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Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic

field into a lower energy state where the net force is zero. This is achieved by modeling the plasma

as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and

is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We

study the equilibrium reached by a localized magnetic field through the topology conserving relax-

ation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles

that are all linked with one another. Magnetic fields with this topology have recently been shown to

occur in non-ideal numerical simulations. Our results show that any localized field can only attain

equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattain-

able. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a

toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a

Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected

from astrophysical bodies and subsequently relaxes against the background plasma, as well as on

earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an

equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such

a configuration. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4990076]

I. INTRODUCTION

A fundamental question in plasma physics is this: Given

a magnetic field configuration, what equilibrium state can it

attain? This question was posed by Arnold1 who considered

the static equilibria of ideal (zero magnetic diffusivity),

incompressible magnetohydrodynamics (MHD), such that

the magnetic topology remains unchanged. Subsequent work

by Moffatt expanded this problem for various geometries

and connected the equilibrium solutions to solutions of Euler

equations for fluid flow.2 Taylor3 considered the problem

for a different scenario; a plasma with a very low (but finite)

resistivity in a toroidal device. His conjecture was both ele-

gant and experimentally accurate: the field relaxes to a linear

force-free state with the same helicity of the initial field.

Taylor’s theory is an application of the work of Woltjer, who

showed that a force-free (Beltrami) state is the lowest energy

configuration that a field can attain under conservation of

helicity.4–6

Due to the elegance and predictive power of Taylor’s

conjecture, this principle of relaxation to a linear force-free

state is often applied also in geometries beyond which it is

strictly applicable. Recently, there have been several papers

addressing this, and identifying geometries in which the

final state after relaxation is distinctly not a Taylor state.

Simulations on magnetic field relaxation in a flux tube geom-

etry have shown additional topological constraints associated

with the field line connectivity that hinder relaxation to

a force-free state.7 Also, one-dimensional resistive simula-

tions were found not to converge to a linear force-free state.8

Furthermore, in our recent work, we investigated the

resistive decay of linked flux rings and tubes that converge

to an MHD equilibrium that is not force-free.9

The magnetic topology of this last example is remark-

able, the field is localized, has finite energy, and the field

lines lie on nested toroidal surfaces such that on each surface

the ratio of poloidal to toroidal winding is nearly identical.

This last observation implies that the magnetic field topology

is related to the mathematical structure called the Hopf

map.10 Fibers of this map form circles that are all linked

with each other, and lie on nested toroidal surfaces. The

structure of the Hopf map has been used in many branches of

physics, amongst others, to describe structures in superflu-

ids11 and spinor Bose-Einstein condensates.12,13 It also forms

the basis for new analytical solutions to Maxwell’s equa-

tions14,15 and Einstein’s equations.16 In ideal, incompressible

MHD the Hopf map has been used to generate solutions of

the ideal MHD equations called topological solitons.17,18

Even though the localized MHD equilibrium9 has a sim-

ilar magnetic topology to the Hopf fibration, the geometry is

different. The equilibrium consists of a balance between the

pressure gradient force, directed inwards towards the mag-

netic axis, and the Lorentz force, directed outwards. In this

paper, we investigate exactly this equilibrium, and how it

geometrically relates to fields derived from the Hopf map.

We take fields with these well-defined magnetic topologies,

and find their equilibrium configurations using a relaxation

method that exactly conserves field line topology and con-

verges to a static equilibrium, which is a solution of the ideal

MHD equations.

The choice for this initial topology is inspired by the

numerical results on linked rings,9 but there are many other
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works in which localized MHD equilibria are investigated

and to which our results apply. Localized magnetic structures

have been described in numerical relaxation experiments and

are referred to as magnetic bubbles.19–21 Also, in fusion

research, structures called compact toroids or plasmoids con-

sist of magnetic field lines lying on closed surfaces.22

Sometimes these structures are described as embedded in a

guide field, but in isolation, these fields are localized and

show a similar magnetic topology.23–25 Some models for

magnetic clouds, regions of increased magnetic field

observed in the solar wind,26 consider the cloud as a local-

ized magnetic excitation, either a current-ring27 or a flare-

generated spheromak.28

In ideal MHD, magnetic helicity, or linking of magnetic

field lines, is exactly conserved. Magnetic helicity is defined as

HM ¼
ð

A � B d3x; (1)

where A is the vector potential and B ¼ $� A the magnetic

field. Woltjer was the first to realize that the value of this

integral is conserved in ideal MHD.4 It has recently been

shown that any regular integral invariant under volume-

preserving transformations is equivalent to the helicity.29

Moffatt1,30 gave helicity a topological interpretation; helicity

is a measure for the self- and inter-linking of magnetic field

lines in a plasma. The conservation of magnetic linking can

also be physically understood by the fact that in a perfectly

conducting fluid the magnetic flux through a fluid element

cannot change, and the magnetic field is transported by the

fluid flow, a condition referred to as the frozen in condi-

tion.31–33 As a consequence, in ideal MHD, any linking or

knottedness of magnetic field lines cannot be undone, and

the magnetic topology34 is conserved. Ideal MHD thus con-

serves not only total magnetic helicity but also the linking of

every field line with every other field line.

Simulating non-resistive MHD numerically using a fixed

Eulerian grid is a notoriously difficult problem due to numer-

ical errors in Eulerian finite difference schemes.35 It is possi-

ble to circumvent this by using a Lagrangian relaxation

scheme36 which dissipates fluid motion but perfectly pre-

serves the frozen in condition. This was recently imple-

mented using mimetic numerical operators in the numerical

code GLEMuR.37 In this paper we study the non-resistive

relaxation of magnetic fields with the topology of the Hopf

map using this recently developed code. Lagrangian methods

were also recently implemented in a 2d dissipationless ideal

MHD evolution scheme to study current singularities.38

The virial theorem of MHD is a useful tool to investi-

gate possible MHD equilibrium configurations.39,40 This the-

orem relates the second derivative of the moment of inertia I
to integrals over the volume and boundary of a region in the

plasma, and is usually stated as

d2I

dt2
¼ �

ð
@V

T � r � dsþ
ð
V

Tr Tð Þ d3x: (2)

Here, Tr(T) denotes the trace of the strain tensor

T ¼ Tu þ Tp þ TB. This tensor has a velocity component

Tu ¼ quu, a pressure component Tp¼ Ip, and a component

due to the magnetic forces TB ¼ IB2=2� BB. Here, q
denotes the fluid density, u the velocity, and V the domain. r
is the position vector and s indicates the surface normal of

the surface of the region.

A consequence of the virial theorem is that for any static

equilibrium to exist (I to remain constant), the contribution

of the bulk must be compensated by corresponding stresses

on the boundary. The integral over the bulk can be written asÐ
V qu2 þ 3pþ B2
� �

d3x, which is always positive. Any reor-

ganization of the bulk can change the magnitude of this con-

tribution, but it will always be finite, which implies that

without any stresses on the surface, a plasma will always

expand (I will increase). Therefore, one of the surface terms

must integrate to a non-zero value for any equilibrium.

If we consider a localized magnetic field, such as the

Hopf field, which has the same magnetic field topology as

the localized equilibria described in previous numerical

experiments,9 then their magnetic field strength vanishes at

sufficient distance, where we can put our boundary. This

leaves two possible configurations through which an equilib-

rium can be reached. The first configuration has a finite pres-

sure at the boundary. Any expansion in the bulk will create a

low-pressure region, which will prevent the structure from

expanding indefinitely. The second configuration has finite

magnetic stresses at the boundary. This can be achieved by

adding a constant guide field that prevents the field from

expanding indefinitely through magnetic tension from the

guide field. We note that the first configuration can never

converge to a Taylor state, i.e., a localized magnetic field

cannot relax to a force-free configuration.

II. THE HOPF FIELD

In 1931, Hopf10 discovered a curious property of maps

from the hypersphere S3 onto the sphere S2, namely, that the

fibers of the maps (pre-images of points on S2) are circles in

S3 that are all linked. This class of functions can be extended

to a function from R3 to C from which a divergence-free

vector field in R3 can be constructed such that the integral

curves (field lines) lie tangent to the original fibers of the

map.14,17,18 This construction is illustrated in Fig. 1.

The Hopf map can be modified as described in Ref. 41,

such that every fiber of the map lies on a toroidal surface

with poloidal winding x1 (short way around the torus) and

toroidal winding x2 (long way around the torus). If x1 and

x2 are commensurable (x1=x2 2 Q), all field lines are [x1/

gcd(x1, x2), x2/gcd(x1, x2)] torus knots where gcd(a, b) is

the greatest common divisor of a and b. From this map, a

field in R3 can be generated with that magnetic topology.

Every field line lies on a torus and the tori form a nested set

filling all of space. In this field, there are two special field

lines that do not form a (x1, x2) torus knot. One lies on the

largest torus, which reduces to a straight field line on the

z-axis (torus through infinity), and the other field line lies on

the degenerate (smallest) torus that reduces to a unit circle in

the xy-plane and that is called the degenerate field line.

The vector field of this localized, finite-energy magnetic

field with winding numbers x1 and x2 is given by

072110-2 Smiet, Candelaresi, and Bouwmeester Phys. Plasmas 24, 072110 (2017)



Bx1;x2
¼ 4

ffiffi
s
p

p 1þ r2ð Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
2 x2y� x1xzð Þ
�2 x2xþ x1yzð Þ

x1 �1þ x2 þ y2 � z2
� �

0
BB@

1
CCA;
(3)

with r2¼ x2þ y2þ z2 and s is a scaling factor. The derivation

of Eq. (3) is given in the Appendix. Selected field lines for

the B1;1 and B3;2 fields are shown in Fig. 2.

In recent resistive numerical simulations,9 it was shown

that magnetic fields consisting of initially linked field lines

relax to an equilibrium where field lines lie on nested toroi-

dal surfaces. The rotational transform (or q-factor) was seen

to be within 10% constant for every magnetic surface in the

structure. The field generated by Eq. (3) consists of field

lines on nested toroidal surfaces with a constant rotational

transform, which is determined by x1/x2, and thus is topo-

logically similar to the fields observed in resistive simula-

tion. Even though the fields have similar magnetic topology,

the geometrical distribution of field is different. The mag-

netic field given in Eq. (3) is not in equilibrium, as there are

large rotational Lorentz forces that cannot be balanced.

Using a topology-conserving relaxation scheme, we will see

how these forces relax the magnetic field to a different

geometry, but with the exact same magnetic topology.

The Lorentz force FL ¼ J � B can be decomposed as

FL ¼ B � rB�rB2=2, where B2=2 is referred to as mag-

netic pressure, and B � rB is called magnetic tension.

Magnetic pressure gives rise to a force pointing from regions

with high magnetic field energy to regions of low magnetic

energy. In the Hopf fibration magnetic energy is highly

localized (B2
1;1 ¼ 16=ðp2 1þ r2ð Þ4Þ), giving rise to a radial

outward force. The magnetic tension force, on the other

hand, is a force that resists the bending of magnetic field

lines, and can effectively be seen as the result of tension in

the field lines. Figure 3 shows how the magnetic tension and

pressure interact to produce the Lorentz force in the Hopf

field B1;1. In the z¼ 1 plane, the tension adds a clockwise

twist to the field and a force toward the center, whereas

the magnetic pressure points radially outward. The radial

components largely cancel resulting in a predominantly rota-

tional force around the z-axis. In the z¼ 0 plane the forces

only have a radial component, resulting in a net outwards

force, and in the z¼ –1 plane the forces are opposite with

respect to z¼ 1.

A. Relation to the Kamchatnov-Hopf soliton

The magnetic field in Eq. (3) was used by Kamchatnov17

to describe an ideal MHD soliton, a solution to the ideal,

incompressible MHD equations. By setting the fluid velocity

equal to the (local) Alfv�en speed

uKam ¼ 6
Bffiffiffi
q
p ; (4)

(a solution shown by Chandrasekhar to be stable39,42) and

using the pressure

FIG. 2. Several field lines of the initial magnetic field for the Hopf field with

x1¼x2¼ 1 (upper panel) and the field with parameters x1¼ 3, x2¼ 2

(lower panel). We show select field lines with the ring at jjxjj ¼ 1; z ¼ 0

(red) and two more field lines (blue and green). The upper field consists of

linked magnetic flux rings, while the lower consists of linked trefoil knots.

FIG. 1. Illustration of the construction of a field with the topology of the

Hopf map. The red dashed circle in S3 is a fiber of the map. Through stereo-

graphic projection, the fiber structure of the Hopf map is translated to R3

and a field that lies everywhere tangent to these circles is constructed.
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pKam ¼ p1 �
B2

2
; (5)

it follows from the ideal induction equation

@B

@t
¼ $� u� Bð Þ; (6)

that the magnetic field is static. If we write the momentum

equation as

@u

@t
þ u � ru� 1

q
B � rBþ 1

q
r pþ B2

2

� �
¼ 0; (7)

and fill in the value for uKam and pKam with B1;1 as a mag-

netic field this reduces to @u=@t ¼ 0, a static configuration.

Kamchatnov’s construction solves the ideal, incom-

pressible MHD equations, but this solution requires a fluid

velocity parallel to the magnetic field at every point in space.

Furthermore, it is necessary in Kamchatnov’s construction to

include a confining pressure p1. From the virial theorem we

know that an external pressure can provide a restoring force

so that a simpler equilibrium, without parallel fluid flow can

be achieved. Furthermore, we need not restrict ourselves to

the case of incompressible MHD, but we look for an

equilibrium in the more general case of compressible baro-

tropic ideal MHD. In our work we will consider the topology

preserving, compressible relaxation of the magnetic field

starting with the Hopf map. The field will relax to a different

geometry but the topology preserving evolution will guaran-

tee that the field remains topologically identical to the Hopf

fibration.

III. METHODS

In order to simulate the topology conserving relaxation,

we restrict the field’s evolution to such that follow the ideal

induction equation given in Eq. (6).

For the velocity field we use, depending on the case, two

different approaches. In the magneto-frictional43 approach

the velocity is proportional to the forces on the fluid

element

u ¼ J � B� c2
s $q; (8)

with the electric current density J ¼ $� B and sound speed

cs. The sound speed effectively determines the pressure in

the simulation through p ¼ c2
s q. It was shown by44 that the

magneto-frictional approach reduces the magnetic energy

strictly monotonically. Alternatively, we can use an inertial

evolution equation for the velocity45 with

du

dt
¼ J � B� c2

s $q� �u
� �

=q; (9)

with the damping parameter �.

Numerical methods using fixed grids and finite differ-

ences typically introduce numerical dissipation which would

effectively add the term �gnumJ on the right hand side of Eq.

(6), with the numerical resistivity gnum over which there is

little to no control. For every finite value of gnum, however

small, the field will invariably undergo a change in topology.

To circumvent this, we make use of a Lagrangian grid where

the grid points move with the fluid37,44

@y x; tð Þ
@x

¼ u y x; tð Þ; tð Þ; (10)

with the initial grid positions x and positions at later times y.

The magnetic field on the distorted grid can be computed as

the pull-back of a differential 2-form, which then leads to the

simple form (see, for example, Refs. 37 and 44)

Bi x; tð Þ ¼
1

D

X3

j¼1

@yi

@xj
Bj x; 0ð Þ; (11)

with D ¼ det @yi

@xj

� �
.

We choose line tied boundary conditions where the

velocity is set to zero and the normal component of the mag-

netic field is fixed. To compute the curl of the magnetic field

J ¼ $� B on the distorted grid, we make use of mimetic

spatial derivatives which increases accuracy and ensures

$ � $� B ¼ 0 up to machine precision.46,47

It should be noted that Eqs. (8) and (9) are both different

from the momentum equation (7), and that therefore the

FIG. 3. The Lorentz force and its components of magnetic pressure and

magnetic tension for the Hopf field. (a)–(c) vector plots of the Lorentz force

(red), magnetic tension (blue), and magnetic pressure force (grey) in the

plane z¼ 1. (d) Lorentz force and its components in the z¼ 0 plane, where

there is only a radial component. (e) Lorentz force and its components in the

z¼ –1 plane. The r and Z components of the magnetic tension force and the

magnetic pressure force cancel each other to a large degree, leaving mainly

the / component. Because of the symmetry of the Hopf field, the compo-

nents not shown in (a)–(c) can be read from (e).

072110-4 Smiet, Candelaresi, and Bouwmeester Phys. Plasmas 24, 072110 (2017)



evolution of the field is different from the evolution of a sys-

tem adhering to the (dissipationless) ideal MHD equations.

Nevertheless, it is clear that when the relaxation reaches a

steady state, either by Eq. (8) or by (9), the field has reached

a configuration in which all forces cancel. Our evolution

equation also does not conserve energy, as any fluid motion

is damped in order to expedite convergence to equilibrium.

Since our main interest is investigating the existence and

character of the equilibrium that is achieved under conserva-

tion of field line topology, the magneto-frictional and inertial

evolution are both valid approaches to achieve this equilib-

rium. A different method which uses a Hamiltonian formula-

tion for the field and allows for relaxation under conservation

of additional invariants, albeit under reduced dimensionality

is found in Ref. 48.

Equations (8)–(11) are solved with the numerical code

GLEMuR,37,49 which runs on graphical processing units.

IV. TOPOLOGY PRESERVING RELAXATION

We perform numerical experiments with the Hopf field

as initial condition [Eq. (3)] for different parameters x1 and

x2, and the scaling factor s. The initial density is constant

in space resulting in a constant pressure set by c2
s . All the

simulations conserve the topology and obey either the

magneto-frictional equation of motion (8) or the momentum

equation (9).

A. Field expansion

We first analyze the relaxation of the B1;1 field with

s¼ 2. As can be expected from the distribution of forces in

the initial field (Fig. 3) the field expands outwards in the xy-

plane, whilst the grid is twisted in opposite directions in the

z¼ 1 and z¼ –1 planes. The motion of the grid for the

magneto-frictional runs with c2
s ¼ 0:1 are shown in videos 1

and 2 and in Fig. 4 (Multimedia view). Video 1 shows the

displacement of the grid initially in the z¼ 1 plane, which

twists in a clockwise direction. The colors indicate the verti-

cal displacement of the grid, which moves towards the origin

in the center, and upwards further out. If we look at the

motion of the grid in the y¼ 0 plane (video 2), we see the

grid expanding outwards in the z¼ 0 plane. The grid spacing

increases around the z¼ 0, x¼ 1 location, resulting in the

formation of a region of lowered pressure. As the field lines

move with the grid, this is also the new location of the

degenerate field line.

The expansion in the xy-plane can be tracked by measur-

ing the change in radius r of the degenerate field line. This is

measured by the displacement of the point initially at (1, 0,

0), and shown in Fig. 5 (upper panel) for several different

effective pressures. The effective pressure is set by the

parameter c2
s , which enters into the equations as the propor-

tionality factor between density q and pressure p. For values

lower than c2
s ¼ 0:1 the field expands to the computational

boundaries. For higher values of c2
s we see that, as expected,

the expansion of the field levels off after a certain time, and

the higher the confining pressure is, the less the configuration

expands before it reaches equilibrium.

For c2
s ¼ 0 we expect an unconstrained expansion, while

in the limit of c2
s !1 we should see no expansion.

Therefore, we plot the radius r vs. c2
s at time t¼ 100 and fit

the function

r ¼ b c2
s

� �a þ 1; (12)

with fitting parameter a¼ –0.160494 and b¼ 0.16229561.

This fit gives a reasonable approximation for the expansion

of the degenerate field line, indicating how the radius of the

relaxed configuration depends on confining pressure (Fig. 5,

lower panel).

During this expansion, the magnetic energy B2 in the

configuration sharply decreases due to the plasma expansion

perpendicular to the magnetic field direction. This process

can be seen in Fig. 6, and it causes a drastic decrease in the

magnetic pressure from the initial configuration.

FIG. 4. Grid distortion during relaxation to the final, relaxed configuration

(approx. time t¼ 200). (Upper panel): points initially in the z¼ 1 plane

(multimedia view), and (lower panel): distortion of the y¼ 0 plane (multi-

media view). The color denotes the deviation of the grid points in the z-

direction compared to t¼ 0. [URL: http://dx.doi.org/10.1063/1.4990076.1]

[URL: http://dx.doi.org/10.1063/1.4990076.2]
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B. Force balance

Our simulations relax to a static configuration where the

fluid velocity is zero. From the momentum equation (7), we

can see that for any static equilibrium the pressure forces

have to be balanced by a gradient in pressure

J � B ¼ $p ¼ c2
s $q

� �
: (13)

If we look at the relaxed field, we see that the pressure is no

longer constant, but the plasma has reorganized to create a

toroidally shaped region of lower pressure. The Lorentz force

is also different in the relaxed configuration. The magnetic

pressure contribution has been greatly reduced by the lower-

ing of magnetic field strength accompanying the expansion,

and the Lorentz force is now directed outwards, away from

the degenerate field line. The condition of force balance in

Eq. (13) is achieved in the simulation run, as can be seen in

Fig. 7. The Lorentz force J � B is balanced by the pressure

force �rp ¼ �c2
srq, such that the total force is zero.

Another consequence of the equilibrium condition is

that the pressure must be constant on magnetic field lines,

and thus on the toroidal surfaces on which the field lines lie.

By construction every field line in the Hopf field is a closed

circle, but the circles lie on the surfaces of nested tori. These

surfaces become visible if we consider the field with parame-

ters x1¼ 1 and x2¼ 1.01, such that every field line is a

(100, 101) torus knot. This field is locally nearly indistin-

guishable from the B1;1 field, but by tracing a single field

line the toroidal surface on which the field line lies becomes

visible. By plotting the intersections of such a field line with

the xz-plane (constructing a Poincar�e plot), we see a cross

section of the magnetic surfaces. These magnetic surfaces

are plotted together with the contours of constant pressure in

the relaxed magnetic configuration in Fig. 8. The contours of

constant pressure clearly conform to the shape of the mag-

netic surfaces, especially near the degenerate field line. We

attribute the discrepancy between the outermost magnetic

surfaces and pressure surfaces to the fact that both the pres-

sure gradient and/or the magnetic field strength are low at

FIG. 5. Time evolution of the degenerate field line in B1;1 at different effec-

tive pressures using the magneto-frictional approach (upper panel). Radii at

time t¼ 150 for different values of c2
s with fit (lower panel).

FIG. 6. Squared of the magnetic field strength B2 on the x-axis for different

times for the B1;1 field. The field was relaxed using the magneto-frictional

approach with c2
s ¼ 0:2. The magnetic field strength, and hence the magnetic

pressure force, is greatly reduced during the relaxation by plasma expansion

perpendicular to the field direction.

FIG. 7. Radial component of the Lorentz force and radial component of the

pressure gradient along the x-axis. The field was relaxed using the inertial

approach with c2
s ¼ 0:1 and �¼ 1. The two forces balance each other almost

perfectly, indicating that an equilibrium is reached.
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these locations, leading to a slow magneto-frictional conver-

gence to equilibrium.

Since the initial configuration is axisymmetric, and the

resultant forces are as well, the configuration will remain

axisymmetric through the entire evolution. The topology pre-

serving relaxation method thus relaxes the magnetic field to

an axisymmetric configuration where the magnetic forces are

balanced by the pressure gradient. This kind of equilibrium

can, in principle, be described by a solution to the Grad-

Shafranov equation,50 but finding the exact functional form

is a non-trivial task.

From the combination of the lowering of magnetic

energy shown in Fig. 6 and the lowering of the pressure in a

toroidal region as seen in Fig. 8, we understand how the

equilibrium is achieved in light of the virial theorem. Recall

from Eq. (2) that the volume contribution consists of three

terms, qu2, 3p, and B2. The contribution of the velocity is

zero in equilibrium. As the field expands, the relative contri-

bution of B2 drops. The fluid that is expelled from the toroi-

dal region causes a slight increase in pressure distributed

over the entire surface. An equilibrium can be achieved

when this negative contribution balances the reduced mag-

netic pressure of the distorted field.

The force-balanced equilibrium state obtained in these

ideal relaxation experiments bears strong resemblance with

quasi-stable magnetic structures found in various recent sim-

ulations, such as magnetic bubbles in Ref. 19, freely decay-

ing relativistic turbulence in Ref. 21, and self-organizing

knotted magnetic structures in Ref. 9.

C. Dependence on x1 and x2

To investigate the effects of different field line topolo-

gies, we simulate the ideal relaxation of B3;2 and B2;3 with

c2
s ¼ 0:1 and the scaling factor s¼ 1. These two fields have

exactly the same magnetic energy, but their magnetic topol-

ogy and the spatial distribution of magnetic pressure are dif-

ferent. In B3;2, the field lines make 3 poloidal (short way

around the torus) windings for two toroidal windings. If we

look at Eq. (3), we can see that x1 (responsible for the poloi-

dal winding) multiplies the z-component of the field and

increases the field strength along the z-axis of the configura-

tion, whereas x2 increases the magnetic pressure around the

degenerate torus in the xy-plane.

When we relax the field, we see that both choices of x1

and x2 yield an equilibrium, but the magnetic energy and

pressure distributions are different, as can be seen in Fig. 9.

The radial expansion of the B3;2 simulation is much larger

than that of B2;3, indicating that the degenerate torus (located

at the minimum in pressure) is pushed further outwards.

Note that the B3;2 equilibrium, which started out with rela-

tively higher magnetic pressure on the z-axis, now shows

highest field around the degenerate torus. The B2;3 field now

has a highest magnetic field strength around the origin.

We can intuitively understand the behavior of these

fields by recalling a well known observation in MHD; under

internal forces a magnetic flux ring contracts and fattens,

whilst a ring of current becomes thinner and stretches.51 A

ring of current gives rise to a magnetic field with only poloi-

dal magnetic field lines, whereas a ring of magnetic flux con-

sists of purely toroidal magnetic field lines. The fields we

consider lie in between these two extreme configurations.

The stronger the poloidal winding, the more the configura-

tion resembles a current ring, and therefore this configuration

will stretch relatively more. This will leave a relatively high

magnetic field around the degenerate torus, as we can see in

the equilibrium achieved by the B3;2 field. The B2;3 field has

FIG. 8. Magnetic surfaces (red squares) and pressure contours (colored

lines) in the xz-plane for the relaxed B1;1:01 field. The inner magnetic surfa-

ces coincide with the pressure surfaces. Because the pressure gradients and

Lorentz force are much lower on the outer surfaces, convergence to the equi-

librium state is much slower.

FIG. 9. Magnetic energy density and normalized pressure on the x-axis for

simulation runs with c2
s ¼ 0:1 and different ratio of poloidal to toroidal

winding. The magnetic energy distribution is different in the two relaxed

configurations, with the B3;2 simulation showing highest magnetic field

strength around the degenerate torus, and the B2;3 configuration the highest

field strength around the z-axis.
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a relatively higher toroidal field, and will therefore expand

less, leaving a high field around the z-axis.

Even though the exact distribution of magnetic energy

and the magnetic field topology are different, the equilib-

rium is always characterized by a toroidal region of lowered

pressure. All simulations start with constant hydrostatic

pressure, and the observed final magnetic energy distribu-

tion is then given by the deformation that balances the dip

in hydrostatic pressure with the lowered magnetic pressure.

A different initial pressure distribution would also result in

qualitatively different equilibrium magnetic energy distri-

butions, but the essential features of the equilibrium would

remain the same.

D. Force-balance with a mean magnetic field

As noted in the Introduction, it is possible to balance the

field if the contribution of TB is non-zero at the boundary,

i.e., the field is balanced by a finite external magnetic pres-

sure. We investigate this by evolving B1;1 in a weak back-

ground field Bbck ¼ �0:02ez such that the final field is

B ¼ B1;1 þ Bbck. It should be noted that this background

field changes the magnetic topology of the initial condition.

The new magnetic topology is such that field lines are far

away from the z-axis, where the field strength is opposite,

but weaker than the guide field do not form magnetic surfa-

ces, but extend from z¼ –1 to z¼1. The same is the case

for field lines close to the z-axis. On the magnetic surfaces

that remain toroidal, the ratio of poloidal to toroidal winding

now changes from surface to surface.

For our numerical experiment we reduce the effective

pressure by setting c2
s ¼ 0:01. This setting is much too low

for the magnetic field to reach equilibrium within the simula-

tion box without a guide field, but with the guide field an

equilibrium is reached. The density and magnetic energy dis-

tribution are shown in Fig. 10.

As the field expands, it pushes the guide field outwards,

creating a restoring magnetic tension force. At the same

time, the magnetic field strength decreases, and the external

magnetic pressure force halts the expansion. A finite,

although very low, effective pressure is necessary to prevent

the field from expanding indefinitely in the direction of the

field lines. As we can see, the region of lowered pressure is

much larger in the guide field simulation, which is to be

expected from such a low value of c2
s . This numerical result

suggests that in three dimensions a localized magnetic excita-

tion can only achieve equilibrium if there is a finite external

pressure. We note that this is in contrast to promising results

found in two dimensional simulations,19,21 where localized

magnetic excitations, called magnetic bubbles, are found in

zero-pressure MHD and Force-Free Electrodynamics.

V. DISCUSSION AND CONCLUSIONS

We have shown how a localized magnetic excitation, in

particular a Hopf field, relaxes to a configuration which is an

equilibrium in an ideal, compressible plasma. The virial the-

orem implies that for any equilibrium to exist, there must

either be a finite external pressure or a guide field to attain

equilibrium. The equilibrium that is achieved consists of a

toroidal depression and is not a Taylor state.

We have used a topology preserving Lagrangian relaxa-

tion scheme that converges to an equilibrium configuration

and observe the equilibrium in a wide range of parameters

and different realizations of the Hopf map. In contrast to the

topological solitons described by Kamchatnov,17 these con-

figurations are static, and do not require a fluid velocity to

balance the equations. These configurations are therefore

static topological solitons in compressible MHD.

The magnetic configurations remain axisymmetric under

time evolution, and an equilibrium is achieved when mag-

netic field lines conform to the toroidal surfaces of constant

pressure. The Lorentz force is balanced by the gradient in

pressure and the obtained equilibria can be considered Grad

Shafranov equilibria.50 Changing the magnetic topology of

the initial field, by adjusting the ratio of toroidal to poloidal

winding yields a qualitatively similar equilibrium, with a dif-

ferent distribution of magnetic energy.

Recent numerical simulations have shown that localized

helical magnetic configurations can be generated in resistive

plasma.9,19 The equilibrium we observe here is similar to

what is observed in the resistive simulations, except that the

ideal relaxation conserves field line topology, and therefore,

magnetic islands cannot be created.

Even though an equilibrium at zero pressure is impossi-

ble, any realistic plasma in which a topologically nontrivial

field is embedded will have a (possibly very low) finite pres-

sure. If such a field exists in a close to ideal plasma, the

expansion will cause a decrease in the magnetic field magni-

tude and corresponding magnetic pressure. A finite external

pressure, no matter how low, will give rise to an equilibrium

at which the external pressure is able to confine the magnetic

field in the manner described in this paper. Examples of

where this could occur are in experiments with

FIG. 10. Magnetic energy density and normalized pressure on the x-axis for

simulation runs with 1:1 ratio of poloidal to toroidal winding with and with-

out background magnetic field.
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plasmoids,22–25 and in astrophysical plasma such as the mag-

netic bubbles studied by Braithwaite.20

It is interesting to contrast the equilibrium found in our

simulations to the localized magnetic bubbles described in

Refs. 19 and 21. The authors found a localized increase in

pressure in two-dimensional relaxation at zero pressure, but

as we have shown, such equilibria are impossible in three

dimensions due to expansion along the guide field.

Localized three-dimensional magnetic excitations are

possible, and the tell-tale signature of these relaxed states is

a toroidal lowering of plasma pressure coinciding with the

innermost magnetic surfaces. Such signatures could be

detected in astrophysical observations, and help understand-

ing the stability of magnetic fields in fusion plasmas.
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APPENDIX: DERIVATION OF THE HOPF FIELD

If one considers the three-sphere S3 embedded in C
2

such that S3 ¼ f z1; z2ð Þjz1�z1 þ z2�z2 ¼ 1g, with z1; z2 2 C

and one associates the complex plane with the sphere S2 via

stereographic projection p 2ð Þ�1

: C [1 ! S2, then a map

from S3 to S2 can be given by the following expression:

h x1;x2ð Þ z1; z2ð Þ : S3 ! S2 ¼ p 2ð Þ�1 z
x2ð Þ

1

z
x1ð Þ

2

 !
: (A1)

Here, parenthesized exponentiation z(x) denotes the opera-

tion z ¼ rei/ ! reixh such that only the phase of the com-

plex number is multiplied by x. If x1 and x2 are equal, this

map reduces to Hopf map, where every fiber is a perfect cir-

cle and linked once with every other fiber. This is readily

checked by observing that h 1;1ð Þ z1; z2ð Þ ¼ h 1;1ð Þ z1eih; z2eih
� �

,

so the fibers of the map are indeed great circles in S3. If

x1 and x2 are not equal, but x1=x2 2 Q, the fibers are

x1=gcd x1;x2ð Þ;x2=gcd x1;x2ð Þ
� �

torus knots where gcd(a,

b) is the greatest common divisor of a and b.

In order to construct a field in R3 from the Hopf map,

we modify the construction by Ra~nada,14 using the method

described in Refs. 41 and 9 by extending the Hopf map to a

complex-valued function from R3 to C

/ : R3 ! C ¼ p 2ð Þ � h x1;x2ð Þ � p 3ð Þ�1

; (A2)

where p 3ð Þ�1

denotes inverse stereographic projection from

S3 to R3.

The expression for the function / becomes

/ ¼ 2 xþ iyð Þ x2ð Þ

2zþ i r2 � 1ð Þð Þ x1ð Þ ; (A3)

where r2¼ x2þ y2þ z2. This construction is schematically

illustrated in Fig. 1. Since, by construction, / is constant on

linked curves in R3, the following expression results in a

vector field that is everywhere tangent to the curves:

~B ¼ 1

2pi

r/�r/�

1þ //�
: (A4)

This field is then given by

~B ¼ 4

p 1þ r2ð Þ3

2 x2y� x1xzð Þ
�2 x2xþ x1yzð Þ

x1 �1þ x2 þ y2 � z2
� �

0
BB@

1
CCA: (A5)

As a final step we normalize the magnetic field so the mag-

netic energy is independent of the choice of x1 and x2.

Since ð
~B

2
d3x ¼ x2

1 þ x2
2

� �
; (A6)

we divide Eq. (A5) by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

� �q
to obtain Eq. (3) in the

paper, safe the scaling factor s.
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