) based upon correlation matrix

## RC1 RC2 h2 u2 com
## x1 0.19 -0.25 0.0985 0.90 1.8
## x2 0.10 0.44 0.2050 0.80 1.1
## x3 0.40 0.13 0.1797 0.82 1.2
## x4 -0.02 -0.58 0.3340 0.67 1.0
## x5 -0.19 -0.22 0.0856 0.91 1.9
## x6 0.15 0.10 0.0310 0.97 1.7
## x7 -0.03 -0.15 0.0229 0.98 1.1
## x8 -0.16 0.25 0.0887 0.91 1.7
## x9 0.14 -0.04 0.0213 0.98 1.2
## x10 0.39 -0.02 0.1559 0.84 1.0
## x11 0.41 -0.03 0.1702 0.83 1.0
## x12 -0.21 -0.23 0.0986 0.90 2.0
## x13 -0.04 0.42 0.1762 0.82 1.0
## x14 -0.17 0.38 0.1719 0.83 1.4



## x15 0.48 0.01 0.2341 0.77 1.0
## x16 -0.23 0.10 0.0653 0.93 1.4
## x17 0.43 0.10 0.1959 0.80 1.1
## x18 0.11 -0.17 0.0427 0.96 1.7
## x19 -0.06 0.05 0.0061 0.99 1.9
## x20 0.22 0.04 0.0503 0.95 1.1
## x21 -0.33 -0.05 0.1097 0.89 1.1
## x22 0.09 0.24 0.0660 0.93 1.3
## x23 0.44 -0.11 0.2092 0.79 1.1
## x24 -0.18 0.12 0.0471 0.95 1.8
## x25 0.01 0.53 0.2821 0.72 1.0
##

#i# RC1 RC2
## SS loadings 1.59 1.55
## Proportion Var 0.06 0.06
## Cumulative Var 0.06 0.13
## Proportion Explained 0.51 0.49
## Cumulative Proportion 0.51 1.00
##

## Mean item complexity = 1.3

## Test of the hypothesis that 2 components are sufficient.
##

## The root mean square of the residuals (RMSR) is 0.07

## with the empirical chi square 834 with prob < 1.1e-63
##

## Fit based upon off diagonal values = -0.38

We will retain items with compnent loadings > .40. The first component consist of x3, x11, x15, x17 and x23,
while the second component consists of x2, x4, x13 and x25. We discard the remaining items.

CFA

We use the structure we obtained through PCA as the input for a CFA on the very same data. We perform
the CFA using the R package lavaan (Rosseel 2012):

library(lavaan)

model <- '
F1l =~ x3 + x11 + x15 + x17 + x23
F2 =~ x2 + x4 + x13 + x25

fit <- cfa(model, data)

We request some model fit indices:

fitmeasures(fit, c("chisq", "df", "pvalue", "cfi", "srmr", "rmsea"))
## chisq df pvalue cfi srmr rmsea
## 16.925 26.000 0.911 1.000 0.034 0.000

All indices report excellent model fit! We request the parameter estimates:

summary(fit, standardized = TRUE)

## lavaan (0.5-23.1097) converged normally after 74 iterations
##
##  Number of observations 300



##

## Estimator

## Minimum Function Test Statistic
##  Degrees of freedom

##  P-value (Chi-square)

##

## Parameter Estimates:

#it

## Information

## Standard Errors

##

## Latent Variables:

## Estimate Std.
## Fl =~

## x3 1.000

## x11 1.842 1

## x15 1.826 1

## x17 1.523 1

## x23 1.659 1

## F2 =~

## x2 1.000

## x4 -2.006 1.
## x13 0.893 0
## x25 1.513 0.
##

## Covariances:

## Estimate Std.
#i# F1 ~~

#it F2 0.001 0.
##

## Variances:

## Estimate Std.
## .x3 0.987 0
#it .x11 0.900 0
#it .x15 0.915 0
## .x17 1.002 0
## .x23 1.068 0
## .x2 0.852 0
## .x4 0.831 0
#it .x13 0.901 0
## .x25 0.975 0
## F1 0.037 0
## F2 0.065 0
residuals(fit)

## $type

## [1] "raw"

##

## $cov

## x3 x11 x15 x17 X
## x3 0.000

## x11 0.022 0.000

## x15 -0.033 -0.017 0.000

## x17 -0.057 0.001 0.055 0.000

Err

.219
.209
.042
.123

061

.502

734

Err

008

Err

.087
.104
.105
.100
.109
.081
.156
.082
.115
.040
.049

23

z-value

[ N = =

.511
.510
.462
477

.890
LT79

2.061

z-value

0.

117

z-value

11.
8.

X2

304
629

.752
.0565
LT97
.556
.317
.001
.476
911
.320

16.

0.

ML
925
26
911

Expected
Standard
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.131
.131
.144
.140

.069
.075
.039

P(>lzl)

0.

907

P(>lzl)

x4

0.
.000
.000
.000
.000
.000
.000
.000
.000
.362
.187
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000

x13

Std.1lv
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.192
.353
.350
.292
.318

.256
.513
.228
.387

Std.1lv

0.

019

Std.1lv

o
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.987
.900
.915
.002
.068
.8562
.831
.901
.975
.000
.000

x25

Std.

O O O O O

Std.

Std.
.964
.878
.882
.922
.914
.929
.760
.945
.867
.000
.000

R P, O O O0OO0OO0OO0OO0OOoOOo

all

.189
.349
.343
.280
.294

. 267
.490
.234
.365

all

.019

all



##
##
##
##
##
##
##
##
##

x23 0.066 0.006
x2 -0.012 -0.057
x4 -0.057 -0.002
x13 0.070 0.005
x25 0.076 0.048

$mean

x3 x11 x15 x17 x23

0 O

0

0

0

.011
.051
.009
.015
.024

x2
0

-0.035 0.000
0.074 0.030
-0.002 0.073
-0.023 -0.040
-0.063 -0.035

x4 x13 x25
0 0 0

0.000

0.012 0.000

0.006 -0.011 0.000

0.014 -0.002 -0.022 0.000

All but one standardized loadings show absolute values > .20. All loadings show p-values < .15. The factor
variances indicate that maybe there are no latent factors underlying the observed variables.
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