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Abstract

We consider a random walk (RW) driven by a simple symmetric exclu-
sion process (SSE). Rescaling the RW and the SSE in such a way that a joint
hydrodynamic limit theorem holds we prove a joint path largedeviation prin-
ciple. The corresponding large deviation rate function canbe split into two
components, the rate function of the SSE and the one of the RW given the
path of the SSE. These components have different structures(Gaussian and
Poissonian, respectively) and to overcome this difficulty we make use of the
theory of Orlicz spaces. In particular, the component of therate function
corresponding to the RW is explicit.
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1 Introduction

1.1 Background

Random evolution on a random medium has been the object of intensive research
within the mathematics and physics communities over at least the last forty years.
Although there are plenty of rigorous and non-rigorous results obtained through
a wide range of techniques and methods, it is far from being a closed subject.
Since the works of Solomon [27], Harris [12] and Spitzer [28], random walks in
both static and dynamic random environments have been a prolific way to study
this problem within the context of probability theory (see [30] for a review in the
static case). In the case ofdynamicrandom environments, considerable progress
has been recently achieved (see e.g. [3], [22], [24] and references therein), but a
key ingredient common to all these developments is the availability of good mixing
propertiesof the environment. More recently, examples of dynamic random en-
vironments with less restrictive mixing properties have been considered [13], but
the general picture is still far from being understood (see [4] for some conjectures
based on simulations).

A very simple way to obtain a family of dynamic random environments with
poor mixing properties is to considerconservative particle systemsas dynamic
environments. On the one hand these environment processes are very well under-
stood, in particular their mixing properties are well known, on the other hand the
essential difficulties coming from the poor mixing are encoded into the conserva-
tion laws.

In this article the dynamic environment is given by a simple,symmetric exclu-
sion process, as in [1], [2], [3], [4], [15], [20], [25]. On top of this environment,
we run a simple random walk with jumping rates depending on the portion of the
environment it sees. The exclusion particles do not feel thepresence of the ran-
dom walk. We introduce a scaling parametern∈N and wespeed upthe exclusion
particles with respect to the random walk by a factor ofn. Although this speeding
up seems to be there in order to give us the necessary mixing properties for the
environment, this is not the case. At least at a formal level what happens is that this
scale is thecrossover scalebetween a regime on which the environment behaves
essentially as frozen from the point of view of the random walker, and a regime on
which the environment mixes fast enough to put us back on the setting of previous
works.

1.2 The model and result at a glance: an example

Let us consider the following problem. For the sake of clarity, we begin by con-
sidering a simple case. In Section 2 we define the general model. Let n∈ N be a
scaling parameter, which will be sent to+∞ later on. On a discrete circleTn with
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n points, we run a symmetric, simple exclusion process{ηn
t ; t ∈ [0,T]},1 speeded

up byn2. We call this process thedynamic environment. Given a realization of the
process{ηn

t ; t ∈ [0,T]}, we run a simple random walk onTn with the following
dynamics. The walk waits an exponential time of raten, at the end of which it
jumps to the left with probability1

3, it jumps to the right with probability1
3 and

with probability 1
3 it looks at theenvironmentηn

t . Let x be the current position
of the walk. If ηn

t (x) = 1, the walk jumps to the right, and ifηn
t (x) = 0 the walk

jumps to the left. Notice that the particle isspeeded up by n. Let us think about
the circleTn as a discrete approximation of the continuous circle of length 1. The
different speeds of the environment and the walk are taken insuch a way that the
environment has adiffusive scalingand the walk has aballistic (or hyperbolic in
the terminology of hydrodynamic limits) scaling. Let us start the exclusion pro-
cess from a non-equilibrium initial distribution. In orderto fix ideas, imagine that
ηn

0(x) = 1 if |x| ≤ n
4 andηn

0(x) = 0 otherwise. This initial distribution of particles
is a discrete approximation of the density profileu0(x) = 1|x|≤1/4. It is precisely
under this diffusive space-time scaling that the limiting density profile has a non-
trivial evolution. This limiting profileu(t,x) turns out to be the solution of the
heat equation on the continuous circle, with initial condition u0. This convergence
is what is known in the literature as thehydrodynamic limitof the exclusion pro-
cess (see Chapter 4 of [18] for more details and further references). Now let us
describe the scaling limit of the walk. If the density of particles of the exclusion
process is equal toρ ∈ [0,1], then one expects that the walk will move with velocity
v(ρ) = 1

3(2ρ −1). Notice that a hyperbolic scaling is needed for the walk in order
to have a non-trivial macroscopic velocity. Therefore, themacroscopic position of
the walk should satisfy the ODE

ϕ̇t = v(u(t,ϕt)).

This heuristic reasoning has been made precise in [1] in the form of a functional
weak law of large numbers for the walk. We obtain in this papera large deviation
principle associated to this law of large numbers. The form of the rate function
associated to this large deviation principle is given by thevariational formula

I(x) = inf
π

{
Irw(x|π)+Iex(π)

}
,

whereIrw(x|π) is the rate function of a random walk on a given space-time real-
ization of the environmentπ andIex(π) is the rate function of the large deviation
principle associated to the hydrodynamic limit of the exclusion process (see Sec-
tion 3 for more precise definitions). This variational formula is very reminiscent of
the variational formula relating the quenched and averagedlarge deviation princi-
ples for random walks in random environments [7],[10], see in particular Eq. (9)

1The time window[0,T] is chosen to be of finite size to avoid some technical topological consid-
erations. Indeed,[0,∞) is not compact and one would have to be more careful in weighting the tails
near infinity.
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of [7]. Notice that in our setting a “quenched" large deviation principle or even a
quenched law of large numbers is out of reach since the exclusion process does not
have an almost sure hydrodynamic limit. Anyway, the interpretation of the varia-
tional formula is the same as the corresponding one for random walks in random
environments. The functionIrw(x|π) is the cost of observing a trajectoryx when
the environment has a space-time densityπ, andIex(π) is the cost of changing the
density of the environment toπ.

Our method of proof, however, differs from the one in [7]. In [1], we proved a
joint law of large numbers for the environment and the walk. We show in this article
that the rate function of the corresponding large deviationprinciple is given by
Irw(x|π)+Iex(π). The desired result follows as an application of the contraction
principle.

1.3 Discussion

There are not many works addressing the question of large deviations for random
walks in dynamic random environment. In [2], the authors show a large deviation
principle (LDP) for the empirical speed on some attractive random environments.
They also show that the rate function in the case of an exclusion process as a ran-
dom environment has a flat piece. This reference is the closest in spirit to our work.
To our knowledge, the earliest reference in this field seems to be [16], then, in a
series of papers, [6], [23], [24], [29] the authors show an LDP for fairly general
dynamic random environments. In [14], the authors gave an LDP for a random
walk driven by a contact process. In all of these results, theenvironment is Marko-
vian (except fo the more general setting in [23]) and it is assumed to start from
an ergodic equilibrium. One of the differences of our work with respect to these
results is that we consider environments which start from alocal equilibrium, see
(4). These environments are more general than ergodic equilibria and they give
rise to a richer phenomenology. Our variational formula forthe rate function could
in principle be explicit enough to allow some finer analysis of the behavior of the
walk, but we do not pursue this line of research here.

Our method of proof is very different from what has been done before, and as
mentioned above it relies on a joint LDP for the couple environment-random walk.
The large deviations of the environment are quadratic in nature, since large fluctu-
ations are built up on small, synchronised variations of thebehavior of individual
particles, and the large deviations of the random walk are exponential in nature due
to the Poissonian structure of the walk. For this reason the joint LDP proved to be
very difficult to obtain. In particular, we need to deal with non-convex entropy cost
functions.

From the point of view of interacting particle systems, the problem addressed
in this work is close in spirit to the problem of the behavior of a tagged particle
in the exclusion process. In fact, we borrowed from [17] the strategy of proof of
the joint environment-walk law of large numbers, although this strategy can be
traced back to the seminal article [20]. Recently, an LDP forthe tagged particle in
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one-dimensional, nearest-neighbor symmetric exclusion process has been obtained
[25]. On the one hand, the results in [25] are more demanding,because the motion
of the tagged particle affects the motion of the environmentin a sensitive way. On
the other hand, our result is more intricate because of the mixture between Poisso-
nian and Gaussian rate functions. This last point obliges usto use the machinery
of Orlicz spacesin order to show that the variational problem that defines therate
function is well-posed. In the realm of interacting particle systems, this kind of
problems poses real difficulties in order to obtain an LDP. A family of models
which shares the difficulties found in this work is a conservative dynamics super-
posed to a creation-annihilation mechanism. To our knowledge, the best result so
far is found in [5]. In that article, a creation-annihilation (or Glauber) mechanism
is superposed to the exclusion dynamics with a speeding up ofthe exclusion pro-
cess in order to make both dynamics relevant in the macroscopic limit. As in our
case, the rate function of the LDP can be written as a combination of the Gaus-
sian rate function of the exclusion process and a Poissonianrate function coming
from the Glauber dynamics. However, they impose an additional condition (see
Assumption (L1) on page 8 of [5]) which makes some key cost functions convex.
This point is very technical but also very delicate, and it isthe key to proving that
the upper and lower bounds match. We overcame this problem byusing the theory
of Orlicz spaces, see Section 8.3.

1.4 Organization of the article

In Section 2 we describe our model in full generality. We fix some notation and in
particular we introduce theenvironment as seen by the walker, which will be very
important in order to relate the behaviors of the walk and of the environment. We
also describe the hydrodynamic limits associated to the exclusion process, as well
as to the environment as seen by the walker. This part summarizes the functional
law of large numbers obtained in [1]. In Section 3 we start explaining what we
understand by a large deviation principle for the couple environment-walk. We
put some emphasis on the topologies considered for the process, since they are not
the standard ones. In particular, we look at the random walk as asignedPoisson
point process. The trajectory of the random walk can be easily recovered from
this process and vice-versa, but the topology of signed measures turns out to be
more convenient. We finally state our main result, Theorem 7 on page 11 which
is a large deviation principle for the couple environment-walk. The large deviation
principle for the walk, Theorem 6, follows at once from Theorem 7 via the con-
traction principle. In Section 4 we define some exponential martingales which will
be used to tilt our dynamics, following the usual Donsker-Varadhan (see e.g. [8])
strategy of proof for large deviations of Markov processes.In Section 5 we show
what is called in the literature thesuperexponential lemma. This lemma allows to
do two things. First, it allows to write the exponential martingales introduced in
Section 4 as functions of the couple environment-walk plus an error term which is
superexponentially small. This step is the starting point of the upper bound. And
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second, it allows to obtain the hydrodynamic limit of suitable perturbations of the
dynamics. The latter is the starting point of the lower bound. In Section 6 we show
an energy estimate. This energy estimate allows to restrictour considerations to the
space of measures withfinite energywith respect to the Lebesgue measure. In par-
ticular, all these measures will be absolutely continuous with respect to Lebesgue
measure. This point is crucial, since we need to evaluate this density at the location
of the random walk in order to know its local drift. In Section7 we prove the large
deviation upper bound and in Section 8 we prove a matching lower bound, which
finishes the proof of the large deviation principle for the couple environment-walk.

2 The model

2.1 The environment

Let n∈ N be a scaling parameter,Tn =
1
nZ/Z be the discrete circle of sizen and

Ωn = {0,1}Tn. We denote byη = {η(x);x∈Tn} the elements ofΩn and we callη
a configuration of particles. The elementsx of Tn will be calledsites, and we say
that there is a particle at sitex∈ Tn in configurationη if η(x) = 1. Otherwise, we
declare the sitex to beempty. We say thatx,y∈ Tn areneighboursif |y−x| = 1

n.
In this case we writex∼ y. Fix T > 0. The simple, symmetricexclusion process
on Tn is the continuous-time Markov process{ηn

t ; t ∈ [0,T]} with the following
dynamics. To each pair of neighbours{x,y} on Tn we attach a Poisson clock of
raten2, independent of the other clocks. Each time the clock associated to the pair
{x,y} rings, we exchange the values ofηn

t (x) andηn
t (y).

For η ∈ Ωn andx,y∈Tn, we defineηx,y ∈ Ωn as

ηx,y(z) =





η(y); z= x,

η(x); z= y,

η(z); z 6= x,y.

The process{ηn
t ; t ∈ [0,T]} is generated by the operator given by

Lex
n f (η) = n2 ∑

x∼y

(
f (ηx,y)− f (η)

)
(1)

for any f : Ωn →R. Notice that if the initial configurationηn
0 has only one particle,

this particle follows a simple random walk. This fact explains the accelerationn2

in the dynamics, corresponding to a diffusive space-time scaling. We consider the
process defined on a finite time window[0,T] to avoid uninteresting topological
issues (see the footnote on page 2).

By reversibility and irreducibility, for eachk∈ {0,1, . . . ,n}, the uniform mea-
sureνk,n on

Ωn,k =
{

η ∈ Ωn; ∑
x∈Tn

η(x) = k
}
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is invariant and ergodic under the evolution of{ηn
t ; t ∈ [0,T]}. Equivalently, for

eachρ ∈ [0,1] the product Bernoulli measureνρ on Ωn, defined by

νρ(η) = ∏
x∈Tn

{
ρη(x)+ (1−ρ)(1−η(x))

}

is invariant under the evolution of{ηn
t ; t ∈ [0,T]}.

2.2 Some notation

Forx∈Tn, letτx : Ωn →Ωn be the canonical shift, that is,τxη(z)=η(z+x) for any
η ∈Ωn and anyz∈Tn. For f : Ωn →R we defineτx f : Ωn →R asτx f (η)= f (τxη)
for anyη ∈ Ωn.

We say that a setA⊆ Tn is thesupportof a function f : Ωn → R if:

i) for any η ,ξ ∈ Ωn such thatη(x) = ξ (x) for all x∈ A, f (η) = f (ξ ),

ii) A is the smallest set satisfying i).

We denote this byA= supp( f ).
Let Π : Z → Tn be the unique map fromZ to Tn such thatΠ(0) = 0 and

Π(x+1)−Π(x) = 1
n for anyx∈Z, that is,Π is thecanonical coveringof Tn byZ.

ConsiderΩ = {0,1}Z. We say that a functionf : Ω → R is local if there exists a
finite A⊆Z such that for anyη ,ξ ∈Ω with η(x) = ξ (x) for all x∈A, f (η)= f (ξ ).
For a local functionf : Ω → R, we can define supp( f ) as above. We can identify
Ωn with the set{0,1}{⌊− n

2+1⌋,...,⌊ n
2⌋}. Using this identification, any local function

f : Ω → R can be lifted to a function (which we still denote byf ) from Ωn to R,
for anyn large enough. Moreover, under this convention, the liftingis unique. We
will use the following notation. A local functionf : Ωn → R is actually a family of
functions{ fn : Ωn → R;n≥ n0}, all of them lifted toΩn from a common function
f : Ω → R, which we assume to be local. For a local functionf : Ωn →R, supp( f )
will denote either the support off onZ or the support offn onTn, which is equal
to Π(supp( f )).

2.3 The random walk

Let c : Ω×{+,−}→ [0,∞) be a local function, and letcn be the lifted version on
Ωn. Definec±n : Ωn×Tn via thecocycle property: c±n (η ;x) = cn(τxη ,±) for any
η ∈ Ωn and anyx∈ Tn. As the dependence onn is clear from context we simply
write c±. Without loss of generality we only considern large enough so that the
lifting of c exists. We callc a jump rate. An archetypical example is

c+(η ;x) = α +(β −α)η(x), c−(η ;x) = β +(α −β )η(x), for someα ,β > 0.

The random walk indynamic random environment{ηn
t ; t ∈ [0,T ]} with jump

ratec is the continuous-time Markov process{xn
t ; t ∈ [0,T]} with values inTn with
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the following dynamics. For simplicity, assume thatc++c− ≡ 1, the reader can see
that this assumption is not relevant. We attach to a random walker a Poisson clock
of raten, independent of the process{ηn

t ; t ∈ [0,T]}. Each time the clock rings, the
particle jumps to the right with probabilityc+(ηn

t ;xn
t−), and to the left with comple-

mentary probabilityc−(ηn
t ;xn

t−). We remark that the process{xn
t ; t ∈ [0,T]} itself

is not Markovian; if we consider afixed realization of the random environment
{ηn

t ; t ∈ [0,T]}, then we recover the Markov property for{xn
t ; t ∈ [0,T]}, but the

resulting evolution is not homogeneous in time. The pair{(ηn
t ;xn

t ); t ∈ [0,T]} turns
out to be an homogeneous Markov process, with values inΩn×Tn and generated
by the operator given by

Ln f (η ;x) = n2 ∑
y∼z

(
f (ηy,z;x)− f (η ;x)

)
+n ∑

z=±1

cz(η ;x)
(

f (η ;x+ z
n)− f (η ;x)

)

(2)
for any function f : Ωn×Tn → R. At this point, two remarks are in place. No-
tice that for functions which depend only onη , this expression coincides with the
definition of the generator of the process{ηn

t ; t ∈ [0,T]}, explaining the use of the
same notation for both objects. Notice as well that the dynamics of the random
walk is speeded-up byn. We expect the walk to move with some velocity, in which
case it needs to maken jumps in order to cross a region of order 1.

From now on and up to the end of the article, we assume that the random walk
starts at 0:xn

0 = 0 for anyn∈N.

2.4 The environment as seen by the walker

Let {ξ n
t ; t ∈ [0,T]} be the process with values inΩn defined byξ n

t (z) = ηn
t (x

n
t +z)

for anyz∈Tn (in other words,ξ n
t = τxn

t
ηn

t ) and anyt ∈ [0,T]. The process{ξ n
t ; t ∈

[0,T]} turns out to be a Markov process and its corresponding generator is given
by

Ln f (ξ ) = n2 ∑
x∼y

(
f (ξ x,y)− f (ξ )

)
+n ∑

z=±1

cz(ξ ;0)
(

f (τ z
n
ξ )− f (ξ )

)
(3)

for any function f : Ωn → R. The value ofxn
t can be recovered from thetrajectory

{ξ n
s ;s∈ [0, t]} in the following way. First suppose thatξ n has at least 2 particles

and two empty sites. Let{Nn,±
t ; t ∈ [0,T]} be the number of shifts to the right (+)

and to the left (−) up to timet. Then,

xn
t = Π

(
Nn,+

t −Nn,−
t

)
.

If there is only one particle or one empty site,Nn,±
t are similar, but each right (left)

shift of ξ n
t is discarded with probabilityn/(n+ c−(ξ n

t ;0)) (n/(n+ c+(ξ n
t ;0))),

which is the probability that the observed shift came from the movement of the
single particle/empty site. If there are no particles/empty sites,Nn,±

t are Poisson
processes with ratenc±(0;0) or nc±(1;0), where0 and1 are the empty and full
configurations.
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This point of view, the environment as seen by the walker, introduced by
Kipnis-Varadhan [20], has shown to be very fruitful (see [1]for an application
in this context).

2.5 The empirical measures

Let T = R/Z andM+(T) be the space of positive Radon measures onT. For µ
and{µn;n∈N} in M+(T), we say thatµn → µ if

∫
f dµn → ∫

f dµ for any con-
tinuous functionf :T→R. The topology induced onM+(T) by this convergence
is known as theweak topology, andM+(T) turns out to be a Polish space under
this topology. That is,M+(T) is completely metrizable and separable under this
topology. A possible metric is the following. Let{ fN;N ∈Z} be a dense subset in
C(T). Then,d : M+(T)×M+(T)→ [0,∞) given by

d(µ ,ν) = ∑
N∈Z

1

2|N| min
{∣∣∣
∫

fNd(µ −ν)
∣∣∣,1
}

is the required metric.
For x∈Tn, let δ n

x : T→ R be defined as

δ n
x (y) =

(
1−n|y−x|

)+
,

where(·)+ denotes positive part. Sometimes the functions{δ n
x ;x∈ Tn} are called

finite elements. The empirical density of particles is defined as theM+(T)-valued
process{πn

t ; t ∈ [0,T]} given by

πn
t (dy) = ∑

x∈Tn

ηn
t (x)δ n

x (y)dy.

Notice thatπn
t is absolutely continuous with respect to Lebesgue measure on T.

We will make the following abuse of notation. We will useπn
t to designate indis-

tinctly the measureπn
t (dx) or its density functionπn

t (·) with respect to Lebesgue
measure. We denote byπn

t (H) the integral of a functionH with respect to the
measureπn

t (dx). At this point, some comments about this definition are in place.
It is customary in the literature of interacting particle systems to use1nδx in place
of δ n

x , whereδx is the δ of Dirac atx ∈ T (see Chapter 4 of [18]). We will be
interested in scaling limits of the process{πn

t ; t ∈ [0,T]}. Since the number of par-
ticles per site is bounded by 1 by definition, any limit point of πn

t (dx) must be a
measure which is absolutely continuous with respect to Lebesgue measure onT,
and moreover with Radon-Nikodym derivative bounded above by 1. Therefore, it
is natural to modify the customary definition of the empirical measureπn

t in such a
way that it satisfies this property for any fixedn. This is accomplished by choosing
δ n

x (y) = 1(|y−x| ≤ 1
2n) (see, e.g., [19]). In our case, for topological considerations

which will become more transparent later on, it will be convenient to haveπn
t (·)

a.s.continuous, since on one hand we will need this property later on, and on the
other hand we will prove that this property is shared by the possible limits ofπn

t . It
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is clear that at the level of a law of large numbers, all these definitions of empirical
measures are equivalent; this is also the case at the level oflarge deviation prin-
ciples, and we adopt this definition in order to simplify the already very technical
exposition.

Let us denote byM+
0,1(T) the subset ofM+(T) formed by measuresµ abso-

lutely continuous with respect to Lebesgue measure onT, such that 0≤ dµ
dx ≤ 1. On

M+
0,1(T) we consider the weak topology defined above. Notice thatM+

0,1(T) is a
compact subset ofM+(T), and{πn

t ; t ∈ [0,T]} as defined above is anM+
0,1(T)-

valued process.
In a similar way, the empirical measure associated to the process{ξ n

t ; t ∈ [0,T]}
is defined as theM+

0,1(T)-valued process{π̂n
t ; t ∈ [0,T]} given by

π̂n
t (dy) = ∑

x∈Tn

ξ n
t (x)δ n

x (y)dy.

2.6 Hydrodynamic limits

Let u0 : T → [0,1] be a given function. We say that a sequence{µn;n ∈ N} of
probability measures onΩn is associatedto u0 if for any f ∈ C(T),

lim
n→∞

∫
∑

x∈Tn

η(x)δ n
x (y) f (y)dy=

∫
u0(y) f (y)dy,

in distribution with respect to{µn;n∈N}. In other words,{µn;n∈ N} is associ-
ated tou0 if the empirical measure of particles converges tou0(y)dy, in distribution
with respect to{µn;n∈ N} and in the weak topology onM+(T). Notice that for
any functionu0 :T→ [0,1] there is a sequence of measures associated to it. Indeed,
define forn∈N andx∈ Tn,

ρn
x = n

∫

|y−x|≤ 1
2n

u0(y)dy.

Then the product measureνn
u0

given by

νn
u0
(η) = ∏

x∈Tn

{
ρn

x η(x)+ (1−ρn
x )(1−η(x))

}
(4)

is associated tou0. These measures will play a role in the derivation of a large
deviation principle later on.

For a given Polish spaceE , let D([0,T];E) denote the space of càdlàg trajec-
tories from[0,T] to E . We consider onD([0,T];E) theJ1-Skorohod topology. Let
{µn;n ∈ N} be fixed. We denote byPn the distribution of{(ηn

t ;xn
t ); t ∈ [0,T]}

in D([0,T];Ωn ×Tn) with initial distribution µn ⊗ δ0, and we denote byEn the
expectation with respect toPn. The following proposition is classical:
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Proposition 1. Fix u0 : T→ [0,1] and let{µn;n∈ N} be associated to u0. With
respect toPn,

lim
n→∞

πn
t (dx) = u(t,x)dx

in distribution with respect to the J1-Skorohod topology onD([0,T];M+(T)),
where the density{u(t,x); t ∈ [0,T],x∈ T} is the solution of theheat equation

{
∂tu(t,x) = ∆u(t,x)

u(0, ·) = u0(·).
This proposition is what is known in the literature as thehydrodynamic limitof

the process{ηn
t ; t ∈ [0,T]}. A proof of this proposition which is close in spirit to

the exposition here can be found in Chapter 4 of [18]. A similar result was obtained
in [1] for the process{ξ n

t ; t ∈ [0,T]}, but before stating this result, we need some
notation. Let us definev± : [0,1]→ R as

v±(ρ) =
∫

c±(η ;x)νρ (dη).

Notice thatv± do not depend onx. Since we have assumed thatc is local,v± do not
depend onn either. Define thenv(ρ) = v+(ρ)− v−(ρ). The value ofv(ρ) can be
interpreted as the “mean-field” speed of the walk{xn

t ; t ∈ [0,T]} in an environment
of densityρ , but we point out that this far from clear under which conditions we
can assume that this mean-field speed is a good approximationfor the real speed
of the walk. The following propositions are the main resultsin [1].

Proposition 2. With respect toPn,

lim
n→∞

π̂n
t (dx) = û(t,x)dx

in law with respect to the J1-Skorohod topology ofD([0,T],M+(T)), where the
density{û(t,x); t ∈ [0,T],x∈T} is the solution of the equation

{
∂t û(t,x) = ∆û(t,x)+v(û(t,0))∂xû(t,x)

û(0, ·) = u0(·).

Let { f (t); t ∈ [0,T]} be the solution of the differential equation
{

f ′(t) = v(u(t, f (t))) = v(û(t,0))

f (0) = 0,

with u from Proposition 1. The densitiesu andû are related by the identity ˆu(t,x) =
u(t, f (t)+ x) for any t ∈ [0,T] and anyx∈ T. In fact, we have the following law
of large numbers for{xn

t ; t ∈ [0,T]}.

Proposition 3. With respect toPn,

lim
n→∞

xn
t = f (t)

in distribution with respect to the J1-Skorohod topology onD([0,T];T).
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3 Main results: large deviations

Propositions 1 and 3 can be understood as a functional law of large numbers for
the pair of processes{(πn

t ,x
n
t ); t ∈ [0,T]}. Our aim is to establish a large deviation

principle for the process{xn
t ; t ∈ [0,T]}, Theorem 6 below.

3.1 Topological considerations

Let us notice that theJ1-Skorohod topology coincides with the uniform topology
when restricted to the space of continuous functions. This topology is not the only
one with this property. Indeed, in the original work of Skorohod [26], four different
topologies are introduced on the spaceD([0,T];E) with this property, and such that
the spaceD([0,T];E) is Polish with respect to these topologies. Let us recall the
decompositionxn

t = Π(Nn,+
t −Nn,−

t ). SinceNn,+
t +Nn,−

t is just a standard Poisson
process speeded-up byn, an immediate corollary of Proposition 3 is that

lim
n→∞

Nn,±
t

n
=

t ± f̂ (t)
2

in distribution with respect to theJ1-Skorohod topology onD([0,T];R), where
{ f̂ (t); t ∈ [0,T]} is the canonical lifting of{ f (t); t ∈ [0,T]} from T to R. In
fact, the convergences of the processes{xn

t ; t ∈ [0,T]} and{1
nNn,+

t ; t ∈ [0,T]} are
equivalent, once we have the law of large numbers for the standard Poisson pro-
cess. Notice that the process{Nn,+

t ; t ∈ [0,T]} is increasing. Therefore, maybe
the J1-Skorohod topology is not the most suitable one. It turns outthat in or-
der to exploit the fact that{Nn,+

t ; t ∈ [0,T]} is increasing, we can use theweak
topologyin the following way. Let us denote byωn

±(dt) the measure on[0,T] de-
fined byωn

±((s, t]) =
1
n(N

n,±
t −Nn,±

s ) for anys< t ∈ [0,T]. Then, convergence of
{1

nNn,±
t ; t ∈ [0,T]} to {1

2(t ± f̂ (t)); t ∈ [0,T]} is equivalent to convergence of the
sequence of positive Radon measures{ωn

±;n∈ N} to the measure12(1± f̂ ′(t))dt,
with respect to the weak topology ofM+([0,T]). We will adopt this last point
of view. Notice that in order to recover the process{xn

t ; t ∈ [0,T]}, we need both
processes{Nn,±

t ; t ∈ [0,T]}, or equivalently, both measures{ωn
±}. Therefore, if

needed, we can consider the process{xn
t ; t ∈ [0,T]} as an element of the space

M+([0,T])×M+([0,T]) equipped with the weak topology. The main advan-
tage of this point of view is the characterization of compactsets, which is very
simple onM+([0,T]): a setK ⊆M+([0,T]) is relatively compact if and only if
supµ∈K µ([0,T ]) < +∞. Further topological considerations will be introduced at
the occurrence in the proof of the large deviation principle.

3.2 Large deviation principle

We start by recalling what a large deviation principle is. Since we are going to
state several large deviation principles, let us define it infull generality. LetE be a
Polish space. Given a functionI : E → [0,∞], we call it rate functionif it is lower

12



semi-continuous, that is, the set{x ∈ E ;I(x) ≤ M} is closed for anyM ∈ [0,∞).
We say that the rate functionI is good if the sets{x∈ E ;I(x) ≤ M} arecompact
for anyM ∈ [0,∞). A sequence{Xn;n∈N} of E-valued random variables defined
in some probability space(E,F ,P) satisfies a large deviation principle with good
rate functionI if

i) for any open setA⊆ E ,

lim
n→∞

1
n

logP(Xn ∈ A)≥− inf
x∈A

I(x),

ii) for any closed setC ⊆ E ,

lim
n→∞

1
n

logP(Xn ∈ C)≤− inf
x∈C

I(x).

3.3 The initial distribution of particles

In Section 2.6, we saw that in order to obtain the hydrodynamic limit of the en-
vironment process, the initial distribution of particles must be associated to some
profile u0. It turns out that in order to obtain a large deviation principle for the en-
vironment process, it is necessary (but far from sufficient)to understand the large
deviations of the initial distribution of particles. Letu0 be a given initial profile.
For simplicity, we assume thatu0 is continuous and that there existsε > 0 such that
u0 ∈ [ε ,1− ε ]. Recall the definition of the measures{νn

u0
;n∈ N} given in Section

2.6. With respect to{νn
u0

;n ∈ N}, the empirical measureπn
0 converges in distri-

bution to the measureu0(x)dx, and a large deviation principle for the sequence
{πn

0 ;n ∈ N} is not difficult to obtain. Recall that we considerπn
0 as an element

in M+
0,1(T). Let v0(x)dx be an element ofM+

0,1(T). This imposes the restriction
0≤ v0(x)≤ 1 for anyx∈T. Define

h(v0|u0) :=
∫

T

{
u0(x) log

(
u0(x)
v0(x)

)
+(1−u0(x)) log 1−u0(x)

1−v0(x)

}
dx. (5)

The large deviations of the initial distribution of particles is given by the following
proposition (see e.g. [18], Lemma 5.2, Chapter 10).

Proposition 4. The sequence{πn
0 ;n∈N} satisfies a large deviation principle with

respect to the weak topology onM+
0,1(T) with rate function h.

3.4 Large deviation principle for the environment

A large deviation principle for the process{πn
t ; t ∈ [0,T]} has been obtained in [19].

Let us recall this result. ForH : [0,T]×T→ R of classC1,2 and{πt ; t ∈ [0,T]} in
D([0,T];M+

0,1(T)), define

J(H;π) := πT(HT)−π0(H0)−
∫ T

0
πt
(
∂tHt +2∆Ht

)
dt

−
∫ T

0

∫ (
∇Ht(x)

)2πt(x)
(
1−πt(x)

)
dxdt,

(6)
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and set
Iex(π) := h(π0|u0)+ sup

H∈C1,2
J(H;π).

The following proposition is the main result in [19].

Proposition 5. The process{πn
t ; t ∈ [0,T]} satisfies a large deviation principle

with good rate functionIex with respect to the J1-Skorohod topology on the path
spaceD([0,T];M+

0,1(T)).

3.5 Large deviations for the random walk

For each functionx : [0,T]→T of finite variation withx0 = 0 and eachπ : [0,T]→
M+

0,1(T) càdlàg, let us define

Irw(x|π) =
∫ T

0

{
ax,π (t)x

′
t − ∑

z=±
vz(πt(xt))(e

zax,π (t)−1)
}

dt, where (7)

ax,π (t) =





log
x′t+

√
(x′t )2+4v+(πt(xt))v−(πt (xt))

2v+(πt(xt ))
, v+(πt(xt))v−(πt(xt))> 0,

log |x′t |
v+(πt(xt))

, v+(πt(xt))v−(πt(xt)) = 0, x′t > 0,

− log |x′t |
v−(πt (xt))

, v+(πt(xt))v−(πt(xt)) = 0, x′t < 0,

−∞, v+(πt(xt))v−(πt(xt)) = 0, x′t = 0, v+(πt(xt))> 0,

∞, v+(πt(xt))v−(πt(xt)) = 0, x′t = 0, v+(πt(xt)) = 0,

(8)

if x is absolutely continuous andx 7→ πt(x) is continuous atxt for a.e.t ∈ [0,T].
Otherwise, or if one of the three integrals

∫ T

0
|x′t | log+ |x′t |dt or

∫ T

0
(x′t)

z log+
(
(vz(πt(xt)))

−1) dt, z=±, (9)

is infinite, thenIrw(x|π) = ∞, where f+ = max( f ,0) and f− = max(− f ,0) are the
positive and negative part of a function (note that due to a collision of notation,v+

andv− are separate functions, not positive and negative part of some functionv).
Our main result is the following.

Theorem 6. The sequence{xn
t ; t ∈ [0,T]}n∈N satisfies a large deviation principle

with good rate function

I(x) = inf
π

{
Irw(x|π)+Iex(π)

}
.

Actually, this result will be a consequence of a large deviation principle for the
pair {(πn

t ;xn
t ); t ∈ [0,T]}.

Theorem 7. The sequence{(πn
t ;xn

t ); t ∈ [0,T]} satisfies a large deviation principle
with good rate functionIrw(x|π)+Iex(π).

The rest of the paper is devoted to the proof of Theorems 6 and 7.
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4 Tilting measures and exponential martingales

According to Donsker-Varadhan approach to large deviations [8], in order to show
a large deviation principle, it is necessary to construct a sufficiently rich family of
exponential martingales. The rough idea which will be clearalong the proof is that
these exponential martingales will be used to tilt the original distribution of the
system in consideration, in such a way that atypical events become typical under
the tilted distribuion. Let us introduce the family of martingales relevant for our
scope. Recall equation (2) and letF : Ωn×Tn× [0,T]→ R be differentiable in the
time variable. Then, the process

exp
{

Ft(ηn
t ;xn

t )−F0(ηn
0 ;xn

0)−
∫ t

0
e−Fs(ηn

s ;xn
s)
(
∂s+Ln

)
eFs(ηn

s ;xn
s)ds

}
(10)

is a positive martingale of unit expectation (see e.g. [18],Lemma 5.1 in Appendix
1). It turns out that there are two types of relevant functions for the large deviations
problem. Leta : [0,T] → R be a continuously differentiable function. Taking
Ft(η ;x) = na(t)x in (10), we see that the process{Ma,n

t ; t ∈ [0,T]} given by

1
n

logMa,n
t = a(t)xn

t −a(0)xn
0−

∫ t

0

(
a′(s)xn

s + ∑
z=±1

cz(ηn
s ;xn

s)
(
eza(s)−1

))
ds (11)

is a positive martingale with unit expectation. Notice thatby definition,a(0)xn
0 ≡ 0.

Notice as well that integrating by parts, we see that

a(T)xn
T −

∫ T

0
a′(t)xn

t dt =
∫ T

0
a(t)ωn(dt).

Therefore, in a sense, knowingMa,n
T for everya, we know{xn

t ; t ∈ [0,T]}.
The second type of function that plays a role in the derivation of a large devi-

ation principle is the following. LetH : [0,T]×T→ R of classC1,2, that is, once
continuously differentiable in time and twice continuously differentiable in space.
Let us define

∇n
x,yHt := n2

∫ (
δ n

y (z)−δ n
x (z)

)
Ht(z)dz,

∆nHt(x) := n ∑
y∈Tn
y∼x

∇n
x,yHt .

It is not difficult to check that forx∈Tn, y= x+ 1
n, the function∇n

x,yHt is a discrete
approximation of the gradient∇Ht(x), and that∆nHt(x) is a discrete approxima-
tion of the Laplacian∆Ht(x). We extend the definition of∆nHt to T by taking
linear interpolations. TakingFt(η ;x) = nπn

t (Ht) in (10), we see that the process
{MH,n

t ; t ∈ [0,T]} given by

1
n

logMH,n
t = πn

t (Ht)−πn
0(H0)−

∫ t

0

{
πn

s (∂sHs)+
2
n ∑

x∈Tn

ηn
s (x)∆nHs(x)

}
ds−Qn

t (H),

(12)
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where

Qn
t (H) = 2

∫ t

0
n∑

x∼y
ηn

s (x)
(
1−ηn

s (y)
)
ψ
(1

n
∇n

x,yHs

)
ds

andψ(u) = eu− u− 1, is a positive martingale with unit expectation2. Since we
are assuming thatH is of classC1,2 we can write

1
n ∑

x∈Tn

ηn
s (x)∆nHs(x) = πn

s (∆Hs)+Rn
s(H),

where the error termRn
s(H) is bounded by a function of the formrn(H), depend-

ing only on the modulus of continuity of∆H in T× [0,T] and converging to 0
asn tends to∞. Since the jumps of the environment and the particle are a.s.dis-
joint, the martingales{Ma,n

t ; t ∈ [0,T]}, {MH,n
t ; t ∈ [0,T]} are orthogonal, in the

sense that the process{Ma,n
t MH,n

t ; t ∈ [0,T]} is also a positive martingale with
unit expectation.

5 The superexponential estimate

One of the main challenges in order to prove a large deviationprinciple in the
context of interacting particle systems, is to show that local functions of the dy-
namics, when averaged over space and time, can be expressed as functions of the
empirical measure plus an error which is superexponentially small. Let us explain
what the superexponential estimate is in the case of the simple exclusion process
(that is, our environment process). In order to do this, we need some notation.
Let f : Ω → R be a local function. Recall the convention about how to project f
into Ωn. Define f̄ (ρ) =

∫
f dνρ for ρ ∈ [0,1]. For ε ∈ (0, 1

2) andx ∈ T, let us
defineιε(x) = 1

ε 1((x,x+ ε ])). Whenx= 0, we just writeιε instead ofιε(0). The
following lemma is stated in [19], Theorem 2.1.

Lemma 8 (Superexponential estimate). Let H : [0,T]×T → R be a continuous
function. Let us define

Rn,ε
t (H) =

∫ t

0

1
n ∑

x∈Tn

{
τx f (ηn

s )− f̄
(
πn

s (ιε(x))
)}

Hs(x)ds.

Then, for anyδ > 0, and any t∈ [0,T],

lim
ε→0

lim
n→∞

1
n

logPn
(∣∣Rn,ε

t (H)
∣∣> δ

)
=−∞.

This superexponential estimate is used in [19] with two purposes. First, to
expressQn

t (H) (recall the definition of the martingale{MH,n
t ; t ∈ [0,T]}in (12))

as a function of{πn
t ; t ∈ [0,T]} plus an error that is superexponentially small. And

2 Notice that we are making an abuse of notation, using the samesuperscript structure forMa,n
t

andMH ,n
t . Later on we will introduce some more efficient way to handle multiple indices.
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second, in order to obtain the hydrodynamic limit of suitable perturbations of the
exclusion dynamics. Notice that, as a consequence, we can expressMH,n

t (more
precisely, 1

n logMH,n
t ) as a function of{πn

t ; t ∈ [0,T]} plus a superexponentially
small error. Recalling (11), we see that in order to expressMa,n

t as a function of
{(πn

t ,x
n
t ); t ∈ [0,T]}, we need to express

∫ t

0
c±(ηn

s ;xn
s)
(
e±a(s)−1

)
ds

as a function of these two processes. The superexponential estimate does not apply
for two reasons. First, there is no spatial average. Second,the position at which we
measure the local functionc± changes with time (since it follows the location of
the random walk). In [17] and in the context of the tagged particle problem, both
problems were overcome by considering the environment as seen from the walk,
{ξ n

t ; t ∈ [0,T]}. Notice that in terms of the process{ξ n
t ; t ∈ [0,T]}, the integral in

question is given by ∫ t

0
c±(ξ n

s )
(
e±a(s)−1

)
ds.

In this section, our objective will be to show the following superexponential
estimate.

Lemma 9 (Local superexponential estimate). Let f : Ωn → R be a local function.
Then,

lim
ε→0

lim
n→∞

1
n

logPn

(∣∣∣
∫ t

0

{
f (ξ n

s )− f̄
(
π̂n

s (ιε)
)}

ds
∣∣∣> δ

)
=−∞ (13)

for anyδ > 0 and any t∈ [0,T].

To make the exposition clear, the proof will be divided in various steps. Before
starting the proof, we introduce some notations and conventions. Let us write

Wℓ
f (ξ ) = f (ξ )− f̄

(1
ℓ

ℓ

∑
x=1

ξ (x)
)
. (14)

With this notation, the integral in the local superexponential lemma is equal to
∫ t

0
Wεn

f (ξ n
s )ds. (15)

For simplicity, we assume that the support off is contained on{1, . . . , ℓ0} for some
ℓ0 ∈ N. In that case, supp(Wℓ

f ) = {1, . . . , ℓ} for any ℓ ≥ ℓ0. We will indistinctly

denote byΛℓ the sets{1, . . . , ℓ} ⊆ Z and{1
n, . . . ,

ℓ
n} ⊆ Ωn.

5.1 Reduction to a variational problem

In this section we reduce the proof of the superexponential estimate to a variational
problem involving the generator of the dynamics. Let us start by introducing an
elementary estimate, whose check is left to the reader, which will be used several
times.
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Lemma 10. For any positive numbers a1, . . . ,aℓ,

log{a1+ · · ·+aℓ} ≤ max
1≤ j≤ℓ

loga j + logℓ.

Using this lemma, we see that for any random variableX,

logP(|X|> δ )≤ log{P(X > δ )+P(X <−δ )}
≤ max{logP(X > δ ), logP(−X > δ )}+ log2.

Therefore, in order to show (13), it is enough to show that

lim
ε→0

lim
n→∞

1
n

logPn

(
±
∫ t

0
Wεn

f (ξ n
s )ds> δ

)
=−∞. (16)

Therefore, we get rid of the absolute value in (13). This has several advantages as
it will be clear soon. By the exponential Chebyshev’s inequality, for any random
variableX and anyγ > 0 we have that

1
n

logP(±X > δ )≤ 1
n

log
E[e±γnX]

e±γnδ =
1
n

logE[eγnX]− γδ .

Therefore, it is enough to show that

sup
γ

lim
ε→0

lim
n→∞

1
n

logEn

[
exp
{
± γn

∫ t

0
Wεn

f (ξ n
s )ds

}]
<+∞, (17)

since in that case, calling this supremumκ ,

lim
ε→0

lim
n→∞

1
n

logPn

(
±
∫ t

0
Wεn

f (ξ n
s )ds> δ

)
≤ κ − γδ

for any γ > 0 and sendingγ to infinity, (16) follows. Since−Wεn
f = Wεn

− f , from
now on we omit the± in (17).

The next step is to put the process in near-equilibrium distribution. Fix ρ ∈
(0,1) and let us denote byPρ

n the distribution of the process{ξ n
t ; t ∈ [0,T]} with

initial distributionνρ (or equivalently, the process{(ηn
t ,x

n
t ); t ∈ [0,T]} with initial

distributionνρ ⊗δ0), and letEρ
n be the expectation with respect toPρ

n . The actual
value ofρ will not be very important. Notice thatνρ is not stationary under the
evolution of{ξ n

t ; t ∈ [0,T]}, but it is indeed close to stationarity in a sense to be
specified below. By the Markov property,dPn

dPρ
n
= dµn

dνρ
. Moreover, sinceνρ(η) ≥

min{ρ ,1−ρ} for anyη ∈ Ωn (in fact, the worst configurations areη(x)≡ 0 or 1),
we conclude that there exists a constantK0 =K0(ρ) such that‖dµn

dνρ
‖∞ ≤ Kn

0 for any
n∈N. In particular, for any functionF ≥ 0,

En[F ] = E
ρ
n

[
dνn

dνρ
F
]
≤ Kn

0E
ρ
n [F].

Therefore, from (17), we get

1
n

logEn

[
exp
{

γn
∫ t

0
Wεn

f (ξ n
s )ds

}]
≤ 1

n
logEρ

n

[
exp
{

γn
∫ t

0
Wεn

f (ξ n
s )ds

}]
+K0,

(18)
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and it is enough to consider the caseµn = νρ . The nowadays classical argument of
Varadhan (see Lemma A1.7.2 on page 336 of [18]) to estimate exponential expecta-
tions as in the r.h.s. of (17), combines Feynman-Kac’s formula with the variational
formula for the largest eigenvalue of the operatorLn+Wεn

f , to get the bound

1
n

logEρ
n

[
exp
{

γn
∫ t

0
Wεn

f (ξ n
s )ds

}]
≤ t sup

g

{
γ〈Wεn

f ,g2〉+ 1
n〈g,Lng〉

}
, (19)

where〈·, ·〉 denotes the inner product inL2(νρ), the supremum runs over functions
g : Ωn →R such that〈g,g〉= 1 andLn is the generator of the process{ξ n

t ; t ∈ [0,T]}
in equation (3). This variational problem will be the starting point of the next step
of the proof.

5.2 Some properties of 〈g,Lng〉
Define, forg : Ωn → R andx,y∈ Tn,

Dx,y(g) =
1
2

∫ (
g(ηx,y)−g(η)

)2
dνρ ,

and defineD(g) = ∑x∼yDx,y(g). Notice that〈g,−Lex
n g〉 = n2D(g), that is,n2D(g)

is theDirichlet form associated to the exclusion process{ηn
t ; t ∈ [0,T]} identified

by the generator in equation (1). The following propositionwas proved in [1], see
Lemma 2.2 therein.

Proposition 11. There exists a constant3K1 such that〈g,Lng〉 ≤ −n2D(g)+K1n
for any function g: Ωn → R such that〈g,g〉 = 1.

The intuition behind this proposition is the following. Thequantity 〈g,Lng〉
measures the entropy production rate, and ifνρ were invariant, it should be neg-
ative. Sinceνρ is invariant under the dynamics of the environment, entropycan
grow only due to the motion of the random walk. Since the random walk jumps
aboutn times on a fixed time interval, the entropy of the distribution of the process
with respect toνρ should grow with time at most linearly inn.

The following simple observation, which we state as a proposition, will be
useful in what follows.

Proposition 12. For any x,y∈Tn, the function

g 7→
∫ (√

g(ηx,y)−
√

g(η)
)2νρ(dν)

is convex. In particular, g7→ D(
√

g) is convex.

3Note that under the assumptionc++c− ≡ 1, one can takeK1 = 1.
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5.3 The one-block estimate

In the previous section, we have reduced the proof of (13) to the variational prob-
lem

sup
γ

lim
ε→0

lim
n→∞

sup
g

{
γ〈Wεn

f ,g2〉+ 1
n〈g,Lng〉

}
<+∞.

Following the original idea of Guo, Papanicolaou and Varadhan [11], [8], [19], it is
convenient to break this variational problem into two pieces. The first one is what
is known as theone-block estimate. In this estimate, the macroscopically small box
of sizeεn is replaced by a microscopically large box of sizeℓ, and it corresponds
to the following lemma:

Lemma 13 (One-block estimate).

sup
γ

lim
ℓ→∞

lim
n→∞

sup
g

{
γ〈Wℓ

f ,g
2〉+ 1

n
〈g,Lng〉

}
<+∞.

Proof of Lemma 13.By Proposition 11,

sup
g

{
γ〈Wℓ

f ,g
2〉+ 1

n
〈g,Lng〉

}
≤ K1+sup

g

{
γ〈Wℓ

f ,g
2〉−nD(g)

}
.

For the ones acquainted with the theory of hydrodynamic limits well, the supre-
mum on the right-hand side of this inequality is basically the one appearing in
Eq. 5.4.1 of [18], and the proof there applies to our situation with essentially no
changes. For the ones who are not familiar with hydrodynamiclimits, we include
a somehow simpler proof. Let us defineFℓ = σ{ξ (x);x ∈ Λℓ}, where the set
Λℓ = {1

n, . . . ,
ℓ
n} was defined above. Notice that for any functiong, D(|g|)≤D(g),

while g2 = |g|2. Therefore, we can restrict the supremum above tonon-negative
functionsg : Ωn → R such that〈g,g〉 = 1. Let us define

Dℓ(g) = ∑
x,y∈Λℓ

x∼y

Dx,y(g).

For a given non-negative functiong with 〈g,g〉= 1, let us definegℓ = Eνρ [g
2|Fℓ]

1
2 .

By definition, 〈Wℓ
f ,g

2
ℓ〉 = 〈Wℓ

f ,g
2〉, while by convexity,Dℓ(gℓ) ≤ Dℓ(g) ≤ D(g).

Therefore,
γ〈Wℓ

f ,g
2〉−nD(g)≤ γ〈Wℓ

f ,g
2
ℓ〉−nDℓ(gℓ)

and it is enough to show that

sup
γ

lim
ℓ→∞

lim
n→∞

sup
g

{
γ〈Wℓ

f ,g
2〉−nDℓ(g)

}
<+∞,

where now the supremum runs over functionsg : Ωn → R such that〈g,g〉 = 1 and
such that supp(g)⊆ Λℓ. Notice that on the supremum above, the only dependence
on n is on the constant in front ofDℓ(g). Moreover, the variational problem is a
finite-dimensional one (2ℓ-dimensional). In particular,g lives in a compact space
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(topology does not matter here, because all the metrics are equivalent in finite-
dimensional spaces). Therefore, for eachn, there exists a functiongn for which
the supremum is attained. Forg ≡ 1, γ〈Wℓ

f ,g
2〉 − nDℓ(g) = 0. Therefore, the

supremum is greater or equal than 0. Therefore,Dℓ(gn)≤ γ
n‖ f‖∞, and in particular

Dℓ(gn) tends to 0 asn tends to∞. Let n′ be a subsequence such thatgn converges
to some limitg∞. Sinceg 7→ Dℓ(g) is convex, it is also lower semi-continuous.
Therefore, we have thatDℓ(g∞)≤ limn′ Dℓ(gn′) = 0. We have just showed that

lim
n→∞

sup
g

{
γ〈Wℓ

f ,g
2〉−nDℓ(g)

}
= γ〈Wℓ

f , ĝ
2〉

for some function ˆg : Ωn → R satisfying〈g,g〉 = 1, supp(g) ⊆ Λℓ andDℓ(g) = 0.
Let us identify{0,1}Λℓ with Ωℓ, where we forget about the periodic boundary
condition. Recall the definition of the spacesΩk,ℓ given in Section 2.1. By the
irreducibility of the exclusion process,Dℓ(ĝ) = 0 implies that ˆg is constant on each
of the spacesΩk,ℓ, k= 0,1, . . . , ℓ. On the setΩk,ℓ,

Wℓ
f (η) = f (η)− f̄

(
k
ℓ

)
.

Therefore, there exists a sequence of positive numbers{p(0), . . . , p(ℓ)} such that
∑k p(k) = 1 and

〈Wℓ
f , ĝ

2〉=
ℓ

∑
k=0

p(k)
{

f̄ (k;ℓ)− f̄
(

k
ℓ

)}
,

where f̄ (k;ℓ) =
∫

f dνk,ℓ. We have thus reduced the proof of the one-block estimate
to proving that

lim
ℓ→∞

sup
1≤k≤ℓ

∣∣ f̄ (k;ℓ)− f̄
(

k
ℓ

)∣∣= 0.

This limit is equal to 0 in view of Prop. 3.1 in [9], known in theliterature as the
equivalence of ensembles. This finishes the proof of Lemma 13.

5.4 The two-blocks estimate

In view of Lemma 13, in order to complete the proof of Lemma 9, it is enough to
show the following.

Lemma 14 (Two-blocks estimate).

sup
γ

lim
ℓ→∞

lim
ε→0

lim
n→∞

sup
g

{
γ〈Wℓ

f −Wεn
f ,g2〉+ 1

n
〈g,Ln〉

}
<+∞.

In order to prove this lemma, let us first define, forξ ∈ Ωn, x∈ Tn andℓ≤ n,

ξ ℓ(x) =
1
ℓ ∑

y∈Λℓ

ξ (x+y).

This notation will not enter in conflict withξ n
t , since we will only use it in this

section, where no reference to the evolution is made. Noticethat Wℓ
f −Wεn

f =
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f̄ (ξ ℓ(0))− f̄ (ξ εn(0)). Since the functionf is local, the functionf̄ is a polynomial,
and in particular it is uniformly Lipschitz on[0,1]. Let K f be the corresponding
Lipschitz constant. Let us assume thatεn is an integer multiple ofℓ. The modifi-
cations needed if this is not the case will be evident. We havethat

∣∣Wℓ
f −Wεn

f

∣∣≤ K f
∣∣ξ ℓ(0)−ξ εn(0)

∣∣≤ K f
ℓ

εn∑
y

∣∣ξ ℓ(0)−ξ ℓ(y)
∣∣,

where the sum is over sitesy ∈ Λεn which are multiple integers ofℓn. The two
blocks on the name of Lemma 14 are the two blocks of sizeℓ on the right-hand
side of this inequality. Using Proposition 11 and the inequality above, we see that
to prove Lemma 14, it is enough to show that

sup
γ

lim
ℓ→∞

lim
ε→0

lim
n→∞

sup
y

sup
g

{
γ〈
∣∣ξ ℓ(0)−ξ ℓ(y)

∣∣,g2〉−nD(g)
}
<+∞. (20)

The proof of this inequality is very similar to the proof of the one-block estimate,
therefore we will not give the full details in the derivationof those steps which are
also present in the proof of Lemma 13. LetFy

ℓ = σ{ξ (x),ξ (x+ y);x ∈ Λℓ}. We
can restrict the supremum to non-negative functionsg with 〈g,g〉 = 1. For a given
non-negativeg, definegℓ,y = Eνρ [g

2|Fy
ℓ ]

1
2 . Define

Dy
ℓ(g) = ∑

x,z∈Λℓ
x∼z

{
Dx,z(g)+Dx+y,z+y(g)

}
.

By Proposition 12,Dy
ℓ(gℓ,y) ≤ D(g). The main difference between the one-block

and two-block estimates is the following. The dynamics corresponding to the
Dirichlet for Dy

ℓ(·) corresponds to two exclusion processes evolving in the two
blocks separately. Therefore, a term connecting these two dynamics is needed. Let
us defineDy

ℓ,∗(g) = Dy
ℓ(g)+D 1

n ,y+
1
n (g). This new Dirichlet form connects what

happens in the two boxes, through exchanges of particles between the first site of
each box. The followingpath lemmatells us how to estimateDy

ℓ,∗(g) in terms of
D(g).

Lemma 15 (Path lemma). For any g: Ωn → R and any y∈Tn,

D 1
n ,y+

1
n (g)≤ 4|y|nD(g).

Proof of Lemma 15.To simplify the notation, we switch toΩ = {0,1}Z and we
considery= ℓ−1, ℓ ∈N. For any permutationσ : Λℓ → Λℓ and anyξ ∈ Ω, let us
defineξ σ ∈ Ω as

ξ σ (x) =

{
ξ (σx), x∈ Λℓ

ξ (x), otherwise.

According to this notation,

D1,ℓ(g) =
1
2

∫ (
g(ξ (1ℓ))−g(ξ )

)2νρ(dξ ).
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Notice that(1 ℓ) = (1 2) . . . (ℓ−1 ℓ)(ℓ−2 ℓ−1) . . . (1 2), that is, the transposition
(1 ℓ) is the product of 2ℓ−3 transpositions between neighbors. Let us denote by
σ j the product of the firstj transpositions. Since the measureνρ is exchangeable,
for any two permutationsσ , τ ,

∫ (
g(ξ στ)−g(ξ τ)

)2νρ(dξ ) =
∫ (

g(ξ σ )−g(ξ )
)2νρ(dξ ).

Let us writeg(ξ (1 ℓ))−g(ξ ) as a telescopic sum:

g(ξ (1 ℓ))−g(ξ ) =
2ℓ−3

∑
j=1

(
g(ξ σ j )−g(ξ σ j−1)

)
.

By Cauchy-Schwarz inequality,

1
2

∫ (
g(ξ (1 ℓ))−g(ξ )

)2νρ(dξ )≤ 2ℓ−3
2

2ℓ−3

∑
j=1

∫ (
g(ξ σ j σ−1

j−1)−g(ξ )
)2νρ(dξ ).

Notice thatσ jσ−1
j−1 is a transposition between neighbors, and notice as well that

each pair of neighbours appears at most twice on the sum on theright-hand side of
this inequality. Since 2(2ℓ−3)≤ 4ℓ, the path lemma is proved.

Proof of Lemma 14.Using Lemma 15, we see thatDy
ℓ,∗(g) ≤ (1+ 4εn)D(g) for

any g : Ωn → R. Therefore, in order to show (20) and hence Lemma 14, it is
enough to show that for anyγ > 0,

lim
ℓ→∞

lim
ε→0

lim
n→∞

sup
y

sup
g

{
γ〈
∣∣ξ ℓ(0)−ξ ℓ(y)

∣∣,g2〉− 1
1
n +4ε

Dy
ℓ,∗(g)

}
= 0.

For the reader who knows the theory of hydrodynamic limits, this variational
problem is essentially the same appearing in the middle of page 93 of [18], and
in particular, they may skip the rest of the proof. Let us identify the set ofFy

ℓ -
measurable functions with the set of functions fromΩ2

ℓ = {0,1}Λℓ ×{0,1}Λℓ toR.
Let us denote by(ξ ,ζ ) the elements ofΩ2

ℓ . With this identification, we can rewrite
the supremum above as

sup
g

{
γ〈
∣∣ξ ℓ(0)−ζ ℓ(0)

∣∣,g2〉− 1
1
n +4ε

Dℓ,∗(g)
}
,

where the supremum is over non-negative functionsg : Ω2
ℓ →R such that〈g,g〉= 1.

Notice that the dependence ony has been totally washed away. Repeating the
compactness argument given in the proof of the one-block estimate, this time with
ε playing the role ofn, we are left to proving that

lim
ℓ→∞

sup
0≤k≤2ℓ

∫ ∣∣ξ ℓ(0)−ζ ℓ(0)
∣∣dν2

k,ℓ = 0,
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whereν2
k,ℓ is the uniform measure on the set

{
(ξ ,ζ ) ∈ Ω2

ℓ ; ∑
x∈Λℓ

{
ξ (x)+ζ (x) = k

}}
.

It turns out that it is simpler to compute
∫ (

ξ ℓ(0)−ζ ℓ(0)
)2

dν2
k,ℓ = 0=

∫ (
ξ ℓ(0)−ξ ℓ(ℓ)

)2
dνk,2ℓ.

In fact, it is enough to observe that
∫

ξ (x)dνk,2ℓ =
k
2ℓ and that

∫
ξ (x)ξ (y)dνk,2ℓ =

k(k−1)
2ℓ(2ℓ−1) . With these two computations in hand, we can show that the variance

above is equal tok(2ℓ−k)
ℓ2(ℓ−1) ≤

1
2ℓ−1, which finishes the proof of Lemma 14.

5.5 Final remarks

In the previous four subsections, we have proved the local superexponential esti-
mate, Lemma 9. It turns out that in its current form, this isnot what we need in
order to deal with the martingales{Ma,n

t ; t ∈ [0,T]}. The problem is that the local
function appearing there also depends on time. Recalling the bound in (19), we
see a constantt multiplying the supremum on the right-hand side of the inequality.
This constant can be changed into an integration over[0, t], if the local function f
depends ont as well. We did not include this dependence ont from the beginning
because it would have overcharged an already heavy notation. In the application we
have in mind, the dependence ont is rather simple. In fact,f (ξ )= c±(ξ )(ea(t)−1).
Therefore, the constantea(t) − 1 could have been absorbed intoγ during all the
computations, and in the end what we could prove is that the local superexponen-
tial estimate remains true whenevera : [0,T]→ R remains bounded. If the reader
is not satisfied with this sketch, here is a different argument. Recall that in the
construction of the martingale{Ma,n

t ; t ∈ [0,T]} we are assuming thata∈ C1. Ac-
tually for the argument we will explain, continuity is enough. Sincef is bounded,
givenδ > 0 it is possible to findδ ′ > 0 such that|ea(t)−ea(s)| ≤ δ

2T if |s− t| ≤ δ ′.
Therefore, we can approximateea(t)−1 by a function which is piecewise constant
on finite intervals of size at mostδ ′, with an error at mostδ2 . On each one of these
finite intervals we can use the local superexponential estimate, proving the exten-
sion to the time-dependent functionc±(ξ )(ea(t)−1). Since we will only need the
superexponential estimate for these functions, we state itas a lemma:

Lemma 16. For any t∈ [0,T], anyδ > 0 and any continuous function a: [0,T]→
R,

lim
ε→0

lim
n→∞

1
n

logPn

(∣∣∣
∫ t

0

{
c±(ηn

s ;xn
s)−v±(πn

s (ιε(x
n
s)))
}(

e±a(s)−1
)
ds
∣∣∣ > δ

)
=−∞.
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6 The energy estimate

Let u : [0,T]×T→ R be a function of classC0,1. Theenergyof the functionu is
defined as ∫ T

0

∫

T

(
∇u(t,x)

)2
dxdt.

Recall that according to our definition of the empirical measure {πn
t ; t ∈ [0,T]}

in terms of finite elements,πn
t (x) has finite energy for anyn ∈ N. Our aim will

be to show that in some sense, the probability of trajectories with very high en-
ergy is very small. Recall that{πn

t ; t ∈ [0,T]} is a very oscillatory object at local
scales, so a naïve approach does not work. Indeed, we will need a variational
characterizationof the energy. Therefore, let us introduce some Hilbert spaces.
For f : [0,T]×T→ R,4 define

‖ f‖0,T =
(∫ T

0

∫

T

f (t,x)2dxdt
) 1

2
.

Let us denote byH0,T the Hilbert space{ f ;‖ f‖0,T < ∞}. For f ,g∈H0,T , define

〈〈 f ,g〉〉0,T =

∫ T

0

∫

T

f (t,x)g(t,x)dxdt.

For f ∈H0,T , let us define

‖ f‖1,T = sup
h∈C0,1

‖h‖0,T=1

〈〈 f ,∇h〉〉0,T .

We denote byH1,T the space of functionsf ∈ H0,T such that‖ f‖1,T < ∞. Notice
thatH1,T is not a Hilbert space: functions that are constant in space and such that∫ T

0 f (t)2dt < ∞ belong toH1,T and satisfy‖ f‖1,T = 0. In fact, if we say thatf ∼ g
wheneverf −g=: λ does not depend onx, thenH1,T/ ∼ is a Hilbert space. We
will not use this fact, but we will use the following:

Proposition 17. If ‖ f‖1,T < ∞, then there exists a function∇ f ∈ H0,T such that
‖ f‖1,T = ‖∇ f‖0,T and moreover〈〈 f ,∇h〉〉0,T =−〈〈∇ f ,h〉〉0,T for any h of classC0,1.
In addition, the function x7→ f (t,x) is continuous for a.e. t∈ [0,T].

Proof. The existence of∇ f is guaranteed by Riesz’s representation theorem. By
Fubini’s Theorem,

∫
(∇ ft)2dx<+∞ for almost everyt ∈ [0,T]. And by Sobolev’s

Embedding Theorem,
∫
(∇ ft)2dx<+∞ implies that f is Hölder-continuous of in-

dex 1/2.

Let {h j ; j ∈ N} be a sequence of functions inC0,1, dense in the unitary ball of
H0,T . Then, we can restrict the supremum in the variational formula of ‖ f‖1,T to
the set{h j ; j ∈N}:

‖ f‖1,T = sup
j
〈〈 f ,∇h j〉〉0,T .

4In this section we will only usef for test functions; do not confuse with the notation local
functions used in the previous section
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Throughout this section, we will denote byπn
· the process{πn

t ; t ∈ [0,T]}, and we
will denote byπn (without the dot) the function

η 7→ ∑
x∈Tn

η(x)δ n
x (y)dy

from Ωn to M+
0,1(T).

Lemma 18 (Energy estimate). There exists a constant C0 ∈ (0,∞) such that for
any M> 0, and anyℓ ∈N,

lim
n→∞

1
n

logPn
(

sup
1≤ j≤ℓ

〈〈πn
·,∇h j〉〉0,T > M

)
≤C0−

M
2
.

Proof of Lemma 18.By Lemma 10, it is enough to show that

lim
n→∞

1
n

logPn
(
〈〈πn

·,∇h j〉〉0,T > M
)
≤C0−

M
2

for any j ∈ N. Using the exponential Chebyshev’s inequality, we see thatfor any
γ > 0 and the computations done in Section 5.1,

1
n

logPn
(
〈〈πn

·,∇h j〉〉0,T > M
)
≤−γM+

1
n

logEn
[
eγn〈〈πn

· ,∇hj 〉〉0,T
]

≤−γM+K0+K1T +

∫ T

0
sup

g

{
γ〈πn(∇h j

t ),g
2〉−nD(g)

}
dt.

Therefore, we need to estimate the supremum on the right-hand side of this equa-
tion. The way to estimate this term is different from what we did in Sections 5.3
and 5.4. Using the definition ofπn, we see that

πn(∇h j
t ) = ∑

x∈Tn

(
η(x)−η(x+ 1

n)
)(

h j
t (x)+ r j

n(t,x)
)
,

with r j
n(t,x) a correction of order 1/n. Therefore,

〈πn(∇h j
t ),g

2〉= ∑
x∈Tn

(
h j

t (x)+ r j
n(t,x)

)
〈η(x)−η(x+ 1

n),g
2〉.

We will use the following trick: for anyx,y ∈ T
n and anyg : Ωn → R such that

〈g,g〉 = 1,

〈η(x)−η(y),g2〉= 〈η(x),g2(η)−g2(ηx,y)〉
=
〈
η(x),

(
g(η)−g(ηx,y)

)(
g(η)+g(ηx,y)

)〉

≤ 1
2βx,y

Dx,y(g)+
βx,y

2

∫ (
g(η)+g(ηx,y)

)2νρ(dη)

≤ 1
2βx,y

Dx,y(g)+2βx,y
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for anyβx,y > 0. In the first inequality we used the weighted Cauchy-Schwarz in-
equality and the inequality between arithmetic and geometric mean. In the second

inequality we used the fact that〈g,g〉 = 1. Choosingβx,x+ 1
n
=

γ |hj
t (x)+r j

n(t,x)|
2n , we

obtain the bound

γ〈πn(∇h j
t ),g

2〉−nD(g)≤ γ2

n ∑
x∈Tn

(
h j

t (x)+ r j
n(t,x)

)2
,

valid for anyg : Ωn → R with 〈g,g〉 = 1. We conclude that

1
n

logPn
(
〈〈πn

· ,h
j〉〉0,T >M

)
≤−γM+K0+K1T+γ2

∫ T

0

1
n ∑

x∈Tn

(
h j

t (x)+ r j
n(t,x)

)2
dt.

Therefore, sendingn to ∞ we see that forC0 = K0+K1T,

lim
n→∞

1
n

logPn
(
〈〈πn

·,∇h j〉〉0,T > M
)
≤−γM+C0+ γ2.

Minimizing overγ concludes the proof.

7 The upper bound

Now that we have the superexponential estimate and the energy estimate at our
disposal, we can show the large deviation upper bound on Theorem 7. As we have
done before, for the sake of clarity, we break the proof into various steps.

7.1 The upper bound for open sets

Let us recall that we want to obtain a large deviation principle for the pair
{(πn

t ;xn
t ); t ∈ [0,T]}, viewed as a random variable with values in the Polish space

E = D([0,T];M+
0,1(T))×M+([0,T ])×M+([0,T]). Recall that we are identify-

ing the process{xn
t ; t ∈ [0,T]} with the pair of positive Radon measures(ωn

−,ωn
+),

corresponding to the derivatives of the processes1
nNn,−

t , 1
nNn,+

t .
The spaceD([0,T];M+

0,1(T)) is equipped with theJ1-Skorohod topology, while
M+([0,T]) is equipped with the weak topology.

Notation will become cumbersome very quickly, unless we adopt some sim-
plifying conventions. We will denote the process{(πn

t ;xn
t ); t ∈ [0,T]} by (πn,xn).

In particular, we abandon the notation introduced in Section 5, where we used
the notationπn

· (with a dot) for{πn
t ; t ∈ [0,T]}. Let A ⊆ E be an open set and

{Mn
t ; t ∈ [0,T]} be a positive martingale with unit expectation. Assume thatMn

T
is a function of(πn,xn). Then,

1
n

logPn(A) =
1
n

logEn
[
Mn

T

(
Mn

T

)−11A
]

≤ sup
(πn,xn)∈A

1
n

log(Mn
T)

−1 .
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The martingales{Ma,n
t ; t ∈ [0,T]}, {MH,n

t ; t ∈ [0,T]} are not functions of(πn,xn)
but the superexponential estimates of Lemma 8 and Lemma 16 say that these mar-
tingales can be approximated by functions of(πn,xn), with an error that is super-
exponentially small. To keep track of all the indices and ease the reading, we
now introduce some notation. Let us denote byI the set of indicesi of the form
i = {v0,a,H,ε ,δ , ℓ,M}, wherev0 : T → [0,1] is continuous,a : [0,T] → R is of
classC1, H : [0,T]×T→ R is of classC1,2, ε > 0, δ > 0, andℓ,M ∈ N. In what
follows, we use the indexi to denote dependence on some (sometimes all, but
not always) of the variables{v0,a,H,ε ,δ , ℓ,M}. We start by preparing an initial
distribution associated to a profilev0. Forv0 : T→ [0,1] continuous, define

f (x) = log
v0(x)

(
1−u0(x)

)

u0(x)
(
1−v0(x)

) .

Recall the definition of{ρn
x ;x ∈ Tn} given in Section 2.6. Define the functions

f n
x = n

∫
δ n

x (y) f (y)dy and

vn
x =

ρn
x ef n

x

1+ρn
x (ef n

x −1)
.

Defineν̂n
v0

as the product measure inΩn given by

ν̂n
v0
(η) = ∏

x∈Tn

{
vn

xη(x)+ (1−vn
x)(1−η(x))

}
.

Notice that with this definition, the Radon-Nikodym derivative
dν̂n

v0
dνn

u0
is a function

of the empirical densityπn
0 . The process{(ηn

t ;xn
t ); t ∈ [0,T]} with initial distribu-

tion ν̂n
v0

has distribution
dν̂n

v0
dνn

u0
Pn. Recall (11) and (12), and consider the martingale

{Mi,n
t ; t ∈ [0,T]} given by

Mi,n
t =

dν̂n
v0

dνn
u0

Ma,n
t MH,n

t . (21)

Let Un
i = UH,n

ε ,δ ∩Ua,n
ε ,δ ∩Un

M,ℓ denote the intersection of the sets

UH,n
ε ,δ =

{∣∣∣Qn
T(H)−

∫ T

0

1
n ∑

x∈Tn

(
∇Ht(x)

)2πn
t (ιε(x))

(
1−πn

t (ιε(x))
)
dt
∣∣∣≤ δ

}
, (22)

Ua,n
ε ,δ =

{∣∣∣
∫ t

0

{
c±(ηn

s ;xn
s)−v±(πn

s (ιε(x
n
s)))
}(

e±a(s)−1
)
ds
∣∣∣ ≤ δ

}
, (23)

Un
M,ℓ =

{
sup

1≤ j≤ℓ
〈〈πn,h j〉〉0,T ≤ M

}

Lemma 16 and Lemma 18 imply that

lim
ε→0

lim
n→∞

1
n

logPn
((
UH,n

ε ,δ
)c)

=−∞,
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lim
ε→0

lim
n→∞

1
n

logPn
((
Ua,n

ε ,δ
)c)

=−∞,

lim
n→∞

1
n

logPn
((
Un

M,ℓ

)c)≤C0− M
2 .

Therefore,

lim
n→∞

1
n

logPn
((
Un

i

)c)≤ max
{
Ua,H

ε ,δ ,C0− M
2

}
,

whereUa,H
ε ,δ is a constant which converges to−∞ asε → 0, regardless of the values

of δ ,a or H. Therefore

lim
n→∞

1
n

logPn((πn,xn) ∈ A)≤

≤ lim
n→∞

1
n

log2max
{
Pn({(πn,xn) ∈ A}∩Un

i ),Pn
((
Un

i

)c)}

≤ max
{

lim
n→∞

1
n

logPn({(πn,xn) ∈ A}∩Un
i ),U

a,H
ε ,δ ,C0− M

2

}
.

On the setUn
i , the martingaleMi,n

T is a function of the pair(πn,xn), plus some small
error term. Consequenlty, we can bound

1
n

logPn({(πn,xn) ∈ A}∩Un
i )≤ sup

(π,x)∈A∩U ℓ
M

{
−
(

jε(a;π,x)+Jn
ε (H;π)+

+hn(v0,u0;π0)
)
+ rn(H)+2δ

}
,

whereU ℓ
M = {sup1≤ j≤ℓ〈〈π,∇h j 〉〉0,T ≤ M} and the functionsjε , Jn

ε andhn are given
by

jε(a;π,x) = a(T)xT −
∫ T

0

{
a′(t)xt + ∑

z=±
vz(πt(ιε(xt)))(e

za(t)−1)ds
}
, (24)

Jn
ε (H;π) = πT(HT)−π0(H0)−

∫ T

0
πt
(
∂tHt +2∆Ht

)
dπtdt

−
∫ T

0

1
n ∑

x∈Tn

(
∇Ht(x)

)2πt(ιε(x))
(
1−πt(ιε(x))

)
dt,

hn(v0,u0;π0) =
∫

log
v0(x)(1−u0(x))
u0(x)(1−v0(x))

dπ0+
1
n ∑

x∈Tn

log
1−vn

x

1−ρn
x
.

Recall that the error termrn(H) comes from replacing a discrete version of the
Laplacian ofH by ∆H. The error term 2δ comes from the use of the superexpo-
nential estimates stated in Lemma 8 and Lemma 16. Using the smoothness of∇Ht

and ofv0, we see thathn andJn
ε converge to the functions

Jε(H;π) = πT(HT)−π0(H0)−
∫ T

0
πt
(
∂tHt +2∆Ht

)
dπtdt

−
∫ T

0

∫ (
∇Ht(x)

)2πt(ιε(x))
(
1−πt(ιε(x))

)
dxdt,

(25)
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h(v0,u0;π0) =
∫

log
v0(x)(1−u0(x))
u0(x)(1−v0(x))

dπ0+
∫

log
1−v0(x)
1−u0(x)

dx.

Let us define

Ji(π,x) =

{
jε(a;π,x)+Jε (H;π)+h(v0,u0;π0)−2δ , if (π,x) ∈ U ℓ

M

+∞, otherwise.
(26)

The functionJi(π,x) is lower semicontinuous, since each one of the functionsjε ,
Jε andh are continuous, and the setU ℓ

M is closed. Minimizing over all the indices
i, we finally obtain the upper bound for open sets:

lim
n→∞

1
n

logPn((πn,xn) ∈ A)≤ inf
i∈I

sup
(π,x)∈A

max{−Ji(π,x),Ua,H
ε ,δ ,C0− M

2 }. (27)

7.2 The upper bound for compact sets

Once a large deviation upper bound has been obtained for opensets, the standard
way to pass from it to an upper bound for compact sets is through the so-called
Minimax lemma, whose proof can be found in [18], Lemma 3.2 in Appendix 2.

Proposition 19 (Minimax Lemma). Let {Fi ; i ∈ I} be a family of upper semicon-
tinuous functions defined on a Polish spaceE . Let {Pn;n ∈ N} be a sequence of
probability measures inE . Assume that for any open setA⊆ E ,

lim
n→∞

1
n

logPn(A)≤ inf
i∈I

sup
x∈A

Fi(x).

Then, for any compact setK ⊆ E ,

lim
n→∞

1
n

logPn(K)≤ sup
x∈K

inf
i∈I

Fi(x).

Let K ⊆ E be a compact set. Applying the Minimax Lemma to the family of
functions max{−Ji(π,x),Ua,H

ε ,δ ,C0− M
2 } in (27), we obtain the bound

lim
n→∞

1
n

logPn((πn,xn) ∈ K)≤ sup
(π,x)∈K

inf
i∈I

max{−Ji(π,x),Ua,H
ε ,δ ,C0− M

2 }. (28)

Recall that the indexi includes all the possible choices ofv0, a, H, ε , δ , ℓ and
M. We will take advantage of this by taking the infima in the right order. Ob-
serve that we can replace inf by liminf whenever it is convenient, since the liminf
of a sequence is greater than the inf of the same sequence. Recall the definition
U ℓ

M = {sup1≤ j≤ℓ〈〈π,∇h j〉〉0,T ≤ M}. Now we sendℓ → ∞. Notice thatJi(π,x) is
increasing inℓ: the set where we defineJi(π,x) as equal to+∞ is growing with
ℓ, and outside of it, the functionJi(π,x) does not depend onℓ. This is equiva-
lent to saying that we are restricting the supremum to the intersection ofK and
UM = ∩ℓU ℓ

M. By the definition of the sequence{h j ; j ∈ N}, the setUM is equal to
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the set{‖π‖1,T ≤ M}. Now it is the turn of sendingM → ∞. Doing this, there are
two effects. First, the termC0− M

2 goes to−∞, and we can take it out of the maxi-
mum. And second, the setU = ∪MUM is equal to the setH1,T = {‖π‖1,T < +∞}.
Therefore, after taking the limit inℓ first and then inM, in view of (28), we end up
with the inequality:

lim
n→∞

1
n

logPn((πn,xn) ∈ K)≤ sup
K∩H1,T

inf
i

max{−Ji(π,x),Ua,H
ε ,δ }. (29)

Notice that these two limit procedures together with Section 5 were devoted to
maximize over the setK∩H1,T instead ofK. The reason for this will become
transparent in what follows. We now move to minimize the r.h.s. of (29) overε .
Recall thatUa,H

ε ,δ goes to−∞ asε → 0 if the other parameters are fixed. But then we
need to analyze the limit ofJi(π,x) in (26) whenε → 0, The analysis of the term
Jε(H;π) in (25) has been already done in [19] and in Chapter 10 of [18].Therefore,
we just need to look atjε(a;π,x) in (24). Whenε → 0, we cannot guarantee that
πt(ιε(xt)) in (24) goes toπt(xt) if we only know thatπt has bounded density: it
may easily be the case thatxt is a non-removable-by-smoothing discontinuity for
everyt ∈ [0,T]. The set of points of this type forms a very thin subset ofT, but we
cannot rule out a pathological behavior supposing only thatπt ∈M+

0,1(T). Since
we can assume thatπ ∈ H1,T , we can also assume thatx 7→ πt(x) is continuous
for a.e.t ∈ [0,T]. Then,πt(ιε(xt)) converges toπt(xt) for a.e.t ∈ [0,T]. By the
dominated convergence theorem, we conclude thatjε(a;π,x) converges, asε → 0,
to

j(a;π,x) = a(T)xT −
∫ T

0

{
a′(t)xt + ∑

z=±
vz(πt(xt))(e

za(t)−1)
}

dt (30)

As shown in [19], asε → 0, the functionJε(H;π) also has a well-defined limit,
and the fact thatπt ∈M+

0,1(T) is enough to justify the limit. This limit is equal to

lim
ε→0

Jε(H;π) = J(H;π) := πT(HT)−π0(H0)−
∫ T

0
πt
(
∂tHt +2∆Ht

)
dπtdt

−
∫ T

0

∫ (
∇Ht(x)

)2πt(x)
(
1−πt(x)

)
dxdt,

Finally, by takingε → 0 in the r.h.s. of (29), we get the bound

lim
n→∞

1
n

logPn((πn,xn) ∈ K)≤ sup
K∩H1,T

inf
v0,a,H

{−( j(a;π,x)+J(H;π)+h(v0,u0;π0))}

=− inf
K∩H1,T

sup
v0,a,H

{
j(a;π,x)+J(H;π)+h(v0,u0;π0)

}
.

It turns out that the last supremum is exactly the rate function of the large deviation
principle stated in Theorem 7 (see equations (1.1)-(1.4) inChapter 10 of [18] for the
equivalence), and therefore we have completed the large deviation upper bound of
Theorem 7 for compact sets. We state this bound as a lemma for further reference.
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Lemma 20. For any compact setK⊆ E ,

lim
n→∞

1
n

logPn((πn,xn) ∈ K)≤− inf
(π,x)∈K

{Irw(x|π)+Iex(π)
}

7.3 Upper bound for closed sets

The canonical way to extend a large deviation upper bound from compact sets to
closed sets is to proving theexponential tightnessof the corresponding sequence of
processes. We say that the sequence(πn,xn) is exponentially tight if for anyM > 0
there exists a compactKM ⊆ E such that

lim
n→∞

1
n

logPn((πn,xn) ∈Kc
M)≤−M.

The relevance of this condition is given by the following proposition, whose proof
is left to the reader.

Proposition 21. Let {Pn;n∈ N} a sequence of probability measures defined on a
Polish spaceE . Let I : E → [0,∞] be a lower semicontinuous function. Assume
that for any compact setK ⊆ E ,

lim
n→∞

1
n

logPn(K)≤− inf
x∈K

I(x).

Assume in addition that the sequence{Pn;n∈N} is exponentially tight. Then,

lim
n→∞

1
n

logPn(C)≤− inf
x∈C

I(x).

for any closed setC ⊆ E .

Due to the product structure of the state space of(πn,xn), it is enough to show
exponential tightness for each of the process{πn;n∈ N}, {xn;n∈ N} separately.
The exponential tightness of{πn;n∈N} is proved in Chapter 10.4 of [18], starting
from eq. (4.5). We are left to proving the exponential tightness of{xn;n ∈ N}.
This is equivalent to showing the exponential tightness of each one of the processes
{ωn

±;n∈N}. Recall the following characterisation of compact sets ofM+([0,T ]).
A closet setC ⊆ M+([0,T]) is compact if and only if supµ∈C µ([0,T]) < +∞.

Notice as well thatωn
±([0,T]) =

1
nN±,n

T . Therefore, in order to show exponential
tightness of{ωn

±;n∈N}, it is enough to show that

lim
M→∞

lim
n→∞

1
n

logPn(N
±,n
T > nM) =−∞.

This is actually simple to prove. In fact, the processes{M±,n
t ; t ∈ [0,T]}

M±,n
t = exp

{
θN±,n

t −n
∫ t

0
c±(ξ n

s )(e
θ −1)ds

}
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are positive martingales of unit expectation. In particular, takingC1 = supξ c±(ξ ),

En
[
eθN±,n

t
]
≤ eC1nt(eθ−1).

Using the exponential Chebyshev’s inequality, we see that

1
n

logPn(N
±,n
T > nM)≤C1T(eθ −1)−θM,

which proves the exponential tightness of{xn;n ∈ N}. Therefore by Proposition
21 and Lemma 20, we conclude that

lim
n→∞

1
n

logPn((πn,xn) ∈ C)≤− inf
(π,x)∈C

{
Irw(x|π)+Iex(π)

}
, (31)

for any closed setC ⊆ E .

7.4 Some properties of the rate function

It turns out that a more explicit formula for the rate function Irw(x|π) can be ob-
tained. Recall that we are assuming thatx has finite variation. We claim that
Irw(x|π) = +∞ if x is not absolutely continuous. Sincex has finite variation, we
can justify an integration by parts to show that

a(T)xT −
∫ T

0
a′(t)xtdt =

∫ T

0
a(t)dxt .

Therefore,

Irw(x|π) = sup
a∈C1

{∫ T

0
a(t)dxt −

∫ T

0
∑
z=±

vz(πt(xt))(e
za(t)−1)dt

}
.

Let us assume thatx is not absolutely continuous. Then there exists a compact
setK ⊆ [0,T] such that

∫ T
0 1Kdxt 6= 0 and

∫ T
0 1Kdt = 0. For simplicity, we assume

thatx(K) =:
∫ T

0 1Kdxt > 0. SinceK is compact, there exists a sequence of smooth
functionsaε : [0,T] → [0,1] such thataε ↓ 1K asε → 0. Then, by the dominated
convergence theorem,

lim
ε→0

∫ T

0
λaε(t)dxt = λx(K),

lim
ε→0

∫ T

0
∑
z=±

vz(πt(xt))(e
zλaε (t)−1)dt = 0.

Sendingλ → ∞, we conclude thatIrw(x|π) = +∞. In particular, we can rewrite
the rate functionIrw as

Irw(x|π) = sup
a∈C1

∫ T

0

{
a(t)x′t − ∑

z=±
vz(πt(xt))(e

za(t)−1)
}

dt. (32)
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By an approximation argument, we can check that the supremumoverC1 functions
can be replaced by a supremum over bounded functions. An upper bound forIrw

can be obtained by exchanging the supremum and the integration. The maximizing
functiona is sensitive tov+(πt(xt))v−(πt(xt)) = 0. If v+(πt(xt))v−(πt(xt)) > 0, it
is given by

âx,π (t) = log
x′t +

√
(x′t)2+4v+(πt(xt))v−(πt(xt))

2v+(πt(xt))
(33)

=− log
−x′t +

√
(x′t)2+4v+(πt(xt))v−(πt(xt))

2v−(πt(xt))
. (34)

In general, the pointwise supremum ofa(t)x′t −∑z=±vz(πt(xt))(eza(t) − 1) is ob-
tained at

ax,π(t) =





âx,π(t), v+(πt(xt))v−(πt(xt))> 0

log |x′t |
v+(πt (xt))

, v+(πt(xt))v−(πt(xt)) = 0, x′t > 0

− log |x′t |
v−(πt(xt ))

, v+(πt(xt))v−(πt(xt)) = 0, x′t < 0

−∞, v+(πt(xt))v−(πt(xt)) = 0, x′t = 0, v+(πt(xt))> 0

∞, v+(πt(xt))v−(πt(xt)) = 0, x′t = 0, v+(πt(xt)) = 0

(35)

where we use the convention that∞ ·0= 0.
If ax,π is bounded we have an explicit form forIrw by (32).
We show now that (35) is in fact always the optimizer. For simpler notation, we

write v±t = v±(πt(xt)). In a first step, we look at the finiteness of the rate function:

Lemma 22. The rate functionIrw(x|π) is finite if and only if x as absolutely con-
tinuous and

∫ T

0
|x′t | log+ |x′t |dt < ∞, (36)

∫ T

0
(x′t)

+ log+
(
(v+t )

−1) dt < ∞ and (37)
∫ T

0
(x′t)

− log+
(
(v−t )

−1) dt < ∞, (38)

where f+ = max( f ,0) and f− = max(− f ,0) are the positive and negative part of
a function.

Proof. Finiteness of the rate function follows from

∫ T

0

{
ax,π (t)x

′
t − ∑

z=±
vz(πt(xt))(e

zax,π (t)−1)
}

dt < ∞, (39)
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which we now show under (36), (37) and (38). First we observe that

0≤ ∑
z=±

vz
t e

zax,π (t) ≤ 2|x′t |+2
√

v+t v−t . (40)

Hence
∫ T

0
∑
z=±

∣∣∣vz
t (e

zax,π (t)−1)
∣∣∣dt < ∞ (41)

by the absolute continuity ofx and the fact thatv+ andv− are bounded from above.
Since the integrand in (39) is non-negative, it follows from(40) and (41) that we
only need to look at the integrability of the positive part

(ax,π (t)x
′
t)
+ = a+x,π(t)(x

′
t)
++a−x,π(t)(x

′
t)
−.

W.l.o.g. we look atx′t > 0. We have

∫

{t∈[0,T ]:x′t>0}

x′ta
+
x,π (t)dt ≤

∫

{t∈[0,T ]:x′t>0}

x′t

∣∣∣∣∣log

(
x′t +

√
x′t +4v+t v−t
2v+t

)∣∣∣∣∣ dt

≤
∫

{t∈[0,T ]:x′t>0}

x′t

∣∣∣∣∣log
x′t +

√
(x′t)2+4v+t v−t

2

∣∣∣∣∣ dt +
∫

{t∈[0,T ]:x′t>0}

x′t
∣∣log

(
(v+t )

−1)∣∣ dt,

which is finite by (36) and (37).
For the other direction, assume that (36), (37) or (38) is infinite, which is equiv-

alent to
∫
{t∈[0,T ]:x′t>0} |x′t | log+ |x′t |

v+t
dt = ∞ or

∫
{t∈[0,T ]:x′t<0} |x′t | log+ |x′t |

v−t
dt = ∞. To see

that notice that sincev± is bounded from above there is no relevant difference be-
tween log and log+, the integrals can only diverge if the argument of the logarithm
diverges. So assume w.l.o.g.

∫
{t∈[0,T ]:x′t>0} |x′t | log+ |x′t |

v+t
dt = ∞. Define forK > 0 the

bounded function

aK(t) := min

(
log+

(
x′t +

√
(x′t)2+4v+t v−t

2v+t

)
,K

)
1x′t>0.

Then, by (32) and using the fact that−v−t (e
−aK(t)−1) ≥ 0 and−v+t (e

aK (t)−1) ≥
−1

2

(
x′t +

√
(x′t)2+4v+t v−t

)
, we have

Irw(x|π)≥
∫ T

0
aK(t)x

′
t − ∑

z=±
vz

t

(
ezaK (t)−1

)
dt

≥
∫ T

0
aK(t)x

′
t −

1
2

(
x′t +

√
(x′t)2+4v+t v−t

)
dt.
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Sincex is absolutely continuous, there is some constantM > 0 independent ofK
so that

Irw(x|π) ≥
∫

{t∈[0,T]:x′t>0}

x′t min

(
log+

(
x′t +

√
(x′t)2+4v+t v−t

2v+t

)
,K

)
dt−M

≥
∫

{t∈[0,T]:x′t>0}

x′t min

(
log+

(
x′t
v+t

)
,K

)
dt−M,

which by assumption diverges asK → ∞.

Lemma 23. The rate functionIrw(x|π) is given by

Irw(x|π) =
∫ T

0

{
ax,π (t)x

′
t − ∑

z=±
vz(πt(xt))(e

zax,π (t)−1)
}

dt.

Proof. Most of the work has been done in Lemma 22, in particular we know that

Irw(x|π) ≤
∫ T

0

{
ax,π(t)x

′
t − ∑

z=±
vz(πt(xt))(e

zax,π (t)−1)
}

dt

and the left hand side is finite iff the right hand side is. So weonly need to show
that the right hand side is also a lower bound. We define forK > 0

aK(t) := max(min(ax,π(t),K) ,−K) .

Then

Irw(x|π) ≥ limsup
K→∞

∫ T

0
aK(t)x

′
t − ∑

z=±
vz

t

(
ezaK(t)−1

)
dt.

To move the limit inside the integral we will use dominated convergence. We claim
that there is anM > 0 so that

∣∣∣∣∣aK(t)x
′
t − ∑

z=±
vz

t

(
ezaK(t)−1

)∣∣∣∣∣≤ |ax,π (t)x
′
t |+4|x′t |+2M,

which is integrable by Lemma 22. The first term is clear, so we only look at the
second term:

∣∣∣vz
t

(
ezaK(t)−1

)∣∣∣≤
(
|x′t |+

√
(x′t)2+4v+t v−t +vz

t

)
1|aK (t)|<K

+

(
|x′t |+

√
(x′t)2+4v+t v−t +vz

t

)
1aK (t)=zK

+vz
t (1−e−K)1aK (t)=−zK

≤ 2|x′t |+M

for someM > 0 depending only on the upper bounds ofv±t .
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8 The lower bound

8.1 Hydrodynamic limit for the perturbed system

From now on we denote byi a given choice of the triplei = {v0,H,a}, where
v0 : T→ [0,1] is continuous,H : [0,T]×T→ R is of classC1,2 anda : [0,T]→ R

is of classC1. Given such ani, consider the martingaleMi,n
t from (21). Since it is a

positive martingale with unit expectation we can use it to define a new probability
law P

i
n onD([0,T];Ωn×Tn), by

dPi
n

dPn
:=Mi,n

T .

We call theperturbed system, the time-inhomogeneous Markov process onΩn×Tn

described byPi
n with generator

Li,n,t f (η ;x) = n2 ∑
y∼z

eHt (ηx,y)−Ht(η)
(

f (ηy,z;x)− f (η ;x)
)

(42)

+n ∑
z=±1

eza(t)cz(η ;x)
(

f (η ;x+ z
n)− f (η ;x)

)
, (43)

whereHt(η) =
∫

∑x∈Tn
η(x)δ n

x (y)Ht(y)dy. We want to derive the hydrodynamic
behaviour of this perturbed system, namely, the analogs of Propositions 2 and 3.
For this aim, we first show that the statement of Lemma 9 remains in force under
P

i
n.

Lemma 24. Let f : Ωn → R be a local function. Then,

lim
ε→0

lim
n→∞

1
n

logPi
n

(∣∣∣
∫ t

0

{
f (ξ n

s )− f̄
(
π̂n

s (ιε)
)}

ds
∣∣∣> δ

)
=−∞

for anyδ > 0 and any t∈ [0,T].

Proof of Lemma 24.By (21) and the explicit expressions of the involved factors,
we have that

∥∥dPi
n

dPn

∥∥
∞ = ‖Mi,n

T ‖∞ ≤ exp{nCγ ,H,a,T}. (44)

Recall the notations in (14) and (15) and note that

1
n

logPi
n

(∣∣∣
∫ t

0
Wεn

f (ξ n
s )ds

∣∣∣ > δ
)
=

1
n

logEn

[dPi
n

dPn
1{|∫ t

0W
εn
f (ξ n

s )ds|>δ
}
]
. (45)

The claim now follows by applying (44) and Lemma 9 to the r.h.s. of (45).

Note that the generator in (42) restricted to functions acting only on the first
coordinateη corresponds to a perturbation of the exclusion process. Thehydro-
dynamic behaviour of such a perturbed exclusion process is well known in the
literature, see e.g. [18], Proposition 5.1, Chapter 5. We recall it in the next propo-
sition.
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Proposition 25. Fix i = {v0,H}, with respect toPi
n,

lim
n→∞

πn
t (dx) = ui(t,x)dx

in distribution with respect to the J1-Skorohod topology onD([0,T];M+(T)),
where the density{ui(t,x); t ∈ [0,T],x∈ T} is the unique solution of

{
∂tui(t,x) = ∆ui(t,x)−∂x (ui(t,x)(1−ui(t,x)∂xH)

ui(0,x) = v0(x).
(46)

We are now ready to prove the hydrodynamic behavior for our perturbed sys-
tem.

Proposition 26. Define v±a (ρ , t) := e±a(t)v±(ρ), va(ρ , t) := v+a (ρ , t)−v−a (ρ , t) and
fix an index i= {v0,H,a}. Under Pi

n, the triple (π̂n
t ,

1
nNn,+

t , 1
nNn,−

t ) converges
in distribution to(ûi(t),

1
2( fi(t)+ t), 1

2( fi(t)− t)) with respect to the J1-Skorohod
topology inD([0,T];M+(T)×M+(T)×M+(T)), whereûi is the unique solu-
tion of
{

∂t ûi(t,x) = ∆ûi(t,x)−∂x (ûi(t,x)(1− ûi(t,x))∂xH)+va(ûi(t,0))∂xûi(t,x)

ûi(0,x) = v0(x),
(47)

and fi is given by
{

f ′i (t) = va(ui(t, fi(t))) = va(ûi(t,0))

fi(0) = 0.
(48)

Sketch of proof of Proposition 26.Much of the proof is analogous to the proof of
the unperturbed system derived in [1]. For this reason, we only show how to adapt
it. Sincea,H are bounded, the tightness arguments forπ̂n,xn of [1], Section 2.3,
show tightness in the spaceD([0,T];M+(T)×T). A more careful checking of
these arguments show that we can actually prove tightness inD([0,T];T) of each
of the processes{1

nNn,±
t ; t ∈ [0,T]}n∈N. Since these processes are increasing, the

uniform topology is stronger than the weak topology, showing tightness for the
triple (π̂n

t ,
1
nNn,+

t , 1
nNn,−

t ).
To identify the limits, the local replacement lemma forξ n

t needs adaptation to
the perturbation, however Lemma 24 can be used to provide a suitable analogue:

lim
ε→0

lim
n→∞

P
i
n

(∣∣∣∣
∫ t

0

(
e±a(s)c±(ξ n

s ;0)−v±a (π̂n
s (ιε)))

)
ds

∣∣∣∣> δ
)
= 0. (49)

Next, the martingales

M̃n,a,±
t :=

Nn,±
t

n
− 1

n

∫ t

0
e±a(s)c±(ξ n

s ;0)ds (50)

38



have quadratic variations bounded byC
n for a suitable constantC depending ona

and the ratesc±. Hence these martingales converge to 0 in probability, withrespect
to the uniform topology. Withfi a limit point of xn

n , it follows from (49) and (50)
that

fi(t) =
∫ t

0
va(ui(s, fi(s)))ds,

which is the integral version of (48). Since (46) admits a unique solution and
ûi(t,x) = ui(t,x+ fi(t)), the claim follows.

8.2 Relative entropy and the rate function

To obtain the lower bound for the large deviation principle in Theorem 7, we show
in this section that the relative entropy ofP

i
n with respect toPn can be interpreted

as a rate function.

Lemma 27. Recall definitions(5), (6), (30)and (7).

lim
n→∞

1
n

H
(
P

i
n

∣∣Pn
)
= h(v0|u0)+J(H;ui)+ j(a;ui , fi) (51)

≤ Irw( fi |ui)+Iex(ui). (52)

Proof of Lemma 27.Recall (22),(23) and setUn
i := UH,n

δ ,ε ∩Ua,n
δ ,ε . Since

lim
n→∞

1
n

logPn((Un
i )

c) =−∞

and 1
n log dPi

n
dPn

= 1
n logMi,n

T is bounded, we have

lim
n→∞

P
i
n((Un

i )
c) = 0.

Hence,

1
n

H
(
P

i
n

∣∣Pn
)
=

1
n
E

i
n

[
log

dPi
n

dPn

]
= E

i
n

[
1
n

log
dPi

n

dPn
1U i

n

]
+on(1).

OnUn
i ,

1
n

log
dPi

n

dPn
=

1
n

log
dv̂n

v0

dvn
u0

+a(T)xn
T −

∫ T

0
a′(s)xn

s + ∑
z=±1

vz(πn
s (ιε(x

n
s)))

(
ea(s)−1

)
ds

+πn
T(HT)−πn

0(H0)−
∫ T

0
πn

s (∂sHs)+πn
s(∆Hs)

− 1
n ∑

x∈Tn

(∇Hs(x))
2 πn

s (ιε(x)(1− ιε(x))) ds+oδ ,n(1)

Finally, when takingn→ ∞ andδ ,ε → 0, we can use Lemma 24 together with the
hydrodynamic limit for the perturbed system, Proposition 26, and obtain (51).
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8.3 The lower bound

We can finally show the lower bound which together with (31) concludes the proof
of Theorem 7. We will proceed in two steps. We first restrict ourself to paths
obtained as solutions of the perturbed system in Proposition 26. Then, in Lemma
29 below, we show that paths with finite rate function can be approximated by
paths which arise via perturbation. For notational convience, define

I(x,π) := Irw(x|π)+Iex(π)

Lemma 28. LetO be an open set inE . Then

lim
n→∞

1
n

logPn(O)≥− inf
{
I( fi ,ui) : H ∈ C1,2,v0 :T→ [0,1],a∈ C1,(ui , fi) ∈ O

}
.

Proof of Lemma 28.For a given open setO ∈ E , choose parametersi = {v0,H,a}
such that the solution(ui , fi) of the differential equations in (46) and (48) is con-
tained inO. By a change of measure and Jensen’s inequality we have that

logPn(O) = logEi
n

[
1{(πn,xn)∈O}

dPn

dPi
n

]

= logEi
n

[
dPn

dPi
n

∣∣∣∣O
]
P

i
n(O)

≥ E
i
n

[
log

(
dPn

dPi
n

)∣∣∣∣O
]
+ logPi

n(O)

Moreover, by Proposition 26 and our choice of parameters, limn→∞P
i
n(O) = 1 and

lim
n→∞

1
n

(
E

i
n

[
log

(
dPi

n

dPn

)∣∣∣∣O
]
−H

(
P

i
n|Pn

))
= 0.

Hence, by Lemma 27,

lim
n→∞

1
n

logPn(O)≥−I( fi,ui).

Optimizing overi = {v0,H,a} such that(ui , fi) ∈ O ends the proof.

All that remains is to remove the restriction to paths obtained by perturbations.

Lemma 29. Fix a pair (x,π) and a sequence(yN,πN) which converges to(x,π)in
D([0,T];M+(T)×T) and for whichI(x,π),I(yN,πN)<∞. Furthermore assume
that ε ≤ πN ≤ 1− ε , ε ≤ π ≤ 1− ε for someε > 0 and that

lim
N→∞

∥∥πN(yN)−π(x)
∥∥

L1([0,T]) = 0. (53)

Then

lim
N→∞

Irw(yN|πN) = Irw(x|π). (54)
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Proof of Lemma 29.Let us first observe that

lim
N→∞

‖vz(πN(yN))−vz(π(x))‖L1([0,T]) = 0, for z=±, (55)

which follows from (53) by the Lipschitz continuity ofvz(ρ). Also, by the assump-
tion that the densities are bounded away from 0 and 1, we have

vz(πN),vz(π)> ε̃, for someε̃ > 0 andz=±.

In Section 7.4 we found that under this assumption, when the rate function
Irw(x|π) is finite, it can be written explicitly as in equation (33). Wecan thus
rewrite (33) as

Irw(x|π) =
4

∑
j=1

∫ T

0
h( j)

πt (xt )
(x′t)dt, (56)

with

h(1)ρ (x) :=
x+
√

x2+4v+(ρ)v−(ρ)
2

, h(2)ρ (x) := 2h(1)ρ (−x), (57)

h(3)ρ (x) := xlog

(
h(1)ρ (x)

v+(ρ)

)
, h(4)ρ (x) := v−(ρ)+v+(ρ). (58)

In view of (56), to show (54), we will prove that

lim
N→∞

∣∣∣∣
∫ T

0

[
h( j)

πN
t (yN(t))

(
y′N(t)

)
−h( j)

πt (xt)
(x′t)
]

dt

∣∣∣∣= 0 for j = 1,2,3,4.

For j = 4, this is readily obtained due to (55). Forj = 1,2,3, by triangular
inequality, we have that
∣∣∣∣
∫ T

0

[
h( j)

πN
t (yN(t))

(
y′N(t)

)
−h( j)

πt(xt )
(x′t)
]

dt

∣∣∣∣ (59)

≤
∫ T

0

∣∣∣h( j)
πt (xt )

(y′N(t))−h( j)
πt (xt)

(x′t)
∣∣∣ dt+

∫ T

0

∣∣∣h( j)
πN

t (yN(t))

(
y′N(t)

)
−h( j)

πt(xt )
(y′N(t))

∣∣∣ dt.

(60)

We want to show that, asN → ∞, the two terms in the r.h.s. of (59) vanish.
For the first term, consider the casej = 3, the derivative

∂xh
(3)
ρ (x) = log

(
x+
√

x2+4v+(ρ)v−(ρ)
2v+(ρ)

)
+

2x√
x2+4v+(ρ)v−(ρ)

,

is monotone increasing and by (8.3), there are constantsa,b> 0 so that

|∂xh
(3)
ρ (x)| ≤ log(1+a|x|)+b

uniformly in ρ andx.
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By Taylor expansion,
∣∣∣∣
∫ T

0
h(3)ρ (x′t)−h(3)ρ (y′t)dt

∣∣∣∣=
∣∣∣∣
∫ T

0
∂xh

(3)
ρ (ξt)(x

′
t −y′t)dt

∣∣∣∣ (61)

≤
∫ T

0
(log(1+amax(|x′t |, |y′t |))+b)|x′t −y′t |dt (62)

≤ 2‖x′t −y′t‖Φ‖log(1+amax(|x′t |, |y′t |))+b‖Φ∗ . (63)

HereΦ(x) = xlog(1+ x), Φ∗ is its convex conjugate or Legendre-Fenchel trans-
form and‖·‖φ denotes the Orlicz norm associated to the Young functionΦ. See
e.g. [21] for an overview of basic results in Orlicz spaces. In the last inequal-
ity we used the Hölder inequality in the Orlicz spaceLΦ := { f : [0,T] → T :
‖ f‖Φ < ∞}. By max(|x′t |, |y′t |) ≤ |x′t |+ |x′t − y′t | andΦ∗(x) ≤ ex− 1 one sees that
the right term stays bounded asy′ → x′ in ‖·‖Φ. Hencey′ → x′ in ‖·‖Φ implies∣∣∣
∫ T

0 h(3)ρ (x′t)−h(3)ρ (y′t)dt
∣∣∣→ 0.

Thus, to conclude that the first term in the r.h.s. of (59) goesto zero when
j = 3, it suffices to show that smooth functions are dense in the Orlicz space. This
is a consequence of the following two facts. First, on the setof functions uniformly
bounded by an arbitrary but fixed constant, theL1-norm and the Orlicz-norm are
equivalent, see e.g. [21]. Hence the fact that the smooth functions lie densely in
the bounded functions inL1 implies the same fact for the Orlicz space. Second,
bounded functions are dense in the Orlicz space, see [21].

When j = 1,2, this argument becomes simpler because∂xh
( j)
ρ (x) is monotone,

and|∂xh
( j)
ρ (x)| ≤ K uniformly in x andρ , for some positive constantK.

For the second term in the r.h.s. of (59), whenj = 1,2,3, we argue as follows.
First, consider the casej = 1, abbreviateci(t) := v+(ρi(t))v−(ρi(t)) for i = 1,2,
and estimate

∣∣∣∣
∫ T

0

[
h(1)ρ1(t)

(x′t)−h(1)ρ2(t)
(x′t)
]

dt

∣∣∣∣=
∣∣∣∣∣

∫ T

0

4[c1(t)−c2(t)]√
(x′t)2+c1(t)+

√
(x′t)2+c2(t)

dt

∣∣∣∣∣

≤ K1

∫ T

0
|c1(t)−c2(t)| dt ≤ K1

∫ T

0

∣∣v−(ρ1)
∣∣ ∣∣v+(ρ1)−v+(ρ2)

∣∣ dt (64)

+K1

∫ T

0

∣∣v+(ρ2)
∣∣ ∣∣v−(ρ1)−v−(ρ2)

∣∣ dt ≤ K2 ∑
z=±

‖vz(ρ1)−vz(ρ2)‖L1([0,T]), (65)

for some constantsK1,K2 > 0 depending on (8.3) and on the uniform bounded

function 1/
(√

x2+c1+
√

x2+c2

)
. Hence, the claim follows by (55). The case

j = 2 is the same due to (57).
It remains to consider the casej = 3. By using Hölder inequality, estimate

∣∣∣∣
∫ T

0
h(3)ρ1(t)

(x′t)−h(3)ρ2(t)
(x′t)dt

∣∣∣∣≤ 2‖x′‖Φ

∥∥∥∥∥log

(
x′+

√
x′2+4c1(t)

x′+
√

x′2+4c2(t)
· v+(ρ2)

v+(ρ1)

)∥∥∥∥∥
Φ∗

.

(66)
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By the triangle inequality, the right hand side goes to 0 if both
∥∥∥∥∥log

(
h(1)ρ1

h(1)ρ2

)∥∥∥∥∥
Φ∗

,

∥∥∥∥log

(
v+(ρ2)

v+(ρ1)

)∥∥∥∥
Φ∗

(67)

converge to 0. Note that by definition of Orlicz norm,‖(·)‖Φ∗ goes to 0 iff
∫ T

0 Φ∗(a·
(·))dt goes to 0 for alla> 1. For the left term in (67) we have

Φ∗
(

alog

(
h(1)ρ1

h(1)ρ2

))
≤ max

((
h(1)ρ1

h(1)ρ2

)a

−1,

(
h(1)ρ2

h(1)ρ1

)a

−1

)

Note that by (8.3), 0< c−1 ≤ h(1)ρ1

h(1)ρ2

≤ c< ∞. Hence the above is less than

aca−1 max

(
h(1)ρ1

h(1)ρ2

−1,
h(1)ρ2

h(1)ρ1

−1

)
. (68)

We have for{i, i′}= {1,2}

h(1)ρi

h(1)ρi′

−1=
h(1)ρi −h(1)ρi′

h(1)ρi′

= (ci −ci′)
−x+

√
x2+ci′

ci′(
√

x2+ci +
√

x2+ci′)
.

As this right hand side is bounded from above by some constant, (68) is estimated
by

K3|c1−c2|,
and from (64) we can conclude that the left norm in (67) goes to0. The right norm
in (67) is controlled with the same type of argument withv+ instead ofh(1), which
completes the casej = 3.

Lemma 30. Assumeπ satisfiesIex(π)< ∞ andπ is differentiable in time with an
absolutely continuous derivative which satisfies‖π̇‖∞ < M for some0< M < ∞.
Thenπt is Hölder-1/2 continuous for almost every t.

Proof of Lemma 30.Assumeπ has finite energy, that is‖∇π‖0,T < ∞. Then, by
the Sobolev embedding theorem, the conclusion follows. So what we will show is
that if π has infinite energy under the given assumptions, then the rate function is
infinite as well, which is a contradiction.

First observe that instead of taking the supremum over allH when determining
Iex we can restrict ourself to thoseH with Ht(0) = 0,0≤ t ≤ T. This is easily seen
by observing thatπ has constant mass and henceJ(H −H(0);π) = J(H;π).
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Looking in more detail atJ(H;π), by partial integration, the boundedness ofπ̇
and basic estimates,

∣∣∣∣−πT(HT)+π0(H0)−
∫ T

0
πt(∂tHt)dt

∣∣∣∣ =
∣∣∣∣
∫ T

0
π̇t(Ht)dt

∣∣∣∣

≤ M
∫ T

0

∫ 1

0
|Ht(x)|dxdt= M

∫ T

0

∫ 1

0

∣∣∣∣
∫ x

0
∇Ht(y)dy

∣∣∣∣ dxdt

≤ M
∫ T

0

∫ 1

0
|∇Ht(y)| dydt≤ MT

1
2

(∫ T

0

∫ 1

0
(∇Ht(y))

2 dydt

) 1
2

.

If π has infinite energy, then by Proposition 17 there exists a sequenceHn∈C0,2

with ‖∇Hn‖0,T = 1 and limn→∞〈〈π,∇∇Hn〉〉0,T = ∞. Since

|J(Hn;π)| ≤ (1+MT
1
2 )+2

∣∣∣∣
∫ T

0
πt(∆Hn)dt

∣∣∣∣ ,

we have limn→∞ J(Hn,π) = ∞. By approximating functions fromC0,2 by functions
from C1,2 we can conclude thatIex(π) = ∞, which is a contradiction.

We are finally in shape to conclude the lower bound.

Proposition 31. LetO be an open set inE . Then

lim
n→∞

1
n

logPn(O)≥− inf
(π,x)∈O

{Irw(x|π)+Iex(π)} .

Proof of Lemma 31.We extend Lemma 28 in two steps, using Lemma 29. We will
always keep eitherπ or x constant because that way it is easier to show theL1

condition of Lemma 29.
First we drop the restriction ona. To do so, fixH,v0 and letui be the solution of

(46). By Lemma 30, for almost everyt ui(t, ·) is Hölder-1/2 continuous, especially
ui(t, ·) is continuous.

Fix a pathx with Irw(x|ui) < ∞. We have shown in Section 7.4 thatx is is
absolutely continuous wheneverIrw(x|π) < ∞. Since the classC2 is dense in the
set of absolutely continuous functions, we can consider a sequence of paths{y(N) :
N ≥ 1} in C2 such thatyN converges tox pointwise.

For eachN ≥ 1, letaN ∈ C1 be the unique function identified by the solution of

(yN
t )

′ = vaN

(
ui(t,y

N
t )
)
.

Note that this is possible sinceε ≤ ui ≤ 1− ε for someε > 0. HenceyN is the
solution of (48) corresponding toaN,H,v0. Sinceui is continuous for almost all
t, ui(t,yN

t ) converges pointwise toui(t,xt) a.e. Sinceui is bounded, this implies
L1-convergence. By Lemma 29,Irw(yN|ui) converges as well, and hence

inf
{
I( fi,ui) : H ∈ C1,2,v0 : T→ [0,1],a∈ C1,(ui , fi) ∈ O

}

= inf
{
I(x,ui) : H ∈ C1,2,v0 : T→ [0,1],(ui ,x) ∈ O

}
.
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To remove the remaining restrictions we follow the steps in [18], Lemma 5.5,
Chapter 5, where the corresponding statement for the perturbed exclusion was
proved. What we will show is that the approximation steps in that lemma not
only work forIex but forIrw as well. The general idea is the following scheme. If
π is smooth in time and space and is bounded away from 0 and 1 we can findH,v0

so thatπ = ui , whereui is the solution of (46). In three steps the conditions are then
relaxed, and in each step the convergence of the rate function is proved by use of
Lemma 29. A minor difference to Lemma 5.5 in [18] is that we exchange the order
of space and time convolution, however that has no influence on the convergence
of Iex.

Assumeπ is bounded away from 0 and 1, smooth in time withIex(π) < ∞,
and letx be a path withIrw(x|π) < ∞. Let ιε : T → [0,∞) be a smooth function
which integrates to one and has support contained in[−ε ,ε ]. Define πN(x) =∫

π(x+y)ι1/N(y)dy. By Lemma 30πt is Hölder-1/2 continuous for a.e.t and

|πN
t (xt)−πt(xt)| ≤Ct

∫
|y| 1

2 ι1/N dy,

which converges to 0.
Therefore we can use Lemma 29 and obtain that limN→∞Irw(x|πN) = Irw(x,π)
and hence limN→∞I(x,πN) = I(x,π). SinceπN is smooth in space and time and
is bounded away from 0 and 1, there areH,v0 so thatπN is the solution of (46).
Hence

inf
{
I(x,ui) : H ∈ C1,2,v0 : T→ [0,1],(ui ,x) ∈ O

}

= inf {I(x,π) : ∃ε > 0 : ε ≤ π ≤ 1− ε ,π smooth in time,(π,x) ∈O} .

Now assumeπ is a density bounded away from 0 and 1, andx is a path with
Irw(x|π)< ∞. Extendπ from [0,T] to [0,T +1] by the heat equation. Letβε : R →
[0,∞) be a smooth function which integrates to 1 and whose support is contained

in [0,ε ]. DefineπN via πN
t =

∫ 1
N

0 πt+sβ1/N(s)ds. Sinceπ is a càdlàg pathπN
t (xt)

converges toπt(xt). Hence the condition for Lemma 29 is satisfied andIrw(x|πN)
converges toIrw(x|π).

As a final step, assume thatI(x,π) < ∞. Let π̃0,π̃1 be the constant paths
identical to 0 and 1 respectively. LetπN = (1− 2

N)π + 1
N π̃0 + 1

N π̃1. We can no
longer apply Lemma 29. Instead we prove the statement directly via dominated
convergence using estimates similar to the first part of the proof of Lemma 22. Let
M be the supremum ofv± and writev±,N

t := v±t (πN
t (xt)). Then, by (40),

0≤ ∑
z=±

vz,N
t ezax,πN (t) ≤ 2|x′t |+2M, (69)

which is integrable and independent ofN. Next, just as in Lemma 22, we only need
to to find an upper bound on the positive part(x′tax,πN(t))+, which we do only for
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x′t > 0. Using log+ ≤ | log|= log++ log−,

a+x,πN (t)x
′
t = x′t log+


x′t +

√
(x′t)2+4v+,N

t v−,N
t

2v+,N
t




≤ x′t

∣∣∣∣∣∣
log


x′t +

√
(x′t)2+4v+,N

t v−,N
t

2




∣∣∣∣∣∣
+x′t

∣∣∣log
(
(v+,N

t )−1
)∣∣∣

≤ x′t
[
log+(x′t +M)+ log−(x′t)

]
+x′t

[
log+

(
(v+,N

t )−1
)
+ log−

(
M−1)] .

The only dependence onN is in x′t log+
(
(v+,N

t )−1
)

. The functionv+(·) is a non-

negative polynomial which can be 0 only at the boundary points 0 and 1. Ifv+

is positive everywhere there is nothing to prove. Assumev+ has at least one 0.
Since as a polynomialv+ is monotone near 0 and 1 we can findδ > 0 so that
(v+,N

t ) ≥ min
(
infρ∈[δ ,1−δ ] v

+(ρ),v+(πt(xt))
)
. By the assumption thatIrw(x|π) <

∞ and Lemma 22 we use dominated convergence to show that limN→∞Irw(x|πN) =
Irw(x|π).
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