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5
Magnetohydrodynamic waves in a

strongly interacting holographic plasma

5.1 Introduction

Magnetohydrodynamics (MHD) is a hydrodynamic theory of long-range exci-
tations in plasmas (ionised gases) (see e.g. [261, 262]), which has been applied
to systems ranging from the physics of fusion reactors to astrophysical objects.
In the modern language of hydrodynamics formulated as an e�ective �eld the-
ory [63, 263–276], MHD should describe the dynamics of infrared (IR) charge-
neutral states in terms of massless e�ective degrees of freedom. These plasma
ground states are characterised by an equation of state with a �nite magnetic
�eld. The electric �eld is suppressed due to the screening of electromagnetic
interactions and is only induced on shorter length scales than the (thermody-
namic) size of the system. In their standard form, the equations of motion that
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describe the evolution of plasmas are formulated as a combination of macro-
scopic �uid equations (continuity equation and the non-dissipative Euler, or
dissipative Navier-Stokes equation), coupled to the microscopic electromag-
netic Maxwell’s equations. In ideal, non-dissipative form, the set of dynamical
equations is

∂tρ+ ~∇ · (ρ~v) = 0 , (5.1)

ρ (∂t + ~v · ∇)~v = −~∇ p+ ~J × ~B , (5.2)

∂t ~B = ~∇×
(
~v× ~B

)
, (5.3)

(∂t + ~v · ∇)
(
p

ργ

)
= 0 . (5.4)

The magnetic �eld is constrained by

~∇ · ~B = 0 . (5.5)

Eq. (5.1) is the continuity equation and Eq. (5.2) the Euler equation in the
presence of the Lorentz force ~J × ~B, with ~J given by the low-frequency limit
of the Ampere’s law (∂t ~E → 0)

~J =
1
µ0
~∇× ~B . (5.6)

Eq. (5.3) is the Faraday’s induction law with the electric �eld �xed by the as-
sumption of the ideal Ohm’s law

~E + ~v× ~B = 0 , (5.7)

which is derived by taking the conductivity in the (Lorentz transformed) Ohm’s
law ~J/σ = ~E + ~v × ~B to in�nity, i.e. σ → ∞. The constraint equation (5.5)
is the magnetic Gauss’s law. Since the ideal Ohm’s law completely �xes ~E,
the electric Gauss’s law plays no role in the equations of MHD. Eq. (5.4) is the
adiabatic equation of state relating density and pressure. Usually, one takes
γ = 5/3. Altogether, Eqs. (5.1)–(5.4) give eight dynamical equations for eight
unknown functions ρ, p, ~v and ~B, subject to the magnetic �eld constraint (5.5).

While the above equations are closed, solvable and have been successfully
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applied to a variety of phenomena in plasma physics, they are only applica-
ble within the speci�c assumptions used to construct them. This means that
they are only valid for electromagnetism controlled by Maxwell’s equations in
the limit of ideal Ohm’s law (no possibility of strong-�eld pair production, etc.)
and for the speci�c equation of state in Eq. (5.4). This equation of state encodes
a separation between the �uid and the charge carrying sectors, for which the
justi�cation, beyond assuming weakly coupled Maxwell electromagnetism, also
assumes very weak interactions between the �uid degrees of freedom and elec-
tromagnetism inside the plasma. Concretely, the latter statement is re�ected
in the equation of state permitting no dependence on the magnetic properties
controlled by the charged sector. Furthermore, because of a lack of a symmetry
principle behind the construction of ideal MHD, these equations are di�cult to
extend unambiguously to the most general, higher-order, dissipative theory in
the gradient expansion (the Knudsen number expansion) [50, 64, 110, 184].1 As
such, the traditional formulation of MHD lacks generality and cannot be com-
patible with a variety of IR e�ective theories of plasmas that could (in principle)
be derived from quantum �eld theory, in particular, in the presence of a strong
magnetic �eld.

These issues were addressed in a recent work [47], where MHD was formu-
lated by following the e�ective �eld theory philosophy behind the construction
of relativistic hydrodynamics (see e.g. [51, 184]). Namely, MHD was formulated
by only considering global conserved operators and writing them in terms of
the most general hydrodynamic gradient expansion of the IR hydrodynamic
�elds [47].2 With such an expansion in hand, conservation equations then com-
pletely determine the temporal dynamics of a plasma with any equation of state.
As in hydrodynamics, all of the details of the equation of state and transport
coe�cients are left to be determined by the microscopics of the underlying the-

1We note that in standard MHD, as formulated in Eqs. (5.1)–(5.4), only the �uid sector has a
well-de�ned and �nite Knudsen number.

2See also [277] and Ref. [278], which includes a valuable comparison of various related past
works, such as [279–281]. For a new treatment of charged �uids in an external electromagnetic
�eld, see [278, 282]. Of further interest is also a recently proposed �eld theory description of
polarised �uids [283].
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ory.
The two relevant global symmetries describing the long-range dynamics of

a plasma were argued to give the stress-energy tensor Tµν and a conserved
anti-symmetric two-form current Jµν [47]:

∇µTµν = Hν
µσJ

µσ , (5.8)

∇µJµν = 0 . (5.9)

While Tµν corresponds to conserved energy-momentum, Jµν is the manifesta-
tion of a generalised globalU(1) symmetry, which can be sourced (and gauged)
by a two-form gauge �eld bµν [46]. Hν

µσ is a three-form �eld strength that can
be turned on by an external two-form gauge �eld, H = dbext. This generalised
global symmetry is a consequence of the absence of magnetic monopoles and
directly corresponds to the conserved number of magnetic �ux lines crossing
a co-dimension two surface (in a four dimensional plasma). Normally, it is ex-
pressed in terms of the (topological) Bianchi identity

dF = 0 , (5.10)

where F = dA and A is the abelian electromagnetic �eld. In the language of a
two-form current used in Eq. (5.9),

Jµν =
1
2ε

µνρσFρσ . (5.11)

Eqs. (5.8) and (5.9) give seven dynamical equations of motion (and one con-
straint). To solve the equations, we introduce the following hydrodynamical
�elds: a velocity �eld uµ, a temperature �eld T , a chemical potential µ that
corresponds to the density of magnetic �ux lines and a vector hµ, which can
be though as a hydrodynamical realisation of a �uctuating magnetic �eld. The
vectors are normalised as uµuµ = −1, hµhµ = 1, uµhµ = 0, together result-
ing in 10− 3 = 7 degrees of freedom. The velocity �ow of the plasma breaks
the Lorentz symmetry from SO(3, 1) to SO(3), which is further broken by the
additional vector (magnetic �eld) to SO(2).3 The projector transverse to both

3Note that at zero temperature, in a plasma with a non-�uctuating temperature �eld, the
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uµ and hµ is de�ned as ∆µν = gµν − uµuν − hµhν and has a trace ∆µµ = 2.
The constitutive relations for the conserved tensors with a positive local en-

tropy production [63] and charge conjugation symmetry can now be expanded
to �rst order in derivatives as [47]

Tµν = (ε+ p) uµuν + p gµν − µρhµhν + δf ∆µν + δτ hµhν + 2 `(µhν) + tµν ,
(5.12)

Jµν = 2ρ u[µhν] + sµν , (5.13)

where

δf = −ζ⊥∆µν∇µuν − ζ
(1)
× hµhν∇µuν , (5.14)

δτ = −ζ(2)× ∆µν∇µuν − ζ‖hµhν∇µuν , (5.15)

`µ = −2η‖∆µσhν∇(σuν) , (5.16)

tµν = −2η⊥
(

∆µρ∆νσ − 1
2∆µν∆ρσ

)
∇(ρuσ) , (5.17)

mµ = −2r⊥T∆µβhν∇[β

(
hν]µ

T

)
, (5.18)

sµν = −2r‖µ∆µρ∆νσ∇[ρhσ] . (5.19)

The thermodynamic relations between ε, p and ρ, which need to be obeyed by
the equation of state p(T ,µ) are

ε+ p = sT + µρ , (5.20)

dp = s dT + ρ dµ . (5.21)

Furthermore, for the theory to be invariant under time-reversal, the Onsager
relation implies that ζ(1)× = ζ

(2)
× ≡ ζ×. Thus, �rst-order dissipative corrections

to ideal MHD are controlled by seven transport coe�cients: η⊥, η‖, ζ⊥, ζ‖, ζ×,
r⊥ and r‖. Each one can be computed from a set of Kubo formulae presented
in [47, 278] and reviewed in Appendix 5.6.1. The transport coe�cients should
obey the following positive entropy production constraints: η⊥ ≥ 0, η‖ ≥ 0,

symmetry is enhanced to SO(1, 1)× SO(2) [47].
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r⊥ ≥ 0, r‖ ≥ 0, ζ⊥ ≥ 0 and ζ⊥ζ‖ ≥ ζ2
×. In absence of charge conjugation

symmetry, the theory has four additional transport coe�cients, resulting in
total in eleven transport coe�cients [278]. The precise connection between the
above formalism of MHD using the concept of generalised global symmetries
and MHD expressed in terms of electromagnetic �elds, which match in the limit
of a small magnetic �eld, was established in Ref. [278].

Since the e�ective theory [47] makes no assumption regarding the micro-
scopic details of the plasma, then, should such details somehow be computable
from quantum �eld theory, or otherwise, the e�ective MHD can be used in so-
lar plasma physics, fusion reactor physics, astrophysical plasma physics and
even QCD quark-gluon plasma resulting from nuclear collisions. Of course,
computing the microscopic properties of such systems is extremely di�cult. In
this work, we will resort to using holographic duality. By using standard holo-
graphic methods applicable to hydrodynamics [103–105], our analysis will pro-
vide us with the required microscopic data of a strongly interacting toy model
plasma needed to describe the phenomenology of MHD waves.

The paper is structure as follows: �rst, in Section 5.2 we review important
aspects of gauge theories with a sector coupled to dynamical U(1), which can
describe a plasma in the IR limit. In particular, we focus on the discussion of how
to couple a strongly interacting �eld theory with a holographic dual to dynam-
ical electromagnetism, all within a holographic setup. Then, in Section 5.3, we
explore this holographic setup in detail, develop the holographic dictionary and
use it to compute the microscopic properties of the dual plasma, i.e. the equation
of state and �rst-order transport coe�cients. In Section 5.4, we then use this
data to analyse the phenomenology of propagating MHD modes—Alfvén and
magnetosonic waves. Finally, we conclude with a discussion and a summary
of the most important �ndings in Section 5.5. Three appendices are devoted to
a derivation of the relevant Kubo formulae (Appendix 5.6.1), details regarding
the derivation of horizon formulae for the transport coe�cients (Appendix 5.7)
and a derivation of the magnetosonic dispersion relations (Appendix 5.8).
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5.2 Matter coupled to electromagnetic interactions

A microscopic theory from which an e�ective description of a plasma can arise
comprises of a matter sector that interacts through an electromagnetic U(1)
gauge �eld. The simplest example of such a theory is quantum electrodynamics.
In other theories, the matter sector may itself exhibit complicated physics with
additional gauge interactions, such as in QCD. In this work, the theory that
we will study contains an in�nitely strongly coupled holographic matter sector
(closely related to N = 4 supersymmetric SU(Nc) Yang-Mills) with in�nite
Nc. Because of the coupling between matter and dynamical electromagnetism,
the holographic setup and the interpretation of results is somewhat subtle. For
this reason, we begin our discussion by reviewing some relevant aspects of
quantum �eld theory in a line of arguments similar to [284].

5.2.1 Quantum electrodynamics

The simplest example of a theory coupling matter to electromagnetism is quan-
tum electrodynamics (QED). QED is a U(1) gauge theory that contains a (mas-
sive) Dirac fermion ψ (describing electrons and positrons) and a massless pho-
ton �eld Aµ:4

SQED = −
∫
d4x

[
iψ̄γµDµψ+mψ̄ψ+

1
4e2FµνF

µν
]

. (5.22)

Dµ is the gauge covariant derivative that couples Aµ to the fermion current
(with the coupling e scaled out from the interaction). For a detailed discussion
of various properties of QED, see e.g. [189, 285, 286].

The stress-energy tensor of the theory is

Tµν =
1
2 ψ̄i (γ

µDν + γνDµ)ψ− ηµνψ̄ (iγµDµ +m)ψ (5.23)

+
1
e2

[
FµλF νλ −

1
4η

µνF ρσFρσ

]
. (5.24)

In the massless limit (m = 0), the theory is classically scale invariant, which is
4We use the mostly positive convention for the metric tensor, so that ηµν =

{−1,+1,+1,+1}.
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re�ected in the vanishing trace of the stress-energy tensor, Tµµ = 0. Quantum
mechanically, the theory does not remain scale invariant. The trace receives a
correction proportional to the beta function of the electromagnetic coupling

Tµµ = −β(e)2e3 FµνF
µν . (5.25)

This is the anomalous breaking of scale invariance—the so-called trace anomaly.
The running electromagnetic coupling e(µ) depends on the renormalisation
group scale µ. To �rst order in perturbation theory, the beta function is

β(e) = µ
de

dµ
=

e3

12π2 , (5.26)

which, integrated on the interval µ ∈ [M , Λ], gives the running coupling

1
e(Λ)2 =

1
e(M)2 −

ln (Λ/M )

6π2 . (5.27)

Here,M is some IR RG scale at which the electric charge takes the renormalised
physical value, er = e(M), and Λ is the UV cut-o�. Note that at the Landau
pole, Λ = ΛEM , the left-hand-side of (5.27) vanishes. On the other hand, the
expectation value of the stress-energy tensor is a physical quantity and there-
fore cannot depend on µ. This statement is encoded in the following identity,
which leads to the Callan-Symanzik equation:

µ
d

dµ
〈Tµν〉 = 0 . (5.28)

Since we are interested in neutral IR plasma states in QED that can be de-
scribed by an e�ective theory of MHD, we can consider the expectation value
of the photon �eld to produce a non-zero magnetic �eld and zero electric �eld,

〈Aµ〉 =
1
2B

(
x1δ2

µ − x2δ1
µ

)
. (5.29)

B is the magnitude of the “background" magnetic �eld in the x3 = z direction.
The IR spectrum of the theory has a gapped-out photon, i.e. long-range charge
neutrality, which allows us to neglect quantum �uctuations of Aµ. For such a
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plasma state, Eq. (5.25) yields

〈Tµν〉 = −
β(e)

e3 B
2 = − 1

12π2B
2 +O

(
e2
)

. (5.30)

Furthermore, the expectation value of the stress-energy tensor can be con-
veniently split into the matter (containing matter-light interactions) and the
purely electromagnetic parts

〈Tµν〉 = 〈Tµνmatter(µ)〉+
1

e(µ)2

[
FµλF νλ −

1
4η

µνF ρσFρσ

]

= 〈Tµνmatter(Λ/M)〉+
( 1
e2
r

− ln (Λ/M)

6π2

) B2

2 ×

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

,

(5.31)

where in the second line, we chose to evaluate the expectation value at the UV
cut-o� µ = Λ. Note that because 〈Tµν〉 is µ-independent (cf. (5.28)), this choice
does not in�uence the �nal value of 〈Tµν〉.

5.2.2 Strongly interactingholographicmatter coupled to dynam-
ical electromagnetism

We now turn our attention to the holographic strongly interacting theory that
will be investigated in the remainder of this paper. Throughout our discus-
sion, it will prove useful to think of the matter sector as that of the best under-
stood holographic example—the conformalN = 4 supersymmetric Yang-Mills
theory (SYM) with an in�nite number of colours Nc and an in�nite ’t Hooft
coupling λ. However, as will become clear below, the theory dual to our holo-
graphic setup will not be precisely the N = 4 SYM coupled to a U(1) gauge
�eld, but rather its deformation, of which the microscopic de�nition will not
be investigated in detail. Instead, the model studied here should be considered
as a bottom-up construction—the simplest dual of a strongly coupled plasma,
which can be described with magnetohydrodynamics in the infrared limit.

The �eld content of N = 4 SYM are four Weyl fermions, three complex
scalars and a vector �eld, all transforming under the adjoint representation
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of SU(Nc). The theory also has an SU(4)R R-symmetry owing to its ex-
tended supersymmetry. The adjoint �elds together represent the matter con-
tent of a hypothetical plasma, which further requires the �elds to be (minimally)
coupled to an electromagnetic U(1) gauge group (with e the electromagnetic
coupling). In N = 4 SYM, this can be achieved by gauging the U (1)R sub-
group of SU(4)R. UnderU(1)R, the Weyl fermions transform with the charges
{+3,−1,−1,−1}/

√
3 and the complex scalars all have charge+2/

√
3 (for de-

tails regarding the choice of the normalisation, see [284]). Such a system can
be considered as a strongly coupled toy model for a QCD plasma in which the
quarks interact with photons as well as with the SU(3) vector gluons.

A crucial fact about N = 4 SYM is that the R-current of N = 4 becomes
anomalous in the presence of electromagnetism. For this reason, the U(1)R,
which is gauged, is also anomalous and thus the theory has to be deformed in
some way to reestablish its self-consistency. As pointed out in [284], one way to
do this is by adding a set of spectator fermions that only interact electromag-
netically and “absorb" the anomaly. We will assume that the gauge anomaly
can be cancelled by some way of deforming the theory, so that the quantum
expectation value of the U (1)R R-current JµR remains conserved,∇µ〈JµR〉 = 0.
We can then write the total bare action of the SU(Nc)×U(1) gauge theory as

Splasma = Smatter +
∫
d4xAµJ

µ
R −

1
4e2

∫
d4xFµνF

µν , (5.32)

where Aµ is the dynamical electromagnetic gauge �eld and F = dA. The
expectation value of the conserved operator JµR contains a trace over the colour
index of the adjoint matter �eld and therefore scales as N2

c . Since it is coupled
to a single photon, the Maxwell part of the total plasma action Splasma contains
no powers of Nc.

As in the QED plasma, we will consider the photons to be gapped out from
the IR spectrum so that Aµ will only produce a (classical) magnetic �eld

〈Aµ〉 =
1
2B

(
x1δ2

µ − x2δ1
µ

)
. (5.33)

In order to maintain the neutrality of the plasma, we will set the electric U(1)R
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chemical potential to zero, µR = 〈A0〉 = 0.5 For this reason, the electric
one-form (or vector) conserved U (1)R R-current will play no role in the hydro-
dynamic IR limit of the theory, so 〈JµR〉 = 0.

The plasma has a conserved stress-energy tensor to which both the mat-
ter (along with its interaction with the electromagnetic �eld) and the purely
electromagnetic sectors contribute,

〈Tµν〉 = 〈Tµνmatter(Λ/M)〉+ 1
e(Λ/M)2

[
〈FµλF νλ〉 −

1
4η

µν〈F ρσFρσ〉
]

.

(5.34)

The trace of the superconformal theory again experiences an anomaly propor-
tional to the beta function of the electromagnetic coupling (cf. Eq. (5.30)), which
inN = 4 theory turns out to be one-loop exact in the presence of a background
electromagnetic �eld and follows from a special case of the NSVZ beta function
(see Refs. [284, 289, 290]),6

〈Tµµ〉 = −
β(e)

e3 B
2 = −N

2
c

4π2B
2 . (5.35)

The beta function for the inverse electromagnetic coupling is then

β
(
1/e2

)
= µ

de−2

dµ
= −N

2
c

2π2

[
1
6

4∑
α=1

(qαf )
2 +

1
12

3∑
a=1

(qas )
2
]
= −N

2
c

2π2 ,

(5.36)

with the fermionic and the scalar R-charges being qαf = {+3,−1,−1,−1}/
√

3
and qαs = {2, 2, 2}/

√
3, respectively. In analogy with Eq. (5.27) in QED, by

integrating the beta function equation, we �nd

1
e2(Λ)

=
1

e2(M)
− N2

c

2π2 ln (Λ/M) . (5.37)

It is essential to stress that even though our holographic theory will not be
exactly dual to the N = 4 SYM theory, it will give us the same trace anomaly

5For a discussion of supersymmetric gauge theories with non-zero R-charge densities, see
e.g. [287, 288]

6Note that as Nc →∞, N2
c − 1 ≈ N2

c .
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and thus the same electromagnetic beta function. Since the NSVZ beta function
(5.36) is only sensitive to the matter content, this match can be interpreted as
our working with a theory with theU(1)-gauged matter content and R-charges
of N = 4 but with a deformed Lagrangian and possibly additional matter that
is ungauged under the U(1).

Beyond the stress-energy tensor of the theory discussed thus far, the only
other (generalised) global symmetry of interest to describing a plasma state is
the higher-form U(1) that corresponds to the conserved number of magnetic
�ux lines crossing a two-surface. The symmetry results in a conserved two-
form current 〈Jµν〉 6= 0 and was discussed in Section 5.1. The generating
function of the �eld theory that can be used to study MHD of a magnetised
plasma in which the two globally conserved operators are Tµν and Jµν is

W [gµν , bµν ] =
〈

exp
[
i

∫
d4x
√
−g

(1
2T

µνgµν + Jµνbµν

)]〉
. (5.38)

The simplest holographic dual of such a state is one that contains a �ve-dimensional
bulk with a dynamical graviton (metric tensor Gab) described by the Einstein-
Hilbert action, a negative cosmological constant and a two-form bulk gauge
�eld Bab:7

S =
1

2κ2
5

∫
d5x
√
−G

(
R+

12
L2 −

1
3e2
H

HabcH
abc

)
. (5.39)

In standard (Dirichlet) quantisation, the two �elds asymptote to gµν and bµν
at the boundary and source Tµν and Jµν . Furthermore, H is the three-form
de�ned as H = dB. In component notation, B = 1

2Bab dx
a ∧ dxb and H =

1
6Habc dx

a ∧ dxb ∧ dxc. The two-form gauge �eld action is the bulk Maxwell
Lagrangian F ∧ ?F written in terms of the �ve-dimensional Hodge dual three-
form H = ?F , giving the Lagrangian term H ∧ ?H . In most of our work, we
will set eH = L = 1. Because the two bulk theories are related by dualisation,
the background solution to the equations of motion derived from (5.39) give rise
to the same magnetised black brane solution known from the Einstein-Maxwell

7Throughout this paper, we use Greek and Latin letters to denote the boundary and bulk
theory indices, respectively.
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theory [291].
In the absence of the two-form term, the action (5.39) arises from a consis-

tent truncation of type IIB string theory on S5 and is upon identi�cation of the
Newton’s constant κ5 = 2π/Nc dual to pure N = 4 SYM at in�nite Nc and
in�nite ’t Hooft coupling λ. For reasons discussed above, the full dual of the ac-
tion (5.39) is unknown and we are not aware of the mechanism for deriving this
action from a consistent truncation of ten-dimensional type IIB supergravity.
Nevertheless, for purposes of comparing the sizes of matter and electromag-
netic contributions to total operator expectation values, it will prove useful to
keep the de�nition of κ5 in terms of the number of coloursNc of the hypothet-
ical dual deformed N = 4 SYM coupled to dynamical electromagnetism.

To show further evidence that the action (5.39) is a sensible dual of a strongly
coupled MHD plasma, it is useful to elucidate the connection between Eq. (5.39)
and the Einstein-Maxwell theory. To put an uncharged holographic theory
in an external magnetic �eld, one normally adds the Maxwell action F 2 with
F = dA to the Einstein-Hilbert bulk action. If one imposes the Dirichlet bound-
ary conditions on the bulk one-form Aa, then Aa sources the R-current JµR at
the boundary,

∫
d4xJµRδAµ, and thus the electromagnetic �eld Aµ is external

and non-dynamical. The investigation of the physics of such a setup was ini-
tiated in [291] and studied in numerous subsequent works, including recent
[280, 281, 284, 292, 293]. Instead, one can work in alternative quantisation and
impose Neumann boundary conditions on Aa. Such a choice exchanges the in-
terpretation of the normalisable and the non-normalisable mode in Aa. From
the dual �eld theory point of view, this can be interpreted as the Legendre trans-
form of the boundary coupling, leading to the variation

∫
d4xAµδJ

µ
R. Physi-

cally, this means that in alternative quantisation, an external current sources
a dynamical (boundary) vector �eld (see e.g. [294, 295]). The two boundary
theories, one with Dirichlet and one with Neumann boundary conditions, are
related by a double-trace deformed RG �ow.8 Since JµR is conserved, one can
express it through an anti-symmetric bµν as εµνρσ∂νbρσ , which, upon integra-
tion by parts, yields a dualised

∫
d4xJµνδbµν , where Jµν is the anti-symmetric

8See Refs. [116–118, 296] and references therein.
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current from Eq. (5.11).
From the point of view of the bulk, as in a lower-dimensional theory [297],

the Einstein-Maxwell bulk (quantum) path integral runs over the metric and
the Maxwell �eld Aa. Alternatively, one can write the path integral over the
�elds strength Fab, but at the expense of ensuring the Bianchi identity dF = 0
by introducing a Lagrange multiplier Bab:

Z ⊃
∫
DFabDBab exp

{
i
N2
c

8π2

∫
d5x
√
−G

(
FabF

ab + e−1
H Babε

abcde∇cFde
)}

.

(5.40)
Since the second (Bianchi identity) term vanishes for any classical �eld solution,
it has no in�uence on the saddle point of the path integral. However, it does
generate a non-zero contribution to the boundary action, which is precisely the
source term

∫
d4xJµνbµν once we identify Bµν ∼ bµν and Jµν ∼ εµνρσFρσ .

The precise dictionary between the bulk and boundary quantities will be dis-
cussed in Section 5.3.2. By varying the action with respect to Fab, one obtains
the equation of motion

F ab = e−1
H εabcde∇cBde . (5.41)

Then, the �eld strengthFab can be integrated out in the saddle point approxima-
tion which gives the two-form gauge �eld Lagrangian term from Eq. (5.39). Fur-
thermore, in the language of the Einstein-Maxwell theory, by using Eq. (5.41),
one �nds the relation between the one-form R-current JµR and Bab �eld:

〈JµR〉 = −
N2
c

2π2 lim
u→0

F uµ = − N2
c

2π2eH
lim
u→0

εµνρσ∂νBρσ , (5.42)

where u is the radial coordinate and u → 0 the boundary of the bulk space-
time. Thus, imposing the Dirichlet boundary condition on Bab corresponds to
treating JµR as a source, which is the same as performing alternative quanti-
sation discussed above. This consistent with our interpretation that the dual
�eld theory of (5.39) contains a dynamical photons. Furthermore, as we will
see from a detailed holographic renormalisation in Section 5.3.2, the boundary
counter-terms, which are required to keep the on-shell action �nite will give us
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precisely the Maxwell theory for Aµ (dual of bµν ) on the boundary, including
a renormalised electromagnetic coupling er , as in QED.9 All further details of
this holographic setup, in particular, the renormalisation of our strongly cou-
pled theory, will be presented in Section 5.3.

5.3 Holographic analysis: equation of state and trans-
port coe�cients

In this section, we study the relevant details of the simplest holographic theory
with Einstein gravity coupled to a two-form bulk �eld, cf. (5.39), which can
source a two-form current associated with the U(1) generalised global sym-
metry in the boundary theory. As our goal is to study the phenomenology of
MHD waves in a strongly coupled plasma using the dispersion relations of [47],
we will use holography only to provide us with the necessary microscopic data:
the equation of state and the transport coe�cients.

In Section 5.3.1, we will begin by discussing details of the magnetic brane
solution [291, 299] supported by the bulk action introduced in Section 5.2.2.
In Section 5.3.2, we will consider holographic renormalisation of the theory
in question and show how the bulk gives rise to a dual theory coupled to dy-
namical electromagnetism (as in Section 5.2). In particular, we will derive the
expectation values of the stress-energy tensor 〈Tµν〉 and the two-form 〈Jµν〉
and show that they satisfy the Ward identities (5.8) and (5.9). We will also match
and reproduce all of the expected renormalisation group properties, such as the
beta function of the electromagnetic coupling, from the point of view of the
bulk calculation. In Section 5.3.3, we will then compute and analyse thermal
and magnetic properties of the equation of state of the dual plasma. Finally, in
Section 5.3.4, we will derive the membrane paradigm formulae for the seven

9We note that the way the Maxwell Lagrangian arises on the boundary is equivalent to the
way holographic matter can be coupled to dynamical gravity on a cut-o� brane [298]. There
too, a holographic counter-term gives rise to the Einstein-Hilbert action at the cut-o� brane
(the boundary) of a more intricately foliated bulk. As shown by Gubser in [298], such a theory
can result in a radiation (CFT)-dominated FRW universe at the boundary with the stress-energy
tensor of theN = 4 SYM driving the expansion.
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transport coe�cients required to describe �rst-order dissipative MHD [47] and
compute them.10 Further details regarding the horizon formulae for the trans-
port coe�cients can be found in Appendix 5.7.

5.3.1 Holographic action and the magnetic brane

A holographic action dual to a plasma state with a low-energy limit that can be
described by MHD was stated in Eq. (5.39). Including the boundary Gibbons-
Hawking term and the holographic counter-term, the full action is

S =
N2
c

8π2

∫ d5X
√
−G

(
R+ 12− 1

3e2
H

HabcH
abc

)

+
∫
∂M

d4x
√
−γ

(
2 TrK − 6 + 1

e2
H

HµνHµν ln C
),

(5.43)

where TrK is the trace of the extrinsic curvature of the boundary (∂M ) de�ned
by an outward normal vector na. For convenience, we now set eH = 1. The
two-form Hµν is de�ned as a projection of the three-form �eld strength in the
direction normal the boundary, Hµν = naHaµν . C is a dimensionless number
that needs to be adjusted to �x the renormalisation condition, of which the
details will be discussed below. The equations of motion that follow are

Rab + 4Gab −
(
HacdH

cd
b − 2

9GabHcdeH
cde
)
= 0 , (5.44)

1√
−G

∂a
(√
−GHabc

)
= 0 . (5.45)

Since the theory (5.43) is S-dual to the Einstein-Maxwell theory, we can
express the magnetised black brane solution of [291] by dualising the Maxwell

10These horizon formulae are analogous to the expression for shear viscosity inN = 4 theory
[126]. For more recent discussions of other transport coe�cients that can be computed directly
from horizon data, see e.g. [44, 129, 217, 248, 255, 300, 301].
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terms and writting

ds2 = Gabdx
adxb

= r2
h

(
−F (u)dt2 + e2V(u)

v
(dx2 + dy2) +

e2W(u)

w
dz2

)
+

du2

4u3F (u)
,

H =
Br2

he
−2V+W

2u3/2√w
dt∧ dz ∧ du .

(5.46)
The equations of motion (5.44) for this ansatz reduce to three second-order or-
dinary di�erential equations (ODE’s) for {F , V, W} and one additional �rst-
order constraint. The equation of motion derived from the variation of the two-
form (5.45) is automatically satis�ed. The equations are equivalent to those de-
rived from the Einstein-Maxwell theory [291] upon identi�cation of the Maxwell
bulk two-formF withF = B dx∧dy, whereB = Br2

h/v.11 The undetermined
functions F , V andW are can be obtained numerically by using the shooting
method. We �rst expand the background �elds near the horizon as

F = fh1 (1− u) + fh2 (1− u)2 +O(1− u)3 ,

V = vh0 + vh1 (1− u) +O(1− u)2 ,

W = wh0 +wh1 (1− u) +O(1− u)2 ,

(5.47)

where the constants {fhi , vhi , whi } can be written in terms of {fh1 , vh0 , wh0} after
solving the equations of motion order-by-order near the horizon. The scaling
symmetry of our background ansatz then allows us to rescale dx and dy so that
vh0 = wh0 = 0. Next, we match the numerical solutions generated by shooting
from the horizon towards the boundary, where the analytical near-boundary

11The metric ansatz is chosen to have the form used in [292]. It can be obtained from the
ansatz ds2 = −U(r)dt2 + e2V (r)(dx2 + dy2) + e2W (r)dz2 + dr2/U(r) used in [291] by
performing a coordinate transformation r = rh/

√
u and shifting V and W by constant − ln v

and − lnw, respectively, which are chosen so that the near-boundary expansion has the form
ds2 = (1/u) ηµνdxµdxν + du2/(4u2).
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expansions of the metric functions are

uF = 1 + f b1
√
u+

f b1
4 u+ f b4u

2 +

(
B2

3 +

)
u2 ln u+O(u3/2),

u e2V = v+ vf b1
√
u+

v(f b1)
2

4 u+ vb4u
2 −

(
B2

6

)
u2 ln u+O(u3/2),

u e2W = w+wf b1
√
u+

w(f b1)
2

4 u− 2wvb4
v

u2 −
(
wB2

3

)
u2 ln u+O(u3/2).

(5.48)
As before, one can solve for the coe�cients {f bi , vbi , wbi} in terms of {f b1 , f b4 , vb4}.
Furthermore, f b1 can be removed by residual di�eomorphism freedom of the
metric ansatz [292]. For a given value ofB = vB/r2

h, we can therefore generate
a numerical background by shooting from the initial conditions of the functions
set by the near-horizon expansion with {fh1 , vh0 ,wh0} = {f̂ , 0, 0}. The numeri-
cal value of f̂ is chosen so that the near-boundary expansion has f b1 = 0. The
near-boundary behaviour of this function then determines the properties of the
dual �eld theory. Note that the theory is governed by a one-parameter family
of such numerical solutions characterised by the dimensionless ratio T/

√
B. In

practice, this ratio can be tuned by changing the parameterB of the background
ansatz. The numerical solver encounters sti�ness problems when B ≈

√
3, i.e.

where the temperature is close to zero. All of our numerical results will there-
fore stop near T/

√
B = 0. In this work, we do not attempt an independent

analysis of the theory at T = 0.

5.3.2 Holographic renormalisation and the bulk/boundary dic-
tionary

The next step in analysing the dual of (5.43) is a systematic holographic renor-
malisation. In this section, we derive the one-point functions of the stress-
energy tensor 〈Tµν〉 and the two-form current 〈Jµν〉, and show that they sat-
isfy the Ward identities of magnetohydrodynamics (5.8) and (5.9) [47], which
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in terms of operator expectation values take the form

∇ν〈Tµν〉 = H̃µ
λσ〈J

λσ〉 , ∇µ〈Jµν〉 = 0 , (5.49)

where H̃ = db is the �eld strength of the background gauge �eld b in �eld the-
ory. The precise de�nition of these quantities will become clear below. Since
we are only interested in the expansion of MHD to �rst order in the gradient ex-
pansion around a �at (boundary) background, it will be su�cient to only work
with terms that contain no more than two derivatives along the boundary di-
rections. The procedure for obtaining holographic renormalisation will closely
follow Refs. [102, 302].12

We begin by writing the bulk metric in the Fe�erman-Graham coordinates
[102]

ds2
FG = Gab dx

adxb =
dρ2

4ρ2 + γµν(ρ,x)dxµdxν = dρ2

4ρ2 +
1
ρ
gµν(ρ,x)dxµdxν ,

(5.50)
so that near the boundary, ρ ≈ 0, the metric gµν can be expanded as

gµν(ρ,x) = g(0)µν (x) + ρg(1)µν (x) + ρ2
(
g(2)µν (x) + h̃µν(x) ln ρ

)
+O(ρ3) .

(5.51)
Note that Greek (boundary) indices in a tensor Aµν are raised with the metric
gµν(0), which satis�es g(0)µν g

µν
(0) = 4. There are two types of covariant derivative

that we will use: ∇(g)
µ and ∇µ. Firstly, ∇(g)

µ and ∇µ(g) ≡ gµν∇(g)
µ are de�ned

with respect to the metric gµν(ρ,x), while ∇µ and ∇µ ≡ gµν(0)∇µ are de�ned

through the metric g(0)µν (x). The Ricci tensors of gµν and g(0)µν are denoted by
R

(g)
µν and R(0)

µν , respectively.
The components of bulk two-form gauge �eld Bab in the boundary �eld

theory directions can similarly be expanded near the boundary as

Bµν(ρ,x) = B(0)
µν (x) +B(1)

µν (x) ln ρ+O(ρ) . (5.52)

In the boundary directions, the three-form �eld strength is de�ned as Hµνσ =

∂µBνσ + ∂νBσµ + ∂σBµν , with the near-boundary expansion Hµνσ(ρ,x) =

12This part of the calculation was performed by using the Mathematica package xAct [303].
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H
(0)
µνσ(x) +H

(1)
µνσ(x) ln ρ+O(ρ). EachH (n) is de�ned in terms ofB(n), i.e. in

the same way at each order. B(0) can now be related to the two-form gauge �eld
source of the boundary theory,

∫
d4x
√
−g Jµνδbµν . In the bulk, the variation

of the on-shell contribution from the H2 term is

δSon−shell =
N2
c

2π2

∫
d4x
√
−gHµνδB(0)

µν + . . . . (5.53)

The expectation value of the operator sourced byB(0)
µν thus depends on a factor

of N2
c . However, since, by de�nition, Jµν = 1

2ε
µνλσFλσ , of which the expecta-

tion value contains no colour trace, we need to identify the bulk B(0)
µν and the

�eld theory source bµν as

B(0)
µν =

2π2

N2
c

bµν . (5.54)

The expectation value of Jµν can then be obtained by taking a variational
derivative of the on-shell action with respect to the source bµν .

The Ward identities (5.49) can be obtained by solving the equations of mo-
tion (5.44) and (5.45) [302]. In Fe�erman-Graham coordinates (5.50), these equa-
tions (together with the trace of (5.44)) become

0 =
1
2Tr

[
g−1g′′

]
− 1

4Tr
[
g−1g′g−1g′

]
+

1
3ρ

2Tr
[
g−1B′g−1B′

]
− 1

18ρTr[g−1H2] ,

0 =
1
2
(
∇(g)
µ Trg′ −∇ν(g)g

′
µν

)
− 2ρ2Hµαβ

(
g−1B′g−1

)αβ
,

0 = ρ
(
2g′′µν − 2(g′g−1g′)µν + g′µνTr[g−1g′]

)
+R(g)

µν − 2g′µν − gµνTr[g−1g′]

+ 8ρ3
(
(B′g−1B′)µν −

1
3gµνTr

[
g−1B′g−1B′

])
+ ρ2

(
H2
µν −

2
9gµνTr[g−1H2]

)
,

0 =
d

dρ

(
2ρ
(
g−1B′g−1

)µν)
+

1
2∇

λ
(g)

(
gµαgνβHλαβ

)
,

0 = ∇ν
(
g−1B′g−1

)µν
,

where g−1 denotes the matrix inverse of g (in components, this is gµν ) and
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where
Tr[g−1B′g−1B′] = −B′µ1µ2B

′
ν1ν2g

µ1ν1gµ2ν2 ,

H2
µν = Hµλ1λ2Hνσ1σ2g

λ1σ1gλ2σ2 .
(5.55)

Expanding equations (5.55) around small ρ, we �nd that

g(1)µν =
1
2

(
R(0)
µν −

1
6g

(0)
µν R

(0)
)

, (g(1))µµ =
1
6R . (5.56)

Since g(1)µν is proportional to second derivatives of the boundary metric, and we
are only keeping track of terms up to second orders in boundary derivaties, we
can ignore terms with g

(1)
µν . The remaining equations of motion can thus be

written as

(g(2))µµ +
1
3B

(1)
µν B

(1)µν = 0 , h̃µµ = 0 , ∇νB(1)µν = 0 , (5.57)

−2H (0)
µνλB

(1)νλ +∇ν(0)
(
g(0)µν (g

(2))λλ − g(2)µν −
1
2 h̃µν

)
= 0 , (5.58)

h̃µν +
1
2
(
4B(1)

µλ (B
(1)) λν − g(0)µν B

(1)
λσB

(1)λσ
)
= 0 . (5.59)

The expectation values of the stress-energy tensor and the two-form current
follow from the generating functional (5.38):

〈Tµν〉 = − 2i√
−g(0)

δ lnW
δg

(0)
µν

, 〈Jµν〉 = − i√
−g(0)

δ lnW
δbµν

. (5.60)

In holography, W is computed from the (on-shell) action (5.43), giving us13

〈Tµν〉 =−
N2
c

4π2 lim
ε→0

r2
h

ε

(
Kµν − γµνTrK − 3γµν +

1
2R[γ]µν

−1
4γµνR[γ]−

(
HµλH λ

ν −
1
4γµνHαβH

αβ
)

ln(Cρ)
)∣∣∣∣∣
ρ=ε

, (5.61)

〈Jµν〉 =− lim
ε→0
Hµν

∣∣∣
ρ=ε

. (5.62)

Note that by taking κ5 ∼ Nc, while the expectation value of Tµν scales as N2
c ,

the expectation value of Jµν is of order O(1).
13Note that in order to raise indices of the boundary theory expectation values, one needs to

use the induced metric γµν .
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By using Eq. (5.57) and the fact that Hµν = nρHρµν = −2B(1)
µν +O(ρ),

we �nd that the boundary two-form current is conserved:

∇µ(0)〈Jµν〉 = −2∇µB(1)
µν = 0 . (5.63)

Using the de�nition (5.11), which gives 〈Jµν〉 = 1
2εµνρσ〈F

ρσ〉 and connects Eq.
(5.63) with the Bianchi identity, we �nd that ?B(1) sets the expectation value
of the Maxwell �eld strength 〈F 〉. Furthermore, the (regularised) stress-energy
tensor (5.61) becomes

〈Tµν〉 = lim
ε→1/Λ2

N2
c

2π2

(
−g(2)µν + g(0)µν (g

(2))λλ −
1
2 h̃µν −

1
2 h̃µν ln (CM ε)

)
(5.64)

where Λ is the UV cuto� of the theory. As discussed in Section 5.2, the choice
of the dimensionful constant CM (including C and eH from Eq. (5.61)) must
now be made in order to �x the renormalisation condition, which will render
the renormalised expectation value 〈Tµν〉 physical.

To see how the constant CM in Eq. (5.64) is related to our discussion in
Section 5.2, we write the last term by introducing a mass scale M :

N2
c

2π2 h̃µν ln(Λ/C) = N2
c

2π2 h̃µν ln(Λ/M) + h̃µν

(
1
e2
r

− N2
c

2π2 ln(Λ/M )

)
.

(5.65)
What can be seen from Eq. (5.65) is that this splitting precisely reproduces the
way the logarithmic divergence enter into the stress-energy tensor from two
di�erent pieces of the Lagrangian: the matter content (with its coupling to the
photons) and the electromagnetic (Maxwell) part:

〈Tµν〉 = 〈Tmatterµν 〉+ 〈TEMµν 〉 , (5.66)

with the two terms being

〈Tmatterµν 〉 = N2
c

2π2

(
−g(2)µν + g(0)µν (g

(2))λλ −
1
2 h̃µν

)
+
N2
c

2π2 h̃µν ln(Λ/M) ,

(5.67)

(5.68)
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and

〈TEMµν 〉 =
1
e2
r

h̃µν −
N2
c

2π2 h̃µν ln (Λ/M) . (5.69)

Finally, we note that the electromagnetic 〈TEMµν 〉 would follow precisely from
the Maxwell boundary action

SEM = − 1
4e(Λ/M)2

∫
d4x
√
−gFµνFµν , (5.70)

upon using Eq. (5.59) and the fact that the bulk ?B(1) determines 〈Fµν〉:

〈TEMµν 〉 =
1

e(Λ/M)2

(
〈FµαF α

ν 〉 −
1
4ηµν〈FαβF

αβ〉
)

=
1

e(Λ/M)2

(
〈Fµα〉〈F α

ν 〉 −
1
4ηµν〈Fαβ〉〈F

αβ〉
)

, (5.71)

where the last equality follows from the fact that quantum �uctuations of the
photon �eld are suppressed in the boundary QFT. Our holographic calculation
thus fully reproduces Eq. (5.34), which followed from the �eld theory discussion
in Section 5.2.2. Furthermore, the running electromagnetic coupling constant
matches the one found from �eld theory (cf. Eq. (5.37)) [284]. Hence, our
holographic setup contains the a U (1)-gauged matter content of the N = 4
SYM theory. In terms of bulk quantities, the renormalised stress-energy tensor
and the two-form current are

〈Tµν〉 =
N2
c

2π2

(
−g(2)µν + g(0)µν (g

(2))λλ −
1
2 h̃µν

)
+

1
e2
r

h̃µν , (5.72)

〈Jµν〉 = 2B(1)
µν , (5.73)

where, as in Section 5.2, er is the renormalised coupling which needs to be set by
experimental input—the renormalisation condition. In practice, this constant is
�xed by choosing the value of C in (5.61). For the same reasons as in QFT, there
is therefore an inherent ambiguity in holographic results, which has to be �xed
by external physically-motivated input.

We conclude this section by noting that since ∇µ〈TEMµν 〉 = 0 follows from
Maxwell’s equations, using the relation (5.58) implies that the Ward identity
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for the stress-energy tensor satis�es Eq. (5.8), or in terms of our holographic
notation,∇ν〈Tµν〉 = H̃µ

λσ〈Jλσ〉 in Eq. (5.49).

5.3.3 Equation of state

To �nd the equation of state of our theory, we can use the renormalised stress-
energy tensor (5.72) and the two-form current (5.73) computed in the previous
section. Expressed in terms of the near-boundary expansions (5.48), which can
be read o� from the numerical background, we �nd〈

T tt
〉
=

N2
c

2π2

[
−3

4f
b
4r

4
h +

B2

8πᾱ

]
, (5.74)

〈T xx〉 = 〈T yy〉 = N2
c

2π2

[(
−1

4f
b
4 +

vb4
v

)
r4
h −
B2

4 +
B2

8πᾱ

]
, (5.75)

〈T zz〉 = N2
c

2π2

[(
−1

4f
b
4 − 2v

b
4
v

)
r4
h −

B2

8πᾱ

]
, (5.76)

where we have used the (renormalised) �ne-structure constant α = e2
r/4π of

the electromagnetic coupling in the plasma, which, as er , is �xed by the choice
of C in (5.61), and rescaled it by N2

c /2π2 (or |β(1/e2)|) as

ᾱ =
N2
c

2π2α . (5.77)

The coupling ᾱ has to be �xed by experimental observations as in any other
quantum �eld theory, which is not easy in an unrealistic toy model.

To studying strongly coupled MHD, it is phenomenologically relevant to
not only consider the matter and light-matter interactions, but also include
large electromagnetic self-interactions encoded in the Maxwell action. How-
ever, since we are working with a holographic large-Nc matter sector and a
single photon, it is rather unnatural to expect a Maxwell term of the same or-
der, even thoughNc controls the running of the electromagnetic coupling. The
choice that we make here is to set the rescaled constant ᾱ to the physically
motivated ᾱ = 1/137. There are several ways to think about this choice: one
is imagining that our plasma contains magnetic properties, which have non-
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trivial scalings withNc, while another interpretation may assume that the bulk
studied here could remain a valid dual of a theory with a reasonably small Nc.
Of course, by considering only a classical bulk theory, we are restricting the
strict validity of any computed observable to the limit of Nc → ∞. As soon
as one moves towards �nite Nc, it becomes crucial to estimate the size of sub-
leading 1/N2

c corrections (topological expansion in the string coupling gs)—an
endeavour in holography (and string theory) which to date has been largely
neglected and will continue being neglected in this work.14 A less problematic
limit is that of the in�nite ’t Hooft coupling, which is also implied by the choice
of our action.15 Perhaps the best interpretation is one of an “agnostic choice"
led by our having to �x a free parameter to some value. We will return to a
more careful investigation of the dependence of our results on this choice in
Section 5.4.3.

The expectation values of the stress-energy tensor expressed in (5.74)–(5.76)
are related to the MHD stress-energy tensor in Eq. (5.12) by

〈T tt〉 = ε , 〈T xx〉 = p , 〈T zz〉 = p− µρ . (5.78)

We note that, as required in a conformal �eld theory with a trace anomaly
induced by electromagnetic interactions, the trace of stress-energy tensor is
non-zero. The holographic two-form current,

〈J tz〉 = B =
Br2

h

v
, (5.79)

is related to the equilibrium magnetic �ux line density appearing in the MHD
equation (5.13) as 〈J tz〉 = ρ. Temperature and entropy can be expressed in
terms of the background geometry as

T =
1

2πf
h
1 rh , s =

N2
c

2π2

(
πr3

h

v
√
w

)
, (5.80)

14For some discussions of 1/N2
c corrections to the thermodynamic free energy (the equilib-

rium partition function) and hydrodynamic long-time tails, see [131–133].
15For recent discussions of coupling-dependent holography, see [232, 304–307] and references

therein.
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and are therefore independent of the renormalised electromagnetic charge. The
chemical potential, which corresponds to the density of magnetic �ux lines, can
be computed by using the thermodynamic identity ε+ p = sT +µρ (cf. (5.20)):

µ =
〈T xx〉 − 〈T zz〉
〈J tz〉

=
N2
c

2π2

(
3vb4
B
− B

v
+

B

4πvᾱ

)
r2
h . (5.81)

Note that with our choice of the bulk theory scalings, ρ ∼ O(1) and µ ∼
O(N2

c ). Furthermore, while T ∼ O(1), p, ε and s all scale as O(N2
c ).
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Figure 5.1. Dimensionless energy density ε/B2 (top-left), pressure p/B2 (top-right),
entropy density s/B3/2 (bottom-left) and chemical potential µ/B (bottom-right), in
units of N2

c /(2π2), plotted as a function of the dimensionless parameter T/
√
B. The

�rst three plots use logarithmic scales on both axes.

Using the above relations, we can perform two consistency checks on our
holographic setup and numerical calculations of the background. First, the
value of the pressure computed from the stress-energy tensor component 〈T xx〉 =

130



Chapter 5. Magnetohydrodynamic waves in a strongly interacting holographic
plasma

p can be compared with the value of the Euclidean on-shell action,

p = −i(βV3)
−1Son−shell, (5.82)

where β = 1/T and V3 is the spatial volume of the theory. Secondly, we can
compute ε+ p− µρ from the stress-energy tensor evaluated near the bound-
ary and by using the thermodynamic relation (5.20), check whether its values
agrees with sT computed purely from horizon quantities. Both calculations
show consistency of our setup in that we �nd 〈T xx〉 = −i(βV3)−1Son−shell

and 〈T tt〉+ 〈T zz〉 = sT , within numerical precision.
We can now plot various thermodynamic quantities in a dimensionless man-

ner by dividing them by appropriate powers of B. The natural dimensionless
parameter with respect to which we present our numerical results is T/

√
B.

The results for the energy density, pressure, entropy density and chemical po-
tential are shown in Figure 5.1. The theory has two distinct regimes: the low-
and the high-temperature regimes, or alternatively, the strong and weak mag-
netic �eld regimes, respectively. The high-temperature regime T/

√
B � 1 is

one to which MHD has been historically applied and to which the formulation
of MHD, which assumes a weak-�eld separation between �uid and charge de-
grees of freedom can be applied. The claim presented in the Ref. [47] is that
within the dual formulation, however, MHD applies for all values of T/

√
B

provided that the theory remains in the hydrodynamic regime. The pro�les of
the thermodynamic functions in Figure 5.1 show a smooth crossover between
the two regimes, which occurs around

T/
√
B ≈ 0.5− 0.7 . (5.83)

By using numerical �ts, the equation of state in the two limits behaves as ex-
pected on dimensional grounds [47]. We present the numerical results in Table
5.1.

In the limit of B → 0, the weak-�eld result approximately limits to the
equation of state of a strongly coupled, thermal N = 4 plasma, dual to a
�ve dimensional AdS-Schwarzschild black brane with pN=4 = 1

8N
2
c π

2T 4; i.e.
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weak �eld (T/
√
B � 1) strong �eld (T/

√
B � 1)

ε N2
c

2π2
(
74.1× T 4) N2

c
2π2

(
5.62×B2)

p N2
c

2π2
(
25.3× T 4) N2

c
2π2

(
5.32×B2)

s N2
c

2π2
(
99.4× T 3) N2

c
2π2 (7.41×B T )

µ N2
c

2π2 (10.9×B) N2
c

2π2 (2.88×B)

Table 5.1. Asymptotic behaviour of the equation of state in weak and strong �eld
limits for ᾱ = 1/137.

limB→0 pweak ≈ 1.28×N2
c T

4 and pN=4 ≈ 1.23×N2
c T

4. We also note that the
value of the pressure at low temperature strongly depends on the renormalised
(re-scaled) �ne structure constant ᾱ, which we set to ᾱ = 1/137.

5.3.4 Transport coe�cients

Next, we compute the seven transport coe�cients, η⊥, η‖, r⊥, r‖, ζ⊥, ζ‖ and ζ×,
by using the Kubo formulae derived in [47, 278] and reviewed in Appendix 5.6.1.
The procedure only requires us to turn on time-dependent �uctuations of the
background �elds without any spatial dependence, Gab → Gab + δGab(t) and
Bab → Bab + δBab(t). The perturbations asymptote to the boundary sources
δg

(0)
µν and δb(0)µν of the dual stress-energy tensor and the two-form current. In

the absence of spatial dependence, the �uctuations decouple into �ve separate
channels, from which the seven transport coe�cients are computed, with each
channel containing one independent dynamical second-order equation. The
sets of decoupled �uctuations responsible for their respective transport coe�-
cients are

η⊥ : δGxy ,

η‖ : δGxz, δBtx, δBxu ,

ζ⊥, ζ‖, ζ× : δGtt, δGxx, δGyy, δGzz, δBtz, δGtu, δBzu, δGuu ,

r⊥ : δBxz, δGtx, δGxu ,

r‖ : δBxy ,

(5.84)
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with only one out of the three bulk viscosities being independent. Each one of
the transport coe�cients can then be related to a membrane paradigm formula
and computed entirely in terms of the horizon quantities. We summarise these
relations here and discuss their derivation below:

η⊥ =
N2
c

2π2

(
r3
h

4v
√
w

)
=

1
4πs ,

η‖ =
N2
c

2π2

(
r3
h

4w3/2

)
=

1
4π

v

w
s ,

r⊥ =
2π2

N2
c

(√
w

2rh

)b
(−)
xz (1)

b
(−)
xz (0)

2

,

r‖ =
2π2

N2
c

(
v

2rh
√
w

)
,

ζ⊥ =
1
4ζ‖ = −

1
2ζ× =

N2
c

2π2

 r3
h

12v
√
w

(
6 +B2

6−B2

)2 [
Z(−)(1)
Z(−)(0)

]2
 ,

(5.85)

where b(−) and Z(−) are the time-independent solutions of the �uctuations
δBxz and Zs = δGxx + δGyy − (2V ′/W ′)δGzz , respectively. The arguments
denote that the functions are evaluated either at the horizon, u = 1, or the
boundary, u = 0. Note that the value at the boundary is set by the Dirichlet
boundary conditions.

What we see is that the ratio of the transverse shear viscosity (w.r.t to
the background magnetic �eld) to entropy density is universal, resulting in
η⊥/s = 1/4π. Furthermore, the expressions for η‖ and r‖ only depend on
the background quantities v and w, while ζ⊥, ζ‖ and r⊥ also depend on the
�uctuations of the �elds.16

In order to derive the horizon formulae, we use a method similar to [301,
308]. Here, we will only explicitly show the derivation of the transverse resis-
tivity r⊥. The other formulae from Eq. (5.85) are derived in Appendix 5.7. First,
we combine the equations of motion for the relevant �uctuations δBxz , δGtx,

16For a holographic derivation of bulk viscosity in neutral relativistic hydrodynamics, see
[300].
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and δGxu by eliminating the metric �uctuations into a single second-order dif-
ferential equation

δB′′xz +

( 3
2u +

F ′

F
−W ′

)
δB′xz +

(
ω2

4r2
hu

3F 2 −
B2e−4V

u3F

)
δBxz = 0 .

(5.86)
Since we are only computing �rst-order transport coe�cients, it is su�cient
to solve Eq. (5.86) to linear order in ω. To �nd the solution, we assume that
there exists a time-independent solution b

(−)
xz (u), which asymptotes to a con-

stant both at the boundary and the horizon. At the boundary, this asymp-
totic value is related to the source of the two-form background gauge �eld,
i.e. b(−)xz (u→ 0) = δB

(0)
xz . The time-dependent information is contained in the

second solution, linearly-independent from b
(−)
xz . We refer to this solution as

b
(+)
xz . It can be expressed in terms on integral over the Wronskian WR of (5.86)

as

b(+)
xz (u) = b(−)xz (u)

∫ 1

u
du′

WR(u′)(
b
(−)
xz (u′)

)2 , (5.87)

where

WR(u) = exp
[
−
∫ 1

u
du′

( 3
2u′ +

F ′(u′)

F (u′)
−W ′(u′)

)]
=

1
u3/2Fe−W

.

(5.88)

The near-boundary and the near-horizon expansions of b(+)
xz are

b(+)
xz =


√
w
[
b(−)xz (0)

]−1
ln u+O(

√
u) , for u ≈ 0 ,

−rh
[
2πTb(−)xz (1)

]−1
ln(1− u) +O(1− u) , for u ≈ 1 .

(5.89)
Finally, δBxz(ω,u) is then a the following linear combination of the two solu-
tions:

δBxz(ω,u) = b(−)xz (u) + α(ω)b(+)
xz (u) +O(ω2) . (5.90)

The coe�cientα(ω) can be determined by imposing regular ingoing bound-
ary conditions at the horizon, which corresponds to computing a retarded dual
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correlator [309, 310]:

δBxz(u) = (1− u)−
iω

4πT B̃xz , (5.91)

The function B̃xz(u) is regular at the horizon. This choice of the boundary
condition implies that near the horizon, δBxz behaves as

δBxz(u) = b(−)xz (u)+α(ω)b(+)
xz (u)+ . . . = b(−)xz (1)

(
1− iω

4πT ln(1− u)
)
+ . . . .

(5.92)
Comparing Eq. (5.92) with the asymptotic behaviour of b(+)

xz in (5.89), we �nd
α = (iω/2rh)

[
b
(−)
xz (1)

]2
. Thus, the near-boundary expression for δBxz be-

comes

δBxz(u) = b(−)xz (0)

1 + iω

2rh
√
w

b(−)xz (1)
b
(−)
xz (0)

2

ln u

+O(u) . (5.93)

By substituting this expression into the expectation value of the two-form cur-
rent 〈Jµν〉, as found in Eq. (5.62), we obtain

〈δJxz〉 = lim
u→0

(
2u3/2√FδB′xz(u)

)
=

2π2

N2
c

iωr−1
h

√
w

b(−)xz (1)
b
(−)
xz (0)

2
 δb(0)xz .

(5.94)
Finally, using the Kubo formula for r⊥, which is derived and presented in Eq.
(5.119) of Appendix 5.6.1, we recover the expression presented in Eq. (5.85).
All of the six remaining transport coe�cients can be obtained by following
the same procedure. We refer the reader to Appendix 5.7 for their detailed
derivations.

The plots of the (dimensionless) transport coe�cients η‖, ζ‖, r⊥ and r‖ as a
function of T/

√
B are presented in Figure 5.2. The remaining three viscosi-

ties can easily be inferred from Eq. (5.85). In particular, η⊥/s = 1/(4π),
ζ⊥ = ζ‖/4 and ζ× = −ζ‖/2. We note that all transport coe�cients satisfy
the positive entropy production bounds discussed in Section 5.1. It is interest-
ing that the bulk viscosity inequality ζ⊥ζ‖ ≥ ζ2

× is saturated, i.e. ζ⊥ζ‖ = ζ2
× in
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Figure 5.2. The plots of (dimensionless) �rst-order transport coe�cients as a function
of T/

√
B.

the plasma studied here for all parameters of the theory.
We can now investigate the behaviour of the transport coe�cients in the

two extreme limits of T/
√
B → 0 and T

√
B → ∞, i.e. the strong- and the

weak-�eld regimes, respectively. The leading-order power-law scaling (which
we assume) and the coe�cient follow from numerical �ts. The results are pre-
sented in Table 5.2.

Since the entropy density s vanishes in the limit of zero temperature, all
�rst-order transport coe�cients vanish in the strong-�eld limit of T → 0. This
observation is consistent with predictions of [47], based on symmetry argu-
ments. As a consequence, all (�rst-order) dissipative e�ects also vanish in the
T → 0 limit.

In the regime of a weak magnetic �eld, T �
√
B, we �nd that both shear

viscosities η⊥ and η‖ converge to η⊥ = η‖ = s/(4π) as B/T 2 → 0. On
the other hand, the longitudinal bulk viscosity limits to ζ‖ → 4η/3, which is
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weak �eld (T/
√
B � 1) strong �eld (T/

√
B � 1)

η⊥
s

4π
s

4π
η‖ 1.00× s

4π
s

4π

(
21.32× T 2

B

)
ζ⊥ 0.33× s

4π
s

4π

(
16.34× T 3

B3/2

)
ζ‖ 1.33× s

4π
s

4π

(
65.37× T 3

B3/2

)
ζ× −0.66× s

4π − s
4π

(
32.69× T 3

B3/2

)
r⊥

B
µ

(
1.84× 1

T

) √
B
µ

(
2.34× T 3

B3/2

)
r‖

B
µ

(
1.71× 1

T

) √
B
µ

(
31.14× T√

B

)

Table 5.2. Asymptotic behaviour of all �rst-order transport coe�cients in weak- and
strong-�eld limits. The temperature-dependent scaling of the shear viscosities at low
temperature agrees with what was reported in Ref. [280].

consistent with expectations that as B/T 2 → 0, the plasma should becomes
an uncharged relativistic conformal hydrodynamics (see e.g. [51] or Appendix
5.7). Furthermore, the resistivities r⊥ and r‖ also tend to zero in the limit.

We also note that the weak-�eld behaviour of r⊥ and r‖ is consistent with
assumptions of standard (ideal) MHD, where conductivity is taken to in�nity,
σ ≈ 1/r → ∞, and where one adds corrections proportional to 1/σ.17 In
other words, small weak-�eld resistivities are compatible with the assumption
of ideal Ohm’s law, which gave rise to Eq. (5.7) (see also our discussion around
this equation in Section 5.1.). Furthermore, note that in standard MHD, only one
resistivity (conductivity) is typically added to include dissipative corrections.
What we see is that in our theory, the two resistivities take similar values in
the weak-�eld limit in which standard MHD applies. However, in the strong-
�eld limit, they assume drastically di�erent values, including a di�erent scaling
with T/

√
B. This observation therefore further points to the important role of

anisotropic e�ects in MHD [47] and the necessity for using the formulation of
[47, 278] as one moves from the weak to the strong-�eld regime.

The fact that r⊥ and r‖ tend to zero both in the limits of T/
√
B → 0

17See Ref. [47] for a discussion regarding the subtleties in relating resistivities to conductivi-
ties.
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and T
√
B → ∞, along with the positivity of the entropy production bounds

r⊥ ≥ 0 and r‖ ≥ 0 [47], implies that there always exists a maximum value
of the resistivities at some intermediate T/

√
B. It would be interesting to �nd

the sizes of these maxima in experimentally realisable systems and probe the
regimes of the “least conductive" plasmas. Finally, it would be interesting to
further investigate the connection between maximal r and various discussions
of lower bounds on conductivities, e.g. [38, 42, 311].

5.4 Magnetohydrodynamic waves in a strongly cou-
pled plasma

We are now ready to use the information obtained from the holographic analy-
sis of Section 5.3 to study dissipative dispersion relations of magnetohydrody-
namic waves in a toy model of a strongly coupled plasma. We will use the theory
of MHD [47], which is a phenomenological e�ective theory, and supplement it
with microscopic details—the equation of state and transport coe�cients—of
the holographic setup investigated above. We will be particularly interested
in the dependence of the MHD modes on the angle between momentum and
magnetic �eld, as well as the ratio between temperature and the strength of the
magnetic �eld. The ’t Hooft coupling of interactions in the matter sector is not
tuneable in our model, however, the electromagnetic coupling is. In all sections,
except in Section 5.4.3, it will be set to α = 2π2/137N2

c .
Before presenting the numerical result, we review the relevant facts about

MHD modes. For a detailed derivation of these results, see Ref. [47] and for
a discussion of the general procedure, see Refs. [51, 312]. First, we write the
hydrodynamic variables uµ, hµ, T andµ in terms of oscillating modes perturbed
around their near-equilibrium values, e.g.

uµ → (1, 0, 0, 0) + δuµ e−iωt+ikx sin θ+ikz cos θ, (5.95)

so that θ ∈ [0,π/2] measures the angle between the equilibrium magnetic
�eld pointing in the z-direction and the wave momentum k in the x–z plane.
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The dispersion relations ω(k) are then derived from the equations of MHD, i.e.
Eqs. (5.8) and (5.9), with the external Hµνρ = 0. The solutions depend on the
angle θ, temperature T and the strength of the magnetic �eld (or the chemical
potential of the magnetic �ux number density), parametrised in our solutions
byB. Any dimensionless quantity will only depend on the single dimensionless
ratio T/

√
B. The resulting modes can be decomposed into two channels—odd

and even under the re�ection of y → −y. The �rst channel is the transverse
Alfvén channel. The second is the magnetosonic channel with two branches of
solutions: slow and fast magnetosonic waves.

The linearised MHD equations of motion (5.8) and (5.9) need to be expanded
in the hydrodynamic regime in powers of small ω/Λh � 1 and k/Λh � 1,
where Λh is the UV cut-o� of the e�ective theory. In standard MHD, where
T �

√
B, then Λh ≈ T , whereas in the strong-�eld regime of T �

√
B, the

cut-o� can be set by the magnetic �eld, then Λh ≈
√
B. As shown in [47],

hydrodynamics can exist all the way to T → 0, even when δT = 0. Such an
expansion, performed to some order, gives rise to a polynomial equation in ω
and k. For example, in the Alfvén channel, within �rst-order dissipative MHD,

ω2

k2 =

(
µρ cos2 θ

ε+ p

)
− i

(µr⊥
ρ

+
η‖
ε+ p

)
cos2 θ+

(
µr‖
ρ

+
η⊥
ε+ p

)
sin2 θ

ω
+

µ

2ρ(ε+ p)

(
r⊥ cos2 θ+ 2r‖ sin2 θ

) (
η⊥ sin2 θ+ η‖ cos2 θ

)
k2 .

(5.96)
The two solutions of the quadratic equation for ω are given by

ω = − i2 (DA,+)k
2 ± k

2

√
V2
A cos2 θ− (DA,−)2k2 , (5.97)

where DA,+ and DA,− are

DA,± =

(
µr⊥
ρ
±

η‖
ε+ p

)
cos2 θ+

(
µr‖
ρ
± η⊥
ε+ p

)
sin2 θ . (5.98)

One can now series expand ω(k) = D0k + D1k
2, or alternatively, plug this

ansatz in Eq. (5.96) and solve order-by-oder in k. What we �nd is the Alfvén
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wave dispersion relation [47]:

ω = ±VAk cos θ− i

2

 1
ε+ p

(
η⊥ sin2 θ+ η‖ cos2 θ

)

+
µ

ρ

(
r⊥ cos2 θ+ r‖ sin2 θ

)k2 ,

(5.99)

where the speed is given by V2
A = µρ/(ε+ p). The dispersion relation appears

to be well-de�ned for any angle θ ∈ [0,π/2] between momentum and equilib-
rium magnetic �eld. In particular, if we were to take the θ → π/2 limit, (5.99)
would yield two di�usive modes, both with dispersion relation

ω = − i2

(
η⊥
ε+ p

+
µr‖
ρ

)
k2 , (5.100)

which are, however, unphysical and only result from an incorrect order of limits
of k and θ.

As can be seen from the structure of the square-root in Eq. (5.97), the
expansion in small k is only sensible so long as k2 � V2

A cos2 θ/(DA,−)2.
Hence, even for a small �nite k, this expansion is inapplicable for angles θ near
θ = π/2 where cos θ becomes very small. In fact, for

V2
A cos2 θ ≤ (DA,−)

2k2 , (5.101)

the propagating modes cease to exist altogether and the two modes become
purely imaginary (di�usive to O(k2)). The transmutation of two propagating
Alfvén modes into two non-propagating modes occurs when the inequality in
(5.101) is saturated, i.e. at the critical angle θc when Re[ω] = 0:

cos(θc)
DA,−(θc)

=
k

VA
. (5.102)

In other words, the plasma exhibits propagating (sound) modes for 0 ≤ θ <

θc and non-propagating (di�usive) modes for θc < θ ≤ π/2. We plot the
dependence of the critical angle θc on k/

√
B and T/

√
B for the Alfvén waves

in our model in Figure 5.3. What we see is that for small k/
√
B and small
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T/
√
B, the transition to di�usive modes occurs closer to θc ≈ π/2. For any

�xed and �nite T/
√
B, Eq. (5.102) indeed implies that θc → π/2 as k → 0.

We note that as already pointed out in [278], the limits of k → 0 and
θ → π/2 do not commute and we obtain di�erent results depending on which
expansion (k ≈ 0 or θ ≈ π/2) is performed �rst. If one �rst takes the limit
θ → π/2, then Eq. (5.96) becomes

− ω2 − i
(
µr‖
ρ

+
η⊥
ε+ p

)
ωk2 +

µr‖η⊥

ρ(ε+ p)
k4 = 0 , (5.103)

which instead of Eq. (5.100) results in two non-degenerate di�usive modes

ω = −i η⊥
ε+ p

k2 , ω = −i
µr‖
ρ
k2 . (5.104)

The dispersion relation (5.99) is therefore only sensible at a �nite T/
√
B and

in�nitesimally small k/Λh.
In the magnetosonic channel, the story is entirely analogous to the one

described for the Alfvén waves. By expanding around k ≈ 0 �rst, we obtain
the dispersion relation of [47]:

ω = ±vMk− iτk2 , (5.105)

where the speed of magnetosonic wave is given by

v2
M =

1
2

(V2
A + V2

0 ) cos2 θ+ V2
S sin2 θ

±
√
[(V2

A + V2
0 ) cos2 θ+ V2

S sin2 θ]2 + 4V4 cos4 sin2 θ

.

(5.106)
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The functions VA, V0, VS and V appearing in (5.106) are

V2
A =

µρ

ε+ p
,

V2
0 =

s

Tχ11
,

V2
S =

(s− ρχ12)(s+ ρχ21) + ρ2χ11χ22
(ε+ p)χ11

,

V4 =
s(s− ρχ12)(s+ ρχ21)

T (ε+ p)χ2
11

.

(5.107)

The susceptibilities are18

χ11 =

(
∂s

∂T

)
ρ

, χ12 =

(
∂s

∂ρ

)
T

, χ21 =

(
∂µ

∂T

)
ρ

, χ22 =

(
∂µ

∂ρ

)
T

.

(5.108)
The two types of magnetosonic waves, corresponding to± solutions in (5.106),
are known as the fast (with +) and the slow (with −) magnetosonic waves.
We refer the reader to Appendix 5.8 for further details regarding the derivation
of the magnetosonic modes. Each pair of the propagating slow magnetosonic
modes also splits, in analogy with the Alfvén waves, into two non-propagating
di�usive modes for θ ≥ θc. The critical angle θc for magnetosonic modes is
also de�ned as in the Alfvén channel: the angle at which Re[ω] = 0. We plot
the numerically-computed dependence of the magnetosonic θc on k/

√
B and

T/
√
B in Fig. 5.3. As can be seen from the plot, the critical angles for the

two types of waves are independent. However, they show similar qualitative
dependence on the parameters that characterise the waves.

We summarise the θ-dependent characteristics of MHD modes in Fig. 5.4.
We observe the pattern of a transmutation of sound modes into di�usion to be
di�erent in the weak- and strong-�eld regimes. Namely, the two magnetosonic
waves interchange their dispersion relations at small θ. Since the complicated
expressions for dispersion relations greatly simplify at θ = 0 and θ = π/2, we

18Note that these susceptibilities are di�erent to the ones used in [47], where independent
thermodynamic quantities were T and µ, not T and ρ. For this reason we also use di�erent
notation.
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Figure 5.3. The critical angle θc for Alfvén waves (left) and slow magnetosonic waves
(right), plotted as a function of T/

√
B for k/

√
B = {0.1, 0.2, 0.4, 0.6}. The dashed

line at the top of both sub-�gures indicates the value of θc = π/2.

state them below. The sound mode dispersion relations, denoted by S, are

S1 : ω = ±VSk−
i

2

ζ⊥ + η⊥
ε+ p

+ r⊥

(
[(s− ρχ12)(µ− Tχ21)− ρTχ11χ22]× [χ12 ↔ −χ21]

T 2χ11 [(s− ρχ12)(s+ ρχ21) + ρ2χ11χ22]

)k2 ,

S2 : ω = ±VAk−
i

2

(
η‖
ε+ p

+
µr⊥
ρ

)
k2 ,

S3 : ω = ±V0k−
i

2
ζ‖
sT
k2 ,

(5.109)
and the di�usive modes, denoted by D, are

D1 : ω = −i
η‖
sT
k2 ,

D2 : ω = − ir⊥(ε+ p)2χ22
T 2 [(s− ρχ12)(s+ ρχ21) + ρ2χ11χ22]

k2 ,

D3 : ω = −i η⊥
ε+ p

k2 ,

D4 : ω = −i
r‖µ

ρ
k2 .

(5.110)
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Figure 5.4. Diagrams depicting the θ-dependent pattern of transmutation from sound
to di�usive modes for Alfvén waves and slow and fast magnetosonic waves. The left
and right diagrams correspond to weak- and strong-�eld regimes. The relevant disper-
sion relation are stated in Eqs. (5.109) and (5.110).

In the regime of a large T/
√
B, the results agree with those of [278]. Fur-

thermore, using the asymptotic form of the thermodynamics quantities and
transport coe�cients in the T/

√
B →∞ limit, one can show that these modes

reduce to sound and di�usive modes of uncharged relativistic hydrodynamics.
In the strong-�eld regime, which cannot be described within standard MHD,

the speeds of S1 and S3 become large and approach the speed of light in the limit
of T → 0. As discussed before, all di�usion constants vanish and the system
becomes controlled by second-order MHD [47], which we do not investigate in
this work. Further details of angle-dependent wave propagation are presented
in Section 5.4.2.

5.4.1 Speeds and attenuations of MHD waves

Here, we plot the speeds (phase velocities) and �rst-order attenuation coe�-
cients of the three types of MHD sound waves: the Alfvén and the fast and slow
magnetosonic waves for the holographic strongly coupled plasma discussed
above. These results assume an in�nitesimally small value of momentum k,
and follow from �rst expanding the polynomial equation of the type of (5.96)
around k ≈ 0 and writing the dispersion relation as ω = ±vk − iDk2. The
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speeds v (presented in Fig. 5.5) and attenuation coe�cients D (presented in
Fig. 5.6) are then plotted for all 0 ≤ θ ≤ π/2, which, as discussed above, is
only physically sensible when θc → π/2, i.e. as k → 0.

Figure 5.5. Angular dependence of the speeds of Alfvén (black, solid), fast (blue, dot-
ted) and slow (red, dashed) magnetosonic waves in the strong-�eld, the crossover and
the weak-�eld regimes.

The angular pro�les of the speeds and the dissipative attenuation coe�-
cients show distinct behaviour in the strong-, the crossover (cf. Eq. (5.83)) and
the weak-�eld regimes. In particular, the speeds of sound enter the weak-�eld
regime, where they reduce to well-known standard MHD results, rapidly after
the temperature exceeds T/

√
B ≈ 0.7. There, Alfvén and slow magnetosonic

waves travel with very similar speeds for all θ and their speeds coincide at θ = 0
and θ = π/2. The situation is qualitatively di�erent in the strong-�eld regime
where the pro�les of speeds qualitatively match the strong-�eld predictions of
[47], but of whicthe sh the behaviour was to our knowledge previously un-
known. There, slow magnetosonic and Alfvén waves can travel faster at small
θ, with speeds comparable to those of fast magnetosonic waves. At θ = 0, the
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Figure 5.6. Angular dependence of the (dimensionless) attenuation coe�cients of
Alfvén (black, solid), fast (blue, dotted) and slow (red, dashed) magnetosonic waves,
D
√
B, in the strong-�eld, the crossover and the weak-�eld regimes.

Alfvén speed equals that of fast, instead of slow, magnetosonic waves (cf. Fig.
5.4). It should also be noted that there exists a value of T/

√
B in the crossover

regimes where all three speeds are equal at θ = 0.
The attenuation coe�cients, computed with all seven transport coe�cients

[47, 278], are computed for the �rst time for a concrete microscopically (holo-
graphically) realisable plasma and therefore di�cult to compare with other past
results. What we observe is that the Alfvén waves experience the strongest
damping for all values of T/

√
B. Beyond that, the qualitative behaviour again

displays distinct angle-dependent features in the three regimes, which are ap-
parent from Fig. 5.6. A noteworthy, but not surprising feature is that the
strength of attenuation appears to be much more strongly dependent on the
angle between momentum and magnetic �eld in the regime of small T/

√
B.

Furthermore, in the crossover regime, we �nd that the strengths of fast and
slow magnetosonic mode attenuations interchange roles at T/

√
B increases.

In plots at T/
√
B = 0.5 and T/

√
B = 0.66, there exists an angle θ at which

the two attenuation strengths coincide.
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5.4.2 MHD modes on a complex frequency plane

By assuming a �nite value of momentum k, a full analysis of the spectrum
requires us to take into account the transmutation of sound modes into non-
propagating di�usive modes. The pattern of this behaviour, as a function of the
angle between momentum and the direction of the equilibrium magnetic �eld θ,
was summarised in Fig. 5.4. Motivated by holographic quasinormal mode (poles
of two-point correlators) analyses, we plot the motion of the MHD modes on
the complex frequency plane—here, as a function of θ and T/

√
B. One should

consider these plots as a prediction of how the �rst-order approximation to
the hydrodynamic sector of the full quasinormal spectrum computed from the
theory (5.43) is expected to behave.

In Fig. 5.7, we plot the typical θ-dependent trajectories of ω(θ) on the
complex ω-plane for Alfvén and magnetosonic modes in distinctly strong- and
weak-�eld regimes. At all temperatures (except at T = 0 where D = 0), the
behaviour is consistent with our previous discussions, including the fact that
the transmutation of Alfvén and slow magnetosonic waves into di�usive modes
occurs at lower θc as k/

√
B increases.

In the crossover temperature regime (around T/
√
B ≈ 0.6), we �nd an-

other manifestation of the interplay between fast and slow magnetosonic modes,
which was noted in Section 5.4.1. While the speed of fast magnetosonic waves
always exceeds that of slow waves, their attenuation strength exchange roles
aroundT/

√
B ' 0.675, which manifests in characteristically distinct behaviour

for θ < θc. The behaviour is presented in Fig. 5.8 (see also Fig. 5.6). The θ-
dependence of Alfvén waves remains qualitatively similar to those depicted in
Fig. 5.7.

For a �xed θ < θc, where θc depends on k and T/
√
B, we plot the typical

behaviour of ω(k) as a function of T/
√
B in Fig. 5.9. At T = 0, all poles

start from the non-dissipative regime (the real w axis), with the speed of fast
magnetosonic waves given by v = 1. As they move towards larger T/

√
B, the

Alfvén and slow magnetosonic modes again asymptote to each other, eventually
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Figure 5.7. Dependence of the complex (dimensionless) frequency w = ω/
√
B on

θ, plotted for Alfén (black) and fast (blue) and slow (red) magnetosonic waves in the
strong- and weak-�eld regimes with T/

√
B = 0.4 and T/

√
B = 1.15, respectively.

The arrows represent the motion of poles as θ is tuned from 0 to π/2. Momentum is
set to k/

√
B = 0.05.

transforming into di�usive modes, while the speed of the fast magnetosonic
modes gradually converges towards that of neutral conformal sound with v =

1/
√

3.
In the high temperature limit, the collision of the Alfvén and, independently,

the slow magnetosonic modes on the imaginary axis occurs close to the real
axis, which follows from the fact that for both types of waves,

Im [w] ≈
(η⊥ sin2 θ+ η‖ cos2 θ)

√
B

2(ε+ p)
∼
√
B
T
→ 0 , (5.111)

as T/
√
B → ∞. The Alfvén waves then become the di�usive modes of un-

charged conformal hydrodynamics with ω = −iηk2/(2sT ). As for our �nal
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Figure 5.8. Dependence of the complex (dimensionless) frequency w = ω/
√
B of fast

(blue) and slow (red) magnetosonic modes on θ in the crossover regime. The arrows
represent the motion of poles as θ is tuned from 0 to π/2. Momentum is set to k/

√
B =

0.05.

plot, in Fig. 5.10, we present the dependence of the four di�usion constants
and one sound attenuation coe�cient on the temperature at θ = π/2 (cf. Fig.
5.4 and Eqs. (5.109)–(5.110)). The modes D1, D3 and S1 reduce to dispersion
relations of uncharged relativistic hydrodynamics. D2 and D4 are new.

5.4.3 Electric charge dependence

We end our discussion of MHD dispersion relations by investigating their de-
pendence on the choice of the U(1) coupling constant, which has so far been
set to the (Nc-rescaled) ᾱ = 1/137. All dependence on ᾱ enters into the ex-
pectation value of the stress-energy tensor through the term proportional to
HµνHµν ln C (cf. Eq. (5.61)), which contributes no terms linear in ω. For this
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Figure 5.9. Dependence of the complex (dimensionless) frequency w = ω/
√
B on

T/
√
B, plotted for Alfén (black) and fast (blue) and slow (red) magnetosonic waves for

θ < θc. The arrows represent the motion of poles as T/
√
B is tuned from 0 towards

the weak-�eld regime. Momentum is set to k/
√
B = 0.01.

reason, while the equation of state strongly depends on ᾱ, the �rst-order trans-
port coe�cients do not. Hence, all speeds of sound and attenuation (and di�u-
sive) coe�cients depend on the choice of ᾱ through the equation of state and
susceptibilities.

What we observe is that the speeds of waves and attenuation coe�cients
strongly depend on the renormalised electromagnetic coupling, so unsurpris-
ingly, the strength of electromagnetic interactions plays an important role in
the phenomenology of MHD. For concreteness, we only present the detailed
behaviour of the Alfvén waves (with speed VA cos θ), which reduce the neu-
tral hydrodynamic di�usion mode D3 (and D4) at θ = π/2. Both VA and the
di�usion constant of D3, DD3, strongly depend on ᾱ. On the other hand, it is
interesting that the speed of S3 mode, V0, does not depend on ᾱ. We note that
V0 is the θ = 0 limit of fast and slow magnetosonic mode speeds in the weak-
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Figure 5.10. Plots of the four di�usion constants (D1, D2, D3, D4) and the sound
attenuation (S1) as a function of T/

√
B at θ = π/2. Black, red and blue curves de-

pict dissipative coe�cients that originate from the Alfvén, slow magnetosonic and fast
magnetosonic waves, respectively.

and strong-�eld limits, For reasonable values of ᾱ, we plot the results in Fig.
5.11. To show the importance of a sensible choice of the renormalisation con-
dition, we also vary the coupling over a larger range (to ᾱ = 80/137), where
we see that the system develops unphysical behaviour with instabilities. As is
apparent from Fig. 5.12, Alfvén waves become unstable at low T/

√
B.
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Figure 5.11. The plot of V2
A and the di�usion constant DD3 at ᾱ = {ᾱ0/2, ᾱ0, 2ᾱ0},

where ᾱ0 = 1/137. The dashed line is the ᾱ-independent V2
0 , which is plotted for

comparison.

In all to us known literature, the unavoidable choice of the constant C,
which sets ᾱ is made in a di�erent way. Either C is chosen so that the loga-
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Figure 5.12. The plot of the Alfvén V2
A at a varying ᾱ ranging from ᾱ = ᾱ0 to ᾱ =

80ᾱ0, where ᾱ0 = 1/137. We see that as ᾱ increases, the waves develop an instability
in the strong-�eld regime.

rithmic terms vanish altogether, or so that it sets the UV scale to be set by the
magnetic �eld. The latter choice is convenient when studying strong magnetic
�elds, as e.g. in [284, 292]. Here, we would like to point out some of the conse-
quences of setting C to either of the two standard options. Following the �rst
choice, which eliminates the logarithmic terms, the resulting thermodynamics
quantities are

ε =
N2
c

2π2

(
−3

4f
b
4r

4
h

)
,

p =
N2
c

2π2

[(
−1

4f
b
4 +

vb4
v

)
r4
h −
B2

4

]
,

µρ =
N2
c

2π2

(
3vb4
v
r4
h −
B2

4

)
.

(5.112)

The second choice, results in

ε =
N2
c

2π2

(
−3

4f
b
4r

4
h +
B2

4 lnB
)

,

p =
N2
c

2π2

[(
−1

4f
b
4 +

vb4
v

)
r4
h −
B2

4 +
B2

4 lnB
]

,

µρ =
N2
c

2π2

(
3vb4
v
r4
h −
B2

4 −
B2

4 lnB
)

.

(5.113)

What we would like to claim is that while these two convenient renormalisa-
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tion conditions are suitable for studying certain physical setups involving static
electromagnetic �elds, they lead to unphysical results when the boundaryU(1)
gauge �eld is dynamical. By comparing the renormalised stress-energy tensor
(5.74)–(5.76) to expressions in (5.112) and (5.113), we �nd that the two choices
correspond to the renormalised coupling being e2

r →∞ and e2
r ∼ lnB, respec-

tively. The �rst choice is clearly unusual and unphysical. The problem with
the second choice is that in certain regimes, lnB can become negative and er
imaginary, which is again unphysical. Both lead to instabilities and superlu-
minal propagation, which were absent in from our results for ᾱ near 1/137.
We plot the Alfvén speed parameter VA for the two couplings from (5.112) and
(5.113) in Fig. 5.13.
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Figure 5.13. The θ-independent factor VA of the Alfvén wave speed plotted for the
renormalised e2

r →∞ (left) from Eq. (5.112) and for e2 ∼ lnB (right) from Eq. (5.113).

5.5 Discussion

This work should be considered as the �rst holographic step in a long road to-
wards a better understanding of magnetohydrodynamics in plasmas outside of
the regime of validity of standard MHD, be it in the presence of strong magnetic
�elds or in a strongly interacting (or dense) plasma with a complicated equa-
tion of state and transport coe�cients—all claimed to be describable within the
recent (generalised global) symmetry-based formulation of MHD of Ref. [47].
In order to supply a hydrodynamical theory of MHD with the necessary micro-
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scopic information of a strongly coupled plasma, we resorted to the simplest,
albeit experimentally inaccessible option: holography. Nevertheless, our hope
is that in analogy with the myriad of works on holographic conformal hydro-
dynamics, which have led to important new insights into strongly interacting
realistic �uids, holography can also help us understand MHD in the presence
of strong �elds, high density and of strongly interacting gauge theories, such
as QCD.

With this view, we constructed the simplest theory dual to the operator
structure and Ward identities used in MHD of [47], investigated the relevant
aspects of the holographic dictionary and used it to compute the equation of
state and transport coe�cients of the dual plasma state. This information was
then used to analyse the dependence of MHD waves—Alfvén and magnetosonic
waves—on tuneable parameter of the state: the strength of the magnetic �eld,
temperature, the angle between momentum of propagation and the equilibrium
magnetic �eld direction, as well as the strength of the U(1) electromagnetic
gauge coupling. We believe that the latter feature of our model—dynamical
electromagnetism on the boundary—which in the S-dual language of two-form
gauge �elds in the bulk allows for standard (Dirichet) quantisation, could in its
own right be used for holographic studies of U (1)-gauged systems, unrelated
to MHD.

Our results have revealed several new qualitative features of MHD waves,
particularly in the regime of a strong magnetic �eld, which was previously inac-
cessible to standard MHD methods. Various properties of the equation of state,
transport coe�cients and dispersion relations may now be compared to those
in experimentally realisable plasmas, or at the least, used as a toy model for
future studies of MHD. The scalings are collected in Tables 5.1 and 5.2. Here,
we summarise some of the most interesting observations:

• The equation of state and transport coe�cients strongly depend on the
strength of the magnetic �eld, i.e. on whether the plasma is in weak-�eld,
crossover, or strong-�eld regime.
• In the weak-�eld limit of T/

√
B � 1, the system is well-described by
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standard MHD (see [278] for a full description) with small resistivities (large
conductivity regime, which is assumed by ideal Ohm’s law) and small e�ects
of anisotropy. As T/

√
B → ∞, the plasma becomes an uncharged, conformal

�uid with a single independent transport coe�cient, η = s/4π. In the strong-
�eld limit of T/

√
B � 1, the plasma limits to a non-dissipative regime with all

�rst-order transport coe�cients (along with sound attenuations and di�usion
constants) tending to zero. E�ects of anisotropy are large.
• Resistivities have a global maximum in the intermediate T/

√
B regime,

which indicates a regime of least conductive plasma. If the assumptions of stan-
dard MHD are correct at T/

√
B � 1 and the symmetry-based predictions of

[47] are correct at T/
√
B � 1, such a regime should be generically exhibited

by any plasma.
• Out of the three bulk viscosities, ζ⊥, ζ‖ and ζ×, only one is independent

and they saturate the positivity of the entropy production inequality, i.e. they
are related by ζ⊥ζ‖ = ζ2

×. One may speculate on how general this result is
and whether it is related to the suppression of entropy production at strong
coupling [149, 150] or perhaps some form holographic universality at in�nite
(or strong) coupling.
• Various qualitative features of slow and fast magnetosonic modes are ex-

changed in the weak- and strong-�eld regimes at small angle θ between mo-
mentum and equilibrium magnetic �eld direction, such as their asymptotic ten-
dency to the speed of Alfvén waves and the strength of sound attenuation.
• For a �nite momentum, propagating (sound to O(k2)) Alfvén and slow

magnetosonic modes transmute into pairs of non-propagating di�usive (toO(k2))
modes at large angles between the direction of momentum propagation and the
equilibrium magnetic �eld, θc < θ ≤ π/2, where θc is some momentum- and
T/
√
B-dependent critical angle (cf. Eq. (5.102) for Alfvén waves).
• The phenomenology of MHD modes strongly depends on the strength of

electromagnetic coupling and can, for large ranges of the coupling, lead to un-
stable or superluminal propagation.

Beyond the types of waves studied in this work, it would be particularly
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interesting to better understand the role �nite charge density, as studied in
[278], within the formalism of [47]. The important question then is how the
phenomenology of such MHD waves, which typically experience gapped prop-
agation (Langmuir waves) and instabilities (e.g. the infamous Weibel instabil-
ity), becomes altered by strong interactions, strong �elds and more ‘exotic’ �eld
content.

Finally, the holographic setup studied here will need to undergo extensive
further tests and analyses in order to unambiguously establish its connection to
plasma physics and MHD. In particular, it is essential to study the quasinormal
spectrum of the theory to verify that the hydrodynamic modes indeed describe
the small-ω and small-k expansion of the leading infrared poles. Furthermore,
it will be interesting to understand the role of higher-frequency spectrum and
its interplay with MHD modes. We leave all these and many other interesting
questions to the future.

5.6 Appendices

5.6.1 Kubo formulae for �rst-order transport coe�cients

In this appendix, we outline the derivation of the Kubo formulae that have been
used to compute the seven �rst-order transport coe�cients in (5.12) and (5.14)–
(5.19) in Section 5.3.4 [47, 278]. We derive the Kubo formulae by using the
variational background �eld method (see e.g. [51] for a review), which amounts
to varying the background metric gµν and background two-form gauge �eld
bµν , sourcing Tµν and Jµν , by writing

gµν → ηµν +
∫
dω

2π e
−iωtδhµν(ω), bµν → beq

µν +
∫
dω

2π e
−iωtδbµν(ω) ,

(5.114)

where δhµν and δbµν are small variation, η is the �at Minkowski metric and
b

eq
µν = 2µu[µhν]. These variations of background �elds can be viewed as a

sources that generate a variation in the hydrodynamic variables T , ρ (which
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we use here instead of µ in [47]), uµ and hµ:

T (t)→ T + δT (t) , ρ→ ρ+ δρ(t) , (5.115)

uµ → uµeq + δu(t) , hµ → hµeq + δhµ(t) , (5.116)

where we choose the equilibrium con�guration to be uµeq = δµt and hµeq = δµz .
The normalisation and orthogonality conditions for the two vectors (uµuµ =

−1, hµhµ = 1, uµhµ = 0) imply

δut =
1
2δhtt , δht = δuz + δhtz , δhz = −1

2δhzz . (5.117)

After writing δT , δρ, δuµ and δhµ in terms of δhµν and δbµν , we can insert
these solution into

T µν ≡
√
−g 〈Tµν〉|g,b , J µν ≡

√
−g 〈Jµν〉|g,b , (5.118)

which give

Im T xx + Im T yy = ωζ⊥(δhxx + δhyy) + ωζ
(1)
× δhzz +O(ω2, δh2, δb2) ,

Im T zz = 1
2ωζ‖δhzz +

1
2ωζ

(2)
× (δhxx + δhyy) +O(ω2, δh2, δb2),

Im T xy = ωη⊥δhxy +O(ω2, δh2, δb2),

Im T xz = ωη‖δhxz +O(ω2, δh2, δb2),

ImJ xy = 2ωr‖δbxy +O(ω2, δh2, δb2),

ImJ xz = 2ωr⊥δbxz +O(ω2, δh2, δb2) ,
(5.119)

where we have not imposed the Onsager relation equating ζ(1)× with ζ(2)× [47,
278]. By using the linear response formulae relating the variations of one-point
functions to retarded two-point Green’s functions,

δT µν(ω, k) = −1
2G

µν,λσ
TT (ω, k)δhλσ(ω, k)− 1

2G
µν,λσ
TJ (ω, k)δbλσ(ω, k),

δJ µν(ω, k) = −1
2G

µν,λσ
JT (ω, k)δhλσ(ω, k)− 1

2G
µν,λσ
JJ (ω, k)δbλσ(ω, k),

(5.120)
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it is then easy to extract the relevant Kubo formulae for the seven transport
coe�cients [47, 278], which we used in this work:

η‖ = lim
ω→0

Gxz,xz
TT (ω, 0)
−iω

, η⊥ = lim
ω→0

Gxy,xy
TT (ω, 0)
−iω

, (5.121)

ζ‖ = lim
ω→0

Gzz,zz
TT (ω, 0)
−iω

, ζ⊥ + η⊥ = lim
ω→0

Gxx,xx
TT (ω, 0)
−iω

, (5.122)

as well as

ζ× = lim
ω→0

Gzz,xx
TT (ω, 0)
−iω

= lim
ω→0

Gxx,zz
TT (ω, 0)
−iω

. (5.123)

and

r‖ = lim
ω→0

Gxy,xy
JJ (ω, 0)
−iω

, r⊥ = lim
ω→0

Gxz,xz
JJ (ω, 0)
−iω

. (5.124)

5.7 Further details regarding the derivation of the trans-
port coe�cients

Here, we show the details of the derivation of horizon formulae of all remaining
transport coe�cient: η⊥, η‖, ζ⊥, ζ‖, ζ× and r‖. The computation are analogous
to the calculation of r⊥ in Section 5.3.4.

(i) Shear viscosity η⊥

The only relevant bulk �uctuation for η⊥ is δGxy with the equation of mo-
tion

δGyx
′′ +

( 3
2u +

F ′

F
+ 2V ′ +W ′

)
δGyx

′ +
ω2

4r2
hu

3F 2 δG
y
x = 0 . (5.125)

The solution to leading order in the frequency ω can be found analytically and
its near-boundary expansion gives

δGyx = δhxy

(
1 + iωu2

2rhv
√
w

+O(u3)

)
, (5.126)

where δhxy is the Dirichlet background condition and the boundary theory
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source. If we plug in this solution into to the stress-energy tensor, we �nd that

〈δT xy〉 = N2
c

2π2

(
r4
he

2V√uF
2v δGyx

′
)
+ . . .

=
N2
c

2π2

(
iωr3

h

4v
√
w

)
δhxy + . . . ,

(5.127)

Using Eq. (5.119), we �nd that

η⊥ =
N2
c

2π2

(
r3
h

4v
√
w

)
=

1
4πs , (5.128)

as stated in Eq. (5.85).

(ii) Shear viscosity η‖

Similarly to the computation of r⊥, the xu-component of the two-form
gauge �eld �uctuation equation can be used to reduced the two coupled second
order di�erential equations coupling δGxz and δBtx to a single equation:

δGzx
′′ +

( 3
2u +

F ′

F
+ 3W ′

)
δGzx

′ +
ω2

4r2
hu

3F 2 δG
z
x = 0 . (5.129)

The solution to linear order in ω can again be found analytically and in the
near-boundary region yields

δGzx = δhzx

(
1 + iω

rhw3/2u
2 +O(u3)

)
. (5.130)

The relevant component of the stress-energy tensor is then

〈T xz〉 = N2
c

2π2

(
iωr3

h

4w3/2

)
δhxz + . . . , (5.131)

which gives

η‖ =
N2
c

2π2

(
r3
h

4w3/2

)
=

1
4π

v

w
s , (5.132)

as stated in Eq. (5.85).

(iii) Resistivity r‖
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The only equation of motion in this channel is

δB′′xy +

(3
u
+
F ′

F
− 2V ′ +W ′

)
δB′xy +

ω2

4r2
hu

3F 2 δBxy = 0 , (5.133)

which leads to the near-boundary solution

δBxy = δB(0)
xy

(
1 + iωv

2rh
√
w

ln u+O(u)
)

. (5.134)

The two-form current can then be written as

〈δJxy〉 = 2π2

N2
c

(
iωv

rh
√
w

)
δbxy + . . . , (5.135)

which yields

r‖ =
2π2

N2
c

(
v

2rh
√
w

)
, (5.136)

as stated in Eq. (5.85).

(iii) Bulk viscosities ζ⊥, ζ‖ and ζ×

By counting the number of the relevant degrees of freedom, it turns out
that there is only one dynamical mode in this decoupled systems coming from
4× (2nd-order ODE for δgtt, δgaa, δgzz, δbtz)− 3× (1st-order ODE for δgtu, δguu,
δbzu). To �nd this dynamical mode, we start by solving the algebraic equation
for δgtu, δguu and δbzu from the tu and uu components of Einstein’s equation
combined with the zu component of Maxwell’s equations. Plugging these so-
lutions into the four second-order equations involving δgtt, δgaa, δgzz and δbtz ,
we �nd that the remaining two non-trivial equations involve only δgaa and
δgzz . The single resulting equation of motion can then be expressed in terms
of the gauge-invariant variable Zs(u) de�ned as

Zs(u) = δGaa −
2V ′

W ′
δGzz , (5.137)

where δgaa = δgxx + δgyy . The equation of motion for Zs can be written

Z ′′s (u) +C1(ω,u)Z ′s(u) +C2(ω,u)Zs(u) = 0 , (5.138)
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where

C1 =
3

2u +
F ′

F
+

2W ′′

W ′
+ 2V ′ +W ′ − 2

(2V ′′ +W ′′

2V ′ +W ′
)

,

C2 = − b2e−4V

3u3FW ′
(
F ′

F
+ 4W ′

)
+

ω2

4r2
hu

3F 2 −
2F ′2

3F 2W ′
(V ′ −W ′)

+
4V ′F ′(V ′ −W ′)2

3FW ′(2V ′ +W ′) +
8V ′2(V ′ + 2W ′)(V ′ −W ′)

2W ′(2V ′ +W ′) .

(5.139)

Now, suppose that the time-independent solution for Zs is Z(−), so that
Z(−)(u→ 0) = Z(0) ≡ δhaa − 2δhzz (note that V ′/W ′ → 1 and u→ 0). The
second solution, denoted as Z(+), contains the time-dependent information and
can be found from the Wronskian

Z(+)(u) = Z(−)(u)
∫ 1

u
du′

WR(u′)(
Z(−)(u′)

)2 , WR =

(2V ′ +W ′

W ′
)2 e2V+W

u3/2F
.

(5.140)

We then �nd that the asymptotic solution for Z(+) are

Z(+) =
9

2v
√
w

[
Z(−)(0)

]−1
u2 +O(u3), (5.141)

near the boundary u = 0 and

Z(+) = −9rh

(
6 +B2

6−B2

)2 [
2πTZ(−)(1)

]−1
ln(1− u) +O(1− u), (5.142)

near the horizon u = 1. As the full solution is a linear combination, Zs(u) =
Z(−) + αZ(+), the ingoing boundary condition set the frequency-dependent
function α(ω) to be

α(ω) =
iω

2rh

(
(6 +B2)

3(6−B2)

)2 [
Z(−)(1)

]2
, (5.143)

which allows us to write the solution for Zs near the boundary as

Zs = Z(0)

1 + iω

4rhv
√
w

(
6 +B2

6−B2

)2 [
Z(−)(1)
Z(−)(0)

]2

u2

+ . . . . (5.144)
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This expression can then be used to compute the bulk viscosities, for which
we follow the approach by [313] and their analysis of the Green’s function in
sound channel. In summary, we �rst �nd the expression for 〈δT xx+ δT yy〉 and
〈δT zz〉 in terms of δhtt, δhaa, δhzz and δbtz , and then relate the near-boundary
data of the bulk modes δGtt, δGaa, δGzz and δBtz to those of Zs. Then, we
impose the radial gauge, δGuµ = 0 and δBuµ = 0 and solve the equations
of motion near the boundary. The �rst-order equations of motion gives the
following relations

h(2)aa + h
(2)
tt + h(2)zz +

B2h
(0)
aa

36v2 = 0 ,

2
(
h(2)aa + h(2)zz

)
+
vb4
v

(
h(0)aa − 2h(0)zz

)
− f b4

(
h(0)aa + h(0)zz

)
= 0 .

(5.145)

The coe�cients h(n)µν are de�ned through the near-boundary expansion of the
metric �uctuation. By using the second-order dynamical equation and the ra-
dial gauge, the solutions are

δGaa = h(0aa + h(2)aa u
2 +

h
(0)
aa B2

10v2 u2 ln u+O(ω2,u3),

δGtt = h
(0)
tt + h

(2)
tt u

2 − h
(0)
aa B2

20v2 u2 ln u+O(ω2,u3),

δGzz = h(0)zz + h(2)zz u
2 − h

(0)
aa B2

20v2 u2 ln u+O(ω2,u3),

(5.146)

where h(0)µν ≡ δhµν is the metric perturbation used throughout the paper. By
combining Eqs. (5.145) and (5.146), and using de�nition of gauge-invariant
mode Zs, we �nd that

Zs = Z(0) +
Z(0)ω2

6r2
h

+ Z(2)u2 +
h
(0)
aa B2

5v2 u2 ln u+O(ω4) , (5.147)

where

Z(0) = h(0)aa − 2h(0)zz , Z(2) = −3h(2)zz −
vb4
v
Z(0) + f b4

(
h(0)aa + h(0)zz

)
. (5.148)
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It is most convenient to extract the transport coe�cients from 〈δT zz〉:

〈δT zz〉 = −N
2
c

2π2
r4
he

2W

w

1
2
√
uF

(
δGaa

′ + δGtt
′)

+

(
3

2u +

√
uF ′

2F + 2
√
uFV ′

)
δGzz

+ . . .

= −N
2
c

2π2

 iωr3
h

12v
√
w

(
6 +B2

6−B2

)2 [
Z(−)(1)/Z(−)(0)

]2 (δhaa − 2hzz) + . . . .

The ellipses denote various time-independent terms, which are irrelevant for
computing the �rst-order transport coe�cients of interest. Using the Kubo for-
mula (5.119), we �nd that

ζ‖ =
N2
c

2π2

 r3
h

3v
√
w

(
6 +B2

6−B2

)2 [
Z(−)(1)/Z(−)(0)

]2
=

s

4π

4
3

(
6 +B2

6−B2

)2 [
Z(−)(1)/Z(−)(0)

]2 ,

(5.149)

and ζ(2)× = −ζ‖/2.
Similarly, we can extract ζ⊥ and ζ(1)× from

〈δT xx〉+ 〈δT yy〉 =− N2
c

2π2
r4
he

2V

v

[1
2
√
uF

(
δGaa

′ + δGtt
′
+ δGzz

′
)

+

(
3

2u +

√
uF ′

2F +
√
uF (V ′ +W ′)

)
δGzz

]
+ . . .

=
N2
c

2π2

 iωr3
h

12v
√
w

(
6 +B2

6−B2

)2 [
Z(−)(1)/Z(−)(0)

]2 (δhaa − 2hzz) + . . . .

This gives ζ⊥ = ζ‖/4 = −ζ(1)× /2. Hence, we �nd that ζ(1)× = ζ
(2)
× , which is

the manifestation of the Onsager relation imposed in [47, 278]. This completes
the derivation of expressions stated in Eq. (5.85).

As a simple check of our results, in the zero magnetic �eld limit, one can
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show that

ζ‖ = lim
ω→0

∂ωG
zz,zz
TT (ω, 0) = 4

3 lim
ω→0

∂ωG
xy,xy
TT (ω, 0) , (5.150)

which implies, as expected, that the bulk viscosity of conformal relativistic hy-
drodynamics vanishes (see e.g. [51]). For another check, one can write the
relation ζ‖ = 2 ζ⊥ in the language of two-point functions and obtain the rela-
tion limω→0

[
∂ωG

aa,aa
TT (ω, 0)− 1

2∂ωG
zz,zz
TT (ω, 0)

]
= 0, which is also satis�ed

by conformal relativistic hydrodynamics.19 Interestingly, this relations holds
for all strengths of the magnetic �eld in the model studied in this work. One
may wonder whether this relation between di�erent bulk viscosities points to
a more general property of (strongly interacting) MHD plasmas.

5.8 Dispersion relations of magnetosonic waves

In the magnetosonic channel, the polynomial equation in ω and k, which needs
to be solved in order for us to �nd the dispersion relations ω(k) is a quartic
equations in ω, which can be written in the following form:

Det [−iω1+M] = 0 , (5.151)

with1 the 4×4 identity matrix and the non-zero componentsMij of the matrix
M given by

19For a neutral relativistic �uid, one can show that Im〈δTxx〉 + Im〈δT yy〉 =
ω
(
η
3 + ζ

)
δhaa + ω

(
ζ − 2

3η
)
δhzz and Im〈δT zz〉 = 1

2ω
(
ζ − 2

3η
)
δhaa +

ω
( 2

3η +
1
2ζ
)
δhzz . In a conformal �uid with ζ = 0, one �nd that limω→0 ∂ωG

aa,aa
TT (ω, 0) =

limω→0
1
4∂ωG

zz,zz
TT (ω, 0) = −η/3.
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M11 = r⊥k
2 sin2 θA11 , M12 = −r⊥k2A12 , M13 = ik sin θA13 ,

M14 = ik
s cos θ
χ11

M21 = −r⊥k2 sin2 θA21 , M22 = r⊥k
2A22 ,

M23 = ikρ sin θ M31 = ik sin θA31 , M32 = ikA32 ,

M33 = A33k
2, M34 = η⊥k

2 A34M41 = i
k

T
cos θ ,

M43 = η⊥k
2A43 , M44 = k2A44 .

The coe�cients Aij are

A11 =
1

2T 2χ11
(µ+ Tχ12)(µ− Tµ21),

A12 =
1

2Tρχ11
(µ+ Tχ12)(µ cos2 θ+ ρχ22 sin2 θ),

A13 =
s− ρχ12
χ11

, A21 =
µ− Tχ21

2T ,

A22 =
1
2ρ
(
µ cos2 θ+ ρχ22 sin2 θ

)
, A31 =

s+ ρχ21
ε+ p

,

A32 =
2ρ

(ε+ p) sin θA22 ,

A33 =

(
η‖ cos2 θ+ (η⊥ + ζ⊥) sin2 θ

ε+ p

)
,

A34 =
cos θ sin θ
ε+ p

, A43 =
ε+ p

sT
A34 ,

A44 =
2ζ‖ cos2 θ+ η‖ sin2 θ

sT
.

By computing the determinant in (5.151), the resulting quartic equation is

ω4 + c3ω
3 + c2ω

2 + c1ω+ c0 = 0 , (5.152)
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where ci are functions of thermodynamics quantities, transport coe�cients, k
and θ. The expressions for ci in terms of Aij in are

c3 = ik2
(
A33 +A44 +A22r⊥ +A11r⊥ sin2 θ

)
,

c2 = − k2

Tχ11

(
s cos2 θ+ Tχ11 sin θ(A32ρ+A13A31 sin θ)

)
− k4

[
A22A44r⊥ +A33(A44 +A22r⊥)−A34η

2
⊥

+ r⊥
(
A11(A33 +A44) + r⊥ sin2 θ(A11A22 −A12A21)

) ]
,

c1 = −i k4

Tχ11

s(r⊥A22 +A33) cos2 θ− η⊥ cos θ sin θ(sTA31

+ χ11A13A34) + χ11T sin θ
[
ρA32A44 + r⊥A32 sin2 θ(A13A21 + ρA11)

+A31 sin θ (A13A44 + r⊥A13A22 + r⊥ρA12)

]
− ir⊥k6

A22(A33A44 −A34η
2
⊥) + sin2 θ

[
− r⊥A12A21(A33 +A44)

+A11 sin2 θ
(
A33A44 + r⊥A22A33 + r⊥A22A44 − η2

⊥A34
) ],

c0 =

(
sρA23 cos2 θ sin2 θ

Tχ11

)
k4 +

r⊥k
6

Tχ11

sA22A33 cos2 θ

+ χ11A32A44(A13A21 + ρA11) sin3 θ+ χ11A13A31A44(A13A22 + ρA12)

+ η⊥ cos θ sin θ
[
sTA22A31 + χ11A13A22A34

+ χ11ρA12A34 + sTA21A32 sin θ
]

+ r2
⊥(A12A21 −A11A22)(A33A34η

2
⊥)k

8 sin2 θ .
(5.153)

In principle, Eq. (5.152) gives a closed-form solution for the four ω(k). In prac-
tice, the solutions are extremely lengthy so it is more convenient to solve it
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numerically (our equations of state and transport coe�cients are in any case
given numerically), or by using various expansions, e.g. small k/T or small
k/
√
B.
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