
"© ACM, 2017. This is the author's version of the work. It is posted here by 
permission of ACM for your personal use. Not for redistribution. The definitive 
version was published in ACM Transactions on Multimedia Computing, 
Communications, and Applications , {VOL13, ISS4, (oct 17)} http://
doi.acm.org/10.1145/3131288 

Semantic Reasoning in Zero Example Video Event Retrieval

M.H.T. de Boer, TNO and Radboud University, The Netherlands
Yi-Jie Lu, City University of Hong Kong, Hong Kong
Hao Zhang, City University of Hong Kong, Hong Kong
Klamer Schutte, TNO
Wessel Kraaij, TNO and Leiden University, The Netherlands
Chong-Wah Ngo, City University of Hong Kong, Hong Kong



A

Semantic Reasoning in Zero Example Video Event Retrieval

M.H.T. de Boer, TNO and Radboud University, The Netherlands
Yi-Jie Lu, City University of Hong Kong, Hong Kong
Hao Zhang, City University of Hong Kong, Hong Kong
Klamer Schutte, TNO
Wessel Kraaij, TNO and Leiden University, The Netherlands
Chong-Wah Ngo, City University of Hong Kong, Hong Kong

Retrieval of high-level or complex events, such as a parade or a car accident, within video data without
example images or videos is still a challenge. Current research in deep neural networks is highly beneficial
for retrieval of high-level events based upon examples, but without any examples it is still hard to 1) deter-
mine which concepts are useful to pre-train (Vocabulary challenge); 2) which pre-trained concept detectors
are relevant for a certain unseen high-level event (Concept Selection challenge). In our paper, we present
our Semantic Event Retrieval System that 1) shows the importance of high-level concepts in a vocabulary
for the retrieval of high-level events and 2) uses a novel concept selection method (i-w2v) based on semantic
embeddings. Our experiments on the international TRECVID Multimedia Event Detection benchmark show
that a diverse vocabulary including high-level concepts improves performance on the retrieval of high-level
events in videos and that our novel method outperforms a knowledge-based concept selection method.

CCS Concepts: rInformation systems→ Query representation; Video search;

General Terms: Experimentation, Performance

Additional Key Words and Phrases: content-based visual information retrieval, multimedia event detection,
zero shot, semantics

1. INTRODUCTION
The domain of content-based video information retrieval has gradually evolved in the
last 20 years, from a discipline mostly relying on textual and spoken information
in news videos, towards richer multimedia analysis leveraging video, audio and text
modalities. The last 10-15 years have shown impressive progress in image classifica-
tion, yielding larger and larger concept vocabularies. In 2011, the TRECVID MED task
defined a testbed for even deeper machine understanding of digital video, by creating
a challenge to detect high level or complex events, defined as “long-term spatially and
temporally dynamic object interactions” [Jiang et al. 2012]. Examples of high-level
events are social events (tailgating party) and procedural events (cleaning an appli-
ance) [Jiang et al. 2012]. Given the extreme difficulty of the MED task, in early years
of TRECVID, system development was facilitated by providing a set of example videos
for the event, making this essentially a supervised video classification task. In the last
few years, the MED task has stepped up towards its real challenge: retrieving relevant
video clips given -only- a precise textual description of a complex event. In TRECVID
MED context, this task is referred to as zero example case, since no visual examples
are provided [Over et al. 2015].
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In our paper, we describe the challenges of building an effective system for zero
example complex event retrieval in video. The main issue in zero example video event
retrieval is that state of the art machine learning techniques cannot be used, because
no training examples are available. A common approach is to use a set of pre-trained
classifiers and try to map the event to a set of classifiers. Within this approach two
challenges exist: what set of pre-trained classifiers to use (Vocabulary challenge) and
how to map the event to a set of classifiers (Concept Selection challenge).

The Vocabulary Challenge deals with the determination of a good set of concepts to
pre-train and put in the vocabulary. This vocabulary is built with pre-trained concept
detectors on off-the-shelf datasets. Some recommendations on how to build a good vo-
cabulary are already available. In this paper, we show the importance of high-level
concepts, defined as “complex activities that involve people interacting with other peo-
ple and/or objects under certain scene” [Chen et al. 2014], because a combination of
objects and actions often cannot capture the full semantics of a high-level event.

The Concept Selection challenge embeds the problem that the system has no prior
knowledge about the events, so in many cases no precise visual concept detectors are
available. Commonly, this challenge is approached by mapping the event to a set of
classifiers by optimizing the match between the User Query (UQ) and the System
Query (SQ). Within the TRECVID community, this is also referred to as Semantic
Query Generation [Over et al. 2015]. Here the User Query is a textual description of
the event and the System Query is a combination of concepts present in our vocabulary.
In this paper, we will refer to the term concept as the label or name of the concept
itself and to concept detectors as pre-trained classifiers. In this challenge, we build
upon the existing word2vec models [Mikolov et al. 2013; Pennington et al. 2014] that
use semantic embeddings. The main novelty of our method is that it accurately selects
the proper concepts without the problem of query drift, in which the selected concepts
create a drift towards one facet of the query [Carpineto and Romano 2012].

The novelty of this paper can be summarized as follows:

— We show the importance of high-level concepts in the definition of a good vocabulary
of pre-trained concept classifiers.

— We introduce an incremental word2vec method (i-w2v) for concept selection that is
more robust to query drift and cut-off parameter tuning.

The next section contains related work. We focus on our two challenges. The third
section explains our Semantic Event Retrieval System that includes our novelties in
both challenges. The fourth section presents the experiments conducted on the inter-
national benchmark TRECVID Multimedia Event Detection [Over et al. 2015] and the
results are included in Section 5. The sixth section contains a discussion and the final
section provides the conclusion.

2. RELATED WORK
In this related work we only focus on the Vocabulary challenge and the Concept Selec-
tion challenge in zero example video event retrieval.

2.1. Vocabulary
Concept vocabularies are designed as a representation layer for a specific purpose,
such as indexing descriptors for video clips, shots or frames. Ideally, concept vocabu-
laries consist of unambiguous precise descriptors of entities, activities, scenes, objects
and ideas. Different vocabularies are developed for different purposes. Combining dif-
ferent vocabularies often results in vagueness and ambiguity, such as polysemy and
homonymy. We will focus on two properties of concepts: level of complexity and level
of granularity. In the level of complexity, three levels can be differentiated. First, low-
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level concepts are the basic components in images or videos, such as objects. Second,
mid-level concepts are basic actions, activities or interactions. Actions or activities are
a “sequence of movements” [Chen et al. 2014] and can be performed by one entity, such
as people or objects. Interactions are actions between two or more entities. Third, high-
level concepts are “complex activities that involve people interacting with other people
and/or objects under certain scene” [Chen et al. 2014]. The key difference between mid-
level and high-level concepts is that a high-level concept contains multiple actions and
interactions evolving over time [Chen et al. 2014], such as the difference between the
action horse riding and the event horse riding competition. Furthermore, concepts can
have different levels of granularity, also referred to as specificity. Examples are animal
(general), dog and chihuhua (specific).

The importance of the level of granularity in a vocabulary was already indicated by
Hauptmann et al. [2007b] and Habibian et al. [2013]. Both argue that in video event
recognition a mixture of both general and specific concepts achieves higher perfor-
mance compared to using only general or specific concepts. Interestingly, both papers
state that the general concepts achieve in general higher performance compared to
the specific concepts, because specific concepts only occur in a few videos, and many
general concepts can be distinctive enough to recognize an event. The importance of
the level of complexity is not yet introduced, but Habibian et al. [2013] recommend
to use a vocabulary that contains concepts of the following categories: object, action,
scene, people, animal and attribute. Using our definitions an action is comparable to
a mid-level concept and the concepts from the other categories are low-level concepts.
Another work of these authors introduces primary concepts and bi-concepts [Habibian
et al. 2014a].

Other recommendations from Habibian et al. [2013] are 1) use a vocabulary with at
least 200 concepts; and 2) do not use too many concepts of one type, such as animals
or people. Additionally, they argue that it is better to include more concepts than to
improve the quality of the individual concepts, which is also concluded by Jiang et al.
[2015b]. Previous research of Aly et al. [2012] indicated that few concepts (100) with
a simulated detector performance of only 60% is already sufficient to achieve reason-
able Mean Average Precision performance (20%). Hauptmann et al. [2007a] argue that
3000 concepts are needed for a Mean Average Precision of 65% . We follow this recom-
mendation and focus on extending the vocabulary instead of improving performance of
concept detectors.

In addition to the type of concepts, Jiang et al. [2015b] report the influence of train-
ing with different datasets on performance for the events in the TRECVID Multimedia
Event Detection task. The dataset with the highest performance is Sports [Karpathy
et al. 2014], followed in descending order by the 1000 concepts from ImageNet [Deng
et al. 2009], the Internet Archive Created Commons (IACC) dataset [Over et al. 2014],
the big Yahoo Flickr Creative Common dataset (YFCC) [Thomee et al. 2015] and the
Do It Yourself (DIY) dataset [Yu et al. 2014]. We use the concepts of their top two per-
forming datasets in our vocabulary. Furthermore, one of their recommendations is to
train concept detectors on large datasets, both in terms of training examples as well
as amount of concepts. We take this recommendation into account and focus on large
datasets.

2.2. Concept Selection
Many different techniques are used in Concept Selection. Liu et al. [2007] present five
categories in which concepts can be selected, of which we use three as a guideline to
give an overview of the different methods used in the recent years. The first category
is making use of an ontology. These ontologies or knowledge bases can be created by
expert (expert knowledge base) or created by the public (common knowledge base). Ex-
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pert knowledge bases provide good performance, but dedicated expert effort is needed
in the creation of such a knowledge base. Some early work on expert knowledge bases
and reasoning in the field of event recognition is explained in Ballan et al. [2011].
One current expert ontology for events is EventNet [Ye et al. 2015]. Common knowl-
edge bases, such as Wikipedia [Milne and Witten 2013] and WordNet [Miller 1995],
are freely available and often used in the video event retrieval community [Neo et al.
2006; Yan et al. 2015; Tzelepis et al. 2015], but might not contain the specific informa-
tion that is needed. A comparison of performance between an expert knowledge base
and two common knowledge bases, which are Wikipedia and ConceptNet, is given in
de Boer et al. [2015]. Concept selection in common knowledge bases is often done by
using the most similar or related concepts to events found in the knowledge base. An
overview of the type of methods to find similar or related concepts can be found in
Natsev et al. [2007]. The amount of selected concepts and the similarity measure used
differ per paper and no conclusive results are found on which method is best to use.

The second category is making use of machine learning techniques. Machine learn-
ing techniques can be used to automatically select the proper concepts. These tech-
niques are used more often in tasks with example videos, because many models need
training examples. In the zero example video event retrieval, graphical models such
as hidden Markov models [Dalton et al. 2013], are used. More often statistical meth-
ods are used, such as co-occurrence statistics [Mensink et al. 2014] and a skip-gram
model [Chang et al. 2015]. One group of current state of the art models is word2vec,
which produce semantic embeddings. These models either use skip-grams or continu-
ous bag of words (CBOW) to create neural word embeddings using a shallow neural
network that is trained on a huge dataset, such as Wikipedia, Gigawords, Google News
or Twitter. Each word vector is trained to maximize the log probability of neighboring
words, resulting in a good performance in associations, such as king - man + woman =
queen. Two often used models are the skip-gram model with negative sampling (SGNS)
[Mikolov et al. 2013], which has relations to the pointwise mutual information [Levy
and Goldberg 2014], and the Glove model [Pennington et al. 2014], which uses a fac-
torization of the log-count matrix. Although Pennington et al. [2014] claimed to have
performance superior to SGNS, this is highly discussed by Levy et al. [2015] and Gold-
berg1. The advantage of word2vec over other semantic embedding methods, such as
Wu et al. [2014] with their common lexicon layer and Habibian et al. [2014b] with
VideoStory and Jain et al. [2015] with the embedding of text, actions and objects to
classify actions, is that the latent variables are transparent, because the words are
represented in vector space with only a few hundred dimensions.

The third category is making use of relevance feedback. User clicks or explicit rele-
vance judgements from users can be used to optimize the results. A review of relevance
feedback in content based image retrieval can be found in Patil and Kokare [2011]. In
concept selection using relevance feedback often a first selection of concepts is done
using the ontology, machine learning techniques or one of the other techniques and an
user is asked to remove the irrelevant concepts and/or to adjust the importance of con-
cepts [Jiang et al. 2015b; Chang et al. 2015]. A second option is to refine the text query
instead of removing concepts [Xu et al. 2015]. A third option is to use weakly labelled
data [Chang et al. 2016] to dynamically change the weights of the selected concepts.
Besides user interaction, pseudo-relevance feedback can be used. In pseudo-relevance
feedback we assume that the top videos are relevant for the query [Jiang et al. 2014a;
Jiang et al. 2014b]. Although this method by the CMU team has top performance in
TRECVID MED 2014, this is a high risk for rare events. In our experiments, we fo-

1On the importance of comparing apples to apples: a case study using the GloVe model, Yoav Goldberg, 10
August 2014
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cus on the first run of the video event retrieval system and, therefore, do not include
pseudo-relevance feedback. We, however, compare our method with a method that uses
a user to create the System Query.

In addition to the different categories from Liu et al. [2007], Jiang et al. [2015b]
found that a sensible strategy for concept selection might be to incorporate more rel-
evant concepts with a reasonable quality. They state that automatic query generation
or concept selection is still very challenging and combining different mapping algo-
rithms and applying manual examination might be the best strategy so far. Huurnink
et al. [2008] propose a method to asses the automatic concept selection methods and
compare that method to a human assessment. Mazloom et al. [2013] show in a setting
of video event retrieval with examples that an informative subset of the vocabulary
can achieve higher performance than just using all concepts of the vocabulary. This
strategy is also used in our previous work [Lu et al. 2016] that uses evidential pooling
of the concepts over the video.

3. SEMANTIC EVENT RETRIEVAL SYSTEM
In our Semantic Event Retrieval System, we use five large external datasets to form
our vocabulary, which is explained in the following subsection. Our vocabulary is used
in our concept selection method to transform the user query (UQ) into a System Query
(SQ), as explained in the second subsection. UQ is a fixed textual description of an
event, for which we only use the name of the event. SQ is a list of concepts (c) and their
associated similarities (cs). The constraints on our SQ are: sparsity, non-negativity and
linear weighted sum. Regarding sparsity, we use an informative subset of concepts, as
recommended by Mazloom et al. [2013] and similar to our previous findings, resulting
in a sparse set of concepts in SQ. No negative similarities are used, because in our
findings this decreases performance. For example, in the event winning a race without
a vehicle using a negative similarity for the concept vehicle decreases performance,
because in some videos of this event a parking lot with vehicles is present at the be-
ginning of the video. The linear weighted sum is used to combine the concepts in our
SQ to create the event score for a certain video (Se,v). The concept detector score per
video (cd,v) is the concept detector score (d) belonging to a video (v).

The formula to create the event score is shown in Equation 1.

Se,v =
∑
c∈SQ

cs · cd,v, (1)

where c is the concept, V is the vocabulary, cs is the similarity of concept c, cd,v is the
concept detector score for concept c over video v. The event scores can be used to order
the videos and calculate performance.

3.1. Vocabulary
In the creation of the vocabulary, we follow the recommendations of Habibian et al.
[2013], which are a large and diverse vocabulary, and use the top two performing
datasets from Jiang et al. [2015b], i.e. Sport and ImageNet. Furthermore, we aim for a
set of datasets that not only contains low- and mid-level concepts, but also high-level
concepts. Figure 1 shows our interpretation of the different datasets on the level of
complexity.

The two low-level datasets are ImgNet [Deng et al. 2009] and Places [Zhou et al.
2014]. ImgNet, which is an abbreviation for ImageNet, contains low-level objects and
for our vocabulary the standard subset of 1000 objects is used. The Places dataset does
not contain objects, but scenes or places. We have one dataset that contains both low-
and mid-level concepts: SIN [Over et al. 2015]. These concepts have been developed
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Fig. 1. The level of complexity for the five datasets used in this paper.
The number under each dataset indicates the amount of concepts in the dataset.

Table I. Overview Datasets

Name #Concepts Structure Dataset
FCVID 239 DCNN+SVM Fudan-Columbia [Jiang et al. 2015a]
SIN 346 DCNN TRECVID SIN [Over et al. 2015]
Sport 487 3D-CNN [Tran et al. 2014] Sports-1M [Karpathy et al. 2014]
Places 205 DCNN MIT Places [Zhou et al. 2014]
ImgNet 1000 DCNN [Krizhevsky et al. 2012] ImageNet [Deng et al. 2009]

for the TRECVID Semantic Indexing Task of 2015. We also included one dataset that
contains both mid-level and high-level concepts: Sport [Karpathy et al. 2014]. This is
a dataset that contains one million sports videos, classified into 487 categories. Our
high-level dataset is the Fudan Columbia Video dataset [Jiang et al. 2015a], which
contains 239 classes within eleven high-level groups, such as art and cooking&health.

Table I shows additional information on the datasets, such as the amount of con-
cepts, the reference to the publication of the dataset and the structure used to train
the concept detectors. Training of the concepts is done by using one of the state of the
art DCNN architectures. The original DCNN architecture of Krizhevsky et al. [2012],
named AlexNet, is used for ImgNet. The output of the eighth layer of the DCNN net-
work trained on the ILSVRC-2012 [Deng et al. 2009] is used as concept detector score
per keyframe. This DCNN architecture is fine-tuned for both SIN and Places. The con-
cept detector scores per keyframe are max pooled to obtain the score per video. The
keyframes are extracted at the rate of one keyframe per two seconds.

The two high-level datasets are annotated on video level instead of keyframe level
and are, therefore, trained in a slightly different way. FCVID also uses the same DCNN
architecture, but the seventh layer of the network is used as an input for an SVM. This
SVM is trained on the videos within the dataset on video level instead of keyframe
level. The Sport dataset is trained with the 3D CNN network of Tran et al. [2014].

3.2. Concept Selection (i-w2v)
Our incremental word2vec method (i-w2v) starts with a vector containing the words
in the User Query (UQ). In our experiments, the UQ is the name of an event, such
as [parking, vehicle]. On the other hand, we have a vocabulary with concepts. These
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concepts can also be represented as a vector, such as the concept [police, car]. In the
function sim(c,UQ), we use the Gensim code2, which is an implementation of the SGNS
model [Mikolov et al. 2013], to calculate the cosine similarity between UQ and each of
the concepts in the vocabulary. This similarity is stored in cs. We sort the concepts
in the vocabulary based on this similarity. We discard the concepts with a similarity
less than 80% of the highest similarity. This cut-off is used to decrease the possibility of
introducing noise. Table II shows that our method is robust to a range of cut-offs on the
All vocabulary. Subsequently, we try whether a combination of concepts will increase
the similarity to take care of the query drift. Where other methods might only choose
the top five as the selected concepts, we - only - include the concepts that increase the
similarity. In the multidimensional word2vec space, one facet might have a vector into
one direction towards UQ, whereas another facet might have a vector into another
direction. Using both concepts will move the vector more towards the vector of UQ
and increase the cosine similarity. We start with using the concept with the highest
similarity in a concept vector. We iteratively add concepts (in order of their similarity)
to this concept vector and each time compare the cosine similarity of the new vector
to UQ. If the similarity is higher with the concept compared to without, we retain
the concept in the concept vector. In the case of the event parking a vehicle, the first
concept is vehicle. All types of vehicle, such as police car or crane vehicle are not added
to the concept list as the concept list with the police car added, such as [vehicle, police,
car] does not increase the cosine similarity to UQ. The concept parking lot, which was
not in the top five concepts, is included, because the facet vehicle and the facet parking
(lot) together increase the similarity to the event parking a vehicle. Similarly, the tenth
concept parking meter is not included as it covers the same facet as parking lot. The
output of the Concept Selection method is the list of selected concepts and their original
cosine similarity cs to UQ. This concept selection method has a complexity of O(n) in
which n is the amount of concepts, because we have to calculate the similarity between
the query and each of the concepts. This method is faster than look-up time of the video
in the database, which makes it applicable for real-time systems.

Table II. Difference in
All MAP for cut-off
points

Method MAP
75% 0.143
80% 0.144
85% 0.139
90% 0.139
0.1% 0.139

The novelty in our method is to only add the concepts that improve the similarity
to the full event. To our knowledge, current word2vec models did not yet look into
solutions to a possible query drift in this way.

4. EXPERIMENTS
In our experiments, we use the MED2014Test Set of the TRECVID Multimedia
Event Detection Pre-specified Zero-Example task of 2015 [Over et al. 2015]. The
MED2014Test contains more than 27,000 videos and has ground truth information
for twenty events. The evaluation metric is Mean Average Precision [Over et al. 2015].
All video scores are sorted in descending order and the rank of the positive videos are

2https://radimrehurek.com/gensim/models/word2vec.html
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used in the evaluation. The next sections explain our experiments on the Vocabulary
Challenge and Concept Selection challenge.

4.1. Vocabulary
In the experiments on the Vocabulary challenge, we compare performance of vocabu-
laries that consist of 1) only one dataset; 2) only low- and mid-level concepts (LowMid);
3) only high-level concepts (High); 4) low-, mid- and high-level concepts (All). The
datasets used in the LowMid, High and All vocabularies are visualized in Figure 1
on the previous page.

According to the literature, combining resources generally improves robustness and
performance, and therefore, we hypothesize that 1) All outperforms all other vocabu-
laries. Our intuition is that the high-level concepts play an important role in the detec-
tion of high-level events, and, thus we hypothesize that 2) High outperforms LowMid
and 3) Sport and FCVID outperform the other single datasets.

The Concept Selection method used for the experiments on the Vocabulary Chal-
lenge is not our proposed Concept Selection method, but the best number of concepts
over all events (top-k) using the original word2vec method. This number is determined
by experiments on the MED2014TEST with a varying number of selected concepts,
from one to twenty. This number, thus, displays the best possible k over all events
for these twenty events and is thus not influenced by the proposed Concept Selection
method, enabling an independent experiment on the vocabularies.

4.2. Concept Selection
In the experiments on the Concept Selection challenge, we compare performance of
our proposed Concept Selection method (i-w2v) to the original word2vec method (top-
k), a knowledge-based method (CN), a method using manually selected concepts and
weights (manual) and the currently known state of the art methods describing their
performance on MED14Test. Relating back to the related work, CN is selected as a
method from the first category (ontology). I-w2v method falls within the second cate-
gory (machine learning), and the manual method falls within the third category (rele-
vance feedback). We hypothesize that 1) i-w2v outperforms CN and 2) manual outper-
forms both CN and i-w2v. This second hypothesis is based on the finding of Jiang et al.
[2015b] that automatic Concept Selection is still a challenge.

In the CN method, UQ (event name) is first compared to the concepts in the vocab-
ulary. If a concept completely matches UQ, this concept is put in SQ. If no concept
completely matches UQ, ConceptNet is used to expand UQ. In this expansion, Con-
ceptNet 5.3 is automatically accessed through the REST API and all words with the
relation RelatedTo, IsA, partOf, MemberOf, HasA, UsedFor, CapableOf, AtLocation,
Causes, HasSubEvent, CreatedBy, Synonym or DefinedAs to UQ are selected, split into
words by removing the underscore and compared to the lemmatized set of concepts in
the vocabulary. The matching concepts are put in the SQ. The value for cw is deter-
mined by the following equation:

cw = (
scorerel

30
)3 (2)

This equation is based on the experiments in de Boer et al. [2015], where they ex-
plain that the scores are often between zero and thirty, which would create a value
between zero and one. The third power is based on previous experiments and has some
ground in Spagnola and Lagoze [2011], because they explain that ConceptNet uses the
third root of the score of the edges to calculate the final score.

If the query expansion directly to UQ still gives no related concepts, the separate
words in UQ are compared to the concepts. The words with a matching concept are put
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Semantic Reasoning in Zero Example Video Event Retrieval A:9

in SQ and the other words are expanded through ConceptNet. In order to avoid query
drift, the sum of the weights of the expanded words should be the same as the weight
of a matched concept. If for example UQ contains of two words, each set of concepts
that represent one word should have a weight of 0.5.

In the manual method a human researcher had to select the relevant concepts and
weights for those concepts for each event. The researcher was presented the event de-
scription provided within the TRECVID MED [Over et al. 2015] benchmark, access
to the internet to search for examples for the event and knowledge sources such as
Wikipedia or the dictionary and the list of concepts. In order to help the human re-
searcher, the ranked list from our i-w2v method (without similarities) was provided to
show a list that is somewhat ordered in terms of relevance to the event. This human
researcher is a non-native fluent English speaker with a West-European background.
The human researcher was instructed to create a diverse and concise list of concepts, to
prevent query drift and adding too much noise. The human researcher had to provide
weights for the concepts that summed up to one.

5. RESULTS
5.1. Vocabulary
The results of the Average Precision performance of the different vocabularies are
shown in Table III. The bold number indicates the highest performance per event per
vocabulary, both from the vocabularies that contain a single dataset and the vocabu-
laries with concepts from multiple datasets.

Comparing performance of All to the other datasets, we clearly see that on average
the combination of all resources is better than to use a subselection of the resources,
which is consistent with our first hypothesis. Additionally, LowMid and High both have
on average higher performance compared to any of the single dataset vocabularies in
that category.

Table III. Average Precision per Vocabulary using top-k word2vec concept selection (k is optimal determined on MED2014TEST).
Bold is highest in row and group.

ImgNet (4) Places (1) SIN (6) Sport (2) FCVID (1) LowMid (2) High (1) All (1)
AttemptBikeTrick 0.103 0.002 0.07 0.019 0.061 0.068 0.062 0.062
CleanAppliance 0.015 0.011 0.01 0.004 0.062 0.012 0.062 0.062
DogShow 0.024 0.011 0.005 0.786 0.006 0.009 0.766 0.766
GiveDirection 0.005 0.001 0.011 0.002 0.001 0.005 0.002 0.002
MarriageProposal 0.002 0.002 0.003 0.002 0.010 0.002 0.010 0.010
RenovateHome 0.003 0.004 0.006 0.002 0.001 0.003 0.001 0.003
RockClimbing 0.006 0.004 0.004 0.298 0.065 0.004 0.128 0.128
TownHallMeeting 0.003 0.008 0.006 0.001 0.148 0.012 0.148 0.148
WinRace 0.005 0.005 0.005 0.004 0.011 0.006 0.010 0.005
WorkMetalCraftsProject 0.003 0.003 0.003 0.001 0.005 0.003 0.005 0.005
Beekeeping 0.649 0.013 0.005 0.018 0.262 0.653 0.262 0.62
WeddingShower 0.003 0.002 0.008 0.003 0.005 0.002 0.005 0.002
VehicleRepair 0.002 0.003 0.005 0.013 0.001 0.006 0.001 0.006
FixMusicalInstrument 0.017 0.024 0.003 0.001 0.146 0.024 0.147 0.147
HorseRidingCompetition 0.027 0.224 0.051 0.046 0.098 0.181 0.098 0.098
FellingTree 0.003 0.052 0.016 0.026 0.026 0.015 0.026 0.019
ParkingVehicle 0.006 0.023 0.118 0.002 0.217 0.017 0.217 0.217
PlayingFetch 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Tailgating 0.003 0.006 0.001 0.002 0.232 0.008 0.232 0.232
TuneMusicalInstrument 0.031 0.052 0.003 0.001 0.052 0.03 0.052 0.052
MAP 0.045 0.023 0.017 0.062 0.071 0.053 0.112 0.129
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Fig. 2. Correlation between Amount Concepts and MAP for different complexities

Furthermore, the high-level concepts are important in these experiments, because
High outperforms LowMid and the high-level datasets Sports and FCVID outperform
Places and SIN. Besides the complexity of the datasets, the amount of concepts could
also be a factor. A higher amount of concepts increases the possibility that the event
can be captured within these concepts. This factor can be further verified by the plot
in Figure 2.

In this plot, the correlation between the amount of concepts for each of the complex-
ities is shown. LowMid has a high correlation, whereas High has not (R2 LowMid =
0.915 and R2 High = 0.581) between amount of concepts and MAP. The plot clearly
shows that High performs better than LowMid with the same amount of concepts.

Please note that these results could also be explained by that the high level concepts
are trained in a domain more like TRECVID MED compared to the domain in which
the low level concepts are trained. This domain shift could decrease the performance
of the low level concepts compared to the high level concepts.

5.2. Concept Selection
The previous section shows the top-k performance for the different vocabularies,
whereas in this section we compare the different Concept Selection methods. The Av-
erage Precision performance results for our Concept Selection experiments are shown
in Table IV. The bold number indicates the highest performance per event per vocabu-
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lary. The italic numbers for the CN method indicate random performance, because no
concepts are selected. In the All vocabulary, for some events performance of all concept
selection methods is equal, indicating that a complete match between the event and
a concept in the vocabulary is found. In each of the methods a complete match will
result in only selecting that concept. These events are, therefore, displayed on top of
the Table and separated from the ‘interesting’ events on the bottom of the Table.

Additionally, we compare our best performance against state of the art performance
reported on the same dataset in Table V. Performance of CN, top-k and i-w2v on the
All vocabulary is shown. This performance is directly comparable to EventPool, be-
cause the same vocabularies are used. The vocabularies used by Chang et al. [2016]
and Jiang et al. [2015b] are comparable in size and type of concepts. In Bor, PCF and
DCC semantic concepts are discovered using weakly labelling the TRECVID MED re-
search set using word2vec vectors. Bor uses borda rank to aggregate the weights on the
concepts. PFC uses a pair-comparison framework. DCC uses a dynamic composition to
determine the appropriate weights. Fu is the AND-OR method proposed by Habibian
et al. [2014a] to create an AND-OR graph of the concepts, but applied to the vocabu-
lary of Chang et al. [2016]. The vocabulary of Habibian et al. [2014a] was composed of
138 concepts. These concepts were automatically extracted from the TRECVID MED
research set. Jiang et al. [2015b] uses an average fusion of the mapping algorithms
that use exact word matching, Wordnet, Pointwise Mutual Information and word em-
beddings. Table V shows a gain in MAP of 1% compared to state of the art methods.

Table IV. Average Precision on MED2014TEST for proposed i-w2v, top-k, ontology-based CN and manual concept selection
Top part are events with direct matches to a concept. Bold is highest value in row and group.

LowMid High All
i-w2v top-k CN manual i-w2v top-k CN manual i-w2v top-k CN manual

AttemptBikeTrick 0.086 0.068 0.021 0.08 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062
CleanAppliance 0.014 0.012 0.005 0.021 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062
DogShow 0.016 0.009 0.011 0.011 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766
MarriageProposal 0.002 0.002 0.001 0.005 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
RockClimbing 0.006 0.004 0.002 0.025 0.309 0.128 0.309 0.309 0.309 0.128 0.309 0.309
TownHallMeeting 0.012 0.012 0.007 0.023 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148
FixMusicalInstrument 0.025 0.024 0.009 0.057 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147
Tailgating 0.008 0.008 0.002 0.010 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232
MAP (direct) 0.021 0.017 0.008 0.029 0.217 0.194 0.217 0.217 0.217 0.194 0.217 0.217
GiveDirection 0.005 0.005 0.002 0.004 0.002 0.002 0.001 0.004 0.002 0.002 0.002 0.008
RenovateHome 0.003 0.003 0.017 0.003 0.001 0.001 0.002 0.015 0.002 0.003 0.015 0.008
WinRace 0.005 0.006 0.007 0.035 0.068 0.01 0.007 0.093 0.086 0.005 0.011 0.093
WorkMetalCraftsProject 0.003 0.003 0.001 0.016 0.003 0.005 0.001 0.007 0.004 0.005 0.001 0.008
Beekeeping 0.62 0.653 0.65 0.694 0.075 0.262 0.262 0.262 0.62 0.62 0.666 0.714
WeddingShower 0.002 0.002 0.002 0.005 0.005 0.005 0.002 0.005 0.004 0.002 0.002 0.005
VehicleRepair 0.006 0.006 0.003 0.006 0.007 0.001 0.003 0.162 0.006 0.006 0.005 0.284
HorseRidingCompetition 0.166 0.181 0.015 0.183 0.098 0.098 0.096 0.261 0.098 0.098 0.096 0.288
FellingTree 0.026 0.015 0.006 0.015 0.024 0.026 0.001 0.033 0.048 0.019 0.008 0.015
ParkingVehicle 0.022 0.017 0.022 0.031 0.217 0.217 0.001 0.217 0.220 0.217 0.013 0.216
PlayingFetch 0.001 0.001 0.012 0.004 0.001 0.001 0.022 0.023 0.001 0.001 0.02 0.023
TuneMusicalInstrument 0.058 0.03 0.012 0.046 0.052 0.052 0.001 0.052 0.052 0.001 0.012 0.052
MAP (no direct matches) 0.076 0.076 0.062 0.087 0.046 0.057 0.033 0.0945 0.095 0.081 0.071 0.143
MAP (all) 0.054 0.053 0.04 0.064 0.113 0.112 0.107 0.144 0.144 0.129 0.129 0.173

Comparing the Concept Selection methods, manual is the best overall Concept Se-
lection method, as expected by our hypothesis. The largest differences between manual
and i-w2v and CN are in VehicleRepair and HorseRidingCompetition in High and All.
Table VI shows the different concepts and similarities for VehicleRepair in All. The
concept assemble bike has high performance, because this is the only concept that dif-
fers between i-w2v / top-k and manual. In the High vocabulary, performance for this
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Table V. Comparison to State of the Art (MAP reported on
MED2014TEST)

Method MAP
AND-OR [Habibian et al. 2014a] 0.064
Bor [Chang et al. 2016] 0.102
Fu [Chang et al. 2016; Habibian et al. 2014a] 0.111
PCF [Chang et al. 2016] 0.114
AutoSQGSys [Jiang et al. 2015b] 0.115
EventPool [Lu et al. 2016] 0.129
CN (All) 0.129
top-k (All) 0.129
DCC [Chang et al. 2016] 0.134
i-w2v (All) 0.144

Table VI. Comparison for VehicleRepair in All

i-w2v / top-k CN manual
c cs c cs c cs
vehicle 0.760 vehicle 0.500 vehicle 0.5

band aid 0.095 assemble bike 0.5
highway 0.095
apartments 0.095
boating 0.095
shop 0.095
casting fishing 0.024

event drops, because the concept vehicle is no longer within the vocabulary. This same
phenomenon happens in the event Beekeeping with the concept apairy. The main dif-
ference in performance in HorseRidingCompetition is that the human researcher was
able to select all types of horse riding competitions, whereas CN only selected dres-
sage and i-w2v only selected the concept horse riding in High and All. The difference
between High and All with manual in this event is due to the concept horse race course.

Following our hypothesis, i-w2v outperforms CN in all vocabularies. I-w2v even out-
performs manual in some events, of which FellingTree is the most interesting. Ta-
ble VII shows the concepts and similarities of the different methods for the event
FellingTree in All. In i-w2v, the concept tree farm provides for high performance,
whereas chain saw decreases performance compared to only using the concept trees. In
CN, the wrong expansion from felling to falling to all concepts, except for trees, causes
the low performance. Please note that the human researcher has highest performance
in High. The selected concepts for manual in High are forest and fruit tree pruning.

Table VII. Comparison for FellingTree in All

i-w2v CN manual top-k
c cs c cs c cs c cs
trees 0.780 trees 0.500 trees 0.5 trees 0.780
fruit tree pruning 0.732 cliff 0.186 chain saw 0.5
tree frog 0.693 painting 0.106
tree farm 0.664 skateboarding 0.085

climbing 0.040
windows 0.040
head 0.002
running 0.001
building 7 ×10−6

Comparing i-w2v to top-k, the i-w2v method outperforms the top-k in the All vocab-
ulary. In the High vocabulary the top-k has a slightly higher MAP, which is mainly due
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Table VIII. Comparison for RenovateHome in LowMid

i-w2v CN manual top-k
c cs c cs c cs c cs
home theater 0.675 apartments 0.113 apartment building outdoor 0.25 home theater 0.675
dinette home 0.655 city 0.102 apartments 0.25
home office 0.641 person 0.083 construction site 0.5
apartment building outdoor 0.592 wardrobe 0.065
dinner at home 0.590 sofa 0.065

tabby cat 0.065
closet 0.065
bedroom 0.065
comfort 0.065
dogs 0.065
building 0.058
pillow 0.047
refrigerator 0.047
furniture 0.047
pantry 0.047

to the apairy concept in the event Beekeeping. Performance of the event Rock Climb-
ing is slightly lower compared to the other direct matches, because in top-k the first
occuring direct match is used instead of all direct matches. Using all direct matches
for this event would improve MAP performance in All to 0.136.

Interestingly, CN outperforms both i-w2v and manual in the events RenovateHome
in LowMid and All and PlayingFetch in LowMid. Table VIII shows the concepts and
similarities of the different methods for the event RenovateHome in LowMid. In the
event PlayingFetch in LowMid the addition of concepts, such as throwing, ball and
stick (w2v and manual), decrease performance compared to only using the concept dog
(CN).

6. DISCUSSION
Regarding the Vocabulary challenge, the results of the experiments show that a com-
bination of multiple datasets improves performance. Although state of the art already
tend to add as many datasets as possible in their vocabulary, we show that including
high level concepts is important in video event retrieval. The results on the Vocabu-
lary challenge show only using the High vocabulary is better than using the LowMid
vocabulary. The All vocabulary with both LowMid and High is also better than the
LowMid. The correlation graph in Figure 2 shows that All is in the middle between
LowMid and High. This observation makes us wonder if a combination of a LowMid
and High vocabulary is indeed a good way to go, or if we should focus on a High vo-
cabulary with more concepts. On the one hand, the LowMid concepts are useful when
no close matches of the High level concepts are present. On the other hand, the High
level concepts can capture more than the combination of the LowMid level concepts.

Regarding i-w2v, performance is better than current state of the art zero shot meth-
ods without re-training or re-ranking. I-w2v can be combined to the event pooling
method from Lu et al. [2016] and the DCC method of Chang et al. [2016] to gain addi-
tional performance gain. The increase in performance compared to top-k does not seem
significant, but when increasing the amount of concepts, the possibility of query drift is
high. Current top-k strategy is to add only the most relevant concept. With a direct or
near direct match between the event and the concepts, this is a reasonable strategy. In
other tasks or with other events, this strategy is not optimal and a different number of
k should be taken. Instead of optimizing the number k for each task, our strategy does
not need this optimization. I-w2v is also able to combine concepts which cover different
facets of the event, whereas other methods might only use the raw cosine similarity.
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Additionally, i-w2v does not seem that sensitive to the cutoff point, as shown in Table
II.

Our proposed i-w2v method approaches the manual method. An advantage of the
manual method is that human knowledge is bigger than the knowledge in current
knowledge bases or in word2vec, but the disadvantage is that 1) it requires a human to
interpret all queries, which seems unfeasible in real-world applications; 2) it is hard for
a human to indicate the proper weight. CN and w2v are better able to provide weights,
but these weights are based on textual similarity. W2v learns from the context in which
words appear, but the context does not indicate if the words are similar because they
have an antonym (cat vs. dog), hyponym (chihuhua vs. dog), hypernym (animal vs. dog)
or other type of relation. Knowledge bases such as ConceptNet have such relations,
but for events little or no information is present. Because word2vec works as a vector
model, the combination of multiple words in an user query gives better results than a
combination of the different words searched in one of the knowledge bases. The method
can, however, still be improved, because concepts with one directly matching word,
such as tree in the concept tree frog for the event FellingTree and home in home theater
for the event RenovateHome, sometimes retrieve a similarity that can be argued to be
too high. But our word2vec method does not suffer from query drift and it approaches
human performance, especially in a vocabulary that contains high-level concepts. In
future work, an option could be to combine our method with the manual method by use
of relevance feedback or use a hybrid method containing i-w2v and a knowledge base.

7. CONCLUSION
In this paper, we presented our Semantic Event Retrieval System that 1) included
high-level concepts and 2) uses a novel method in Concept Selection (i-w2v) based on
semantic embeddings. Our experiments on the international TRECVID Multimedia
Event Detection benchmark show that a vocabulary including high-level concepts can
improve performance on the retrieval of high-level events in videos, indicating the
importance of high-level concepts in a vocabulary. Second, we show that our proposed
Concept Selection method outperforms state of the art.
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