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Abstract

We consider a random walk (RW) driven by a simple symmetriiex
sion process (SSE). Rescaling the RW and the SSE in such dafg joint
hydrodynamic limit theorem holds we prove a joint path ladgeiation prin-
ciple. The corresponding large deviation rate function lcarsplit into two
components, the rate function of the SSE and the one of the iR&v ¢he
path of the SSE. These components have different structGiasssian and
Poissonian, respectively) and to overcome this difficuleymeke use of the
theory of Orlicz spaces. In particular, the component ofrriiite function
corresponding to the RW is explicit.
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1 Introduction

1.1 Background

Random evolution on a random medium has been the objectasfsive research
within the mathematics and physics communities over at khadast forty years.
Although there are plenty of rigorous and non-rigorous ltesabtained through
a wide range of techniques and methods, it is far from beintpsed subject.
Since the works of Solomon [27], Harris [12] and Spitzer [28hdom walks in
both static and dynamic random environments have been #diprehy to study
this problem within the context of probability theory (s&€] for a review in the
static case). In the case dynamicrandom environments, considerable progress
has been recently achieved (see e.g. [3]} [22], [24] ander&es therein), but a
key ingredient common to all these developments is theatiéitly of good mixing
propertiesof the environment. More recently, examples of dynamic caman-
vironments with less restrictive mixing properties haverbeonsidered [13], but
the general picture is still far from being understood (2dédr some conjectures
based on simulations).

A very simple way to obtain a family of dynamic random envirents with
poor mixing properties is to consideonservative particle systenas dynamic
environments. On the one hand these environment processesrg well under-
stood, in particular their mixing properties are well knowan the other hand the
essential difficulties coming from the poor mixing are eraxéhto the conserva-
tion laws.

In this article the dynamic environment is given by a simplanmetric exclu-
sion process, as inl[1].[2]. 3], 4], 115].[20], [25]. Ongaof this environment,
we run a simple random walk with jumping rates depending erpitrtion of the
environment it sees. The exclusion particles do not feeptiesence of the ran-
dom walk. We introduce a scaling parameter N and wespeed ughe exclusion
particles with respect to the random walk by a facton.oAlthough this speeding
up seems to be there in order to give us the necessary mixopegies for the
environment, this is not the case. At least at a formal leveltvihappens is that this
scale is thecrossover scaléetween a regime on which the environment behaves
essentially as frozen from the point of view of the randomkegland a regime on
which the environment mixes fast enough to put us back onetiimg of previous
works.

1.2 Themodel and result at a glance: an example

Let us consider the following problem. For the sake of cjasite begin by con-
sidering a simple case. In Sectigdn 2 we define the generalImbeen € N be a
scaling parameter, which will be sentteo later on. On a discrete circlg,, with



n points, we run a symmetric, simple exclusion procggs;t € [O,T]}ﬂ speeded
up byn?. We call this process th@ynamic environmentGiven a realization of the
process{n";t € [0, T]}, we run a simple random walk oh, with the following
dynamics. The walk waits an exponential time of rafeat the end of which it
jumps to the left with probability%, it jumps to the right with probability% and
with probability% it looks at theenvironmentn". Let x be the current position
of the walk. Ifn{’(x) =1, the walk jumps to the right, and if"(x) = 0 the walk
jumps to the left. Notice that the particle $peeded up by.nLet us think about
the circleT, as a discrete approximation of the continuous circle oftlerdg The
different speeds of the environment and the walk are takewdéh a way that the
environment has diffusive scalingand the walk has hallistic (or hyperbolicin
the terminology of hydrodynamic limits) scaling. Let usrstiéie exclusion pro-
cess from a non-equilibrium initial distribution. In orderfix ideas, imagine that
ng(x) = 11if [x| < § andng(x) = 0 otherwise. This initial distribution of particles
is a discrete approximation of the density profitgx) = 1, <1/4. It is precisely
under this diffusive space-time scaling that the limitirensiity profile has a non-
trivial evolution. This limiting profileu(t,x) turns out to be the solution of the
heat equation on the continuous circle, with initial coiaditug. This convergence
is what is known in the literature as thydrodynamic limitof the exclusion pro-
cess (see Chapter 4 ¢f [18] for more details and further eafms). Now let us
describe the scaling limit of the walk. If the density of pelgs of the exclusion
process is equal to € [0, 1], then one expects that the walk will move with velocity
v(p) = 3(2p — 1). Notice that a hyperbolic scaling is needed for the walk gteor
to have a non-trivial macroscopic velocity. Therefore, itecroscopic position of
the walk should satisfy the ODE

¢ = v(u(t, ¢r)).

This heuristic reasoning has been made precisgl in [1] indtra bf a functional
weak law of large numbers for the walk. We obtain in this papkrge deviation
principle associated to this law of large numbers. The fofrthe rate function
associated to this large deviation principle is given byvgational formula

T(x) = inf {Zou(X| ) + Zex(1) .

whereZ,y(X|m) is the rate function of a random walk on a given space-time rea
ization of the environmenir andZex( 1) is the rate function of the large deviation
principle associated to the hydrodynamic limit of the egz@n process (see Sec-
tion[3 for more precise definitions). This variational folais very reminiscent of
the variational formula relating the quenched and averdayge deviation princi-
ples for random walks in random environmerits [7],[10], seearticular Eq. (9)

The time window{0, T] is chosen to be of finite size to avoid some technical topoligionsid-
erations. Indeed, ») is not compact and one would have to be more careful in weigtitie tails
near infinity.



of [7]. Notice that in our setting a “quenched" large dewatprinciple or even a
guenched law of large numbers is out of reach since the eégolpsocess does not
have an almost sure hydrodynamic limit. Anyway, the intetation of the varia-
tional formula is the same as the corresponding one for rangalks in random
environments. The functio, (x| 17) is the cost of observing a trajectoxywhen
the environment has a space-time densitgndZ,(1) is the cost of changing the
density of the environment ta.

Our method of proof, however, differs from the onelih [7]. 1}, [we proved a
joint law of large numbers for the environment and the walle aow in this article
that the rate function of the corresponding large deviapanciple is given by
Zw(X|TT) + Zex(11). The desired result follows as an application of the cotitvac
principle.

1.3 Discussion

There are not many works addressing the question of largataes for random
walks in dynamic random environment. [A [2], the authorsnsladarge deviation
principle (LDP) for the empirical speed on some attractaedom environments.
They also show that the rate function in the case of an exsiysiocess as a ran-
dom environment has a flat piece. This reference is the dlssgirit to our work.
To our knowledge, the earliest reference in this field seent®et[16], then, in a
series of papers| [6]._[23], [24]. [29] the authors show arPLdr fairly general
dynamic random environments. In_[14], the authors gave aPR k@ a random
walk driven by a contact process. In all of these resultsetivironment is Marko-
vian (except fo the more general setting[in![23]) and it isuassd to start from
an ergodic equilibrium One of the differences of our work with respect to these
results is that we consider environments which start frdwcal equilibrium see
(4). These environments are more general than ergodicilatmiand they give
rise to a richer phenomenology. Our variational formulatif@r rate function could
in principle be explicit enough to allow some finer analydishe behavior of the
walk, but we do not pursue this line of research here.

Our method of proof is very different from what has been dosfete, and as
mentioned above it relies on a joint LDP for the couple envinent-random walk.
The large deviations of the environment are quadratic inneasince large fluctu-
ations are built up on small, synchronised variations ofttbleavior of individual
particles, and the large deviations of the random walk apemential in nature due
to the Poissonian structure of the walk. For this reasondim DP proved to be
very difficult to obtain. In particular, we need to deal withimconvex entropy cost
functions.

From the point of view of interacting particle systems, thelgem addressed
in this work is close in spirit to the problem of the behavidractagged particle
in the exclusion process. In fact, we borrowed froml| [17] ttrategy of proof of
the joint environment-walk law of large numbers, althougts tstrategy can be
traced back to the seminal article [20]. Recently, an LDRtertagged particle in



one-dimensional, nearest-neighbor symmetric exclusioogss has been obtained
[25]. On the one hand, the results(in[25] are more demandiecause the motion
of the tagged particle affects the motion of the environnierat sensitive way. On
the other hand, our result is more intricate because of tlkeunei between Poisso-
nian and Gaussian rate functions. This last point obliget® wse the machinery
of Orlicz spacesn order to show that the variational problem that definegdite
function is well-posed. In the realm of interacting pasdicystems, this kind of
problems poses real difficulties in order to obtain an LDP.afify of models
which shares the difficulties found in this work is a constveadynamics super-
posed to a creation-annihilation mechanism. To our knogédethe best result so
far is found in [5]. In that article, a creation-annihilatig¢or Glaubel) mechanism
is superposed to the exclusion dynamics with a speeding thpeadxclusion pro-
cess in order to make both dynamics relevant in the macrastiopt. As in our
case, the rate function of the LDP can be written as a conibmatf the Gaus-
sian rate function of the exclusion process and a Poissaatarfunction coming
from the Glauber dynamics. However, they impose an additioondition (see
Assumption (L1) on page 8 df][5]) which makes some key costtions convex.
This point is very technical but also very delicate, and this key to proving that
the upper and lower bounds match. We overcame this problemsibyg the theory
of Orlicz spaces, see Sectionl8.3.

1.4 Organization of thearticle

In Sectior 2 we describe our model in full generality. We firngonotation and in
particular we introduce thenvironment as seen by the walketich will be very
important in order to relate the behaviors of the walk anchefénvironment. We
also describe the hydrodynamic limits associated to thkusim process, as well
as to the environment as seen by the walker. This part surpesattie functional
law of large numbers obtained inl[1]. In Sectioh 3 we startl@rmng what we
understand by a large deviation principle for the couplerenment-walk. We
put some emphasis on the topologies considered for theggpsi|ce they are not
the standard ones. In particular, we look at the random walksignedPoisson
point process. The trajectory of the random walk can be\easdovered from
this process and vice-versa, but the topology of sighed mneagurns out to be
more convenient. We finally state our main result, Thedrénm page 11 which
is a large deviation principle for the couple environmeiitky The large deviation
principle for the walk, Theorerl 6, follows at once from Th&wi7 via the con-
traction principle. In Sectiof 4 we define some exponentaitimgales which will
be used to tilt our dynamics, following the usual Donskeradhan (see e.g.][8])
strategy of proof for large deviations of Markov procesdesSection’b we show
what is called in the literature treuperexponential lemmdahis lemma allows to
do two things. First, it allows to write the exponential niaghles introduced in
Sectior 4 as functions of the couple environment-walk ptusraor term which is
superexponentially small. This step is the starting poirihe upper bound. And



second, it allows to obtain the hydrodynamic limit of suieaperturbations of the
dynamics. The latter is the starting point of the lower baundSectior 6 we show
an energy estimate. This energy estimate allows to resuiiatonsiderations to the
space of measures wiflmite energywith respect to the Lebesgue measure. In par-
ticular, all these measures will be absolutely continuoitk vespect to Lebesgue
measure. This point is crucial, since we need to evaluageltmsity at the location

of the random walk in order to know its local drift. In Sectidnve prove the large
deviation upper bound and in Sectidn 8 we prove a matchingideund, which
finishes the proof of the large deviation principle for thegle environment-walk.

2 Themodd

2.1 Theenvironment

Letn e N be a scaling parametef,, = %Z/Z be the discrete circle of sizeand
Qn={0,1} . We denote by) = {n(x);x € T} the elements o, and we cally
a configuration of particlesThe elements of T, will be calledsites and we say
that there is a particle at sitec T,, in configurationn if n(x) = 1. Otherwise, we
declare the site to beempty We say thak,y € T,, areneighboursf |y—x| = %
In this case we writex ~y. Fix T > 0. The simple, symmetriexclusion process
on T, is the continuous-time Markov proce$g/";t € [0, T]} with the following
dynamics. To each pair of neighboufs,y} on T, we attach a Poisson clock of
raten?, independent of the other clocks. Each time the clock aasatito the pair
{X,y} rings, we exchange the valuesrgf(x) andn(y).

Forn € Q, andx,y € T, we definen*Y € Q, as

ny); z=x
@) =qnX; z=y,
n@; z#Xxy.

The procesgn";t € [0, T|} is generated by the operator given by

LEE () =n? Y (f(n*) - f(n)) 1)

X~y

forany f : Q, — R. Notice that if the initial configuration has only one particle,
this particle follows a simple random walk. This fact expiathe acceleration?
in the dynamics, corresponding to a diffusive space-tinadirsg. We consider the
process defined on a finite time windd@ T| to avoid uninteresting topological
issues (see the footnote on page 2).

By reversibility and irreducibility, for eack € {0,1,...,n}, the uniform mea-
surevi, on

Qnk = {ri €Qn > nX :k}

xeln



is invariant and ergodic under the evolution{af";t € [0,T]}. Equivalently, for
eachp € [0,1] the product Bernoulli measug on Q,, defined by

Vp(n) = q {Pn(x) +(1-p)(1-n(x)}
is invariant under the evolution ¢f)";t € [0, T|}.

2.2 Some notation

Forxe Ty, let1x: Qn — Qn, be the canonical shift, that isn (z) = n(z+Xx) for any
neQnpandanyze Ty. Forf: Q, — Rwe defineryf : Qn — Rastf(n) = f(1xn)
foranyn € Q.

We say that a se& C T, is thesupportof a functionf : Q, — Rif:

i) foranyn,& € Qn such than (x) = &(x) forall xe A, f(n) = f(§),
i) Ais the smallest set satisfying i).

We denote this byA = supg(f).

LetM: Z — T, be the unique map fronZ to T, such thatl(0) = 0 and
M(x+1) —MN(x) = & for anyx € Z, that is,M is thecanonical coveringf T, by Z.
ConsiderQ = {0,1}4. We say that a functiori : Q — R is local if there exists a
finite AC Z such that for any), § € Qwith n(x) = &(x) forallxe A, f(n)=f(&).
For a local functionf : Q — R, we can define suff) as above. We can identify
Q, with the set{0,1}{l-3+1/---[3]}, Using this identification, any local function
f : Q — R can be lifted to a function (which we still denote by from Q, to R,
for anyn large enough. Moreover, under this convention, the lifimignique. We
will use the following notation. A local functioffi : Q, — R is actually a family of
functions{ f, : Q, — R;n > ng}, all of them lifted toQn from a common function
f : Q — R, which we assume to be local. For a local functionQ,, — R, supg f)
will denote either the support df on Z or the support off, on T, which is equal

to M(supp(f)).

2.3 Therandom walk

Letc: Q x {+,—} — [0,) be a local function, and let, be the lifted version on

Qn. Definec: : Q, x Ty, via thecocycle property ¢t (n;x) = cn(1xn, £) for any

n € Qnand anyx € Ty. As the dependence aonis clear from context we simply
write ¢*. Without loss of generality we only considerarge enough so that the
lifting of c exists. We calt ajump rate An archetypical example is

cr(mx)=a+(B-a)n(x), c (n;x)=B+(a—-pB)n(x), forsomea, > 0.

The random walk irdynamic random environme#t)";t € [0, T]} with jump
ratec is the continuous-time Markov procegg';t € [0, T|} with values inT, with



the following dynamics. For simplicity, assume tleat+c~ = 1, the reader can see
that this assumption is not relevant. We attach to a randolikewa Poisson clock
of raten, independent of the proceég,";t € [0,T]}. Each time the clock rings, the
particle jumps to the right with probability” (n"; X" ), and to the left with comple-
mentary probabilityc™ (n{"; %" ). We remark that the proce$s;t € [0,T]} itself

is not Markovian; if we consider dixed realization of the random environment
{nft €[0,T]}, then we recover the Markov property fox';t € [0,T]}, but the
resulting evolution is not homogeneous in time. The pai"; x();t € [0,T]} turns
out to be an homogeneous Markov process, with valu€¥,in T,, and generated
by the operator given by

Laf(n;x) =n? S (f(n¥%%) — f(n;%)) +n Zlcz(n:X)(f(n:H%)— f(n;x))
y~z =+
(2

for any functionf : Q, x T, — R. At this point, two remarks are in place. No-
tice that for functions which depend only @n this expression coincides with the
definition of the generator of the procegg";t € [0,T]}, explaining the use of the
same notation for both objects. Notice as well that the dycsuof the random
walk is speeded-up hy. We expect the walk to move with some velocity, in which
case it needs to makgumps in order to cross a region of order 1.

From now on and up to the end of the article, we assume thaattdom walk
starts at 0xg = O for anyn € N.

2.4 Theenvironment as seen by the walker

Let {&";t € [0,T]} be the process with values @y, defined byé"(z) = n{"(x' +2)
foranyze T (in other words&" = 1,on") and anyt € [0, T]. The proces$é&™;t €
[0, T]} turns out to be a Markov process and its corresponding gemesagiven
by

Lof(&)=n? S (f(EY)—F(&))+n > (&0)(f(128) - f(§) @)
z=+1

=y

for any functionf : Q, — R. The value of¢' can be recovered from thejectory
{&d;s€ [0,t]} in the following way. First suppose th4t' has at least 2 particles
and two empty sites. LetN"“;t € [0,T]} be the number of shifts to the right
and to the left {) up to timet. Then,

R =N =N,

If there is only one particle or one empty sitQ’]*i are similar, but each right (left)
shift of &" is discarded with probabilityn/(n+ ¢ (&";0)) (n/(n+c™(&"0))),
which is the probability that the observed shift came from thovement of the
single particle/empty site. If there are no particles/qrrqjtes,Nt”’i are Poisson
processes with ratec™(0;0) or nc™(1;0), where0 and 1 are the empty and full
configurations.



This point of view, the environment as seen by the walkerodhced by
Kipnis-Varadhan[[20], has shown to be very fruitful (seé {dj an application
in this context).

25 Theempirical measures

Let T =R/Z and M™(T) be the space of positive Radon measured offror u
and{u";ne N} in M*(T), we say thau" — p if [ fdu" — [ fdu for any con-
tinuous functionf : T — R. The topology induced oM™ (T) by this convergence
is known as theveak topologyand M™(T) turns out to be a Polish space under
this topology. That isM™(T) is completely metrizable and separable under this
topology. A possible metric is the following. Léfn;N € Z} be a dense subset in
C(T). Then,d: M*(T) x M*(T) — [0,) given by

1}

d(u,v) = Ngzﬁ min{‘/ fnd(p—v)

is the required metric.
Forxe Ty, letd : T — R be defined as

3(y) = (1-nly—x|)",

where(-)™ denotes positive part. Sometimes the functi¢d®;x € T} are called
finite elementsThe empirical density of particles is defined as.te (T )-valued
process17';t € [0,T]} given by

m(dy) = 5 ni'(x)8(y)dy.

xeln

Notice thatr" is absolutely continuous with respect to Lebesgue measuré. o
We will make the following abuse of notation. We will usg to designate indis-
tinctly the measureg’'(dx) or its density functiorvg'(-) with respect to Lebesgue
measure. We denote by'(H) the integral of a functiorH with respect to the
measuret’(dx). At this point, some comments about this definition are ircg@la
It is customary in the literature of interacting particles®ms to usc%éx in place
of &7, wheredy is the o of Dirac atx € T (see Chapter 4 of [18]). We will be
interested in scaling limits of the proceSg";t € [0, T|}. Since the number of par-
ticles per site is bounded by 1 by definition, any limit poifitr®(dx) must be a
measure which is absolutely continuous with respect to $ghe measure off,
and moreover with Radon-Nikodym derivative bounded abgvé.bTherefore, it
is natural to modify the customary definition of the empiriceeasuret” in such a
way that it satisfies this property for any fixadThis is accomplished by choosing
(y)=1y—x < 2—1n) (see, e.g.[119]). In our case, for topological considersti
which will become more transparent later on, it will be careat to haverg’(-)
a.s.continuous since on one hand we will need this property later on, anchen t
other hand we will prove that this property is shared by thgsjie limits ofrg". It

9



is clear that at the level of a law of large numbers, all theendions of empirical
measures are equivalent; this is also the case at the lelaigef deviation prin-
ciples, and we adopt this definition in order to simplify theeady very technical
exposition.

Let us denote bw({l(ﬁ) the subset of\i*(T) formed by measures abso-
lutely continuous with respect to Lebesgue measur&é @uch that < ‘(’j—‘)‘( <1.0n
M{1(T) we consider the weak topology defined above. Notice gt (T) is a
compact subset of4"(T), and{rg";t € [0, T|} as defined above is al],(T)-
valued process.

In a similar way, the empirical measure associated to thegs®&";t € [0, T|}
is defined as the\/lal(v)-valued proces$7t';t € [0,T]} given by

pdy) = 5 &0 (y)dy.

xeln

2.6 Hydrodynamic limits

Letuy: T — [0,1] be a given function. We say that a sequefgé;n € N} of
probability measures o2, is associatedo uy if for any f € C(T),

im [ 5 N f(y)dy= [ty

n—oo

in distribution with respect t¢ u";n € N}. In other words{u";n € N} is associ-

ated toup if the empirical measure of particles convergesdty)dy, in distribution

with respect to{ u";n € N} and in the weak topology o™ (T). Notice that for

any functionup : T — [0, 1] there is a sequence of measures associated to it. Indeed,
define forne N andx € T,

px=n / Uo(y)dy.

ly—x|< 2

Then the product measuvg given by

Vi (n) = E]l {pen(¥) + (1—p)(1—n(x)} 4

is associated tog. These measures will play a role in the derivation of a large
deviation principle later on.

For a given Polish spacg, let D([0, T];£) denote the space of cadlag trajec-
tories from|[0,T] to £. We consider orD([0, T]; ) the J;-Skorohod topology. Let
{u";n € N} be fixed. We denote b, the distribution of{(n{";x(");t € [0,T]}
in D([0,T]; Qn x Tp) with initial distribution u" ® &, and we denote b¥, the
expectation with respect #,,. The following proposition is classical:

10



Proposition 1. Fix up: T — [0,1] and let{u";n € N} be associated togu With
respect tdP,,
lim 7' (dx) = u(t,x)dx

in distribution with respect to the;dSkorohod topology oD([0,T]; M™(T)),
where the densityu(t,x);t € [0,T],x € T} is the solution of th&eat equation

au(t,x) = Au(t,x)
U(O,') = UO(')'
This proposition is what is known in the literature as tiyelrodynamic limiof
the procesgn";t € [0, T]}. A proof of this proposition which is close in spirit to
the exposition here can be found in Chapter 4 of [18]. A simmésult was obtained
in [I] for the procesg &";t € [0,T|}, but before stating this result, we need some
notation. Let us defing* : [0,1] — R as

vi(p) = [ € (nivp(an)

Notice thatv* do not depend or. Since we have assumed tieas local,v* do not

depend om either. Define then(p) =v*(p) —v (p). The value ofv(p) can be

interpreted as the “mean-field” speed of the waii;t € [0, T]} in an environment
of densityp, but we point out that this far from clear under which coraig we

can assume that this mean-field speed is a good approxinfatidhe real speed
of the walk. The following propositions are the main resuitfdl].

Proposition 2. With respect td®,
lim 77" (dx) = G(t,x)dx

n—soo

in law with respect to the;dSkorohod topology o ([0, T], M (T)), where the
density{((t,x);t € [0,T],x € T} is the solution of the equation
a0(t,x) = AG(t,x) + v(0(t,0))dx0(t, x)
a0,:)  =uo(-).
Let {f(t);t € [0,T]} be the solution of the differential equation
F(t) =t 1(1) = v(d(t,0))
f(0) =0,

with u from PropositiofiIL. The densitiesandu'are related by the identity(t; x) =
u(t, f(t) +x) for anyt € [0,T] and anyx € T. In fact, we have the following law
of large numbers fofx';t € [0, T]}.

Proposition 3. With respect td®,
on
im g = (0

in distribution with respect to the;JSkorohod topology o® ([0, T]; T).

11



3 Mainresults: large deviations

Propositiong Il and] 3 can be understood as a functional laargé Inumbers for
the pair of processeg 11",x);t € [0, T]}. Our aim is to establish a large deviation
principle for the proceséx’;t € [0, T|}, Theorenib below.

3.1 Topological considerations

Let us notice that thé;-Skorohod topology coincides with the uniform topology
when restricted to the space of continuous functions. Tmslbgy is not the only
one with this property. Indeed, in the original work of Skood [26], four different
topologies are introduced on the spd2g0, T|; £) with this property, and such that
the spaceD([0,T];E) is Polish with respect to these topologies. Let us recall the
decompositiond = M(N"* —N"). SinceN™" +N"" is just a standard Poisson
process speeded-up hyan immediate corollary of Propositigh 3 is that

im Nt f(Y)
n—o 2

in distribution with respect to thé;-Skorohod topology orD([0,T];R), where
{f(t);t € [0,T]} is the canonical lifting of{ f(t);t € [0,T]} from T to R. In
fact, the convergences of the procesfgst < [0,T]} and{%N{”;t €[0,T]} are
equivalent, once we have the law of large numbers for thedatadnPoisson pro-
cess. Notice that the proceésy™™;t € [0,T]} is increasing Therefore, maybe
the J;-Skorohod topology is not the most suitable one. It turnsthat in or-
der to exploit the fact thafN{"";t € [0,T]} is increasing, we can use theeak
topologyin the following way. Let us denote b? (dt) the measure of0, T] de-
fined byw? ((s,t]) = (N — N§"*) for anys < t € [0, T]. Then, convergence of
{%Nt”’i;t €[0,T]} to {3(t+ f(t));t € [0,T]} is equivalent to convergence of the
sequence of positive Radon measufe#; n € N} to the measurg (1 + f/(t))dt,
with respect to the weak topology d¢1* ([0, T]). We will adopt this last point
of view. Notice that in order to recover the procdss;t € [0,T]}, we need both
processeN"*;t € [0,T]}, or equivalently, both measurdso?}. Therefore, if
needed, we can consider the procésgt € [0,T|} as an element of the space
MT([0,T]) x MT([0,T]) equipped with the weak topology. The main advan-
tage of this point of view is the characterization of compsats, which is very
simple onM™([0,T]): a setk C M™([0,T]) is relatively compact if and only if
sup,exc H([0,T]) < +oo. Further topological considerations will be introduced at
the occurrence in the proof of the large deviation principle

3.2 Largedeviation principle

We start by recalling what a large deviation principle isnc® we are going to
state several large deviation principles, let us definefilirgenerality. Let€ be a
Polish space. Given a functich: £ — [0, ], we call itrate functionif it is lower
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semi-continuous, that is, the spte £;Z(x) < M} is closed for anyM € [0, ).
We say that the rate functidhis goodif the sets{x € £;Z(x) < M} arecompact
for anyM € [0,). A sequencg X;n € N} of £-valued random variables defined
in some probability spacge, F, P) satisfies a large deviation principle with good
rate functionZ if

i) for any open se#d C &,

lim }IogP(Xn € A) > —inf Z(x),
xeA

n—oo

ii) for any closed sef C &,

— 1 :
z < — .
r!l_rrtl)onlogP(Xn €C)< ig(f:I(x)

3.3 Theinitial distribution of particles

In Section 2.6, we saw that in order to obtain the hydrodyedimniit of the en-
vironment process, the initial distribution of particlesishbe associated to some
profile up. It turns out that in order to obtain a large deviation prpteifor the en-
vironment process, it is necessary (but far from sufficiemtinderstand the large
deviations of the initial distribution of particles. Lag be a given initial profile.
For simplicity, we assume thag is continuous and that there exists- 0 such that
Up € [€,1— €]. Recall the definition of the measurgs(} ;n € N} given in Section
[2.8. With respect tqv(j;n € N}, the empirical measurg; converges in distri-
bution to the measureg(x)dx, and a large deviation principle for the sequence
{mg;n € N} is not difficult to obtain. Recall that we considgf as an element
in M{,(T). Letvg(x)dx be an element oM, (T). This imposes the restriction
0 < v(x) < 1foranyx < T. Define 7

h(Vo|uo) ‘= A {(log (£2) +(1-w(x)log e ldx  (5)

The large deviations of the initial distribution of pargslis given by the following
proposition (see e.d. [18], Lemma 5.2, Chapter 10).

Proposition 4. The sequencérg);n € N} satisfies a large deviation principle with
respect to the weak topology dmal(TT) with rate function h.

3.4 Largedeviation principle for the environment

A large deviation principle for the proce$g";t € [0, T|} has been obtained in[119].
Let us recall this result. Fdd : [0,T] x T — R of classC*? and{rg;t € [0, T]} in
D([0,T]; M4 (T)), define

J(H; m) == 1 (Hr) — TB(Ho) —/OT 78 (O Hy + 20H; ) dit
(6)
_/OT/(DHt(X))ZTE(X)(l—I'E(X))dXdL
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and set
Zex(m) :=h(1H|Up) + HSG%EzJ(H; ).

The following proposition is the main result in [19].

Proposition 5. The procesq{';t € [0,T]} satisfies a large deviation principle
with good rate functiorZe, with respect to the 1.3Skorohod topology on the path
spaceD([0,T]; Mg4(T)).

3.5 Largedeviationsfor the random walk

For each functiorx: [0, T] — T of finite variation withxo = 0 and eacht: [0, T] —
MG, (T) cadlag, let us define

Toa(X|TD) = /0 {acn(t)¥ - PR )€+ 1) bat, where )
0g $VE Z;ﬁmx)t)”“”“‘”, VH(TE(%)V (TE(%)) > O,
Iog%&)), VE(ROOV (T6(4)) =0, X > 0,
2cn(t) = | ~log =iy VE(TE(x)V (T8(%)) =0, X <O,
oo, VE(TE(%))V (TE(%)) = 0, X = 0, V' (T§(%)) > O,
%, VE(TE(x))v (TE(%)) =0, x =0, v (78(%)) =0,

(8)

if x is absolutely continuous and— 1(X) is continuous ak; for a.e.t € [0, T].
Otherwise, or if one of the three integrals

[ itog* iat or [ (dy7iog” (Vo) ot 2= (@)

is infinite, thenZny (X|1T) = o, wheref™ = max(f,0) andf~ = max(—f,0) are the

positive and negative part of a function (note that due tolliszmn of notation,v*

andv~— are separate functions, not positive and negative partroédanctionv).
Our main result is the following.

Theorem 6. The sequencéx’;t € [0, T|} oy Satisfies a large deviation principle
with good rate function

Z(x) = inf {Zrw(X|T1) + Zex(m0) } .
Actually, this result will be a consequence of a large déwmprinciple for the
pair {(1¢;x');t € [0, T]}.

Theorem 7. The sequencg(m";x);t € [0,T]} satisfies a large deviation principle
with good rate functiorZyy, (X| 1) 4+ Zex(17).

The rest of the paper is devoted to the proof of Theoigms Gland 7
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4 Tilting measures and exponential martingales

According to Donsker-Varadhan approach to large deviat[8h in order to show
a large deviation principle, it is necessary to construaificiently rich family of
exponential martingales. The rough idea which will be cldang the proof is that
these exponential martingales will be used to tilt the aagidistribution of the
system in consideration, in such a way that atypical eveatstne typical under
the tilted distribuion. Let us introduce the family of madales relevant for our
scope. Recall equatiohnl(2) and et Q,, x T, x [0, T] — R be differentiable in the
time variable. Then, the process

t n.y N N.y N
exp{R (n15x) — Fo(ng) - [ & S5 (@, L) %as)  (10)

is a positive martingale of unit expectation (see €.gl [L8mma 5.1 in Appendix
1). Itturns out that there are two types of relevant functifor the large deviations
problem. Leta: [0,T] — R be a continuously differentiable function. Taking
R(n;x) = na(t)x in (I0), we see that the proce§s";t € [0, T]} given by

t
% log M = a(t)x —a(0)xg - / (AC+ 3 Antd) (@ -1))ds 11)
0 z=T1

is a positive martingale with unit expectation. Notice thytefinition,a(0)xj = 0.
Notice as well that integrating by parts, we see that

mnﬁ—/

0

T T

a(t)xdt = /0 a(t)w"(dt).
Therefore, in a sense, knowingl+" for everya, we know{x";t € [0, T]}.

The second type of function that plays a role in the derivatiba large devi-
ation principle is the following. LeH : [0,T] x T — R of classC'?, that is, once
continuously differentiable in time and twice continugudlfferentiable in space.
Let us define

Sy Hc=1 [ (8)(2) - 8)(2) H(2)dz

AnHi(x) :=n 5 O3 He.

yeln
Y~X

Itis not difficult to check that fok € Ty, y = x+ r—l] the functionDQyHt is a discrete
approximation of the gradieriiH;(x), and thatA,H;(x) is a discrete approxima-
tion of the LaplaciamH;(x). We extend the definition ofizH; to T by taking
linear interpolations. Taking (n;x) = ni"(H;) in (10d), we see that the process
{M{"t € [0,T]} given by

00" = R ) ~r8(Ho)— [{ @)+ 5 n20mH(0 s QUH)
2
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where

2/ 3 500 (1 12(y) w( S0%,Hs) ds

X~y

andy(u) = e —u—1, is a positive martingale with unit expectaﬁ)rSince we
are assuming tha is of classC*? we can write

- Z N (X)AnHs(X) = 1€ (AHs) + R3(H),

xeTn

where the error terriR(H) is bounded by a function of the form(H ), depend-

ing only on the modulus of continuity afH in T x [0, T] and converging to O
asn tends tow. Since the jumps of the environment and the particle arades.

joint, the martingale§ M";t EJO T]}, {M*";t € [0, T]} are orthogonal, in the
sense that the procegaVii" ;t € [0,T]} is also a positive martingale with
unit expectation.

5 Thesuperexponential estimate

One of the main challenges in order to prove a large devigtianciple in the
context of interacting particle systems, is to show thatlldanctions of the dy-
namics, when averaged over space and time, can be expresiketons of the
empirical measure plus an error which is superexponentafiall. Let us explain
what the superexponential estimate is in the case of thelsiaxglusion process
(that is, our environment process). In order to do this, wedngome notation.
Let f : Q — R be a local function. Recall the convention about how to [tofe
into Q,. Define f(p) = [ fdv, for p € [0,1]. Fore € (0,3) andx € T, let us
definerg(x) = %1((x,x+ €])). Whenx = 0, we just writel, instead ofi¢(0). The
following lemma is stated in [19], Theorem 2.1.

Lemma 8 (Superexponential estimate)et H: [0,T] x T — R be a continuous
function. Let us define

7?/tn,f(H):/oti Z {Tx r]S ( )}H

xeln

Then, for anyd > 0, and any te [0, T],

— 1 ne B
llTOrl]moﬁloan(\m (H)|>3)=-
This superexponential estimate is used[in [19] with two pegs. First, to
expressQ'(H) (recall the definition of the martingal{a/\/lf’”;t € [0,T]}in (A2))
as a function of 77";t € [0, T]} plus an error that is superexponentially small. And

2 Notice that we are making an abuse of notation, using the saiperscript structure fok4&"
andM{*"”. Later on we will introduce some more efficient way to handlgtiple indices.
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second, in order to obtain the hydrodynamic limit of suigapérturbations of the
exclusion dynamics. Notice that, as a consequence, we q:aasmvlf"” (more
precisely,%] IothH"”) as a function off i";t € [0, T]} plus a superexponentially
small error. Recalling(11), we see that in order to expres’ as a function of
{(m",}");t € [0, T]}, we need to express

/:Ci(né‘;@)(e*""(s) ~1)ds

as a function of these two processes. The superexponestiialage does not apply
for two reasons. First, there is no spatial average. Setbaghosition at which we
measure the local functioni™ changes with time (since it follows the location of
the random walk). In[[17] and in the context of the taggediglarproblem, both
problems were overcome by considering the environment exs fsem the walk,
{&";t € [0, T]}. Notice that in terms of the proce$§";t € [0,T]}, the integral in
guestion is given by

/Ot cH(&) (79 —1)ds

In this section, our objective will be to show the followingperexponential
estimate.

Lemma 9 (Local superexponential estimatd)et f: Q, — R be a local function.
Then,
i 17w ~logP(| [ {1(60)~ (720 }ag > 8) == (19)
£—-0n—o N : 0 s €

for anyd > 0 and any te [0, T].

To make the exposition clear, the proof will be divided iniwas steps. Before
starting the proof, we introduce some notations and coient Let us write

1 4t
Z e J— -
WHE) = 16 (7 3 £). (14)
With this notation, the integral in the local superexpoi@némma is equal to

t
/0 WEN(ENds (15)

For simplicity, we assume that the supportfa$ contained o1, ..., ¢y} for some
o € N. In that case, sugpVf) = {1,...,¢} for any ¢ > f. We will indistinctly

denote by\, the sets{1,....¢} C Z and{%,....£} C Q.

5.1 Reduction toavariational problem

In this section we reduce the proof of the superexponendihate to a variational
problem involving the generator of the dynamics. Let ustdigrintroducing an
elementary estimate, whose check is left to the reader,haiit be used several
times.
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Lemma 10. For any positive numbersia .., ay,

< . .
log{as +---+a} < 1r2ja£>;logaJ +log#

Using this lemma, we see that for any random variagle

logP(|X| > ) <log{P(X >9d)+P(X < —-9d)}
< max{logP(X > 9),logP(—X > d)} +log2.

Therefore, in order to shO\ECI13) it is enough to show that

lim lim = Iog[P’n / Wi"(&s)ds> 5) = —oo, (16)

£e—=0n—o N

Therefore, we get rid of the absolute value[inl(13). This lea®l advantages as
it will be clear soon. By the exponential Chebyshev’s indityefor any random
variableX and anyy > 0 we have that

E[e"]
etmd

%Iog P(£X>90) < %Iog = %IogE[eV”X] —yo.

Therefore, it is enough to show that

1t
suplim im = Iog[En[exp{iyn/O Wf”(fsn)dSH < o0, (17)

Yy €—=0n—o N

since in that case, calling this supremum

l@ogmnlogﬂmn / WE(ED)ds> 8) < K~y
for any y > 0 and sending to infinity, (18) follows. Since-Wg" = W=}, from
now on we omit thet in (I7).

The next step is to put the process in near-equilibrium idigion. Fix p €
(0,1) and let us denote bpfy the distribution of the proces&™;t € [0, T]} with
initial distribution v, (or equivalently, the procedgn;,x");t € [0, T]} with initial
distributionv, ® &), and letEf, be the expectation with respect®§. The actual
value of p will not be very important. Notice that, is not stationary under the
evolution of {§";t € [0, T]}, but it is indeed close to stationarity in a sense to be

specified below. By the Markov propertgﬁﬁ = dfj . Moreover, since/,(n) >

min{p,1—p} for anyn € Qp (in fact, the worst conflgurations argx) =0 or 1),
we conclude that there exists a constégit= Ko(p) such that| 3 vy llo <K forany
n e N. In particular, for any functiorr > 0,

En[F] = [EP[dV F] < KGER[F].

Therefore, from[(1]7), we get

:_r:|og[En[exp{yn/othen(Esn)ds}] < %‘IogEﬁ[GXp{yn/othfn(Esn)dsH + Ko,
(18)
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and it is enough to consider the cgsé= v,. The nowadays classical argument of
Varadhan (see Lemma A1.7.2 on page 336 of [18]) to estimater®ntial expecta-
tions as in the r.h.s. of (17), combines Feynman-Kac's féantith the variational
formula for the largest eigenvalue of the operafar- WWE", to get the bound

%Iog[Eﬁ[eXp{vn/Oth‘”(Es”)dSH<tsup{va 0% +3g.Ln0)},  (19)

where(,-) denotes the inner product irf(v,), the supremum runs over functions
g: Qn — Rsuch thatg,g) =1 andL, is the generator of the proce§g§";t € [0, T|}

in equation[(B). This variational problem will be the stagtipoint of the next step
of the proof.

5.2 Some propertiesof (g,£ng)
Define, forg: Qn, — R andx,y € T,

D*Y(g) = % / (9(n™) —g(n))*dv,,

and defineD(g) = 3., D*¥(g). Notice that(g, —LEg) = n*D(g), that is,n*D(g)
is theDirichlet form associated to the exclusion procdsg';t € [0, T|} identified
by the generator in equatiop] (1). The following propositieas proved in[1], see
Lemma 2.2 therein.

Proposition 11. There exists a constaEKl such that(g, £n9) < —nZD(g) +Kin
for any function g Qn, — R such that(g,g) = 1.

The intuition behind this proposition is the following. Theantity (g, £,0)
measures the entropy production rate, and,ifvere invariant, it should be neg-
ative. Sincev, is invariant under the dynamics of the environment, entrcgy
grow only due to the motion of the random walk. Since the ramadealk jumps
aboutn times on a fixed time interval, the entropy of the distribntad the process
with respect ta/, should grow with time at most linearly im

The following simple observation, which we state as a pritjpos will be
useful in what follows.

Proposition 12. For any xy € T, the function

gH/ (Vo) - /a(n)) vp(dv)

is convex. In particular, g+ D(,/9) is convex.

3Note that under the assumptioh 4+ ¢~ = 1, one can tak&; = 1.
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5.3 Theone-block estimate

In the previous section, we have reduced the proof df (1X)eovariational prob-
lem
l

S‘y’pl'ﬁ‘olfl sup{y(Wi",¢%) + £(9,£n0) } < +o.
Following the original idea of Guo, Papanicolaou and Vaeadfi 1], [8], [19], itis
convenient to break this variational problem into two pgcghe first one is what
is known as thene-block estimatdn this estimate, the macroscopically small box
of sizeenis replaced by a microscopically large box of sizend it corresponds
to the following lemma:

Lemma 13 (One-block estimate)

suplim lim sup{y Wt g?) + %(g,£n9>} < o0,

Yy {—o0N—ro0

Proof of Lemm&113By Propositiori 111,
1
sup{ YOV, &%) + -(9,£09)} < Ka+sup{ y(Wt,g%) —nD(g) }.

For the ones acquainted with the theory of hydrodynamictéimiell, the supre-
mum on the right-hand side of this inequality is basicallg tine appearing in
Eqg. 5.4.1 of [18], and the proof there applies to our situatioth essentially no
changes. For the ones who are not familiar with hydrodyndimiits, we include
a somehow simpler proof. Let us defitle = o{&(x);x € A¢}, where the set
Ne={3,..., L} was defined above. Notice that for any functmrD(|g|) < D(g),
while g2 = |g|2. Therefore, we can restrict the supremum abovado-negative
functionsg : Q,, — R such that(g,g) = 1. Let us define

Di(g) =Y D™(9).

XYEN,
X~y

For a given non-negative functigwith (g,g) = 1, let us defing, = E,, [0° \}"p]%.
By definition, (W§,g2) = (W§,g?), while by convexity,D,(g;) < Di(g) < D(g).
Therefore,

YWt g%) —nD(g) < y(Wi,g7) — nDe(gr)

and it is enough to show that

suplim lim su —nD

fo—mon—)oo p{y W > Z(g)} <t

where now the supremum runs over functign2,, — R such that/g,g) = 1 and
such that supf) C A,. Notice that on the supremum above, the only dependence
onn is on the constant in front dP,(g). Moreover, the variational problem is a
finite-dimensional one (2dimensional). In particulary lives in a compact space
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(topology does not matter here, because all the metrics qarizagent in finite-
dimensional spaces). Therefore, for eagtihere exists a functiog” for which
the supremum is attained. Fgr= 1, yW$,g?) —nD,(g) = 0. Therefore, the
supremum is greater or equal than 0. Therefrgg”) < £||f||., and in particular
Dy(g") tends to 0 as tends tow. Letn' be a subsequence such thatonverges
to some limitg”. Sinceg — D,(g) is convex, it is also lower semi-continuous.
Therefore, we have tha?,(g°) < lim, Dy(g") = 0. We have just showed that

Tim sup{y(Wr,¢%) ~nD(g)} = yVt,§°)

for some functiorg® Q, — R satisfying(g,g) = 1, supgg) € A, andD,(g) = 0.
Let us identify {0,1}* with Q,, where we forget about the periodic boundary
condition. Recall the definition of the spac@g, given in Sectiori Z]1. By the
irreducibility of the exclusion proces®)(§) = 0 implies thaig’is constant on each
of the space€),, k=0,1,...,¢. On the sef),

wi(n) = t(n)—f(¥).

Therefore, there exists a sequence of positive numpg(®),..., p(¢)} such that
Sp(k) =1 and

We6) Zp {flcO-1(1)},

wheref (k;¢) = [ fdvi,. We have thus reduced the proof of the one-block estimate
to proving that
lim sup |f(k¢)—f(¥)|=0.

f—00 1<K/

This limit is equal to 0 in view of Prop. 3.1 in][9], known in thigerature as the
equivalence of ensemblebhis finishes the proof of Lemnall3. O
5.4 Thetwo-blocks estimate

In view of Lemmd_1B, in order to complete the proof of Lenimhat & enough to
show the following.

Lemma 14 (Two-blocks estimate)

suplim fim lim sup{y Wi — WEN %) + <g,£n>} < +00.

Yy {—o00eg—0n—c0

In order to prove this lemma, let us first define, foe Qn, x € T and/ < n,

EZ(X):Z &(x+y).

ye/\y

This notation will not enter in conflict witlg", since we will only use it in this
section, where no reference to the evolution is made. Ntbltiaewﬁ - Wi =
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f(£%(0)) — f(&€"(0)). Since the functiorf is local, the functiorf is a polynomial,
and in particular it is uniformly Lipschitz ofD,1]. Let K be the corresponding
Lipschitz constant. Let us assume tlgatis an integer multiple of. The modifi-
cations needed if this is not the case will be evident. We ltizae

)

W= W <Kie(0) - £7(0) | < Ki 11 1€1(0) - )
y

where the sum is over sitgse A¢n Which are multiple integers oﬁ The two
blocks on the name of Lemnial14 are the two blocks of éipe the right-hand
side of this inequality. Using Propositionl11 and the inditpiabove, we see that
to prove Lemma&4, it is enough to show that

suplim lim Tim supsup{y 1£5(0)—&(y)|,0%) —nD(9)} < +.  (20)
Yy {—o00g—=0n—o0
The proof of this inequality is very similar to the proof oftlone-block estimate,
therefore we will not give the full details in the derivatiohthose steps which are
also present in the proof of Lemrhal13. LEf = 0{&(x),&(x+Y);x € As}. We
can restrict the supremum to non-negative functiomgth (g,g) = 1. For a given
non-negativey, defineg,y = E,, [gz|]-"g’]%. Define

DY( Z {DX z _|_ Dx+y,z+y(g) }

X,zeNg
X~z

By Propositior IRD)(gry) < D(g). The main difference between the one-block
and two-block estimates is the following. The dynamics esponding to the
Dirichlet for DZ(-) corresponds to two exclusion processes evolving in the two
blocks separately. Therefore, a term connecting these ywardics is needed. Let
us defineD}"*(g) =DY(g) +D%v>’+%(g). This new Dirichlet form connects what
happens in the two boxes, through exchanges of particlegebatthe first site of
each box. The followingath lemmaells us how to estimat@}’v*(g) in terms of

D(g).
Lemma 15 (Path lemma) For any g: Q, — R and any ye T,
DY (g) < 4)yInD(9).

Proof of Lemm&J5To simplify the notation, we switch t® = {0,1} and we
considery =/¢—1, /¢ € N. For any permutatiow : Ay — /\, and anyé € Q, let us
defineé? € Q as

oo ) E(0x), xeN
¢ (X)_{E(x), otherwise

According to this notation,
1
DM (g) =5 [ (9(E™) ~ 9(&)) v ().
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Notice that(1¢) =(12)...({—1¢)(¢—2¢—1)...(1 2), that is, the transposition
(1¢) is the product of 2— 3 transpositions between neighbors. Let us denote by
oj the product of the firsf transpositions. Since the measwygis exchangeable,
for any two permutations, T,

[ (067~ a(6M)v(08) = [ (9(E%) ~9(&)) v ().

Let us writeg((19)) —g(&) as a telescopic sum:
20-3
9(et) —g&) = 3 (9(87) —g(&7)).

=

By Cauchy-Schwarz inequality,

20-3
2] (06 ~0@) wp(at) < 7525 [ (€7 (&) vyl

Notice thatoJ 1 Is a transposition between neighbors, and notice as wéill tha
each pair of nelghbours appears at most twice on the sum aigtiiehand side of
this inequality. Since @¢ — 3) < 4¢, the path lemma is proved. O

Proof of Lemm&l4Using Lemmd_Ib, we see th&/ (g) < (1+ 4en)D(g) for
anyg: Qn, — R. Therefore, in order to shovi (20) and hence Lenimia 14, it is
enough to show that for any> 0,

1

A~ D =0.
7g> %+4€ Z‘*(g)}

fim Tim Tim supsup{y 1£10)— &(y)

(—00 e—0N—r00

For the reader who knows the theory of hydrodynamic limhss variational
problem is essentially the same appearing in the middle gé @8 of [18], and
in particular, they may skip the rest of the proof. Let us tifgrthe set of}‘l}'-
measurable functions with the set of functions frexh= {0, 1} x {0,1}" to R.
Let us denote byé, {) the elements oﬂ)[?. With this identification, we can rewrite
the supremum above as

1

sup{y{|¢'(0) - 2'(0) ,92>—ﬁw7*(9)},

where the supremum is over non-negative funct'@n@f — Rsuchthatg,g) = 1.
Notice that the dependence grhas been totally washed away. Repeating the
compactness argument given in the proof of the one-blodknat, this time with

¢ playing the role oh, we are left to proving that

im su%/\f 2 (0)|dvg, =0,

£—00 0<k
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wherevg, is the uniform measure on the set
§,0)€Qh Yy {E0+7(0) =K} .
{eaeat 5 (200 +209-1}]
It turns out that it is simpler to compute
/(ff(O)—zf(O))zdvk%f:oz/(ff(O)—ff(z))zdvk,zg.

In fact, it is enough to observe th€ (xX)dvi s = 2—‘} and that/ &(x)& (y)dvi o =

k1) With these two computations in hand, we can show that thianvees

X2-1)
above is equal t g?ﬁ:g < 52+, which finishes the proof of Lemniall4. O]

5.5 Final remarks

In the previous four subsections, we have proved the loqarexponential esti-
mate, Lemmal9. It turns out that in its current form, thisigg what we need in
order to deal with the martingalds\i{";t € [0, T]}. The problem is that the local
function appearing there also depends on time. Recalliaghttund in[(IDB), we
see a constamtmultiplying the supremum on the right-hand side of the iradity
This constant can be changed into an integration ¢, if the local functionf
depends om as well. We did not include this dependencet drom the beginning
because it would have overcharged an already heavy natétitime application we
have in mind, the dependencetda rather simple. In factf (&) = ¢*(&)(eXt) —1).
Therefore, the constarf® — 1 could have been absorbed intaluring all the
computations, and in the end what we could prove is that tte Euperexponen-
tial estimate remains true wheneer [0, T| — R remains bounded. If the reader
is not satisfied with this sketch, here is a different argumd®ecall that in the
construction of the martingalgM{";t € [0, T]} we are assuming thate C*. Ac-
tually for the argument we will explain, continuity is endugSincef is bounded,
givend > 0 it is possible to find’ > 0 such thate?®) — eX¥| < 2 if [s—t| < &'.
Therefore, we can approxima#&!) — 1 by a function which is piecewise constant
on finite intervals of size at most, with an error at mosg. On each one of these
finite intervals we can use the local superexponential esénproving the exten-
sion to the time-dependent functiari(&)(e2!) — 1). Since we will only need the
superexponential estimate for these functions, we stateatlemma:

Lemma16. Foranyte [0, T], anyd > 0 and any continuous function:d0, T] —
R,

lim lim :—LlogIPn<

£e—0n—o N

[ 28 VA (002} (27 - 1)dg > 5) = e
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6 Theenergy estimate

Letu:[0,T] x T — R be a function of clas€®!. Theenergyof the functionu is

defined as -
2
Ou(t, x)) “dxdt
/0 A( (t,x))

Recall that according to our definition of the empirical meas77";t € [0,T]}

in terms of finite elementsig’(x) has finite energy for ang € N. Our aim will
be to show that in some sense, the probability of trajectonigh very high en-
ergy is very small. Recall thgtrg";t € [0, T]} is a very oscillatory object at local
scales, so a naive approach does not work. Indeed, we will asariational
characterizationof the energy. Therefore, let us introduce some Hilbert apac
For f : [0,T] x T — RA define

T 1
[fllor = (/0 /Tf(t,x)zdxdt) ‘.

Let us denote by{o t the Hilbert space f; || f|lo1 < o}. For f,g € Ho, define

T
(f,g)or = /0 /T f(t,)g(t, X)dxdt
For f € Ho, let us define

[ fllir = Su(g((fﬂh»o:-

l[hllo.r=1

We denote by 1 the space of function$ € Ho 1 such that| f|1 1 < «. Notice
that# 7 is not a Hilbert space: functions that are constant in spadesach that
fOT f(t)2dt < e belong toH 1 and satisfyj| f||; T = 0. In fact, if we say thaf ~ g
wheneverf —g=: A does not depend ax then?{17/ ~ is a Hilbert space. We
will not use this fact, but we will use the following:

Proposition 17. If ||f||11 < o, then there exists a functidiif € Hor such that
| flloT = ||Of|loT and moreovex f,Oh)ot = —(Of,h)or for any h of clas€®?.
In addition, the function x> f(t,X) is continuous for a.e. & [0, T].

Proof. The existence oflf is guaranteed by Riesz’s representation theorem. By
Fubini’'s Theorem,[ (0 f;)?dx < oo for almost everyt € [0, T]. And by Sobolev’s
Embedding Theoreny; (0 f;)2dx < 4o implies thatf is Hélder-continuous of in-
dex 1/2. O

Let {hi; j € N} be a sequence of functionsdf?, dense in the unitary ball of
Ho1. Then, we can restrict the supremum in the variational féanod || f||1 1 to
the set{h); j € N}: _

Il = sun(f, OhMhor

4In this section we will only usé for test functions; do not confuse with the notation local
functions used in the previous section

25



Throughout this section, we will denote o the procesg";t € [0,T]}, and we
will denote by (without the dot) the function

ne Y nx)o(y)dy

xeln
from Qp to Mg 4(T).

Lemma 18 (Energy estimate) There exists a constanty& (0,) such that for
any M> 0, and any/ € N,

—1 - M
lim n IOan(éijgé«nﬂ Oh)or >M) <Co— >

n—co

Proof of LemmaZl8By Lemmd0, it is enough to show that

1 ; M
im ~logPy( (0N )or > M) < Co— >

n—co

for any j € N. Using the exponential Chebyshev’s inequality, we seeftradny
y > 0 and the computations done in Secfion 5.1,

%Iogﬂl’n(«nﬂ Oh Yot >M) < —yM + % logE, [ or]
T )
< —yM+ Ko+ Ky T +/0 sgp{v(n”(Dht‘),92> —nD(g) }dt.

Therefore, we need to estimate the supremum on the riglit-side of this equa-
tion. The way to estimate this term is different from what viet id Sectiong 5.3
and5.4. Using the definition af", we see that

(O = 5 (9= n0c+ 7)) (N9 +rd(t0).
with rrj](t,x) a correction of order An. Therefore,
(O, ¢7) = 5 (W09 +rk(t) (19 = n0ct ).

We will use the following trick: for any,y € T" and anyg: Q, — R such that
(9,9) =1,



for any By > 0. In the first inequality we used the weighted Cauchy-Schwar
equality and the inequality between arithmetic and gedmetean. In the second

inequality we used the fact thag,g) = 1. ChoosingBx; ! = M we
obtain the bound

V2

T (Weo i)

XeE ln

y(r"(Oh), %) —nD(g) <
valid for anyg: Q, — R with (g,g) = 1. We conclude that

IogIP (((n” h1>>0T>M)< yM+K0+K1T+y2/ z htJ +rJ t x)zdt.

xeTT

Therefore, sending to o we see that fo€y = Ko+ K1 T,

lim %Iogﬂl’n(«n”, Ohi Yot > M) < —yM +Co+ V2.

n—oo

Minimizing overy concludes the proof. O

7 Theupper bound

Now that we have the superexponential estimate and the yeestgnate at our
disposal, we can show the large deviation upper bound onréh&@. As we have
done before, for the sake of clarity, we break the proof irsous steps.

7.1 Theupper bound for open sets

Let us recall that we want to obtain a large deviation prilecfpr the pair

{(";x");t € [0, T]}, viewed as a random variable with values in the Polish space
E=D([0,T|; M,(T)) x MT([0,T]) x MT([0, T]). Recall that we are identify-
ing the proces$x’;t € [0, T|} with the pair of positive Radon measures”, w!),
corresponding to the derivatives of the proces#‘q%_, r—l] Lo

The spacd)([O,T];Mafl(T)) is equipped with thel;-Skorohod topology, while
M™(]0,T]) is equipped with the weak topology.

Notation will become cumbersome very quickly, unless wepadome sim-
plifying conventions. We will denote the proce§st;x');t € [0,T]} by (1) x").
In particular, we abandon the notation introduced in Sedip where we used
the notationr” (with a dot) for {r";t € [0,T]}. Let. A C £ be an open set and
{M{;t € [0,T]} be a positive martingale with unit expectation. Assume ihtt
is a function of(r}x"). Then,

1 1 _
~logPy(A) = ~ logEEy [M$ (M) H14]

< sup = Iog (Mt
(n”x”)eA
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The martingaleg M®";t € [0, T]}, {M{"";t € [0,T]} are not functions ofr" x")

but the superexponential estimates of Leniina 8 and LemimayltBathese mar-
tingales can be approximated by functions(af x"), with an error that is super-
exponentially small. To keep track of all the indices andeethe reading, we
now introduce some notation. Let us denotel lihe set of indice$ of the form

i ={vo,a,H,€,0,(,M}, wherevy : T — [0,1] is continuousa: [0,T] — R is of
classCt, H:[0,T] x T — R is of classC'?, € >0, > 0, and/,M € N. In what
follows, we use the indek to denote dependence on some (sometimes all, but
not always) of the variable§vp,a,H,¢,d,¢,M}. We start by preparing an initial
distribution associated to a profig. Forvp : T — [0, 1] continuous, define

Vo(X) (1—Uo(x))
Uo(X) (1—Vvo(x))

Recall the definition of pJ;x € Tn} given in Sectior . 2]6. Define the functions

e =n/&(y)f(y)dyand

f(x) =log

nafy
VQ:PX—an_
1+pR(e —1)

DefineVy} as the product measure @, given by

o (n) = E]I {Mn 9+ 1-v)(1-nXx)}.

Notice that with this definition, the Radon-Nikodym derivati‘j—“% is a function

of the empirical densﬁ;n{,1 The procesg(n";x");t € [0, T]} with initial distribu-
tion v” has dlstrlbutlondv—vn"I]J’n Recall [11) and(12), and consider the martingale
{MI™:t €[0,T]} given by

dv
dvi

MM = Z20 A3 pqH (21)

Uo
LetZ! = US'S NUES Ny, , denote the intersection of the sets

Wi ={| Q- [ 15 (OR)P00) (1 e 0)) ] < 5}, 2

xelhy
| [ v e} e -ad <5}, @3
Uy = { sup (1", h} Yo7 < M}

1<j<¢
Lemmd16 and Lemniall8 imply that

fim fim = Iog[P’n(( ') = —e,

e—0n—o N
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fim Tim E|oguﬂ>n((u§2)°) =%,

e—0n—o N

—1 n \C M
lim =logPn((Uy,)") <Co— 3.
Therefore, L
m —logPy((147)%) < max{U2}',Co— 4},
whereU, & H is a constant which converges-teo ase — 0, regardless of the values
of 9, aor H Therefore

M = logP((1)X") € A) <

n—o N

< rL_mOO%Iomeax{Pn({(n'lx”) € A}ﬂui”),Pn((Uin)c)}

< max{ [m ~logPa({(r1X") € A} 2", UZY Co— 4},

Onthe sel4", the martingale\/liT’n is a function of the paifr",x"), plus some small
error term. Consequenlty, we can bound

}IogIPn({(iﬂx”)eA}mL{i”)g sup  {—(je(a;mx)+I0(H;m)+
n (TTx) € ANUY,

+ hn(Vo, Ug; 0)) +rn(H) + 26},

wherel; = {supi<j<¢{(1, Oh')o1 <M} and the functiong,, J? andhy, are given
by

je(& 1M,X) :a(T)xT—/O { t)% + zivz eza(t )ds}, (24)

J¢(H;m) = 718 (Hr) — 18(Ho) — /O 7 (& H; + 2AH; ) drdt

‘/oTl > (OH() *T8 (16 (X)) (1= TR (16 (x)) di,

nxd]'n
hn(Vo, Uo; ) = /Iog%dmﬁxe Iog1 ;:

Recall that the error term,(H) comes from replacing a discrete version of the
Laplacian ofH by AH. The error term @ comes from the use of the superexpo-
nential estimates stated in Lemfa 8 and Lerhma 16. Using thetemess of 1H;
and ofvp, we see thal, andJ} converge to the functions
T
J(Hi ) = 11 (Hr) = To(Ho) — / (ath +28H,)driclt
(25)

/ [ (BHk00)218(16(0) (1~ 7e(16(9)
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0(X)(1— uo(X) 0(X)
h(vo, Up; TH) = /Iogmdrwr/logmdx

Let us define

je(a 71,X) 4+ Je (H; 1) + h(Vo, Up; Th) — 28, if (11,X) € Uy

. (26)
+00, otherwise

ji(n,x):{

The functionJ;(,X) is lower semicontinuous, since each one of the functigns
Je andh are continuous, and the g4}, is closed. Minimizing over all the indices
i, we finally obtain the upper bound for open sets:

W}Iogﬂmn((n‘“xn)efl)ﬂnf sup max{—Ji(,x), ij,co Myoo@n

n—oo N i€l (mx)eA

7.2 The upper bound for compact sets

Once a large deviation upper bound has been obtained forsgienthe standard
way to pass from it to an upper bound for compact sets is ttirdhg so-called
Minimax lemmawhose proof can be found in [18], Lemma 3.2 in Appendix 2.

Proposition 19 (Minimax Lemma) Let{F;i € |} be a family of upper semicon-
tinuous functions defined on a Polish spateLet {P,;n € N} be a sequence of
probability measures i&@. Assume that for any open sétC &,

—1
rm]oﬁloan(,ét) <inf supFi(x).

i€l xe

Then, for any compact skt C &,

— 1
I 3109 (k) < o 7100
Let £ C & be a compact set. Applying the Minimax Lemma to the family of
functions max—J;(m, x),Uf’('; ,Co— %} in (Z17), we obtain the bound

rI]imc%IogIP’n((n“,x )EK) < (nSXl)JGpKIIQf max{—Ji(1,x), ij,co— My (28)
Recall that the index includes all the possible choices @, a, H, ¢, J, £ and
M. We will take advantage of this by taking the infima in the tighder. Ob-
serve that we can replace inf by liminf whenever it is conganisince the liminf
of a sequence is greater than the inf of the same sequencall Recdefinition
Uy = {supi<j<¢(rm,0h Yo7 < M}. Now we send — . Notice that (7, x) is
increasing in¢: the set where we defing (7, x) as equal tot- is growing with
¢, and outside of it, the functiowj(r,x) does not depend ofi This is equiva-
lent to saying that we are restricting the supremum to thersection oflC and
Uy = Nldy,. By the definition of the sequendd’; j € NI}, the setdy is equal to
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the set{||r|17 <M}. Now it is the turn of sendinl — . Doing this, there are
two effects. First, the terf@y — % goes to—, and we can take it out of the maxi-
mum. And second, the sét= Unly is equal to the sek{1 1 = {||7]|17 < +oo}.
Therefore, after taking the limit infirst and then irfM, in view of (28), we end up
with the inequality:

lim %Iogﬂl’n((iﬂx") € K) < sup inf max{—J7(m,Xx), UaH} (29)

n—oo KNHar |

Notice that these two limit procedures together with Sedfiowere devoted to
maximize over the seC N H 1 instead ofC. The reason for this will become
transparent in what follows. We now move to minimize thest.of (29) overe.
Recall that).”" aH 5 goes to—o ase — 0 if the other parameters are fixed. But then we
need to analyze the limit of/ (17,X) in (26) whene — 0, The analysis of the term
Je(H; m) in (28) has been already done(in[19] and in Chapter 10 of [I8grefore,
we just need to look af:(a; 7,x) in (24). Whene — 0, we cannot guarantee that
TE(1:(%)) in (24) goes torg (%) if we only know thatrg has bounded density: it
may easily be the case thatis a non-removable-by-smoothing discontinuity for
everyt € [0, T|. The set of points of this type forms a very thin subsef pbut we
cannot rule out a pathological behavior supposing only that AMJ,(T). Since
we can assume that € 1, we can also assume that— 7g(X) is continuous
fora.e.t € [0, T]. Then, % (1¢(%)) converges tag(x) for a.e.t € [0,T]. By the
dominated convergence theorem, we conclude jih@t 1z, x) converges, as — 0,

to

j(a;n,x):a(T)xT—/o{ D%+ 3 V(s NE -1ldt (30)

As shown in[[19], a — 0, the functionJ;(H; 1) also has a well-defined limit,
and the fact thatg € Mafl(T) is enough to justify the limit. This limit is equal to

i 3¢ (H; 1) = J(H5 70 1= 7 (i) — (o) — [ (@ + 284 et

//DHt (X)(1— 7% (x)) dxdt,

Finally, by takinge — 0 in the r.h.s. of[(29), we get the bound

W%Iogﬂmn((n‘lx")emg sup inf {—(j(a m,x)+JI(H;m) +h(vo,uo; T0))}

n—e KNHy,7 Vo,aH

=— inf (& J(H; h
cinf sup {1(@ ) +(H: ) + h(Vo, Uoi 7o) }-
It turns out that the last supremum is exactly the rate fonadf the large deviation
principle stated in Theore 7 (see equations (1.1)-(1.@hiapter 10 of [18] for the
equivalence), and therefore we have completed the largatievupper bound of
TheoreniV for compact sets. We state this bound as a lemmartbef reference.
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Lemma 20. For any compact set C &,

lim %Iog[Pn((n”,x”) € K) < — inf {Tw(Xm) +Zex(m)}

N—o00 (mx)ek

7.3 Upper bound for closed sets

The canonical way to extend a large deviation upper bound frompact sets to
closed sets is to proving tlexponential tightnessf the corresponding sequence of
processes. We say that the sequemtex”) is exponentially tight if for any > 0
there exists a compagiy C £ such that

Tirn 1 n C
r!moﬁIogIP’n((n“,x )€ Kn) < —M.
The relevance of this condition is given by the following pposition, whose proof
is left to the reader.

Proposition 21. Let{P,;n € N} a sequence of probability measures defined on a
Polish spacef. LetZ : £ — [0,»] be a lower semicontinuous function. Assume
that for any compact séf C &,

lim %Ioan(lC) < —inf Z(x).

n—oo xell

Assume in addition that the sequer{&; n € NI} is exponentially tight. Then,

lim %Ioan(C) < —infZ(x).

n—co xeC
for any closed sef C €.

Due to the product structure of the state spacei"), it is enough to show
exponential tightness for each of the procéss;n € N}, {x";n € N} separately.
The exponential tightness ¢f1";n € N} is proved in Chapter 10.4 ¢f [18], starting
from eq. (4.5). We are left to proving the exponential tiglg® of {x";n € N}.
This is equivalent to showing the exponential tightnessacheone of the processes
{w?;n e N}. Recall the following characterisation of compact setd6f ([0, T]).

A closet setC € M™*([0,T]) is compact if and only if sup. 4([0,T]) < +-oo.
Notice as well that? ([0, T]) = %N%*”. Therefore, in order to show exponential
tightness of w?;n € N}, it is enough to show that

T~ 7 1
lim_ Tim logPn(N; " > nM) = —oo.

M—>c0 n—00

This is actually simple to prove. In fact, the proces&es™";t € [0, T]}
+ + t
M —exp{ONC " —n [ ¢ (80) (" - 1)as)
0
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are positive martingales of unit expectation. In particuiakingCy; = sup: ct (&),
E, [eeN[i”] < eclnt(eefl).
Using the exponential Chebyshev’s inequality, we see that
%Ioan(Nif’” >nM) < C,T(e? —1)— M,

which proves the exponential tightness{af;n € N}. Therefore by Proposition
2T and Lemm&20, we conclude that

lim }Iog[ll’n((iﬂx”) €C) < — inf {Zw(X|m)+Zex(m)}, (31)

n—o N (mx)eC

for any closed sef C £.

7.4 Some properties of therate function

It turns out that a more explicit formula for the rate funatif., (x|77) can be ob-

tained. Recall that we are assuming tlxabas finite variation. We claim that
Zw(X|TT) = +oo if X is not absolutely continuous. Singehas finite variation, we
can justify an integration by parts to show that

a(T)xT—/.Ta’(t)&dt:/.Ta(t)dx.

0 0

Therefore,

w(X|T) = su t)d / VA(1E (%)) (€AY —
(xm) = sup{ =[S v Ldt}.
Let us assume thatis not absolutely continuous. Then there exists a compact
setK C [0, T] such thatfy 1xdx # 0 and f; 1cdt = 0. For simplicity, we assume
thatx(K) = fo 1xdx > 0. SinceK is compact, there exists a sequence of smooth
functionsag : [0, T] — [0,1] such thatae | 1k as€ — 0. Then, by the dominated
convergence theorem,
T
Iim/ Aae(t)dx = Ax(K),

e—0.J0

’
tim [ 3 V()@ njat=0

SendingA — o, we conclude thaf,(x|7) = +c. In particular, we can rewrite
the rate functiorZ,, as

w(X| ) = sup/ (t)X — Zivz ) (€230 — )}dt. (32)

acCt
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By an approximation argument, we can check that the supreavent’* functions
can be replaced by a supremum over bounded functions. Arr byoped forZ,,
can be obtained by exchanging the supremum and the integrdthe maximizing
functiona s sensitive tor" (15(x))v (78(%)) = 0. If v (15 (%))v (T8(%)) > O, it
is given by

Iog)(t+\/ )2+ vt (1 (%) )V (18 (%))
2t (T8 (%))
_)(t+\/ )2+ avt (1 (%) )V (18 (%))
v (T8(%)) '

In general, the pointwise supremum aft)x — ¥, V¥(7k(%))(€3Y — 1) is ob-
tained at

an(t) =

(33)

(34)

anl(t), Vi)V (T8(%)) > 0
|ogv+(‘,f(‘xw VH(TE(x))v (TE(%)) =0, X >0
an(t) =4 —log =2, VH(IR))V (TE(x)) =0, X <O
—o, VE(TE(%))V (T8(%)) =0, X =0, v (7(x)) >0
o, VE(TE(%))V (T8(%)) =0, X =0, v (7(x)) =0

(35)

where we use the convention that0 = 0.

If ax r is bounded we have an explicit form &g, by (32).

We show now thaf(35) is in fact always the optimizer. For dampotation, we
write i = v* (75(%)). In a first step, we look at the finiteness of the rate function:

Lemma 22. The rate functioriZ,y (x| ) is finite if and only if x as absolutely con-
tinuous and

[ iiog" ¢t < 0
/(;T(><)+IogJr (%) Y dt<e and (37)
[ 607 tog () ) < 2

where f- =max(f,0) and f~ = max(—f,0) are the positive and negative part of
a function.

Proof. Finiteness of the rate function follows from

/(;{axn (0%~ 3 Vs (€0 1) dt < o, (39)
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which we now show undef (B6), (37) and]38). First we obsemaeé t

0< § V) < 21¢| + 24 /v vy . (40)
z; 1 |)<| TVt

Hence
/o ! z;[ ‘vtz(eza*-"(‘) —1) ‘ dt < (41)

by the absolute continuity ofand the fact that™ andv— are bounded from above.
Since the integrand if_(B9) is non-negative, it follows fr@) and [411) that we
only need to look at the integrability of the positive part

(Bxr(t)X) " = ac(t) ()" +ac(t) (%)

W.l.o.g. we look at¢ > 0. We have

/ / +—
[Xaawds [ % |og<xt+JxW> "
{te[0,T]:x >0} {te[0,T]:¢ >0} t
/ \//274+7 .
< /)4 Iogxt+ (Xt)2 TV G />< llog (")) dt,

{te[0.T]:X >0}

which is finite by [36) and(37).

For the other direction, assume tHatl(36)J (37).al (38) imitej which is equiv-
alent tofiic(o1):x-0y 1% /109" ‘\% dt =0 0r [0 )x<0y 1% /10g" ‘\:‘4 dt=co. To see
that notice that since® is bounded from above there is no relevant difference be-
tween log and log, the integrals can only diverge if the argument of the Idbani
diverges. So assume W.L.0.fco1):x~0y X/109" ‘\2‘4 dt = . Define forK > 0 the
bounded function

ak (t) := min (Iog+ <x{+ K (xé\)/2++4vt+vt‘> ,K)

{te[0,T]:x >0}

Ty o

Then, by [3) and using the fact that; (e — 1) > 0 and—v{ (e«® — 1) >

—% <)(€+\/W>,Wehave

Trw(X| 1) > /OTaK(t)>4 - Zﬁ(ez"*(” _ 1) dt

> [Tactd— 2 (/007 av ) dt
J 5
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Sincex is absolutely continuous, there is some consknt O independent oK
so that

Trw(X|1T) > / X min (IogJr (X‘/ Ty (Xg;f 4Vt+vt> ,K) dt—M
t

{te[0,T]:x >0}

> ><mm<|og <é> >dt—M

{t€[0,T]:x >0}

which by assumption diverges Ks— oo. O

Lemma 23. The rate functior¥,, (x| ) is given by

Trw(X| M) = /O{ax,T t)x — ;vz eza‘" —1)}dt.

Proof. Most of the work has been done in Lemma 22, in particular wenkiat

Zrw(X| M) < /O{axn (t)x — Zivz ezam _1)}0“

and the left hand side is finite iff the right hand side is. Soomly need to show
that the right hand side is also a lower bound. We defin&for0

ak (t) == max(min(ax »(t),K),—K).

Then
.
Trw(X|T0) > limsup | ax ()X — Z[vf <e2a<<t> - 1) dt
K—o0 0 7=

To move the limit inside the integral we will use dominatedwergence. We claim
that there is aM > 0 so that

‘a.(m - 3 (01

which is integrable by LemmaR2. The first term is clear, so wiy ok at the
second term:

v (&% 1) < <|x{|+\/ )2+ Ay +vz>1]aK 01K
<|><|+\/ 22 v +v2> -

+vi(1- eiK)/I]aK(t):fzK
<2)%|+M

< laxn(t)X| + 4| +2M,

for someM > 0 depending only on the upper bounds/of O

36



8 Thelower bound

8.1 Hydrodynamic limit for the perturbed system

From now on we denote bya given choice of the triplé = {vp,H,a}, where
Vo: T — [0,1] is continuousH : [0,T] x T — R s of classC?? anda: [0,T] — R
is of classC*. Given such an, consider the martingal&t; " from (21). Since itis a
positive martingale with unit expectation we can use it thrdea new probability
law Pl onD([0, T]; Qn x Tp), by

d[l:Din . in
ap. =M

We call theperturbed systenthe time-inhomogeneous Markov proces<pix T,
described by}, with generator

Li,n,t f(n;X) — 2 Z th(nx.y)—Ht(n)(f(nyz;x) _ f(n:X)) (42)
y~z

+n Y EUEmx)(f(nix+§) - f(n:v), (43)
z=+1

whereH(n) = [ Syer, N(X) 8 (Y)H (y)dy. We want to derive the hydrodynamic
behaviour of this perturbed system, namely, the analogsagd?itiond 2 and]3.
For this aim, we first show that the statement of Leniiina 9 resnaifiorce under
pi

Lemma24. Let f: Q, — R be alocal function. Then,

/:{“fs”) - (7)) }ag > 8) =~

for anyd > 0and any te [0, T].

lim fim }IoglPin<

e—0n—o N

Proof of Lemm&24By (21) and the explicit expressions of the involved factors
we have that

dPi -
I o = 1Ml < €xp{nCypiat}. o
n

Recall the notations if(14) and {15) and note that

Liogmi (] [fpencen _ 1 0gE. [P
109P( /0 Wi(E)dg > 8) = nIOg[E”[d[Pn 1{|fc§W?”(Es”)dd>5}}' (45)

The claim now follows by applyind(44) and Lemia 9 to the r.bfg45). [

Note that the generator if_{(#2) restricted to functionsngctinly on the first
coordinaten corresponds to a perturbation of the exclusion process. hytem-
dynamic behaviour of such a perturbed exclusion processeiskmown in the
literature, see e.gl_[18], Proposition 5.1, Chapter 5. Waltét in the next propo-
sition.

37



Proposition 25. Fix i = {vo,H}, with respect td®!,,

lim 71"(dx) = u;(t,x)dx

n—o0

in distribution with respect to the;dSkorohod topology oD ([0,T]; M™*(T)),
where the densityu;(t,x);t € [0,T],x € T} is the unique solution of

{dtui (t,X) = Aui(t,X) — A (Ui (t,X)(1— i (t,X)3H) (46)

ui(0,x) = Vo(X).

We are now ready to prove the hydrodynamic behavior for otupgeed sys-
tem.

—~

Proposition 26. Define & (p,t) := e"aUv*(p), va(p,t) := Vi (p,t) —v; (p,t) and
fix an index i= {vo,H,a}. Under P}, the triple (7", IN"", IN"") converges
in distribution to (Gi(t), 2(fi(t) +1), 3(fi(t) —t)) with respect to the :JSkorohod
topology inD([0, T|; M*(T) x M™(T) x M™(T)), whered; is the unique solu-
tion of

{atai (t,xX) =AG(t,x) — I (Gi(t,x)(1—Gi(t,x))0xH) + va(Ui(t,0)) Ui (t, x)
Gi(0,x) = Vp(X),

(47)
and f is given by

f/(t)  =va(ui(t, fi(t))) = va(Gi(t,0)) (48)
fi(0) =0.

Sketch of proof of Propositidn P8Much of the proof is analogous to the proof of
the unperturbed system derived|in [1]. For this reason, iiegitow how to adapt
it. Sincea,H are bounded, the tightness arguments7fax" of [I], Section 2.3,
show tightness in the spad@([0,T]; M™*(T) x T). A more careful checking of
these arguments show that we can actually prove tightneB$[iT]; T) of each
of the processe%%l\lt”’i;t € [0, T]}nen- Since these processes are increasing, the
uniform topology is stronger than the weak topology, shawtightness for the
triple (78", TN, AN ).

To identify the limits, the local replacement lemma &Y needs adaptation to
the perturbation, however Lemral 24 can be used to providiabkianalogue:

i (| [ (29 @0 - v (020 de > 8) 0. (a9

Next, the martingales

_ n,+ t
apas = N0 L e 008 0
0
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have quadratic variations bounded %y‘or a suitable constar@ depending ora

and the rates®. Hence these martingales converge to 0 in probability, veisipect
to the uniform topology. Withf; a limit point of X—: it follows from (49) and[(BD)
that

t
i) = [ va(ui(s. fi(s)ds
which is the integral version of (#8). Sinde [46) admits aquei solution and
Gi (t,x) = ui(t,x+ fi(t)), the claim follows. O
8.2 Relative entropy and therate function

To obtain the lower bound for the large deviation principié heorenil7, we show
in this section that the relative entropy Bf with respect td®, can be interpreted
as a rate function.

Lemma 27. Recall definitiongB), (6), (30) and (7).
lim ZH (P4[P) = h(voluo) + I(H:u) + j(aus, 1) (51)
< Zrw(fi|up) + Zex(ui). (52)

Proof of Lemm&27 Recall [22)[(ZB) and sét" := uj;g‘ NUg .. Since

lim %Ioan((Z/{i”)C) = —o

n—o0
1 dPil 2 in .
and;log g2 = ;log My is bounded, we have

fim P}, (4")°) = 0.

n—co

Hence,
Lmipy - g [oq@Pn] _pi [10q9Phq
nH([Pn\[Pn) = n[En [Iog ap. =E, nIog d[P’nlu'” +0n(1).
Oonu,
1 d[l:Din _ 1 d\A/nVO n T / n n (s)
7100 gt = log gt ATk - | e + 3 P (£ -1) ds

- %X; (OHs(X))* 78 (16 (X)(1 — 16(x))) ds+054(1)

Finally, when takingn — o andd, € — 0, we can use Lemnfia P4 together with the
hydrodynamic limit for the perturbed system, Proposifiéh @hd obtain[{51). O
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8.3 Thelower bound

We can finally show the lower bound which together withl (3I)aodes the proof
of Theoren 7. We will proceed in two steps. We first restrictself to paths
obtained as solutions of the perturbed system in Propa&& Then, in Lemma
below, we show that paths with finite rate function can bgr@gmated by
paths which arise via perturbation. For notational corsggmefine

Z(X, 1) := Zyw(X| TT) + Zex(TT)

Lemma 28. LetO be an open set ifi. Then

lim %Ioan(O) > —inf{Z(fi,u):H eC*?vo:T — [0,1,acC* (u,fi) € O}.
n— oo

Proof of Lemm&28For a given open sé&? € £, choose parameters= {vp,H,a}
such that the solutiofu;, f;) of the differential equations i (#6) and {48) is con-
tained inO. By a change of measure and Jensen’s inequality we have that

dIPn]

logPn(0) = logEEy, [1{(n"7x”)e(9}dT]>in

o [dP
:Iog[E'n[ n

aFT (9] PL(O)

> [Iog (ggj;) ‘(’)} +logPp,(0)

Moreover, by Propositiof 26 and our choice of parametars, Ji, P! (O) = 1 and

Am% ([Ein [Iog(jﬁi) ‘O] —H (IPin|[P>n)> =0.

Hence, by Lemma 27,

lim < 10gPn(0) > ~Z(fi, ).

n—oo
Optimizing over = {vp,H,a} such thatu;, f;) € O ends the proof. O
All that remains is to remove the restriction to paths otadiby perturbations.

Lemma 29. Fix a pair (x, 1) and a sequencéyy, 1tV ) which converges tgx, 1t)in
D([0,T]; M*(T) x T) and for whichZ (x, 1), Z(yn, V) < 0. Furthermore assume
thate <N <1—¢, & <m<1— ¢ for somes > 0and that

Jim |7 () = 7104 [ 1.7y = O (53)
Then

Jim Zo (|7 = Zra (X( ). (54)
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Proof of Lemm&29Let us first observe that

Jim V(™ (yn)) = VE((x) [z oy =0, for z=, (55)

which follows from [53) by the Lipschitz continuity af(p). Also, by the assump-
tion that the densities are bounded away from 0 and 1, we have

V(i) V#(mr) > &, for someg > 0 andz= =+

In Section[Z# we found that under this assumption, when dke function
Tw(X|m) is finite, it can be written explicitly as in equation {33). Wan thus
rewrite [33) as

4 T
MCLED W ALMICILE (56)
=
with
h;)l) (X) = X+ \/x2+42v+(p)v— (p)7 h,(f) () = ZhE_-,l)(—x), (57)
(1)
ht? (x) := xlog (&(g) 0 = v (p)+Vv(p). (58)

In view of (58), to show[(54), we will prove that

lim
N—>0c0

T . .
(i) (i) _ P
/O [hanN(t)) (W) — hm)(g)} dt‘ =0 forj=1,234.

For j = 4, this is readily obtained due tb{55). Fpe 1,2,3, by triangular
inequality, we have that

‘/.T h(” (yN(t))_hggX()(g)] dt‘ (59)
< [ e ORO) 000 des [T, )~ QA ()] d

(60)

We want to show that, d8 — o, the two terms in the r.h.s. df{b9) vanish.
For the first term, consider the cape- 3, the derivative

3) o X+ +4vt(p)v-(p) 2X
ohp” (x) = log ( vt (p) ) + \/x2+4V+(P)V_ ()

is monotone increasing and Hy (B.3), there are constabts 0 so that

)

18,5 (x)| < log(1+alx) + b

uniformly in p andx.
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By Taylor expansion,

Do = | [ o @ - G

< [ tog(a-+ amaxx], i) + b ~ ¥t (62
< 2] Y ollog(1+ amax(|. 1)+ blo-. (63

Here ®(x) = xlog(1+ x), ®* is its convex conjugate or Legendre-Fenchel trans-
form and||-||, denotes the Orlicz norm associated to the Young functiorSee
e.g. [21] for an overview of basic results in Orlicz spaces.tHe last inequal-
ity we used the Holder inequality in the Orlicz spacg := {f : [0,T] — T :
| fllo < o} By max(|X|,|vi]) < [X|+ X —yi| and®*(x) < € — 1 one sees that
the right term stays bounded #s— X in ||-|[¢. Hencey — X in ||-||¢ implies
|13 1 () —hE () dt| = 0.

Thus, to conclude that the first term in the r.h.s. [0f| (59) gmezero when
j = 3, it suffices to show that smooth functions are dense in thieZxpace. This
is a consequence of the following two facts. First, on theskinctions uniformly
bounded by an arbitrary but fixed constant, tHenorm and the Orlicz-norm are
equivalent, see e.gl_[21]. Hence the fact that the smootttibns lie densely in
the bounded functions ih! implies the same fact for the Orlicz space. Second,
bounded functions are dense in the Orlicz space,[sée [21].

When | = 1,2, this argument becomes simpler beca@&é”(x) is monotone,

and\dxhﬁ,’)(x)] < K uniformly in x andp, for some positive constai.

For the second term in the r.h.s. Bf{59), whea 1, 2,3, we argue as follows.
First, consider the casg= 1, abbreviate;(t) := v (p;i(t))v (pi(t)) fori = 1,2,
and estimate

[Ca(t) —Ca(1)] dt
)2+ca(t) +/(X)2+coft

/OT [hﬁ,ﬂt)(%) ho dt‘

< Kl/ lcy(t) —co(t)| dt < Kl/ IV (p1) HV+ p1) —V'(p2)| dt (64)

+ Kl/o ‘V+(p2)‘ ‘Vi(pl) —Vi(pz)‘ dt < K2 _Z:EHVZ(pl) pZ)HLl ([0.T])> (65)

for some constant;, K, > 0 depending o (813) and on the uniform bounded
function 1/ <\/x2+c1+ \/x2+c2>. Hence, the claim follows by (55). The case

j = 2 is the same due tb (57).
It remains to consider the cage- 3. By using Holder inequality, estimate

jog [ X VX2 H4a(®) V' (pa)
X + /X2 +4cy(t) VT(p1)

)= 00| < 2l

(66)
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By the triangle inequality, the right hand side goes to 0 thbo

s, v* (p2)
log [ b 0 ( )
k (hé?) 9\l
converge to 0. Note that by definition of Orlicz norit;)|| o+ goes to O ifffoT d*(a-
(-))dt goes to O for ala > 1. For the left term in[(67) we have

h(L) h(L) a h(L) a
o [alog| 2 | | <max| 2] —1,(2| -1

h(l) h(l) h(l)

P2 P2 P1

)
(1)

)

P+

(67)
o

h

A

Note that by[(8.B), & ¢ <

< ¢ < o, Hence the above is less than

NIE

(1) h(L)
acd Tmax| 2 —1,-2 _1]. (68)
h h(L)
P2 P1
We have for{i,i'} = {1,2}
ﬁ_l_h&”—h&? (6 )Xt X2+ G
h h " VeVt Ve ra)

As this right hand side is bounded from above by some cond@) is estimated
by
Kslc1 — ¢,

and from [6#) we can conclude that the left norn(in (67) gods fBhe right norm
in (67) is controlled with the same type of argument withinstead oh(», which
completes the case= 3. O

Lemma 30. Assumer satisfiesZex(1T) < o and rtis differentiable in time with an
absolutely continuous derivative which satisfjgg|. < M for some0 < M < co.
Thenrg is Holder-1/2 continuous for almost every t.

Proof of Lemm&30Assumert has finite energy, that i$0mi|o1 < . Then, by
the Sobolev embedding theorem, the conclusion follows. Batwe will show is
that if rr has infinite energy under the given assumptions, then teduattion is
infinite as well, which is a contradiction.

First observe that instead of taking the supremum ovei ahen determining
Zex We can restrict ourself to thosewith H;(0) = 0,0 <t < T. This is easily seen
by observing thatr has constant mass and hed¢el — H(0); 1) = J(H; n).
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Looking in more detail ai(H; r), by partial integration, the boundednessof
and basic estimates,

b+ o) - [ maroa] - [

T 1
gm/ / IHe (x)| dxdt =
<|\/|//|DHt |dydt<MT2<// (OH(y dydt)

If rrhas infinite energy, then by Propositlod 17 there exists aesampH" € €02
with ||[OH"||o7 = 1 and lim . (77, DOH")o 7 = . Since

y)dy‘ dxdt

JIH™ )| < (1+MT2) 42 " dt,

we have lim_.., J(H", 1) = 0. By approximating functions frord®? by functions
from 12 we can conclude th&.( 1) = o, which is a contradiction. O

We are finally in shape to conclude the lower bound.

Proposition 31. LetO be an open set ifi. Then

lim :—Llog[P’n((’)) > — |nf {er X|TT) + Zex(T) } .

n—o0 (rx)e
Proof of Lemm&31We extend Lemm@a28 in two steps, using Lenimla 29. We will
always keep eitherr or x constant because that way it is easier to showLthe
condition of Lemma29.

First we drop the restriction cm To do so, fixH, vy and letu; be the solution of
(48). By Lemmd3D, for almost evetyy(t, -) is Holder-1/2 continuous, especially
ui(t,-) is continuous.

Fix a pathx with Z,(X|uj) < . We have shown in Sectidn T.4 theis is
absolutely continuous whenevég, (x| 1) < . Since the clas€? is dense in the
set of absolutely continuous functions, we can considegaesee of pathgy™)

N > 1} in C2 such thatN converges ta pointwise.
For eachN > 1, letay € C* be the unique function identified by the solution of

W) = Vay (ui(t,yr))-

Note that this is possible sinae< u; < 1 — & for somes > 0. Hencey is the
solution of [48) corresponding @, H,vy. Sinceu; is continuous for almost all
t, ui(t,yN) converges pointwise tai(t,x) a.e. Sincey is bounded, this implies
L!-convergence. By LemniaR®,,(y\|u;) converges as well, and hence
inf {Z(fi,u):HeCv: T —[0,1,aeC, (u,f)ecO}
=inf{Z(x,u):HeC vo: T —[0,1],(u,x) € O}.
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To remove the remaining restrictions we follow the step&l8],[Lemma 5.5,
Chapter 5, where the corresponding statement for the peduexclusion was
proved. What we will show is that the approximation stepshiat iemma not
only work for Zey but for Z,,, as well. The general idea is the following scheme. If
ris smooth in time and space and is bounded away from 0 and 1mfinceH , vy
so thatrt= u;, wherey; is the solution ofi(46). In three steps the conditions ara the
relaxed, and in each step the convergence of the rate fanistioroved by use of
Lemmd29. A minor difference to Lemma 5.5[n [18] is that welextge the order
of space and time convolution, however that has no influencéh@ convergence
Of Zex.

Assumert is bounded away from 0 and 1, smooth in time wiiy(m) < oo,
and letx be a path withZ,, (X|7T) < . Letis: T — [0,) be a smooth function
which integrates to one and has support containef-in¢]. Define ¥ (x) =
J i(x4-y)11/n(y) dy. By Lemme 30rg is Holder-1/2 continuous for a.€.and

Y00 %) <G [ I Eraynly

which converges to O.

Therefore we can use Lemrhal 29 and obtain thamj,mLW(x\nN) = Zrw(X, TT)
and hence lim_,»Z(x, ™) = Z(x, ). Sincern" is smooth in space and time and
is bounded away from 0 and 1, there &tevy so thatr is the solution of[(46).
Hence

inf{Z(x,u;) :H e vo: T —[0,1],(u,x) € O}
=inf{Z(x,m) :3e>0:e <m<1-—¢g, msmoothintime(m,x) € O}.

Now assumer is a density bounded away from 0 and 1, and a path with
Zrw(X|1T) < 0. Extendrrfrom [0, T] to [0, T + 1] by the heat equation. L& : R —
[0,0) be a smooth function which integrates to 1 and whose suppadritained

in [0,¢]. Definer via N = fo% TE.sB1n(S)ds Sinceris a cadlag pathg) (%)
converges tag(x ). Hence the condition for Lemnial29 is satisfied apglx|mV)
converges t&n (X| ).

As a final step, assume th#{(x, m) < «. Let 7°,77* be the constant paths
identical to 0 and 1 respectively. Lef¥ = (1— 2)m+ £7°+ 2 7t. We can no
longer apply Lemm&_29. Instead we prove the statement bireiet dominated
convergence using estimates similar to the first part of thefppf Lemmd2P. Let
M be the supremum of* and writey;"™™ := vi* (¥ (x)). Then, by [@D),

0< Ztvtz"“ezaw ® < 21%| +2Mm, (69)
7—

which is integrable and independenthf Next, just as in Lemma 22, we only need
to to find an upper bound on the positive pagia, (t))™, which we do only for
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X > 0. Using log” < |log| = log™ +log,

(0% = log* (X”V fan )

2V+N
< [log ) +4Vt +><('09 M)
< % [log* (x +M) +log ( Iog )+Iog (Mfl)}.

The only dependence dw s in x log™ (( v )~ ) The functionv®(+) is a non-

negative polynomial which can be 0 only at the boundary gotheand 1. Ifvt
is positive everywhere there is nothing to prove. Assuwmeéias at least one O.
Since as a polynomial™ is monotone near 0 and 1 we can fidd> 0 so that
(v Ny > min (inf,c(5.1-5) VT (0), VT (7k(%))). By the assumption th&k.,(x|m) <

o and Lemm&22 we use dominated convergence to show that iy, (x| V) =
Zow(X|TT). O
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