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ABSTRACT
Three-mode analysis is a generalization of principal component anal-
ysis to three-mode data. While two-mode data consist of cases that
are measured on several variables, three-mode data consist of cases
that are measured on several variables at several occasions. As any
other statistical technique, the results of three-mode analysis may
be influenced by missing data. Three-mode software packages gen-
erally use the expectation–maximization (EM) algorithm for dealing
with missing data. However, there are situations in which the EM
algorithm is expected to break down. Alternatively, multiple imputa-
tionmaybeused for dealingwithmissingdata. In this studywe inves-
tigated the influence of eight differentmultiple-imputationmethods
on the results of three-mode analysis, more specifically, a Tucker2
analysis, and compared the results with those of the EM algorithm.
Results of the simulations show that multilevel imputation with the
mode with the most levels nested within cases and the mode with
the least levels represented as variables gives the best results for a
Tucker2 analysis. Thus, this may be a good alternative for the EM
algorithm in handling missing data in a Tucker2 analysis.
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1. Introduction

Three-mode analysis [1–3] is an extension of principal component analysis (PCA) to
three-mode data. While two-mode data consist of cases measured on several variables,
three-mode data consist of cases (first mode) measured on the same variables (second
mode) at several occasions, or conditions (third mode). In a simulation study, we will
compare procedures for missing data in the context of three-mode analysis. Specifically,
we will concentrate on the Tucker2 model; in the discussion, we will briefly comment on
other three-mode models.

1.1. Missing data

Before getting into the technical details of three-mode analysis, the problem of missing
data and its solutions are explained. As in any other statistical technique, missing data may
complicate a three-mode analysis. Many statistical techniques are designed to only handle
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complete data, so that cases with missing data are automatically excluded by the statistical
software package. This is called listwise deletion. Besides being very wasteful, listwise dele-
tion is only guaranteed to give unbiased results for the parameters when the missing data
are a random subsample of all data points. When this condition holds, the missing data
are said to be missing completely at random (MCAR). For a more technical explanation of
MCAR, see Little and Rubin [4, p. 10]. Unfortunately, MCAR almost never holds, so that
listwise deletion is generally not a good option.

The assumption of MCAR may be relaxed by assuming that the missing data depend
on observed variables but not on unobserved variables. For example, consider a data set in
which age is observed for all respondents, but as age increases, the probability of missing
data on other variables increases as well. This is calledmissing at random (MAR [4, p. 10],
[5]). Under MAR, listwise deletion is not guaranteed to give unbiased results.

However, three-mode models already have a facility for handling missing data,
namely the expectation–maximization (EM) algorithm [6,7]. The EM algorithm alternates
between estimating the parameters of a statistical model of interest (here, a three-mode
model) and estimating the missing data based on the current parameter estimates. Besides
using all cases for the analysis (contrary to listwise deletion), this technique will also give
unbiased results under specific types of MAR, namely when the missing data depend on
observed variables included in the statistical model of interest. However, when missing
data depend on variables not included in the model, the MAR assumption is violated for
the specific analysis, and the data are callednotMAR [4, p. 10].Under themore general situ-
ation of not missing at random (NMAR), missingness depends on unobserved variables or
information. Whenever a variable explaining the missingness is not included in the statis-
tical model of interest, it is equivalent tomissingness depending on an unobserved variable
because it does not take part in handling the missing data.

Alternatively, one could use multiple imputation [8]. This procedure works in three
steps: (1) the multiple-imputation step: missing data are estimated multiple times using
an estimation method, from here on denoted asmultiple-imputation method, so that mul-
tiple complete versions of the incomplete data set are created; (2) themultiple-analysis step:
the completed data sets are analysed using the statistical technique of interest; (3) the pool-
ing step: the results of the separate analyses are pooled into one overall analysis, taking
into account the additional uncertainty due to the missing data in the standard errors and
p-values.

Unlike the EM algorithm, multiple imputation can include variables outside the statis-
tical model of interest for explaining the missingness. As long as the variables explaining
the missingness are observed and used by multiple imputation for imputing the data, the
MAR assumption is not violated, whether or not they take part in the subsequent statistical
analysis (here, a three-mode analysis).

1.2. Two-mode PCA

Since three-mode analysis is a generalization of PCA to three-mode data, the technique is
best explained by briefly discussing PCA first. In PCA, a large number of variables J are
summarized into a smaller number of components, S. It is commonly applied to standard-
ized data Z (size I × J), especially when variables are measured on different scales. PCA
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decomposes Z as

Z = A�B′ + E. (1)

Here, A is an I × S matrix of coefficients of all cases on the first S components, obtained
from a singular value decomposition of Z. Secondly, � is a diagonal S× S matrix of the
first S singular values of the singular value decomposition. Thirdly, B is a J × S matrix of
the variable coefficients on the first S components. Finally,E is an I × Jmatrix with random
errors. The PCA model can be written as follows:

Z = AF′ + E, (2)

where F = B� is a J × Smatrix with standardized coefficients.

1.3. Three-mode PCA: Tucker2model

The above model has several three-mode generalizations, in particular, the Tucker2 model
[9], the Tucker3 model [3], and the Parafac model [10,11]. Although the Tucker2 model is
used less frequently than the Parafac and Tucker3 model, the focus will be on the Tucker2
model, for two reasons. Firstly, this study further elaborates on a paper about three-mode
analysis and multiple imputation [12]. Kroonenberg and Van Ginkel discussed rules for
combining the results of a Tucker2 analysis to a multiply imputed dataset. Secondly, the
Tucker2 model has fewer component matrices than the Tucker3 and Parafac model, which
in a simulation study allows for a substantially more focused discussion of the results than
for the Tucker3 and Parafac model. The Tucker3 and Parafac models will be commented
in Section 5.

Suppose we have an I (cases)× J (variables)×K (occasions) three-mode data set Z =
(zijk) in which Zk = (zkij) is the kth slice of the third mode. Next, let P be the number of
components for the first mode (cases) and Q the number of components of the second
mode (variables), Q not necessarily equal to P. Finally, let H be a P×Q×K three-mode
core array consisting of K, not necessarily diagonal, P×Q slicesHk. The Tucker2 model is
defined as

Zk = AHkB′ + Ek (k = 1, . . . ,K). (3)

Thus, the three-mode data are modelled for each level k of the third mode (occasion) by
common subject components, common variable components and a level-specific core slice
which contains the strengths of the links between the two types of components.

1.4. Multiple imputation and three-mode analysis

Although multiple imputation is a good solution for missing data in many statistical anal-
yses, in applying multiple imputation prior to a three-mode analysis one is faced with two
challenges. The first challenge is to find a multiple-imputation method that preserves the
results of the three-mode analysis as much as possible. The second is the pooling of the
parameter estimates of the three-mode model into one set of parameters. Both challenges
are discussed next.
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1.4.1. Multiple-imputationmethods for three-mode data
In general, two basic types of multiple-imputation procedures exist: joint modelling (see
Van Buuren [13, p. 105–108]) and fully conditional specification [13, p. 118–116]. The latter
can be further subdivided into the regression and the predictive mean matching approach.

1.4.1.1. Joint modelling. In joint modelling, one joint distribution of the data is assumed,
and used for imputation. For example, Schafer [14, Chapter 5] discusses multiple imputa-
tion under amultivariate normal distribution. Jointmodelling approaches use an algorithm
called data augmentation [15]. This algorithm iteratively draws random values of the
unknown parameters of this multivariate normal distribution (i.e. population means and
the covariance matrix) from a posterior distribution given the observed data, and then
randomly draws the imputed values from the distribution with the obtained parameters of
the model. The variance of the resulting multiply imputed values reflects both uncertainty
about the unknown parameters of the joint distribution, and uncertainty about themissing
data.

1.4.1.2. Fully conditional specification. Like joint modelling, fully conditional specifica-
tion takes into account uncertainty about both the unknown parameters and the unknown
values of themissing data, butworks differently. Rather than using one joint distribution for
imputing the data, this method uses a conditional distribution for each variable separately.
That is, for imputing the data it uses a conditional distribution based on normal linear
regression (in case of a numerical variable) or multinomial logistic regression (in case of a
categorical variable) with the other variables as predictors. The underlying algorithm first
fills in starting values for the missing data, next it iterates across all variables where for
each iteration it randomly draws the parameters of the regression model from a posterior
distribution. Next, it randomly draws the imputed values from the conditional distribution
based on the (multinomial logistic) regressionmodel, given the drawn parameters. On top
of the iterations across variables, it iteratively repeats the process until properties of the
imputed values (e.g. means and standard deviations), stabilize. For technical details, see
Van Buuren [13], Van Buuren et al. [16,17].

An advantage of fully conditional specification over joint modelling is that it is more
flexible. While in joint modelling, all variables in the imputation model are used for impu-
tation ofmissing data on all other variables, fully conditional specification can use different
predictors for each variable with missing data. This is especially useful when the data set
contains many variables. By using only predictors that may be relevant for estimating the
missing data on a specific variable, overfitting of the imputation model can be avoided.

1.4.1.3. Predictive mean matching. Besides the standard fully conditional specification
procedure, another variant exists, namely predictive mean matching (PMM; Van Buuren
[13, p. 68–74], Van Buuren et al. [16,17], and Rubin [18]). In predictive mean matching, a
linear regression model is used for imputing the missing data on continuous variables as
well, but here the imputed values are not drawn from the conditional distribution based
on the regression model. Instead, the regression model is used for finding respondents
with observed values on the outcome variable whose predicted values on the outcome vari-
able closely resemble the predicted values of the respondents with missing values. For each
person with a missing value on a particular variable, the observed value of the matching
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respondent is used for imputation. This variant has been shown to bemore robust tomodel
violations than standard fully conditional specification [19,20]. Both versions of fully con-
ditional specification are implemented in SPSS 23.0 [21], the mice package in R [22], and
in SAS 12.1 [23].

A problem with applying the above procedures to three-mode data is that they were
designed for two-mode data and that consequently, the data have to be rearranged first,
such that they can be conceived of as a two-mode data set. A number of possible ways to
do this are discussed below.

1.4.1.4. Long imputation. The first option for rearranging a three-mode data set to a two-
mode data set is in long format: occasions of the same case are represented in separate
rows as if they were independent cases. Next, the data are imputed using the standard
multiple-imputation methods. A problem of this approach is that it may bias the depen-
dence among occasions towards independence. For the three-mode model that is applied
next, this implies that the first mode (cases) and third mode (occasions) are treated as one
mode in the multiple-imputation method, so that the data get biased towards a two-mode
structure of persons/occasions× variables.

1.4.1.5. Wide imputation. The second option is storing the data in wide format: variables
at each occasion are represented by different columns, as if the variablesmeasured on a new
occasion are completely new variables. Next, data are imputed using the standardmultiple-
imputation methods. In this way, dependence among time points is maintained. However,
this way of imputing ignores the fact that the data have a hierarchical structure in which
the same variables are measured at several occasions. For the three-mode model that is
applied to this data set this means that the data get biased towards a two-mode structure of
persons× occasions/variables. Another disadvantage compared to long imputation is that
when a dataset is restructured into wide format it has more variables and fewer cases than
in long format, which may increase the risk of overfitting.

1.4.1.6. Imputation for separate slices. A third option is to treat each slice as a two-mode
data set and impute each slice separately using the standard multiple-imputation methods.
A disadvantage of this approach is that it biases the data towards a structure where both
cases and variables have no common variance over occasions. For the three-mode model
that is applied next, this implies that the data get biased towards a structure without com-
monmatricesA andB, but k separateAs andBs, i.e. the data get biased towards a structure
of k separate PCA models. For the three-mode analysis that is carried out next this could
mean that this bias towards independent slices is directed to the core array, which will
consequently be biased as well.

1.4.1.7. Multilevel imputation. Conceptually, the best way to carry out multiple imputa-
tion for three-mode data, is to use a multiple-imputation method that explicitly models a
three-mode structure, such as multiple imputation under a multilevel model [24]. More
generally, multilevel analysis is used for modelling data with a hierarchical structure, for
example, data consisting of students nested within classes. A special application of mul-
tilevel is the modelling of longitudinal data where different time points are nested within
cases [24, Chapter 4]. Three-mode data have the structure of a multilevel data set in the
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sense that different occasions (third mode) are nested within cases (first mode). Conse-
quently, multilevel imputation is an appropriate way to impute missing data in three-mode
data.

Currently, there are two approaches to perform multiple imputation under a multilevel
model, namely a joint modelling variant [25], and a fully conditional specification variant
[26]. Unfortunately, no multilevel predictive mean matching variant has been proposed
so far. The joint modelling variant has been implemented in the pan [27] and mice [22]
procedures in R; mice also contains a fully conditional specification variant.

1.4.1.8. Multiple-imputationmethods in this study. Whenmissing data are handled using
a multiple-imputation method not based on a multilevel model, a number of decisions
must be made about the procedure. First a decision must be made about how to apply a
method for two-way data to a three-way data set. As mentioned before, the data can be
put in long format (L), in wide format (W), or the imputation procedure may be applied
to the separate slices (S). Secondly, a decision must be made about whether to use the
regression approach (Reg) or the PMM approach. Using all combinations of ways to apply
two-mode multiple-imputation methods to three-mode data (L,W, S) and estimation pro-
cedures (Reg, PMM), this results in six two-modemultiple-imputation procedures adapted
for three-mode data, denoted by Reg-L, Reg-W, Reg-S, PMM-L, PMM-W, and PMM-S.

To be consistent with the other imputation methods, it was initially decided to use the
fully conditional specification variant of multilevel imputation. However, this version ran
into computational problems for large percentages of missingness (i.e. imputed values far
beyond the range of the data), so it was necessary to switch to joint modelling [27].

The multilevel approach may be used in two ways. The first way is to use variables mea-
sured at different occasions asmodel variables, and to nest different occasions within cases.
This method will be denoted PAN. The second way is to use different occasions as model
variables, and to nest variables measured at different occasions within cases. This method
will be denoted PAN-restructured (PAN-R). Both options were studied.

Although conceptually it makes more sense to use variables as model variables and nest
occasions within cases (PAN), it may still be beneficial to do it the other way around (PAN-
R). When J > K, time points are modelled as variables, and variables are nested within
cases, there will be relatively few model variables in the imputation model while at the
same time more information can be used for estimating the random effect. This way of
modelling the hierarchical structure will reduce the risk of sparse data.

As an aside, one must bear in mind that an imputation model differs from an analysis
model in its purpose. The latter is used for drawing inferences about the parameters of the
analysis model while the former is only used to get imputed values that closely mimic the
structure of the observed data [17, p. 143].

Together with the default EM option in three-mode analysis, this resulted in nine
different missing-data methods in our study, which are summarized in Table 1.

1.4.2. Pooling the results of three-mode analysis
After completing the data in the multiple-imputation step, the second (multiple-)analysis
step consists of applying statistical analyses to themultiple completed data sets. In the third
or pooling step, the results of these multiple analyses are combined to one pooled result.
For significance tests based on z – or t-tests, combination rules have been defined in [8] and
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Table 1. Overview of the missing-data methods included in the simulation study.

Data format Name
Joint modelling/fully
conditions specification

Regression/Predictive
mean matching/Multilevel EM algorithm EM

Fully conditional specification Regression Long Reg-L
Wide Reg-W
Separate slices Reg-S

Predictive mean matching Long PMM-L
Wide PMM-W
Separate slices PMM-S

Joint Modelling Multilevel Long (occasions within cases) PAN
Long (variables within crabs) PAN-R

are available in most statistical software packages. Pooling techniques suitable for testing
multiple parameters at a time (e.g. an overall F-test) have also been available for a long time
[8], but were only recently explicitly worked out for analysis of variance [28].

When no significance tests are desired, it is sufficient to simply average over themultiple
values of a statistic derived from the multiply imputed data sets. However, Van Ginkel and
Kroonenberg [29] argued and showed that for component loadings in PCA this is not ade-
quate. The problem with averaging PCA loadings is that firstly, in one imputed data set the
loadings of a specific component may have opposite signs compared to the loadings of the
same component in another imputed data set. Secondly, the order of the components may
not be the same for all imputed data sets. Rather than averaging loadings, Van Ginkel and
Kroonenberg showed that one should use Generalized Procrustes analysis (GPA; [30,31])
for combining the PCA loadings from multiply imputed data sets. GPA is a generalization
of a Procrustes rotation [32,33]. In a Procrustes rotation, a sourcematrix is rotated towards
a target matrix, such that it optimally fits the target. In GPA this idea is extended to more
than twomatrices. Consequently, in GPA the distinction between source and target matrix
gets lost. Instead, all matrices are optimally aligned towards each other, and the centroid
of the optimally aligned matrices may serve as an average of all matrices. In the context of
multiple imputation, different PCA solutions of multiply imputed datasets are optimally
aligned using GPA, and the centroid is the pooled PCA solution.

The same approachmay be used for three-mode analysis. Kroonenberg and Van Ginkel
[12] defined combination rules for the Tucker2 model, based on the GPA approach for
PCA. In their proposed procedure, pooled component matricesA and B are obtained first,
using theGPA approach for bothmatrices. Next,H is constructed fromA andB. To explain
the pooling of H, we first consider the case where no data are missing. When the data are
complete, matrix (slice)Hk is computed as follows:

Hk = A′ZkB (4)

after first computing matricesA and B using an algorithmwere described by Kroonenberg
and De Leeuw [2]. For multiply imputed data, Hk is computed for each imputed data set
m as

Hk,m = A′Zk,mB (5)

using the solutions of A and B obtained from GPA. Next,Hk is obtained by averaging the
Hk,m’s over theM imputed data sets.
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1.4.3. Research questions
Besides Kroonenberg andVanGinkel [12], other studies aboutmissing data in three-mode
data include Hubert et al. [34], Louwerse et al. [35], and Tian et al. [36]. The paper by
Kroonenberg andVanGinkel [12] was aimed at defining combination rules for the Tucker2
model formultiply imputed data sets. However, the problem of accurately taking the three-
mode structure into account in the imputation model was not addressed (wide imputation
was used) and no systematic simulation study was conducted.

Hubert et al. [34] discussed an EM-based estimation method for the Parafac model that
was robust to both outliers and incomplete data. Outliers are not the topic of the present
paper so the only EM-based method in our study will be the standard EM algorithm.

In [35] the focus was on cross-validation methods for three-mode models in the pres-
ence of missing data. In the current study, we will not focus on ways to select the best
three-mode model for an incomplete data set, but on how parameter estimates of a three-
mode model are influenced by multiple imputation, assuming the best model has already
been selected.

Finally, Tian et al. [36] looked at the performance of multiple imputation in three-
mode data at the level of the imputed data themselves, but the influence on the parameters
of a three-mode model was not studied. Moreover, Tian et al. only looked at multiple-
imputation methods for two-way data, adjusted such that they could be applied to three-
mode data. In the current study, we have focused on the influence of multiple imputation
on the parameter estimates of a Tucker2 analysis. In doing so, we will both look at
multiple-imputation methods for two-way data applied to a three-mode data set, and
multiple-imputation methods that explicitly model the three-mode structure of the data.
This leads us to the following research questions: (1) Is there any benefit of multiple impu-
tation over the EM algorithm in a Tucker2 analysis and if so, (2) is it sufficient to use
the standard establishedmultiple-imputationmethods for two-way data with some adjust-
ments, or is a multiple-imputationmethod that explicitly models the three-mode structure
necessary?

2. Method

For our simulation study, the following procedure was adopted: Complete data sets were
simulated using a Tucker2 model. These complete data sets were made incomplete by
removing various amounts of data points according to different stochastic mechanisms,
to be explained later. For each of these incomplete data sets, a Tucker2 model was esti-
mated using either multiple-imputation methods outlined above, or the EM algorithm,
and a quality measure was computed for each solution.

2.1. Creating the simulated data

2.1.1. Simulating the complete data
To simulate data sets according to a Tucker2model, the parameter values were taken from a
Tucker2model, estimated from an existing data set, namely the Blue Crab data [37,38]. The
data set consists ofN = 138, possibly diseased crabs (n = 48 in 1989, and n = 90 in 1990)
in two different regions, namely the Pamlico River, and Albemarle Sound, both in North
Carolina. Within the Pamlico River, two types of crabs were to be found, namely healthy
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Table 2. Estimates of the B and Hmatrix of the Tucker2 model applied to the Crab data [37].

Component number second way

Matrix Trace element 1 2 3 4

B Al 0.45 0.00 −0.15 −0.12
Ca −0.01 0.53 0.06 −0.09
Cd 0.03 −0.42 0.16 −0.15
Cr 0.45 0.01 −0.04 0.03
Cu −0.18 −0.09 −0.10 0.29
K −0.01 0.00 0.43 0.23

Mg 0.07 0.32 0.54 0.02
Mn 0.33 0.06 0.04 −0.16
Na −0.02 −0.04 0.54 −0.43
Ni 0.31 −0.10 0.24 0.23
P −0.02 0.54 −0.07 0.07

Pb 0.19 −0.03 0.17 0.70
Se −0.07 −0.26 0.03 0.15
Ti 0.43 0.00 −0.06 −0.02
U 0.34 −0.04 −0.15 −0.12
Zn 0.02 −0.24 0.22 −0.14

Component number first way
HGill 1 42.52 0.93 −0.35 2.67

2 6.41 2.66 2.11 −14.12
3 1.94 −6.20 −19.71 −4.74

HHepatopancreas 1 1.15 9.02 2.74 −0.97
2 2.00 −29.45 6.01 −0.67
3 −1.33 −1.94 −11.58 1.66

HMuscle 1 0.77 1.50 1.10 −2.08
2 0.25 5.09 0.85 −0.46
3 −1.33 0.61 −5.94 5.72

crabs and diseased crabs. Thus, three different categories of crabs were available, namely
Albemarle Sound, healthy (n = 46), Pamlico River, healthy (n = 46), and Pamlico River,
diseased (n = 46). This grouping variable was used as a background/external variable for
simulating a MAR mechanism, as will be explained later.

In the original study byGemperline et al. [37], it was investigatedwhether trace-element
levels were associated with the occurrence of the disease. In total, three tissue types (gill,
hepatopancreas, and muscles), were sampled from each crab, and the levels of 25 trace
elements in these tissues were determined. In our study we used the 16 most abundant
trace elements: Al, Ca, Cd. Cr, Cu, K, Mg, Mn, Na, Ni, P, Pb, Se, Ti, U, and Zn [38], so that
the resulting simulated data sets had a 138 (crabs)× 16 (trace elements)× 3 (tissue types)
three-mode data structure.

Because themeasurement units of the trace elementswere highly different, the datawere
centred andnormalized. In particular, first each trace-element tissue-type combination (jk)
was centred separately across crabs, i.e. the data were centred by z̄·jk [1, p. 119–121]. Next,
each centred trace element (j) was normalized across all crabs and tissue types, i.e. they
were normalized by s·j; see, e.g. Kroonenberg [1, p. 125–127].

Using deviance and multiway scree plots (Kroonenberg [1, Chapter. 8]; Timmerman
and Kiers [39]), the best-fitting Tucker2 model was chosen, which turned out to be a 3
(crabs)× 4 (trace elements) Tucker2 model. The estimates of B and H (see Equation (6))
were used in the process of simulating the data (see Table 2).

Applying multiple imputation to three-mode data only makes sense when cases are
random [1, p. 168]. Therefore, we cannot use the scores matrix A from the Crab data
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3068 J. R. VAN GINKEL AND P. M. KROONENBERG

Table 3. Means and covariance matrices of matrix A of the Tucker2 model applied to the
Crab data (Gemperline et al. [37]), for each group of crabs separately.

Covariance matrices

Component number first way
Component

number first way 1 2 3 Mean

AAlblemare 1 11 −5411
2 −17 264 −3073
3 −27 −69 355 4438

APamlico−h 1 205 −1589
2 −410 1180 495
3 −212 29 318 −5522

APamlico−d 1 1181 7001
2 80 612 2578
3 318 −80 714 1084

Note: Entries have been multiplied by 105.

for simulating the data because a fixed A would imply that the cases (crabs) are fixed.
Instead,matrixA obtained from theTucker2 analysis of the BlueCrab datawas divided into
three sub-matrices, one for each of the three group of Crabs. The group means and group
covariance matrices of each of these sub-matrices (see Table 3) were used to construct sub-
matrices randomly drawn from a multivariate normal distribution with the same means
and covariance matrices. Together these sub-matrices formed one overall simulated A
matrix.

Although it is questionable whether a multivariate normal distribution of matrix A is
realistic, the multivariate normal distribution was chosen to be consistent with the dis-
tributional assumptions of most of the multiple-imputation methods used. One of the
purposes of this study was to see whether multiple imputation for two-way data could
already accurately recover the results of a Tucker2 analysis or if explicit modelling of the
three-mode structure in themultiple-imputation process would be necessary, regardless of
possible violations of distributional assumptions. Studying the robustness of thesemethods
to violations of multivariate normality is not the topic of this paper.

One requirement of matrices A and B in the Tucker2 model is that they are both
orthonormal. While this is true for the matrix A from the analysis of the original Blue
Crab data, the sampledAmatrices are not orthonormal due to sampling fluctuation. Con-
sequently, when the sampled A is inserted in Equation (3), the resulting data set Z is not
a data set that exactly behaves according to the Tucker2 model with the parameters from
Tables 1 and 2. To create a sampled orthonormalmatrixAν of simulated data set ν, the orig-
inally drawn sub-matrices AAlblemare,ν , APamlico−h,ν , and APamlico−d,ν were standardized
and transformed back using the means and covariance matrices from Table 2.

Using theAν sub-matrices, the fixedmatricesHk andB, and a randomerror three-mode
matrix E, three-mode data were created using Equation (3). Matrix Ewas created by draw-
ing random values from a normal distribution with mean μ = 0 and variance σ 2 = 0.463
(the estimated error variance from the original Blue Crab data) for each entry. To give an
impression of the magnitude of this error variance: the proportion of explained variance
of the Tucker2 model used here is R2 = 0.571. The categorical grouping variable had val-
ues 1, 2, and 3, representing the three subgroups of Crabs. Using the above procedure, 100
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replicated complete data sets of N = 138 were drawn, henceforth denoted as the complete
data.

2.1.2. Creating the incomplete data
For each of the 100 complete data sets, different percentages of data points were deleted
under different missingness mechanisms.

2.2. Design of the simulation study

2.2.1. Independent variables
2.2.1.1. Missingness mechanism. Missing data were created using three missingness
mechanisms: MCAR, MAR, and NMAR. Missing data according to MCAR were created
by randomly removing a subsample of data points, with all data points having equal prob-
ability. Under MAR, missingness depended on the grouping variable: for diseased crabs
from Pamlico River the probability of missing data was three times higher than for crabs
from Albemarle, and for healthy crabs from Pamlico River, the probability of missing data
was two times higher than for crabs fromAlbemarle. Given these probability ratios, a num-
ber of data points were removed. Finally, under NMAR, for entries in data set Z above 0
the probability of being missing was three times higher than for entries below zero. Given
these probability ratios, a number of data points were randomly removed.

2.2.1.2. Percentage of missingness. 5%, 10%, 20%, and 40% missing data were studied.

2.2.1.3. Missing-datamethod. Ninemissing-datamethods were studied (Table 1). Apply-
ing PAN to the situation of Crabs×Tissue types×Trace-elements means that tissue types
are the model variables and trace elements are nested within crabs; applying PAN-R here
means that trace elements are the model variables and tissue types are nested within crabs.

2.2.2. Dependent variables
Van Ginkel and Kiers [40], Van Ginkel and Kroonenberg [29], and Van Ginkel et al. [41]
used Root Mean Squared Bias (RMSB) of the component loadings as a quality measure of
a PCA solution (also, see Bernaards and Sijtsma [42], who used a similar measure). The
RMSB can be adapted for the parameters in the Tucker2 model.

In PCA, the problemwith comparing sample component loadingswith population load-
ings is that in the sample, the order of components may have changed and that for some
components, the signs of the loadings may have been reversed compared to the population
component solution. The same may happen in a Tucker2 analysis for the sample estimates
of Aν and Bν , which we will from now on denote Âν and B̂ν . To properly align the sample
loadings with the population loadings in PCA, the sample solutionmust be rotated towards
the population solution first, using a Procrustes rotation [32,33].

Rotating the estimated core matrix, denoted Ĥν , optimally to the population matrix
H is more problematic. Firstly, the Procrustes rotation can only be applied to two-mode
matrices while Ĥν is a three-mode matrix. Secondly, when all matrices Âν , B̂ν , and Ĥν are
independently rotated, the model that they form defined by Equation (3) gets lost. Instead,
the optimally rotated core matrix from a sampled data set ν, denoted, Ĥ

∗
ν , is constructed
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3070 J. R. VAN GINKEL AND P. M. KROONENBERG

by using the already optimally rotated versions of Âν and B̂ν , denoted Â
∗
ν and B̂

∗
ν , and by

using Equation (4).
Once Â

∗
ν , B̂

∗
ν and Ĥ

∗
ν have been obtained, two fit measures are determined, both based

on the root mean squared bias measure. The first fit measure is an RMSB measure for H
and B jointly. Define

F = B[H1, . . . ,Hk] (6)

as a population three-mode matrix which is a generalization of the matrix of the compo-
nent loadings in two-mode PCA (Equation (2)), and define

F̂
∗
ν = B̂

∗
ν[Ĥ

∗
1,ν , . . . , Ĥ

∗
k,ν] (7)

as the corresponding optimally rotated solution of data set ν. Now suppose fjqk is the entry
in F for trace element j, component q, and tissue type k, and f̂ ∗jqk,ν is the corresponding
loading of an incomplete sampled data set v, under a specific missingness mechanism, per-
centage of missingness, and using a specific missing-data method. The root mean squared
bias of F for the vth data set is defined as follows:

RMSB(F)ν =

√√√√√
J∑

j=1

Q∑
q=1

K∑
k=1

(f̂ ∗jqk,ν − fjqk)
2
/JQK. (8)

The value of RMSB(F)ν can be interpreted as the root of the squared distance of the entries
in F̂

∗
ν of the sampled data to the entries of the truematrix Fν in themultidimensional space,

averaged over J trace elements, Q components, and K tissue types.
Likewise, the RMSB of matrix A is computed. Suppose Agν is the true matrix of com-

ponent scores of the crabs in completed data set v with an entry aip,gν for crab i in group g,
and component p, and Â

∗
gν is the rotated version of Âgν in data set v with an entry â∗

pk,gν
for crab i in group g and component p. The root mean squared bias of A for group g in
replicated data set v, is defined as follows:

RMSB(A)gν =
√√√√

I∑
i=1

P∑
p=1

(â∗
ip,gν − aip,gν)2. (9)

2.2.3. Statistical analyses
To evaluate the quality of the missing-data methods, the results of the two outcome mea-
sures were investigated, RMSB(F) using a 4 (Percentage of missingness)× 3 (Missingness
mechanism)× 9 (Missing-data method), and RMSB(A) using a 3 (Group)× 4 (Percentage
of missingness)× 3 (Missingness mechanism)× 9 (Missing-data method) ANOVA. Since
all percentages of missingness and missingness mechanisms were simulated in the same
100 replicated original data sets and all missing-data methods were applied to these same
100 replications, all factors were within-subjects factors. For the ANOVAwith RMSB(A) as
outcome variable, Group was a within-subjects factor as well because the groups were all in
the same data set. Only small (0.01 ≤ total η2 < 0.06), medium (0.6 ≤ total η2 < 0.14),
and large effects (totalη2 ≥ 0.14) are discussed, followingCohen’s [43] guidelines for effect
sizes.
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Table 4. ANOVA results for root mean squared bias of three-way matrix F and matrix A.

Dependent variable Independent variable ν1 ν2 F Total η2

RMSB(F) Percentage×Method 21 2079 6946.277 0.198c

Percentage 3 297 11,480.166 0.685c

Method 7 693 3482.038 0.086b

RMSB(A) Percentage×Group 6 594 300.969 0.004a

Missingness mechanism×Group 4 396 72.497 0.105b

Percentage 3 297 10,522.415 0.704c

Group 2 198 78.522 0.048a

Note: All p-values are less than 0.001. Only effects with a discernable size are shown.
aSmall effect.
bMedium effect.
cLarge effect.

3. Results

When analysing the results it turned out that method PAN produced substantially larger
values of RMSB(F) and RMSB(A) than the other methods, causing many higher order
interactions with discernable effect sizes. Therefore, it was decided to leave method PAN
out of the analyses, resulting in a 4 (Percentage of missingness)× 3 (Missingness mecha-
nism)× 8 (Missing-data method) ANOVA for RMSB(F), and a 3 (Group)× 4 (Percentage
of missingness)× 3 (Missingness mechanism)× 8 (Missing-data method) ANOVA for
RMSB(A). Table 4 shows the ANOVA results for the effects that meet Cohen’s criteria for
discernable effect sizes, for both RMSB(F) and RMSB(A). For RMSB(F) the effects that
meet these criteria are the interaction of Missing-data method×Percentage of missing-
ness, Missing-data method, and Percentage of missingness. For RMSB(A) the interactions
of Percentage of missingness×Group andMissingness mechanism×Group, the effects of
Group and Percentage of Missingness were discernible. Each of these effects is discussed
in more detail below.

3.1. Results of the RMSB of F

3.1.1. Main and interaction effects of method and percentage ofmissingness
The relevant means and standard errors of RMSB(F) are shown in Table 5. For compari-
son, results of the complete data are shown as well (first row), and the results of method
PAN, which was not included in the statistical analysis. As the percentage of missingness
increases, RMSB(F) increases as well (last row). However, this increase is not the same for
all missing-data methods. Especially for the methods that perform the imputations on a
dataset in wide format (Reg-W, PMM-W) and method PAN, the increase in RMSB(F) is
substantially larger than for the other methods.

The last two columns of Table 5 show the means of the main effect of Missing-data
method. The methods are ordered with respect to magnitude of the RMSB(F). When
averaged over all percentages of missingness (last column), PAN-R is the best perform-
ing method and PAN is the worst performing method (mainly caused by the results of
10%, 20%, and 40% missingness; for 5% missing-data PAN is close to the other methods).
The next best two methods after PAN-R are the methods based on multiple imputation
for separate slices (PMM-S, Reg-S; third and fourth rows), followed by methods based on
imputation on a data set in tall format (Reg-T, PMM-T). Another noticeable result is that
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Table 5. Root mean squared bias of the three-way matrix F for all combinations of method and
percentage of missingness, aggregated across all missingness mechanisms.

Percentageof missingness

5% 10% 20% 40% Total

Method M SE M SE M SE M SE M SE

Original 795 4 795 4 795 4 795 4 795 4
PAN-R 797 4 801 3 836 4 1107 4 885 3
PMM-S 800 4 806 4 843 4 1123 4 893 3
Reg-S 799 4 806 3 849 4 1178 4 908 3
PMM-T 799 4 806 3 852 4 1141 4 900 3
Reg-T 802 4 814 3 873 3 1216 4 926 3
EM 826 4 864 4 963 4 1274 5 982 4
PMM-W 803 4 815 3 873 3 1523 6 1003 3
Reg-W 802 3 821 3 911 3 1933 7 1117 3
PAN 811 3 873 3 1221 5 3369 33 1569 9
Totala 803 4 816 3 875 3 1312 4 952 3

Notes: Entries have been multiplied by 103. Totals represent averages over either methods (rows), percentages of missing-
ness (columns), or both (lower right corner).

aOriginal data and PAN not included.

EM (6th row) performs relatively poorly and that there are only three methods having a
larger RMSB(F) on average.

3.2. Results of the RMSB of A

When leaving out method PAN from the analysis with RMSB(A) as the dependent vari-
able, neither a discernible main effect of method nor interactions of method with the other
factors were found. The remaining effects with a discernible size (see Table 4) are discussed
below.

3.2.1. Interaction ofmissingnessmechanism and group
Table 6 (upper panel) displays the means and standard errors that involve the main effect
of Missingness mechanism×Group. For MCAR, RMSB(A) is similar across groups (third
row). ForMAR, RMSB(A) is smallest for Albemarle and largest for Pamlico-d (fourth row).
This is not surprising because MAR was simulated such that Pamlico-d had the highest
probability of missing data and Albemarle had the lowest probability. Since the percentage
of missingness influences the stability of parameter estimates and consequently RMSB(A),
it makes sense that RMSB(A) is highest for the group with the most missing data. For
NMAR, RMSB(A) was highest for group 3 and lowest for group 1 as well, although the
difference between groups were smaller than for MAR.

The main effect of Group was of discernable size as well (see Table 4). For Albemarle
RMSB(A) was smallest and for Pamlico-d RMSB(A) is largest (Table 6, last row). However,
as the interactionwithMissingnessmechanism shows, this ismainly caused bymissingness
mechanisms MAR and NMAR.

3.2.2. Effects of group, percentage ofmissingness, and interaction
Themeans and standard errors of RMSB(A) for the effect of groupmay be found in Table 6
(last row). On average, RMSB(A) is lowest for Albemarle and highest for Pamlico-d. As the
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Table 6. Rootmean squared bias andmean bias ofmatricesAAlbemarle toAPamlico−d for all combinations
of method and percentage of missingness, aggregated across all imputation methods.

Group

Albemarle Pamlico-h Pamlico-d

Dependent variable M SE M SE M SE

RMSB(A) Original data 2071 13 2071 13 2071 13
Missingness mechanism
MCAR 2390 12 2474 15 2479 13
MAR 2288 14 2489 15 2632 15
NMAR 2348 14 2501 14 2561 15
Percentage of missingness
5 2131 13 2160 14 2176 14
10 2193 13 2243 13 2281 13
20 2325 13 2442 14 2509 13
40 2719 14 3106 16 3263 15
Totala 2342 12 2488 13 2557 12

Note: Totals represent averages over missingness mechanism. Entries have been multiplied by 105.
aOriginal data and method PAN not included.

percentage of missingness increases, RMSB(A) increases as well. These differences become
larger as the percentages of missingness increases (rows 7–10). Finally, the main effect of
percentages of missingness shows that for 5% RMSB(A) is smallest (M = 2155× 10−5,
SE = 8× 10−5), followed by 10% (M = 2239× 10−5, SE = 8× 10−5) and 20% miss-
ingness (M = 2425× 10−5, SE = 7× 10−5); for 40% missingness RMSB(A) is largest
(M = 3029× 10−5, SE = 9× 10−5).

4. Application to an empirical data set

The above simulations have two disadvantages. Firstly, the data were simulated according
to amodel. In practice however, data donot behave like amodel. Secondly, the performance
of the methods is expressed using an overall quality measure (RMSB), but this does not say
anything about bias of individual parameters (i.e. individual entries of the matrices A, H,
and B). On the other hand it is infeasible to report simulation results of that many param-
eters. Additional to the simulations (some of) the missing-data methods were applied to
an empirical data example. The presentation of the analyses of this empirical data set is a
compromise between showing the performance of the missing-data methods at the level of
the individual parameters on the one hand, and not reporting too many simulation results
on the other hand, with the additional advantage that it also gives an impression of how
the missing-data methods behave in real data, rather than simulated data.

The particular data set originates from the Centre of Child and Family Studies of the
Department of Education, Leiden University, and was used in earlier studies [44,45]. They
will be referred to as the Strange Situationdata. In this data set,N = 326 infants (firstmode)
aremeasured on five variables measuring the child’s reaction to a strange situation (second
mode) during two so-called reunion episodes (thirdmode). The five variables are Proximity
seeking, Contact maintaining, Resistance, Avoidance, and Distance Interaction. Addition-
ally, there is one background variable measuring the attachment style of the child in three
types: Avoidant (A), Secure (B), and Resistant (C) [46]. In Ainsworth’s categorization a
fourth category exists as well, namely Disorganized/disoriented (D), but this category did
not appear in the data. For more details, we refer to [46].
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Table 7. Results of the B and Hmatrix of the Tucker2 model applied to the Strange Situation data [44],
shown for both the original data and the missing-data methods.

Component number second way

Original data EM PMM-S PAN-R

Matrix Variable 1 2 1 2 1 2 1 2

B Proximity seeking −522 185 −517 204 −530 167 −524 200
Contact maintaining −537 −24 −527 −31 −533 −48 −543 −49
Resistance −270 −737 −271 −734 −273 −690 −271 −717
Avoidance 397 −594 404 −587 395 −642 394 −605
Distance interaction 457 263 468 272 452 283 450 272
Component number

first way
H1 1 25,793 1815 26,265 2782 24,222 2041 24,388 2177

2 2089 −15,065 1514 −17,434 2019 −14,377 2003 −14,063
3 −12,265 2072 −13,538 2224 −11,443 1392 −11,371 1518

H2 1 29,499 1607 30,600 1019 28,519 1548 27,729 1011
2 −7 −16,386 300 −16,943 53 −14,325 −178 −14,613
3 10,786 −3472 12,293 −3522 11,367 −1965 9815 −3274
RMSDO – 19,437 19,437 19,437

Note: Entries have been multiplied by 103.

Twenty per cent of the scores were randomly removed, using missingness mechanism
MAR: for children with attachment style B the probability of missing data on the five
variables was twice as high as for children in category A; for children in category C this
probability was three times as high. Missing data were handled using the EM algorithm,
the multiple-imputation method for two-way data that performed best in the simulation
study (PMM-S), and the multilevel imputation method that performed best in the simu-
lation study (PAN-R). The resulting estimated matrices A, H and B were compared with
those of the original data. Like in the simulation study, a summary measure of the overall
performance was computed for each missing-data method. However, because the popu-
lation values of A, H, and B are unknown, RMSB cannot be computed. Instead, the Root
Mean Squared Difference with the Original Data (RMSDO) was used. RMSDO was com-
puted as described in Section 2.2.2, with the only difference that the population parameters
fjqk and aip,g in Equations (8) and (9) were replaced by the estimates of the original data.
Also, note that when applied to one data set the replication index ν may be dropped from
both equations.

Using deviance and multiway scree plots (Kroonenberg [1, Chapter 8]; Timmerman
and Kiers, [39]) it was determined that a 3× 2 Tucker2 model had a satisfactory fit for the
original data. The same model was fitted on the incomplete data using EM, PMM-S, and
PAN-R for handling the missing data. The results of all analyses are given in Tables 7 and
8. The results in both tables show that differences between methods and differences with
the original data are small. For matrices B andH (Table 7) differences in RMSDO between
methods are not even visible in the third decimal (last row).

5. Discussion

In this study the influence of several missing-data methods on the results of the Tucker2
model was studied, under different missingness mechanisms and different percentages of
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Table 8. Results of the first mode of the Tucker2 model applied to the Strange
Situation data [44], shown for both the original data and the missing-data
methods, and for each group of attachment style separately.

Mean

Matrix
Component number

first way Original EM PMM-S PAN-R

AA 1 15 14 15 7
2 15 14 16 7
3 7 6 6 3

RMSDO – 15 12 12
AB 1 −2 −2 −2 −1

2 −9 −9 −9 −4
3 −2 19 −2 −1

RMSDO – 25 21 21
AC 1 −19 −19 −19 −9

2 20 19 19 9
3 −4 −4 −4 −2

RMSDO – 15 14 14

Note: Entries have been multiplied by 103.

missingness. Additionally, results of a Tucker2 analysis on an empirical complete dataset
were compared with the results of the same data set, but with some data removed and han-
dledwith some of themissing-datamethods from the simulation study. As in earlier studies
about missing data and PCA [29], the effect of missing data and missing-data methods on
the RMSB was small.

For the RMSB of F, effects with discernable size were found for Percentage of missing-
ness, Missing-data method, and the interaction of both. As the percentage of missingness
increased, RMSB(F) increased as well, but the increase was not the same for all missing-
data methods. For example, for multilevel imputation with trace elements nested within
crabs (data in IJ ×K format), the increase was larger than for multilevel imputation with
tissue types nested within crabs (data in IK × J format).

5.1. Rootmean squared bias of F

For RMSB(F) it was found that multilevel imputation with trace elements nested within
crabs (PAN-R; IJ ×K format) was the best performing method and multilevel imputa-
tion with tissue types nested within crabs (PAN; IK × J format) was the worst performing
method. Of the multiple-imputation methods for two-mode data, methods based on
predictive mean matching had smaller RMSB(F) than their corresponding regression
methods. Furthermore,methods based on imputation for separate slices (Reg-S and PMM-
S) performed best, followed by methods based on imputation on a tall data set (Reg-T and
PMM-T). Methods based on imputation on a wide data set (Reg-W and PMM-W) had the
largest RMSB(F) of the methods for two-mode data, and were more sensitive to increasing
percentages of missingness than the other methods. The relatively poor performance of
the latter two methods is probably due to the relatively small sample size and large num-
ber of variables, which may increase the risk of overfitting. This overfitting may become
even worse for large percentages of missingness than for small percentages of missingness,
because the parameters of the imputationmodel have to be estimated from even less infor-
mation, but with the same number of variables. Treating different occasions as separate
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cases, like methods Reg-T and PMM-T do, may ignore the dependence among occasions,
but a larger number of caseswith a sufficiently small number of variables is gained in return,
which is apparently more important for gaining results with small RMSB than taking into
account the dependence among occasions.

Surprisingly, the EM algorithm had a relatively large RMSB(F), but this did not seem to
be related to missingness mechanism. It was expected that the EM algorithm would per-
formworse forMAR (andNMAR) than forMCARbecause the EMalgorithmdoes not take
into account dependence of the missing data on auxiliary variables. However, no relevant
interaction was found between Missing-data method and Missingness mechanism.

Another surprising result was that PAN had the largest RMSB(F) in general, while this
methodwas supposed to accuratelymodel the hierarchical structure of three-mode data. In
a pilot study, it was already found that multilevel imputation using Fully Conditional Spec-
ification broke down for large percentages of missing data when tissue types were nested
within crabs and trace elements were measured as separate variables (divergence of the
imputations to values far beyond the range of the data). This problem was probably caused
by the fact that there is little information available for estimating the random effect of tissue
type. The same problem may occur in PAN, although to a lesser degree.

Another finding that supports this theory is that method PAN-R, in which tissue types
are represented by different variables and trace elements are nested within crabs, had the
smallest RMSB(F) of all methods. When there is more information about the random
effect and there are only few variables, the problem of sparse data may disappear and
multilevel imputation will accurately generate imputed values for data with a hierarchical
structure.

5.2. Rootmean squared bias of A

Leaving out the worst performing method PAN of the analyses, no discernible effect of
Missing-data method was found for RMSB(A). Apparently, matrix B and core array H are
more influenced by the missing-data method than matrix A.

For RMSB(A) there was an interaction of group and missingness mechanism. When
the data were MAR and NMAR, RMSB(A) was smallest for Albemarle and largest for
Pamlico-d. Considering the way missingness was simulated, it makes sense that for MAR
this patternwas found, because underMAR the simulatedAlbemarle crabs had the smallest
percentage of missingness, and the simulated Pamlico-d crabs had the largest percentage
of missingness. Moremissing data leads to less accuracy of the parameter estimates, result-
ing in larger values of RMSB(A). For NMAR it is less obvious how it results in the same
pattern of smallest RMSB(A) for Albemarle and largest RMSB(A) for Pamlico-d because
under NMAR, missingness was related to the value of the missing-data point itself, which
is not directly linked to the values of A. Furthermore, as the percentage of missingness
increased, RMSB(A) increased as well.

5.3. Scaling and data format inmultilevel imputation

Although method PAN-R generally produced the best results, it should be noted that the
simulated data were based on the standardized Blue Crab data. In the Blue Crab data,
this standardization was necessary because the trace-element levels differed substantially
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across different trace elements. Because of this standardization the nesting of trace elements
within Crabs like method PAN-R does, caused no problems. However, when variables are
not measured on the same scale and have substantially different variances, this may cause
problems when variables are nested within cases. The multilevel model assumes a random
error term with a constant variance across variables. This assumption is violated when
variables with substantially different variances are nested within cases.

To test this conjecture, we also studied method PAN-R when the simulated data were
rescaled to the original scales of the Crab data and standardizing the resulting imputed
data sets after imputation (results not shown). This option produced substantially larger
RMSB(F) and RMSB(A) than the other methods. This shows that PAN-R will only work
when variables have similar means and variances. Thus, our general advice when using
multilevel imputation is to use a format of the three-mode data such that the mode with
the most levels is nested within cases, and the mode with the least levels is represented
by separate variables, regardless of whether the resulting imputation model conceptually
makes sense. If the mode with the most levels has substantially different variances across
levels, it is advised to standardize the data prior to imputation, and (possibly) transform
the data back afterwards.

5.4. Effects ofmissingness

It was expected that under MAR, missing-data methods that take into account the rele-
vant auxiliary variables (such as multiple imputation) would produce unbiased results and
that methods that do not (such as the EM algorithm), would produce biased results. How-
ever, neither a relevant main effect of missingness mechanism was found, nor a relevant
interaction between missingness mechanism and missing-data method. This implies that
the relatively poor performance of the EM algorithm cannot be attributed to violations of
MAR for the specific analysis.

To understand these counterintuitive results one must keep in mind that neither
RMSB(F) nor RMSB(A) aremeasures for bias, but for both bias and inaccuracy.When both
are large, either there is systematic under- or overestimation of the parameters, causing
large squared deviations of the estimated parameters from the real parameters, or the esti-
mated parameters are unstable, causing large squared deviations from the real parameters
as well. Since the performance of the EM algorithm did not depend on missingness mech-
anism, it may be concluded that the EM algorithm probably produces less stable results
than multiple-imputation methods do (i.e. more variability of the estimates in matrices A,
B, andH).

It is not clear to uswhat could have caused this larger instability than that of themultiple-
imputation methods. A possible explanation is that the EM algorithm handles the missing
data and estimates the Tucker2 model simultaneously. This additional step of handling the
missing data in the estimation process may introduce additional instability in the param-
eter estimates. Multiple imputation on the other hand completes the data multiple times
first, so that each Tucker2 model estimated for each of the imputed data sets is estimated
with more stability than the solution of the EM algorithm. Additionally, by pooling the
results of theM solutions into an overall solution, the variation among the solutions of the
M imputed data sets is removed, causing even more stability. However, this explanation is
largely speculative and more research is needed.
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Instability may also explain the interaction of missingness mechanism and group for
RMSB(A). Under MAR and inclusion of the relevant auxiliary variable(s) in the missing-
data method, results are expected to be unbiased. In our study we found that under MAR,
groups with a large percentage of missingness (Pamlico-d) had larger RMSB(A) on average
than groups with a low percentage of missingness (Albemarle). However, this difference in
RMSB(A) was probably caused by increased inaccuracy and not by bias.

To summarize, if we would like to draw conclusions about possible bias of the EM
algorithm under MAR, and lack of bias under MAR for multiple-imputation methods, we
would have to use quality measures not based on squared deviations but on non-squared
deviations. Besides root mean squared bias, VanGinkel and Kroonenberg [29], VanGinkel
et al. [41], and Van Ginkel and Kiers [40] studied another quality measure for the compo-
nent loadings, namely mean bias. This measure was simply the deviation of the estimated
component loading from the corresponding population loading, averaged across all vari-
ables and components. In the current study, mean bias was studied but not discussed
because unlike in the other studies mentioned, the mean bias gave results that were not
clearly interpretable, probably because it was heavily influenced by positive and negative
biases cancelling each other out when averaged over all variables (i.e. trace elements).

5.5. Empirical data set

To get an impression of the extent to which the individual entries in matrices A, H, and
B were influenced by the missing-data methods, the EM algorithm, the best performing
multiple-imputation method for two-mode data (PMM-S) and the best performing multi-
level imputation method (PAN-R) were applied to the Strange Situation data [44,45] with
simulated missingness. Results obtained using the several missing-data methods differed
little from the results of the same data set without missing data, and differed little from
each other as well.

5.6. Generalizability to other three-modemodels and other data properties

In this paper only the results of the Tucker2 model were studied. However, we expect that
the results of the Tucker3 model will not differ much from the results in this study because
the Tucker3 model is very similar to the Tucker2 model. The most important difference
between the Tucker2 and the Tucker3 model is that the Tucker3 model has a component
matrix for the third mode as well, denoted C [1, p. 54–57]. Although no rules for combin-
ing the C matrices from several imputed datasets have been defined, the GPA approach
described in Section 1.4.2 of Kroonenberg and Van Ginkel [12] may be applied to C as
well, and the corematrixmay then be constructed using a similar procedure as in Equation
(5). As the Parafac model has different characteristics, such as uniqueness and possibilities
of degeneracy, this procedure may not automatically be applicable to Parafac models and
therefore Parafac models deserve a separate study.

Furthermore, the model parameters and other properties of the simulated data sets
(such as sample size and number of variables) were based on one particular data set
(i.e. the Blue Crab data). The question is to what extent the results can be generalized
to data sets with other properties. Although the performance of the missing-data meth-
ods was illustrated using an empirical data set with different properties as well (Strange
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Situation data), the properties of this data set were not part of a simulation study so it
remains unclear to what extent the results generalize to other data sets from the same
population.

For two-mode (principal component) analysis, there is some evidence that model
parameters, sample size, and number of variables have little influence on the results. Van
Ginkel et al. [41] studied the influence of various missing-data methods on the results of
PCA using the properties of three different existing data sets for their simulation models.
The effect of these different properties on the results was negligible. Althoughwe cannot be
certain that these findings generalize to three-mode analysis as well, we have no reason to
assume that the choice for sample size and the number of variables would heavily influence
the findings in this study.

The choice of the model parameters on the other hand, could be of influence on the
results, especially when this concerns the strength of association between the slices of
the third mode. It is expected that the performance of methods not taking into account
dependence among slices (multiple-imputationmethods for two-mode data applied to sep-
arate slices, or applied to a data set in long format) will become worse as the dependence
among slices becomes stronger. Therefore, we must be cautious generalizing the findings
of these methods to other three-mode data sets. However, these methods were not the best
performing methods to start with.

Another aspect of the Crab data that may have limited generalizability to other three-
mode datasets is the number of levels of the third mode (K). The Crab data are relatively
exceptional for a three-mode dataset in the sense thatK < IJ. The question is towhat extent
similar results may be found when K is larger. However, the choice for the Crab data was
based on the availability of a background grouping variable (Albemarle Sound – healthy,
Pamlico River – healthy, and Pamlico River – diseased), which could perfectly serve the
purpose of simulating MAR.

5.7. Future research

There are some other aspects about missing data in three-mode analysis that were not
studied but which may require further studying. Examples are attrition (some cases hav-
ing complete occasions missing), deviations from normality, and the Parafac model as the
statistical analysis of interest. These topics could be studied in future research.

6. Conclusion

To summarize, multiple imputation seems to be a good alternative for the EM algorithm
in the Tucker2 model, especially multilevel imputation with the mode having the largest
number of levels nested within cases, and themode with the least levels represented as sep-
arate variables, provided that the data are standardized first (PAN-R). Whenever multiple
imputation under the multilevel model is either too complicated for, or not available to the
researcher, one could use multiple-imputation methods applied to data set in long format,
or applied to separate slices, but avoid using multilevel imputation with the mode having
the least levels nested within cases (PAN). Finally, more research on the EM algorithm is
needed to find out more about the possible causes of its seemingly less stable results than
those of the multiple-imputation methods.
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