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4
Universality of anomalous conductivities

in theories with higher-derivative
holographic duals

4.1 More background materials and motivations

Anomalies
An anomaly is a quantum e�ect whereby a classically conserved current Jµ

ceases to enjoy its conservation,∇µ〈Jµ〉 6= 0 [72–74, 189]. To date, a multitude
of di�erent anomalies have been discovered that can be classi�ed into two main
categories: local (gauge) and global anomalies. A gauge anomaly corresponds to
a gauged symmetry (and current) and the consistency of a quantum �eld theory
requires this anomaly to vanish. While global anomalies are permitted, their
existence still imposes stringent conditions on the structure of quantum �eld
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theories due to the anomaly matching condition discovered by ’t Hooft [190].
The condition states that a result of an anomaly calculation must be invariant
under the renormalisation group �ow and is thus independent of whether it is
computed in the UV microscopic theory or an IR e�ective theory.

Of particular importance to quantum �eld theory have been the chiral anoma-
lies, which are present in theories with massless fermions. The values of the
current divergences resulting from these anomalies are known to be one-loop
exact. From the point of view of the topological structure of gauge theories,
one can suspect that this should be true very generically due to the fact that the
anomaly is related to the topologically protected index of the Dirac operator.
Perturbatively, non-renormalisation of the one-loop anomalies was established
in [76–78]. In a typical four dimensional chiral theory, there are two classically
conserved currents: the axial Jµ5 (associated with the γ5 Dirac matrix) and the
vector current Jµ. By including quantum corrections, their Ward identities can
be written as

∇µ 〈Jµ5 〉 = εµνρσ
(
κFA,µνFA,ρσ + γFV ,µνFV ,ρσ + λRα1

α2µνR
α2
α1ρσ

)
,

∇µ 〈Jµ〉 = 0,
(4.1)

where FA,µν , FV ,µν are the �eld strengths associated with the axial and the
vector gauge �elds. Rαβµν is the Riemann curvature tensor of the curved man-
ifold on which the four dimensional �eld theory is de�ned, and κ, γ and λ are
the three Chern-Simons coupling constants. While the axial current conser-
vation is violated by quantum e�ects, the vector current remains conserved.
Among other works, various arguments in favour of non-renormalisation of
one-loop anomalies have been presented in [62, 80, 83–85, 191–193]. The sit-
uation is much less clear when, as in [194], one considers the contributions
of mixed, gauge-global anomalies. In such cases, it was shown in [194] that
one should expect anomalous currents to receive radiative corrections at higher
loops. The connection between this work and mixed, gauge-global anomalies
will be elaborated upon below. A further set of open questions related to the
non-renormalisation of anomalies enters the stage from the possibility of con-
sidering non-perturbative e�ects in QFT.
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From a historically more unconventional point of view, anomalies have re-
cently also been studied through the (macroscopic) hydrodynamic entropy cur-
rent analysis [195, 196].1 The e�ects of gravitational anomalies on the hydro-
dynamic gradient expansion were then studied by using the Euclidean partition
function on a cone in [199]. Macroscopic transport properties associated with
anomalous conservation laws have now been analysed in detail (at least theoret-
ically) both at non-zero temperature and density. To date, the most prominent
and well-understood anomaly-induced transport phenomena have been asso-
ciated with the chiral magnetic e�ect [80, 84, 200] and the chiral vortical e�ect
[195, 201].

Chiral conductivities in �eld theory
In the low-energy hydrodynamic limit, we expect that to leading order in

the gradient expansion of relevant �elds, the expectation values of these cur-
rents can be expressed in the form of Ohm’s law. The corresponding conductiv-
ities can then be de�ned in the following way: If a chiral system is perturbed by
a small external magnetic �eld Bµ = (1/2)εµνρσuνFρσ and a spacetime vor-
tex ωµ = εµνρσuν∇ρuσ , where uµ is the �uid velocity vector in the laboratory
frame, then the expectation values of the two currents change by 〈δJµ〉 and
〈δJµ5 〉. Note that unlike in Eq. (4.1), both the axial and vector current conser-
vation are now broken by the induced anomalies. To leading (dissipationless)
order, the change can be expressed in terms of the conductivity matrix(

〈δJµ〉
〈δJµ5 〉

)
=

(
σJB σJω

σJ5B σJ5ω

)(
Bµ

ωµ

)
, (4.2)

where σJB is known as the chiral magnetic conductivity, σJω as the chiral vorti-
cal conductivity and σJ5B as the chiral separation conductivity. The signature of
anomalies can thus be traced all the way to the extreme IR physics and analysed
by the linear response theory. This will be the subject studied in this work.

By following a set of rules postulated in [202] (see also [203]), a conve-
1For a recent discussion of anomalies from the point of view of UV divergences in classical

physics and its connection to the breakdown of the time reversal symmetry, see [197, 198].
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nient way to express the anomalous conductivities is in terms of the anomaly
polynomials. We brie�y review these rules in Appendix 4.6.1. They allow one
to compute the anomalous conductivities from the structure of the anomaly
polynomials in arbitrary (even) dimensions, independently of the value of the
coupling constant [199, 202–204].

In the IR limit, we may assume that the stress-energy tensor and the charge
current can be expressed in a hydrodynamic gradient expansion [50, 51, 64, 184].
The constitutive relations for a �uid with broken parity, in the Landau frame,
are [112, 113, 195, 205]

Tµν = εuµuν + P∆µν − ησµν − ζ∆µν∇λuλ +O
(
∂2
)

,

JµI = nIu
µ + σI∆µν

(
uρFI,ρν − T ∇ν

(
µI
T

))
+ ξI,BB

µ
I + ξI,ωω

µ +O
(
∂2
)

,
(4.3)

where the index I = {A,V } labels the axial and the vector currents (Jµ5 = JµA,
Jµ = JµV ) and their respective transport coe�cients. In the stress-energy ten-
sor, ε, P , η and ζ are the energy density, pressure, shear viscosity and bulk
viscosity. Furthermore, n, σ, T , µ and Fµν are the charge density, charge con-
ductivity, temperature, chemical potential and the gauge �eld strength tensor.
The vector �eld uµ is the velocity �eld of the �uid, the transverse projector
(to the �uid �ow) ∆µν is de�ned as ∆µν = uµuν + Gµν , with Gµν the met-
ric tensor and σµν the symmetric, transverse and traceless relativistic shear
tensor composed of ∇µuν . Plugging the above constitutive relations into the
anomalous Ward identities, one can show that the anomalous conductivities are
controlled by the transport coe�cients ξB and ξω (see e.g. [206]). It was shown
in [195, 196] that by demanding the non-negativity of local entropy production
(and similarly, by using a Euclidean e�ective action in [61, 62, 199])2, the anoma-
lous chiral separation conductivity σJ5B and the chiral magnetic conductivity
σJB become �xed by the anomaly coe�cient γ:

σJ5B = −2γµ, σJB = −2γµ5. (4.4)

2Note that the analysis in [61, 62, 195] only involves the axial gauge �eld. However, it is
straightforward to generalise their results to the case with both the axial and the vector current.
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On the other hand, the transport coe�cient σJ5ω could not be completely de-
termined by the anomaly and thermodynamic quantities. Its form contains an
additional constant term,

σJ5ω = κµ2 + c̃T 2, (4.5)

where c̃ is some yet-undetermined constant, which could run along the renor-
malisation group �ow. By using perturbative �eld theory methods [86, 207]
and simple holographic models [204, 206], it was then suggested that c̃ could be
�xed by the gravitational anomaly coe�cients, λ. However, the gravitational
anomaly enters the equations of motion (4.1) with terms at fourth order in the
derivative expansion while ξω and ξB enter the equation of motion at second
order. Thus, if one analysed the hydrodynamic expansion in terms of the naïve
gradient expansion with all �uctuations of the same order, it would seem to be
impossible to express c̃ in terms of the gravitational anomaly. The above para-
dox was resolved in [199]. There, the theory was placed on a product space of
a cone and a two dimensional manifold. The de�cit angle δ was de�ned along
the thermal cycle, β, as β ∼ β + 2π(1 + δ). Demanding continuity of one-
point functions in the vicinity of δ = 0 then �xed the unknown coe�cient c̃ in
terms of the gravitational anomaly coe�cient λ (the gradient expansion breaks
down). The above construction can be extended to theories outside the hydro-
dynamic regime in arbitrary even dimensions and in the presence of other types
of anomalies, so long as the theories only involve background gauge �elds and
a background metric [203].

In the presence of dynamical gauge �elds, the anomalous transport coe�-
cients do not seem to remain protected from radiative corrections. This is con-
sistent with the fact that the chiral vortical conductivity σJω , given otherwise
by the thermal �eld theory result

σJω = 2γµ5µ, (4.6)

was also argued to get renormalised in theories with dynamical gauge �elds
by [208–210]. Furthermore, these various pieces of information regarding the
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renormalisation of the chiral conductivities are consistent with the �ndings of
[194] (already noted above) and lattice results [211–214]: In theories with dy-
namical gauge �elds and mixed, gauge-global anomalies, chiral conductivities
renormalise.

Holography and universality of transport coe�cients
Certain classes of strongly interacting theories at �nite temperature and

chemical potential can be formulated using gauge-gravity (holographic) dual-
ity. Thus, in comparison with the weakly coupled regime accessible to pertur-
bative �eld theory calculations, holography can be seen as a convenient tool
to investigate chiral transport properties at the opposite end of the coupling
constant scale. Within holography, anomalous hydrodynamic transport was
�rst studied in the context of �uid-gravity correspondence [110] by [112, 113]
who added the Chern-Simons gauge �eld to the bulk. The two DC conductivi-
ties associated speci�cally with chiral magnetic and chiral vortical e�ects were
then computed in the �ve-dimensional anti-de Sitter Reissner-Nördstrom black
brane background in [206, 215, 216]. The results were extended to arbitrary
dimensions in [204]. The work of [204] showed that these transport coe�-
cients could be extracted from �rst-order di�erential equations (as opposed to
the usual second-order wave equations in the bulk) due to the existence of a con-
served current along the holographic radial direction. In a similar manner, this
occurs in computations of the shear viscosity [30, 103] and other DC conductiv-
ities [126, 175]. We will refer to this situation as the case when the membrane
paradigm is applicable (see Fig. 4.1). The existence of the membrane paradigm
makes the calculation of chiral conductivities signi�cantly simpler. Reassur-
ingly, the holographic results for the chiral conductivities agree with the re-
sults obtained from conventional QFT methods described above and stated in
Eqs. (4.4), (4.5) and (4.6) [86, 202, 207]. More recently, these calculations were
generalised to cases of non-conformal holography (in which Tµµ 6= 0), giving
the same results [88, 217]. A way to think of such holographic setups is as of
geometric realisations of the renormalisation group �ows.
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IR EFT

UV EFT

horizon

AdS

Figure 4.1. A schematic representation of the membrane paradigm: The image on
the left-hand-side corresponds to a holographic calculation (without the membrane
paradigm) in which one has to solve for the bulk �elds all along theD dimensional bulk.
On the right-hand-side (the membrane paradigm case), the �eld theory observable of
interest can be read o� from a conserved current (along the radial coordinate). Hence,
we only need information about its dynamics at the horizon and the AdS boundary.
The membrane paradigm enables us to consider independent e�ective theories at the
two surfaces with (D− 1) dimensions. While the UV e�ective theory directly sources
the dual �eld theory, it is the IR theory on the horizon that �xes the values of dual
correlators in terms of the bulk black hole parameters. As in this chapter, such a struc-
ture may enable us to make much more general (universal) claims about �eld theory
observables then if the calculation depended on the details of the full D–dimensional
dynamics.

Universal holographic statements, most prominent among them being the
ratio of shear viscosity to entropy density, η/s = h̄/(4πkB) [30, 103, 126],
can normally be reduced to an analysis of the dynamics of a minimally-coupled
massless scalar mode and the existence of the membrane paradigm. The fact
that the membrane paradigm exists in some theories for anomalous chiral con-
ductivities thus naturally leads to the possibility of universality of these trans-
port coe�cients in holography. Motivated by this fact, in this work, we study
whether and when non-renormalisation theorems for anomalous transport can
be established in holography.

Recently, a work by Gürsoy and Tarrío [217] made the �rst step in this di-
rection by proving the universality of chiral magnetic conductivity σJB in a
two-derivative Einstein-Maxwell-dilaton theory with an arbitrary scalar �eld
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potential and anomaly-inducing Chern-Simons terms. The only necessary as-
sumptions were that the bulk geometry is asymptotically anti-de Sitter (AdS)
and that the Ricci scalar at the horizon must be regular. Because this statement
is valid for two-derivative theories, it applies to duals at in�nitely strong (’t
Hooft) coupling λ and in�nite number of adjoint colours, N . In this sense, it is
applicable within the same class of theories as the statement of universality for
η/s.

Higher-derivative corrections to supergravity actions arise when α′ correc-
tions are computed from string theory. Usually, this is done by either comput-
ing loop corrections to the β-functions of the sigma model or by computing
string scattering amplitudes and guessing the e�ective supergravity action that
could result in the same amplitudes (see e.g. [137, 218, 219]). Via the holo-
graphic dictionary, these higher-derivative corrections translate into (pertur-
bative) coupling constant corrections in powers of the inverse coupling con-
stant (1/λ) expanded around λ → ∞ [139]. The result of η/s = 1/(4π)
(having set h̄ = kB = 1) is not protected from higher-derivative bulk cor-
rections; it receives coupling constant corrections both in four-derivative the-
ories (curvature-squared) [220–223] and in the presence of the leading-order
top-down corrections to the N = 4 supersymmetric Yang-Mills theory with
an in�nite number of colours (these R4 corrections are proportional to α′3 ∼
1/λ3/2) [140]. An equivalent statement exists also in second-order hydrody-
namics [50, 110]. There, a particular linear combination of three transport co-
e�cients, 2ητΠ − 4λ1 − λ2, was shown to vanish for the same class of two-
derivative theories as those that exhibit universality of η/s. It was then shown
that the same linear combination of second-order transport coe�cient vanishes
to leading order in the coupling constant corrections even when curvature-
squared terms [149, 224] and R4 terms dual to the N = 4 ’t Hooft coupling
corrections are included in the bulk action [149]. However, by using the non-
perturbative results for these transport coe�cients in Gauss-Bonnet theory
[225], one �nds that the universal relation is violated non-perturbatively (or
at second order in the perturbative coupling constant expansion) [149].3

3The violation of universality in second-order hydrodynamics was later also veri�ed in [226]
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Our goal in this work is to study the universality of the four anomalous
conductivities σJB , σJω , σJ5B and σJ5ω in general higher-derivative theories,
thereby incorporating an in�nite series of coupling constant corrections to re-
sults at in�nite coupling (from two-derivative bulk theories). What we will
show is that the expressions (4.4), (4.5) and (4.6) remain universal in any higher-
derivative theory so long as the action (excluding the Chern-Simons terms) is
gauge- and di�eomorphism-invariant.4 All we will assume, in analogy with
[217], is that the bulk theory is asymptotically AdS (it has a UV conformal �xed
point) and that it permits a black brane solution with a regular, non-extremal
horizon. In its essence, the proof will reduce to showing the validity of the
membrane paradigm and then a study of a generic, higher-derivative e�ective
theories (all possible terms present in the conserved current) at the horizon and
the boundary (as depicted in Fig. 4.1). The condition of regularity of these con-
structions at the horizon will play a crucial role in the proof. By studying cases
of theories for which the membrane paradigm fails, one can then �nd theories
in which universality may be violated.

Our �ndings can be seen as a test of holography in reproducing the correct
Ward identities for the anomalous currents. The fact that we �nd universality of
chiral conductivities with an in�nite series of coupling constant corrections (al-
beit expanded around in�nite coupling) is an embodiment of the fact that when
only global anomalies are present, anomalous transport is protected from ra-
diative corrections. An example related to the presence of mixed, gauge-global
anomalies, which will invalidate the membrane paradigm, will be studied in
Section 4.4. Again, as expected from �eld theory arguments, a case like that
will naturally be able to violate the universality (or non-renormalisation) of
chiral conductivities.

The chapter is organised as follows: In Section 4.2, we describe the holo-
graphic theory at �nite temperature and chemical potential that is studied in

by using �uid-gravity methods in Gauss-Bonnet theory.
4As we are mainly interested in theories in which the anomalous Ward identity retains the

form of Eq. (4.1), the conditions of gauge- and di�eomorphism- invariance are imposed to avoid
explicit violation of Eq. (4.1) by the bulk matter content (see Section 4.4.4 for a discussion of such
an example that includes massive vector �elds).
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the main part of this work. We then turn to the proof of the universality of
chiral conductivities in Section 4.3. First, in Section 4.3.1, we show how to
compute anomalous conductivities by using the membrane paradigm and spec-
ify the conditions that must be obeyed in order for the membrane paradigm to
be valid. In Section 4.3.2, we then prove that a gauge- and di�eomorphism- in-
variant action indeed satis�es those conditions and thus always gives the same
anomalous conductivities. In Section 4.4, we study examples that obey and vi-
olate the conditions required for universality. In particular, those that violate
the universality include either massive gauge �elds or naked singularities in the
bulk. We proceeds with a discussion of results and future directions in Section
4.5. Finally, Appendix 4.6.1 includes a discussion of anomaly polynomials and
the replacement rule.

4.2 The holographic setup

In this work, we consider �ve dimensional bulk actions with a dynamical metric
Gab, two massless gauge �elds Aa and Va that are dual to the axial and the
vector current in the boundary theory, respectively, and a set of scalar (dilaton)
�elds, φI :

S =
∫
d5x
√
−G {L [Aa,Va,Gab,φI ] +LCS [Aa,Va,Gab]} . (4.7)

The Lagrangian density L should be thought of as a general, di�eomorphism-
and gauge-invariant action that may include arbitrary higher-derivative terms
of the �elds. Since we are interested in anomalous transport, (4.7) must include
the Chern-Simons terms,LCS , that source global chiral anomalies in the bound-
ary theory. In holography, higher-than-second-derivative bulk terms corre-
spond to the (’t Hooft) coupling corrections to otherwise in�nitely strongly
coupled states (λ→∞). SinceLmay include operators with arbitrary orders of
derivatives (and corresponding bulk coupling constants), holographically com-
puted quantities describing a hypothetical dual of (4.7) are able to incorporate
an in�nite series of coupling constant corrections to observables at in�nite cou-
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pling.5 However, one should still think of these corrections as perturbative in
powers of 1/λ due to various potential problems that may arise in theories with
higher derivatives, such as the Ostrogradsky instability [227, 228], see also [146]
for a recent discussion of causality violation in theories with higher-derivative
bulk actions, in particular with four-derivative, curvature-squared actions.

The second source of corrections are the quantum gravity corrections that
need to be computed in order to �nd the 1/N -corrections in �eld theory. If we
consider S in Eq. (4.7) to be a local quantum e�ective action, expanded in a gra-
dient expansion, we may also claim that our holographic results incorporate
certain types of (perturbative) 1/N corrections, included in L. What is im-
portant is the expectation (or the condition) that the anomalous Chern-Simons
terms in LCS do not renormalise under quantum bulk corrections.

It will prove convenient to write the action (4.7) as

L [Aa,Va,Gab,φI ] ≡ LG +Lφ +LA +LV , (4.8)

whereLG now contains the Einstein-Hilbert term (along with the cosmological
constant) and higher-derivative terms of the metric, expressed in terms various
contractions and derivatives of the Riemann curvature Rabcd. Lφ contains ki-
netic and potential terms of a set of neutral scalar �elds, φI . ByFA,ab and FV ,ab,
we denote the �eld strengths corresponding to Aa and Va, respectively. Arbi-
trary derivatives of FA,ab and FV ,ab may enter into LA and LV , and along with
the Chern-Simons terms,

LA = LA [FA,ab,∇aFA,bc, . . . ,Rabcd,∇aRbcde, . . . ,φI , ∂aφI , . . .] ,

LV = LV [FV ,ab,∇aFV ,bc, . . . ,Rabcd,∇aRbcde, . . . ,φI , ∂aφI , . . .] ,

LCS = εabcdeAa

(
κ

3FA,bcFA,de + γFV ,bcFV ,de + λRpqbcR
q
pde

)
.

(4.9)

The ellipses ‘. . .’ stand for higher-derivative terms built from FA,ab, FV ,ab, R,
Rab, Rabcd and φI .6 Note also that we have chosen LA and LV so as not to

5In type IIB theory, higher-derivative bulk terms and corrections to in�nitely coupled results
in N = 4 theory are proportional to powers of α′ ∝ 1/λ1/2. See e.g. [139] and numerous
subsequent works.

6Latin letters {a, b, c, . . .} are used to label the spacetime indices in the �ve-dimensional bulk

79



Chapter 4. Universality of anomalous conductivities in theories with
higher-derivative holographic duals

mix the two gauge �elds. If there were mixing terms like FA,abF
ab
V in the La-

grangian, then the anomalous Ward identities would no longer be those from
Eq. (4.1) and additional complications regarding operator mixing would have
to be dealt with. We note that the normalisation of the Levi-Civita tensor is
chosen to be εtrxyz =

√
−G.

Our goal is to study coupling constant corrections to the anomalous con-
ductivities that arise from the Ward identity in Eq. (4.1). We therefore avoid any
ingredients in the action (4.8) that would explicitly introduce additional terms
into (4.1). Beyond imposing gauge- and di�eomorphism-invariance of (4.1),
we will also restrict our attention to Lagrangians LA and LV that contain no
Levi-Civita tensor. An explicit example with violated (bulk) gauge-invariance
that can generate a mixed, gauge-global anomaly on the boundary (altering the
Ward identity (4.1)) will be studied in Section 4.4.4.

Furthermore, we assume that the bulk theory admits a homogenous, trans-
lationally invariant and asymptotically anti-de Sitter black brane solution of the
form

ds2 = r2f(r)dt̄2 +
dr2

r2g(r)
+ r2

(
dx̄2 + dȳ2 + dz̄2

)
,

A = At(r)dt̄, V = Vt(r)dt̄, φI = φI(r),
(4.10)

with f(r) and g(r) two arbitrary functions of the radial coordinate r. At AdS
in�nity,

lim
r→∞

f(r) = lim
r→∞

g(r) = 1. (4.11)

The coordinates used in Eq. (4.10), {x̄µ, r}, will be referred to as the un-boosted
coordinates. Near the (outer) horizon, we assume that the metric can be written
in a non-extremal, Rindler form

f(r) = f1(r− rh) + f2(r− rh)2 +O(r− rh)3, (4.12)

g(r) = g1(r− rh) + g2(r− rh)2 +O(r− rh)3. (4.13)

The Hawking temperature of this black brane background (and its dual) is given

theory while the spacetime indices in the dual boundary theory are denoted by the Greek letters
{µ, ν, ρ, . . .}. The indices {i, j, k, . . .} represent the spatial directions of the boundary theory.
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by

T =
r2
h

4π
√
f1g1. (4.14)

The classical equations of motion describing this system can be obtained by
varying the action (4.8). Firstly, the variations of the two gauge �elds give7

d ?H5 = 0, d ?H = 0, (4.15)

where the two-forms H5 and H are de�ned as

H5 =
1
2

(
δ (LA)
δ (∇aAb)

−∇c
δ (LA)

δ (∇c∇aAb)
+ . . .

)
dxadxb +H5,CS,

H =
1
2

(
δ (LV )
δ (∇aVb)

−∇c
δ (LV )

δ (∇c∇aVb)
+ . . .

)
dxadxb +HCS,

(4.16)

where

H5,CS = κ ? ωA + γ ? ωV + λ ? ωΓ, HCS = γ ? (V ∧ dA), (4.17)

The ellipses again denote expressions coming from the higher-derivative terms.
The three abelian Chern-Simons three-forms are composed of the two gauge
�eld one-forms A = Aadx

a and V = Vadx
a, and the Levi-Civita connection

one-form Γab = Γabc dx
c as

ωX = Tr
(
X ∧ dX +

2
3X ∧X ∧X

)
, (4.18)

where X = {A,V , Γab}.8

7In �ve spacetime dimensions, we de�ne the Hodge dual of a p-form Ω =
(p!)−1Ωa1...apdx

a1 ∧ . . .∧ dxap as

?Ω =
1

p!(5− p)!
√
−G Ωa1...apε

a1...ap
ap+1...a5dx

ap+1 ∧ . . .∧ dxa5 .

8In terms of the index notation, the Chern-Simons form built out of the Levi-Civita connec-
tion is given by

ωabc = Γp1
p2a∂bΓ

p2
p1c + (2/3)Γp1

p2aΓp2
p3b

Γp3
p1c.
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Secondly, varying the metric gives the Einstein’s equation

Rab −
1
2GabR+ . . . = TMab +

1
2∇c (Σ

c
ab + Σ c

ba ) , (4.19)

where TMab is the stress-energy tensor for the scalars and the gauge �elds, ex-
cluding the Chern-Simons terms. The spin current Σ c

ab is de�ned as

Σ c
ab = −λ εad1d2d3d4Fd1d2R

c
d3d4b. (4.20)

We refer the reader to [204] for a more general de�nition of the spin current,
its connection to the anomaly polynomial in Eq. (4.75) and expressions for Σ c

ab

for di�erent anomaly polynomials. We assume that the equations of motion
coming from the variations of the scalar �elds in (4.7) can also be solved, but
we will make no further reference to that set of equations. As stated above, the
full system of equations is assumed to result in a non-extremal, asymptotically
AdS black brane solution and non-trivial, backreacted pro�les for the gauge and
the scalar �elds.

To �nd the set of anomalous conductivities {σJ5B,σJB,σJ5ω,σJω} in all
hypothetical duals of this holographic setup, it is convenient to consider the
following perturbed metric in the boosted (�uid-gravity) frame [204]:

ds2 = −2
√
f(r)

g(r)
uµdrdx

µ + r2f(r)uµuνdx
µdxν + r2∆µνdxµdxν

+ 2r2h(r)uµωνdx
µdxν ,

(4.21)

where the projector ∆µν is de�ned as ∆µν = ηµν + uµuν , with ηµν the four-
dimensional Minkowski metric. Note that once we set the �uid to be station-
ary, i.e. uµeq = {−1, 0, 0, 0}, the metric (4.21) will return to the un-boosted
form (4.10), but in the Eddington-Finkelstein coordinates, as is usual in the
�uid-gravity correspondence [110, 183]. The perturbations are organised so
that the �uid velocity uµ depends only on the boundary coordinates xµ and
all of the r-dependence is encoded in h(r). Since the vorticity is de�ned as
ωµ = εµνρσuν∂ρuσ , the last term in (4.21) corresponds to the metric perturba-
tions at �rst order in the derivative expansion (in the xµ coordinates). Similarly,
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the perturbed axial and vector gauge �elds can be written as9

A = −At(r) uµdxµ + ã(xµ) + a(r)ωµdx
µ,

V = −Vt(r) uµdxµ + ṽ(xµ) + v(r)ωµdx
µ.

(4.23)

One may use the one-forms ã and ṽ to de�ne the magnetic �eld source Bµ =

εµνρσuν∂ρṽσ and the (�ctitious) axial magnetic �eld sourceBµ
5 = εµνρσuν∂ρãσ .

4.3 Proof of universality

In this section, we show that upon expanding the equations of motion (4.15)
and (4.19) to �rst order in the (boundary) derivative expansion, the conserved
currents can be expressed as a total radial derivative of some function. This type
of a radially conserved quantity is necessary for the applicability of the mem-
brane paradigm, used e.g. in [126] and many other holographic studies. To
express all four anomalous conductivities purely in terms of the near-horizon
data, our work will generalise the membrane paradigm result for the chiral
magnetic conductivity of Gürsoy and Tarrío [217]. This will then enable us to
establish the universality of the four transport coe�cients in the presence of a
general higher-derivative bulk theory speci�ed in Section 4.2. Furthermore, the
structure of the equations will single out the properties that holographic theo-
ries must violate in order for there to be a possibility that the dual conductivities

9Our choice of the metric and the gauge �elds can be understood in the following way: If
one considers the perturbed metric and the gauge �elds with all possible terms at �rst order in
gradient expansions, they have the form

ds2 = −2S(r) uµdxµdr+ F (r) uµuνdx
µdxν +G(r) ∆µνdxµdxν

+ 2H⊥µ (r,x) uνdxµdxν + Π(r) σµνdx
µdxν , (4.22)

A = C(r)uµdx
µ + a⊥µ (r,x)dxµ, V = D(r)uµdx

µ + v⊥µ (r,x)dxµ,

where H⊥µ , a⊥µ and v⊥µ are vectors orthogonal to the �uid velocity uµ. Using the equations of
motion for {H⊥µ , a⊥µ , v⊥µ }, one can show that they decouple from all other perturbations at the
same order in the gradient expansion (see e.g. [112, 113]). Thus, to compute anomalous conduc-
tivities, one can consistently solve for only {H⊥µ , a⊥µ , v⊥µ }, setting the remaining perturbations
to zero. To �rst order, this gives our Eqs. (4.21) and (4.23).
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may get renormalised.
Our proof can be divided into two steps: First (in Section 4.3.1), we expand

the equations of motion for the gauge �eld (4.15) to �rst order in the (bound-
ary coordinate) derivative expansions and arrange them into a total-derivative
form of a conserved current along the radial direction. This radially conserved
current can be written as a sum of the anomalous Chern-Simons terms and
terms that come from the rest of the action. We identify the conditions that
each of these terms has to satisfy in order for the anomalous conductivities to
have a universal form �xed by the Chern-Simons action. Proving the validity of
these conditions is then done in Section 4.3.2 by analysing the horizon and the
boundary behaviour of the higher-derivative bulk e�ective action (all possible
terms that can appear in the conserved current).

4.3.1 Anomalous conductivities and the membrane paradigm

Let us begin by considering the axial and the vector currents, 〈δJµ5 〉 and 〈δJµ〉,
sourced by a small magnetic �eld and a small vortex. As in [217], the membrane
paradigm equations follow from the two Maxwell’s equations in (4.15). For
conciseness, we only show the details of the axial current computation, which
involves H5 from Eq. (4.16). A calculation for the vector current, involving H ,
proceeds along similar lines. In case of the vector current, we will only state
the relevant results.

To �rst order in the gradient expansion along the boundary directions xµ,
both equations in (4.15) can be schematically written as

∂r
(√
−GHra

5

(
∂1
))

+ ∂µ
(√
−GHµa

5

(
∂0
))

= 0, (4.24)

where Hra
5
(
∂0) and Hµa

5
(
∂1) are the components of the conserved current

two-form in Eq. (4.16) that contain zero- and one-derivative terms (derivatives
are taken with respect to xµ).

As our �rst goal is to rewrite the problem in terms of a radially conserved
quantity, we need to consider the structure of second term in (4.24). We will
set the index a to the four-dimensional index ν. It is easy to see that only the
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Chern-Simons terms from LCS can enter into this term at zeroth order in the
(boundary) derivative expansion, i.e. ∂µ

(√
−GHµν

5
(
∂0)) |κ=g=λ=0 = 0 (cf.

Eq. (4.9)). This is because Hµν
5 can only be constructed out of the (axial) gauge

�eld (4.23) and the metric tensor (4.21), containing no derivatives along xµ.
At zeroth-order in the derivative expansion, any two-tensor Xµν can thus be
decomposed as

Xµν = X1 u
µuν +X2 ∆µν +X3 u

(µAν) +X4 u
[µAν], (4.25)

where Xi are scalar functions of the radial coordinate. For an anti-symmetric
Xµν , as are Hµν

5 and Hµν , X1, X2 and X3 must vanish and only X4 can be
non-zero. Since such a term can only come from LCS , L cannot contribute to
the second term in (4.24). For a = ν, the two terms in Eq. (4.24) are therefore
given by

∂r
[√
−GHrν

5

(
∂1
)]

=
∂

∂r

 . . .+ κ
(
AtB

ν
5 +A2

tω
ν
)

+ γ
(
VtB

ν + V 2
t ω

ν
)
+ λ

g(r3f ′)2

2r2f
ων

,

∂µ
[√
−GHµν

5

(
∂0
)]

= κ (∂rAt)B
ν
5 + γ (∂rVt)B

ν

= ∂r (κAtB
ν
5 + gVtB

ν) .

(4.26)

The ellipsis indicates the non-Chern-Simons terms. Hence, one can write the
Maxwell’s equation for the axial gauge �eld as a derivative of a conserved cur-
rent along the r-direction:

∂rJ µ5 (r) = 0. (4.27)

The axial bulk current is de�ned as

J µ5 (r) = J µ5,mb(r) + J
µ
5,r(r) + J

µ
5,CS(r), (4.28)

where the membrane current J µ5,mb(r), the Chern-Simons current J µ5,CS and
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J µ5,r are de�ned as

J µ5,mb =
√
−G

(
∂LA
∂A′µ

− ∂a
∂LA

∂(∂aA′µ)
+ . . .

)∣∣∣∣∣
h(r)→0

,

J µ5,r =
√
−G

(
∂LA
∂A′µ

− ∂a
∂LA

∂(∂aA′µ)
+ . . .

)∣∣∣∣∣
a(r)→0

,

J µ5,CS = 2κAtBµ
5 + 2γVtBµ +

(
κA2

t + λ
g(r2f ′)2

2f

)
ωµ .

(4.29)

Note that the primes indicate derivatives with respect to the radial coordinate.
The expectation value of the external boundary current 〈δJµ5 〉 that we turned

on to excite anomalous transport (cf. Eq. (4.2)) is obtained by varying the per-
turbed on-shell action (4.8) with respect to the bulk axial gauge �eld �uctuation
at the boundary. We �nd that it is the membrane current J µ5,mb evaluated at the
boundary (r →∞) that can be interpreted as its expectation value:

〈δJµ5 〉 = lim
r→∞

J µ5,mb(r). (4.30)

This result is of central importance to the existence of the membrane paradigm
in our discussion.

Let us now study howJ µ5,mb can be related to the full conserved currentJ µ

from Eq. (4.28). What will prove very convenient is the gauge choice for A and
V whereby (see e.g. [215])

lim
r→∞

At(r) = 0, lim
r→∞

Vt(r) = 0. (4.31)

Such a choice results in10

lim
r→∞

J5,CS(r) = 0, (4.32)

which together with the conservation equation (4.27) and Eq. (4.30) implies that

〈δJµ5 〉 = J
µ
5,mb(rh) + J

µ
5,r(rh)−J

µ
5,r(∞) + J µ5,CS(rh). (4.33)

What we will prove in the next section (Sec. 4.3.2) will be the statement that
10For an alternative gauge choice, see e.g. formalism B from Ref. [229].

86



Chapter 4. Universality of anomalous conductivities in theories with
higher-derivative holographic duals

for any theory speci�ed by the action in (4.7),

J µ5,mb(rh) + J
µ
5,r(rh)−J

µ
5,r(∞) = 0, (4.34)

implying that the current 〈δJµ5 〉 can be completely determined by only the
Chern-Simons current evaluated at the horizon,

〈δJµ5 〉 = J
µ
5,CS(rh). (4.35)

The same reasoning and equations (4.30)–(4.35) apply also to the case of the
vector current, up to the appropriate replacements of Aa by Va, LA by LV and
the axial Chern-Simons current by

J µCS = 2γ (AtBµ + VtB
µ
5 ) + 2γAtVt ωµ. (4.36)

Let us for now assume that the condition (4.34) is satis�ed and proceed to
compute the anomalous conductivities. In our gauge choice, the gauge �elds at
the horizon are related to the two chemical potentials via

At(rh) = −µ5, Vt(rh) = −µ. (4.37)

By using the near-horizon expansions (4.12) and (4.13), the last term in J µ5,CS
from (4.29) can be related to the temperature

g
(
r2f ′

)2
f

= r4f1g1 = 4 (2πT )2 . (4.38)

Furthermore, using the horizon values of the gauge �elds from Eq. (4.37) along
with the de�nitions of the anomalous conductivities from (4.2), we �nd

σJ5B = −2γµ, σJB = −2γµ5,

σJ5ω = κµ2
5 + γµ2 + 2λ(2πT )2, σJω = 2γµ5µ. (4.39)

Hence, so long as the condition (4.34) is satis�ed, the bulk theory (4.7) gives
precisely the non-renormalised, universal conductivities stated in Eqs. (4.4),
(4.5) and (4.6).
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4.3.2 Universality

We will now show that the condition (4.34) always holds in gauge- and di�eo-
morphism - invariant theories, thus establishing the universality of the anomaly-
induced conductivities σJ5B , σJB , σJ5ω and σJω from Eq. (4.39) in theories with
arbitrary higher-derivative actions, dual to an in�nite series of coupling con-
stant corrections expanded around in�nite coupling. The condition (4.34) re-
quires us to understand how J µ5,mb and J µ5,r behave at the two ends of the �ve-
dimensional geometry (boundary and horizon). To make general statements
about that, we construct an e�ective �eld theory (or the e�ective current) in
terms of the metric, gauge �elds and dilatons with �rst-order perturbations to
quadratic order in the amplitude expansion. The two conditions that we impose
on the e�ective theory and the resulting currents are the following:

(1) The theory must be regular at the non-extremal horizon, by which we
mean that any Lorentz scalar present in the action (or a current) must be
regular (non-singular) when evaluated at the horizon.

(2) The bulk spacetime is asymptotically anti-de Sitter.

For conciseness, we again only analyse the axial gauge �eld, Aa. A completely
equivalent procedure can be applied to the case of the vector gauge �eld, Va.

From the de�nitions of J µ5,mb and J µ5,r in Eq. (4.29), it is clear that the only
relevant part of the action (4.8) for this analysis isLA. Because the two currents
are independent of the Chern-Simons terms, they only depend on the terms
encoded in Hra

5
(
∂1) (see discussion below Eq. (4.24)). The possible terms in

Hra
5
(
∂1) that correspond to J µ5,mb and J µ5,r can be written (schematically, up

to correct tensor structures of CA,n and CG,n) as

Hrµ
5

(
∂1
)
=
∞∑
n=1

[CA,n∂
n
r a(r) + CG,n∂

n
r h(r)]ω

µ +Hrµ
5,CS

(
∂1
)

, (4.40)

where Hrµ
5,CS is the irrelevant Chern-Simons part of Hrµ

5 , stated explicitly in
Eq. (4.26). Since the action LA does not contain any Levi-Civita tensors, the
terms in {CA,n, CG,n} can only depend on a(r) and h(r). This implies that
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CA,n = CG,n = 0 when a(r) = h(r) = 0, to �rst order in the boundary-
coordinate derivative expansion. Hence, the problem reduces to the question
of �nding all possible structure of the tensorial coe�cients {CA,n, CG,n} at the
horizon and at the boundary.

It is now convenient to return to the un-boosted coordinates, {r, x̄µ}, used
in Eq. (4.10). In these coordinates, the perturbed metric and the axial gauge
�eld are (in analogy with (4.21) and (4.23))

ds2 = −r2f(r)dt̄2 +
dr2

r2g(r)
+ r2(dx̄2 + dȳ2 + dz̄2) + 2ht̄i(r, x̄i)dt̄dx̄i,

(4.41)

A = Atdt+ ai(r, x̄i)dx̄i, (4.42)

where the perturbations are now denoted by ht̄i, ai and vi with i = {x, y, z}.
One can relate {ht̄i, ai} to {h(r), a(r)} by using the appropriate coordinate
transformations, which give

ht̄i = . . .+ r2h(r) uµων
∂xµ

∂t̄

∂xν

∂x̄i
+O

(
∂2
)

,

ai = . . .+ a(r)ωµ
∂xµ

∂x̄i
+O

(
∂2
)

. (4.43)

Here, the ellipses denote the zeroth-order terms in the derivative expansion. It
is convenient to consider uµ − uµeq to be small, which gives

uµdx
µ = dt+ δuidx

i, dt = dt̄+
1
r2

√
1

f(r)g(r)
dr, dxi = dx̄i. (4.44)

This choice of the �uid velocity further givesωt = Bt = 0. Thus, in the remain-
der in this section, we will only write down the tensors {Hrµ

5 ,J µ5 ,J µ5,CS}with
spatial components ofµ = {i, j, k, . . .}. It immediately follows thatHri

5 (r,xµ)
in the boosted coordinates and Hri

5 (r, x̄µ) in the un-boosted coordinates have
identical expressions. In analogy with (4.40), expanding Hri

5 in the un-boosted
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coordinates to �rst order in amplitudes of ai and ht̄i,

Hri
5 [ai,hti] =

(
IrirjA,1 ∂raj + I

rirrj
A,2 ∂2

raj + . . .
)

+
(
Irit̄jG,0 ht̄j + I

rit̄rj
G,1 ∂rht̄j + Irit̄rrjG,2 ∂2

rht̄j + . . .
)

+
(

terms with derivatives along xi
)

.

(4.45)

Note that IrijA,0 = 0 because gauge-invariance of LA excludes the possibility
of any explicit dependence on ai (only derivatives of ai may appear). The el-
lipses represent terms with higher derivatives in r and {IA,n, IG,n} are tensors
contracted with ∂nr ai and ∂nr ht̄i. To verify (4.45), we can use the coordinate
transformations (4.43), which show that all relevant terms from (4.40) are indeed
contained in (4.45). Thus, one can determine the coe�cients {CA,n, CG,n} by ap-
plying (4.44) to (4.45) and matching the coe�cients of ∂nr a(r)ωi and ∂nr h(r)ωi.

The structure of the {IG,n, IA,n} tensors near the horizon and the AdS-
boundary can be understood in the following way: In the un-boosted frame,
we de�ne �ve mutually orthogonal unit-vectors or vielbeins, ep̂a = δp̂a, where
the hatted indices {p̂, q̂, ..} = {0̂, 1̂, 2̂, 3̂, 4̂} are used as (local �at space) book-
keeping indices. The full set of the �ve-dimensional vectors with upper Lorentz
indices can now be written as eap̂ =

[√
G
]ab

δp̂b:

e0̂ =

((
r2f

)−1/2
, 0, 0, 0, 0

)
,

e1̂ =

(
0, 1/r, 0, 0, 0

)
,

e2̂ =

(
0, 0, 1/r, 0, 0

)
,

e3̂ =

(
0, 0, 0, 1/r, 0

)
,

e4̂ =

(
0, 0, 0, 0,

(
r2g
)1/2

)
.

(4.46)
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These normal vectors allow us to write the tensors {IG,n, IA,n} as

Ia1a2...am
A,n =

∑
p̂1,...,p̂m

S p̂1...p̂m
A,n ea1

p̂1
. . . eamp̂m ,

Ia1a2...am
G,n =

∑
p̂1,...,p̂m

S p̂1...p̂m
G,n ea1

p̂1
. . . eamp̂m ,

(4.47)

where {SA,n,SG,n} are (spacetime) Lorentz-scalars. The regularity condition
imposed at the horizon demands that these scalar have to be non-singular at r =
rh. The question of whether IG,n and IA,n vanish at the horizon is therefore
completely determined by the values the projectors ea1

p̂1
. . . eamp̂m take when

evaluated at the horizon. To demonstrate this fact more clearly, let us write
down the �rst few relevant components of the tensors IG,n and IA,n explicitly:

Irit̄jG,0 =

(
r−2

√
g/f

)
S4î0ĵ
G,0 , IrijA,0 = 0 ,

Irit̄rjG,1 =

(
r−1

√
g2/f

)
S4î04ĵ
G,2 , IrirjA,1 = g S4î4ĵ

A,1 ,

Irit̄rrjG,2 =

(√
g3/f

)
S4î044ĵ
G,2 , IrirrjA,2 =

(
rg3/2

)
S4î44ĵ
A,2 ,

Irit̄rrrjG,3 =

(
r
√
g4/f

)
S4î0444ĵ
G,3 , IrirrrjA,3 =

(
r2g2

)
S4î444ĵ
A,3 ,

with r = rh. As before, the tensor IrijA,0 = 0 because of the gauge-invariance
of LA.

With this decomposition, the problem of determining the non-zero terms
in Hri

5 has been reduced to simple power-counting. Namely, a tensor Ia1a2...

can only be non-zero at the horizon if the number of et̄0̂ in its decomposition
is greater or equal to the number of er4̂. The regularity of the scalars SA,n and
SG,n at the horizon plays a crucial role here. Hence, one can see that the only
non-zero tensor from the set of {IA,n, IG,n} is Irit̄jG,0 . The conserved current
evaluated at the horizon thus becomes

J i5 =
√
−G

(√
g

f
S4ĵ0î
G,0

)
h(rh) uµων

∂xµ

∂t̄

∂xν

∂x̄j
+ J i5,CS(rh). (4.48)

To see why the �rst term in (4.48) has to vanish, recall that as other scalars, the
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Ricci scalar also has to be regular at the horizon. As pointed out in [217], this
condition implies that hti ∼ (r− rh) at the horizon. Therefore, the conserved
current at the horizon is indeed fully determined by the anomalous Chern-
Simons term:

J i5 = J i5,CS(rh). (4.49)

With Hrt
5 = 0, Eq. (4.49) implies the �rst two terms from the condition (4.34)

vanish:

J µ5,mb(rh) + J
µ
5,r(rh) = 0. (4.50)

Similarly, we can determine the value of the current J µ5,r at the boundary.
Since J µ5,r includes only terms linear in h(r), it is enough to consider

Hri
5 =

(
Irit̄jG,0 ht̄j + I

rit̄rj
G,1 ∂rht̄j + Irit̄rrjG,2 ∂2

rht̄j + . . .
)
+ . . . . (4.51)

Now, because the boundary is asymptotically AdS and higher-derivative terms
considered here do not change the scaling behaviour near the boundary, we can
use the near-AdS solution for h(r) [204]:

h(r) =
H
r4 +O

(
r−5

)
. (4.52)

Substituting the expansion for h(r) into (4.51), it immediately follows that the
third term in the condition (4.34) vanishes as well when it is evaluated at the
boundary (note again that Hrt

5 = 0):

J µ5,r(∞) = 0. (4.53)

Together, Eqs. (4.50) and (4.53) imply the validity of the condition stated
in Eq. (4.34), which completes our proof. The analysis of the vector current
J µ and a proof of a condition analogous to (4.34) follow through along exactly
the same lines. This implies that all four anomalous conductivities take the
universal form of (4.39) for all holographic theories speci�ed in (4.7) so long
as the (e�ective) theory is regular at the non-extremal horizon and the bulk is
asymptotically anti-de Sitter.
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4.4 Examples and counter-examples

In this section, we turn our attention to explicit examples of theories that obey
and violate the conditions used in our proof in Section 4.3 and thus result in
universal and renormalised anomalous conductivities, respectively. We will
�rst demonstrate their universality in two- and four-derivative theories with
a non-extremal horizon and then move on to describing two holographic mod-
els, which violate the assumptions in the proof of Eq. (4.34). More precisely,
in Section 4.4.1, we compute the conductivities in the two-derivative Einstein-
Maxwell-Dilaton theory. In Section 4.4.2, we then show explicitly how our
proof works in the case of the most general four-derivative action with Maxwell
�elds and dynamical gravity. In both of those case, the conductivities are uni-
versal and the current at the horizon only depends on the metric �uctuation, as
established by our e�ective theory method in (4.48).

In Section 4.4.3, we comment on the validity of our proof in gravity du-
als without a horizon. We use the examples of the con�ning soft/hard-wall
models and charged dilatonic black holes at zero temperature. The membrane
paradigm computation goes through as before in the case of con�ning geome-
try. However, the conductivities no longer have any temperature dependence,
which would require us to augment the replacement rule discussed in Appendix
4.6.1. As for the latter example, the family of theories considered su�ers from
naked singularities in the bulk. Lastly, in Section 4.4.4, we point out how the
bulk terms corresponding to �eld theories with a gauge-global anomaly vio-
late the assumptions in our proof. This is consistent with the known fact that
anomalous conductivities in systems with mixed anomalies receive corrections
along the renormalisation group �ow. We will not review the details behind
the holographic constructions of such systems but rather focus on the reasons
for why these models may violate the universality from the point of view of
Section 4.3.2.
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4.4.1 Einstein-Maxwell-dilaton theory at �nite temperature

As for our �rst example, we consider the two-derivative Einstein-Mawell-dilaton
theory with a non-trivial dilaton pro�le:

LG = R− 2Λ, Lφ = −(∂φ)2 − V (φ), (4.54)

LA = −1
4ZA(φ)FA,abF

ab
A , LV = −1

4ZV (φ)FV ,abF
ab

V , (4.55)

having used the notation of the action in Eq. (4.8). This is an extension of the
case studied in [217], which includes the gravitational anomaly and anomalous
conductivities that follow from a response to a small vortex.

The theory has two charges that are conserved along the radial direction
at zeroth-order in the boundary-derivative expansion. The expressions follow
from the a = µ component of the Maxwell’s equations:

Q5 = r3
√
g

f
ZA∂rAt, (4.56)

Q = r3
√
g

f
ZV ∂rVt. (4.57)

At �rst order in derivatives, the two conserved currents J µ5 and J µ are given
by

J µ5 =
[
Q5h+ r3√fgZA∂ra]ωµ + J µ5,CS ,

J µ =
[
Qh+ r3√fgZV ∂rv]ωµ + J µCS .

(4.58)

Thus, we can immediately read o� the membrane currents:

δJµ5,mb = r3
√
g

f
ZA∂ra, (4.59)

δJµmb = r3
√
g

f
ZV ∂rv. (4.60)

Moreover, the regularity of the black hole horizon implies that that metric �uc-
tuation has to vanish at the horizon [217], i.e. h(rh) = 0. At the horizon, the
two currents J µ5 (rh) and J µ(rh) are therefore completely determined by the
anomalous terms J µ5,CS(rh) and J µCS(rh).

Next, we investigate the behaviour of J µ5 and J µ at the boundary. Sub-
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stituting the near-boundary solutions (4.52) into (4.58), one can see that Q5h

and Qh are sub-leading, which implies that J µ5 and J µ at r → ∞ become
determined by the membrane currents evaluated at the boundary.

4.4.2 Four-derivative Einstein-Maxwell theory

In this section, we consider the most general four-derivative theory of massless
gravitons and gauge �elds. The action LA can be written as (see [219, 223, 230–
232]):

LA =− 1
4FabF

ab + α4RFabF
ab + α5R

abFacF
c

b + α6R
abcdFabFcd

+ α7(FabF
ab)2 + α8∇aFbc∇aF bc + α9∇aFbc∇bF ac

+ α10∇aF ab∇cFcb + α11F
abFbcF

cdFda,

(4.61)

and similarly LV . Note that in Eq. (4.61), all indices A denoting that Fab is the
axial �eld strength have been suppressed. The conserved current two-form,
Hab

5 , in this theory is

Hab
5 =− F ab + 4α4RF

ab + 2α5(R
acF b

c −RbcF a
c ) + 4α6R

cdabFcd

+ 8α7FcdF
cdF ab − 4α8�F ab − 2α9∇c(∇aF cb −∇bF ca)

+ 2α10(∇b∇cF ca −∇a∇cF cb) + 8α11F
bcFcdF

da.

(4.62)

The current J i5 is then

J µ5 = J µ5,Maxwell +
11∑
n=4

αnJ µ5,(n) + J
µ
CS , (4.63)

whereJ µ5,Maxwell is the axial current that follows from the two-derivative Maxwell
action analysed in Section 4.4.1. The remaining terms, J µ5,(n), all have the
schematic form

J µ5,(n) =
[
Cn,1h+Cn,2∂rh+Cn,3∂

2
rh+Dn,1∂ra+Dn,2∂

2
ra+Dn,3∂

3
ra
]
ωµ,

(4.64)
where the coe�cientsCn,i andDn,i depend on the background and parameters
of the action. The full expressions for these coe�cients are lengthy and will not
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be presented here.
Near the non-extremal horizon (assumed to exist), the metric must behave

as in Eqs. (4.12) and (4.13). What we �nd is that when evaluated at the hori-
zon, all coe�cients except Cn,1 vanish. This result therefore precisely agrees
with the structure of J µ5 predicted in (4.48), which followed from our general
treatment of Hrµ

5 in Section 4.3.2. At the horizon, the full set of J µ5,(n) is given
by

J µ5,(4)(rh) = −
2r2
h
√
g1A

′
t

f3/2
1

(20f1g1 + 3f2g1rh + f1g2rh) h(rh)ω
µ,

J µ5,(5)(rh) = −
rh
√
g1A

′
t

f3/2
1

(
14rhf1g1 + 2r2

hg1f2 + r2
hf1g2

)
h(rh)ω

µ,

J µ5,(6)(rh) = −
2r2
h
√
g1A

′
t

f3/2
1

(8f1g1 + 3rhg1f2 + rhf1g2) h(rh)ω
µ,

J µ5,(7)(rh) = −
16rhg3/2

1 (A′t)
3

f3/2
1

h(rh)ω
µ,

J µ5,(8)(rh) = −
28r3

h
√
g1

f3/2
1

(−g1f2 + f1g2 + 2f1g1A
′′
t /A′t) h(rh)ω

µ,

J µ5,(9)(rh) =
1
2J

µ
5,(8),

J µ5,(10)(rh) =
r2
h
√
g1

f3/2
1

(6f1g1 − rhg1f2 + rhf1g2 + 2rhf1g1A
′′
t /A′t) h(rh)ω

µ,

J µ5,(11)(rh) = −
1
2J

µ
5,(7).

(4.65)
Finally, imposing the horizon Ricci scalar regularity condition (see the discus-
sion after Eq. (4.48)), h(rh) = 0, we �nd that all Jµ5,(n)(rh) = 0.

At the AdS boundary (r → ∞), we further �nd that all coe�cients Cn,i ∼
r−m, where m > 0. With this explicit veri�cation, our results imply that
the most general gauge- and di�eomorphism - invariant four-derivative the-
ory (4.61) satis�es the condition (4.34) and that the anomalous conductivities in
its dual all have the universal form of Eq. (4.39).
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4.4.3 Theories without horizons and theories with scaling ge-
ometries at zero temperature

In this section, we consider two classes of backgrounds, each one a possible
solution of the Einstein-Maxwell-dilaton theory of Section 4.4.1. The �rst one
belongs to the family of soft/hard wall model that are dual to a �eld theory
with a mass gap [233–236]. The second example is the scaling geometry that
can arise as a solution of the Einstein-Maxwell-dilaton theory at zero tempera-
ture (see e.g. [121]). What we show is that the criterion for the universality of
anomalous conductivities, i.e. Eq. (4.34), is still satis�ed in the gapped system.
However, the conductivities can no longer computed by using the replacement
rule in the form stated in Eq. (4.77). For the scaling geometries, the universality
may be violated due to the presence of naked singularities. A way to retain a
holographic theory at zero temperature in which the condition (4.34) is satis�ed
is to put very strong constraints on the geometry that avoid the naked singu-
larity. These constraints restrict the allowed range of value of the hyperscaling
violation exponent, θ, and the dynamical critical exponent, z.

Let us start with an example of the soft/hard wall geometry at zero density.
In an un-boosted frame, the metric for these models can be written as

ds2 = e−(M/u)ν
(
−u2dt̄2 +

du2

u2 + u2(dx̄2 + dȳ2 + dz̄2)

)
, (4.66)

where the parameter M sets the scale of the mass gap. The nature of the spec-
trum is also controlled by the parameter ν: while the gapped spectrum is con-
tinuous above the gap when ν = 1, it is discrete when ν > 1. The hard wall
model in which the AdS radius is capped o� at u � M corresponds to the
limiting value of ν →∞ [235, 237].

One can change coordinates of the above metric to bring them to the form
of (4.10) by rede�ning the radial coordinate as r = e−

1
2 (M/u)ν . In the deep IR

region, u�M , the functions f(r) and g(r) can be written as

fIR(r) = 1, gIR(r) = g (u�M) = ν2
(
M

u

)ν
eM/u. (4.67)
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Despite there being no horizon, the dual of the above geometry can still have
non-zero temperature; it can be interpreted as a thermal state before undergo-
ing a phase transition to the black hole phase at high temperature, analogously
to the Hawking-Page transition [238].

The two currents, J µ5 and J µ, must now be evaluated at r = 0 and at the
boundary (r = ∞). Because the geometry is still asymptotically AdS, their
near-boundary behaviour is the same as in all the cases studied before. The fact
that g(r) exponentially diverges in the IR appears problematic at �rst. However,
the volume form, which is proportional to

√
−G, is exponentially suppressed.

Evaluating J i5 at u = 0, one �nds that J µ5,mb(0) + J
µ
5,r(0) = 0 as in 4.3.2.

Thus, the universality condition (4.34) is still satis�ed.
On the other hand, the Chern-Simons current J µ5,CS no longer behaves the

same way. Although the pro�les of the gauge �elds At, and Vt can be assumed
to asymptote to a constant value at r = 0, the derivative of f ′ can no longer
be interpreted as the temperature of the dual theory (substituting (4.67) into
(4.29), we see that J µ5,CS has no temperature dependence). Therefore, in the
con�ning phase, the replacement rules discussed in the Appendix 4.6.1 are no
longer applicable even if the condition (4.34) is satis�ed. The above statements
also apply to the AdS soliton-like geometries.

Next, we explore the scaling geometries at zero temperature. In the un-
boosted frame, the metric can now be written as

ds2 = r2
(
−rn0dt2 + dx̄2 + dȳ2 + dz̄2

)
+
dr2

rn1
, (4.68)

or in terms of θ and z,

n0 = 2 + 6(z − 1)
3− θ , n1 = 2 + 2θ

3− θ . (4.69)

As mentioned in [121], many of these geometries contain a naked singularity.
As a result, the scalars {SA,n,SG,n} used in Eq. (4.47) no longer have to be �-
nite. Such systems can therefore easily violate the universality condition (4.34).
Thus, the universality of the anomalous conductivities is no longer guaranteed
in the presence of a naked singularity. In this work, we do not study in de-
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tail what happens to anomalous conductivities in such cases and whether they
nevertheless remain universal for some geometries.

Are there special values of z and θ for which it is easy to see that the con-
dition (4.34) remains satis�ed? In other words, what are the ranges of {z, θ}
for which the theory has no naked singularity? This problem was addressed
in [239], where it was found that the geometries that satisfy either one of the
following two conditions,

n0 = n1 = 2, n0 = n1 ≥ 4, (4.70)

have no naked singularities. The authors assumed that the matter content has
to satisfy the null energy condition, which, for this geometry, is equivalent to
imposing the following two inequalities:

n0 ≥ n1, (n0 − 2)(n0 + n1 + 4) ≥ 0. (4.71)

The �rst solution in (4.70) is simply the empty AdS solution with z = 1 and
θ = 0. The second solution (or a family of solutions) is more involved and
requires non-trivial matter to support such geometries.

Of particular interest are charged dilatonic black holes with z → ∞, θ →
−∞ and a �xed ratio −θ/z = η, dual to strongly interacting theories with
�nite density (see e.g. [240, 241]). While such systems still satisfy the null en-
ergy condition, the geometries nevertheless exhibit a naked singularity at zero
temperature. This means that unless there is a way to resolve the singularity,
the universal structure of anomalous conductivities, although not necessarily,
may be violated at zero temperature for all values of η. One way to resolve this
issue, as mentioned in [240] for η = 1, is to lift the black hole solution to a
ten- or eleven- dimensional solution of string or M-theory [242]. To study such
solutions, one also needs to �nd the ten- and eleven-dimensional analogues of
the Chern-Simons terms (LCS in (4.9)). In case of a supergravity setup, this
was studied in [243] and many subsequent works. An explicit computation of
chiral magnetic conductivity, σJB , in a top-down setup of probe �avour branes
can be found in [244]. More generally, it is plausible that the problems of IR
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singularities can be avoided when they are of the “good type" [245].11 We defer
a more detailed study of these issues and of top-down constructions to future
works.

4.4.4 Bulk theories with massive vector �elds

In this section, we comment on the universality of anomalous conductivities
in �eld theories with mixed, gauge-global anomalies. Such theories exhibit the
following anomalous Ward identity:

∂µ 〈Jµ5 〉 = βεµνρσFµνFρσ + (global anomaly terms) , (4.72)

where Fµν is the �eld strength of the gluon �elds (e.g. in QCD). The global
anomaly terms were stated in Eq. (4.1). As shown by perturbative quantum �eld
theory calculations [194, 196, 208, 209], the anomalous conductivities in such
theories are known to be renormalised, i.e. they receive quantum corrections.

Holographic models dual to theories with the anomalous Ward identity of
the form of Eq. (4.72) were proposed and studied in [88, 243, 246, 247]. In this
work, we focus on the bottom-up construction of [247], where the following
terms are added to the bulk action (4.8):

∆S =
∫
d5x
√
−G

(
−m

2

2 (Aa − ∂aθ)(Aa − ∂aθ)−
κ

3 ε
abcde(∂aθ)FbcFde

)
(4.73)

We have set the vector and the gravitational Chern-Simons terms to zero, i.e.
γ = λ = 0 (see Eq. (4.1)). The scalar �eld θ is the Stückelberg axion.

A holographic theory with ∆S in the action can clearly evade the arguments
of the proof of universality from Section 4.3. The reason is that the equation of
motion for a massive vector �eld cannot be written in the form of Eq. (4.15).
The right-hand-side of (4.15) now contains terms which explicitly depend on
Aa and one cannot reduce the equations into a total derivative form, ∂rJ µ = 0.
Hence, in models with massive vector �elds, dual to �eld theories with mixed,
gauge-global anomalies, anomalous conductivities can be renormalised. This is

11We thank Umut Gürsoy for discussions on this point.

100



Chapter 4. Universality of anomalous conductivities in theories with
higher-derivative holographic duals

consistent with �eld theory calculations mentioned above.

4.5 Discussion

In this work, we studied the coupling constant dependence of the universality of
chiral conductivities associated with the anomalous axial and vector currents
in holographic models with arbitrary higher-derivative actions of the metric,
gauge �elds and scalars. We showed that so long as the action was gauge- and
di�eomorphism- invariant, the membrane paradigm construction for the chiral
conductivities remained valid, resulting in universal chiral conductivities (see
Eq. (4.39)). The proof assumed the existence of a regular, non-extremal black
brane with an asymptotically AdS geometry. This result is valid for an in�nite-
order expansion of coupling constant corrections to holographic results at in-
�nite coupling. Hence, it is complementary to perturbative �eld theory proofs
(expanded around zero coupling) of the non-renormalisation of chiral conduc-
tivities in systems with global anomalies and therefore of the anomalous Ward
identities with the form of Eq. (4.1). Furthermore, this chapter also explored
cases which may violate universality, in particular, in cases with naked singu-
larities and massive vector �elds that explicitly violate Eq. (4.1) through mixed,
gauge-global anomalies.

This work provides a consistency test of holography in its ability to repro-
duce the expected non-renormalisation of global Ward identities at the level of
(non-zero temperature and density) transport in very general bulk construc-
tions that include arbitrary higher-derivative actions. Furthermore, we believe
that the methods presented in this work can be of wider use to other holo-
graphic statements of universality that employ the membrane paradigm.

We end this chapter by listing some problems that are left to future works.
Most importantly, there exists another anomalous conductivity in the stress-
energy tensor, which can be sourced by a small vortex, δTµν = σεu(µων).
The analysis of this conductivity was not performed in this work. In the �uid-
gravity framework, σε was studied in the Einstein-Maxwell theory by [204].
Forming a conserved bulk current for computing components of the stress-
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energy tensor tends to be signi�cantly more complicated than for those of a
boundary current. However, it may be possible to achieve this by using the
Hamiltonian methods recently employed for the calculations of the thermo-
electric DC conductivities [129, 175, 248] in two-derivative theories, which should
be extended to computations of anomalous transport in higher-derivative the-
ories.

One may also wonder what happens to anomalous transport in inhomo-
geneous and anisotropic systems. In standard non-anomalous transport, it is
known that universal relations can be violated, e.g. in η/s [40, 43, 249, 250].
While analysing such systems is in general signi�cantly more di�cult, the ex-
istence of the membrane paradigm, as e.g. in case of the DC thermo-electric
conductivities [129, 175, 176], may still enable one to prove general statements
about the behaviour of conductivities in disordered systems [38, 39]. These
methods remain to be explored in the context of anomalous transport.

In even-dimensional theories, anomalous conductivities are directly related
to the parity-odd hydrodynamic constitutive relation of [85, 195, 206]. These
parity-odd terms are related to global anomalies. In odd dimension, one can
still construct hydrodynamics with parity-odd terms, as e.g. in [251]. A well-
known parity-odd transport coe�cients is the Hall viscosity [252, 253]. This
quantity has relations to topological states of matter, such as fractional quantum
Hall systems (see e.g. [254] and references therein). A holographic theory with
non-zero Hall viscosity can be obtained by adding a topological term similar to
the dimensionally-reduced gravitational Chern-Simons term [255]. Recently,
in [150], the constitutive relation term associated with the Hall viscosity was
generalised to a class of hydrodynamic terms that resemble the Berry curvature.
Despite these similarities, there is no known non-renormalisation theorem for
parity-odd transport coe�cients in odd dimensions.

Lastly, we point out that many recent works have found novel structures in
entanglement entropy of theories with anomalies [256–258, 258–260]. As a re-
sult of non-renormalisation, one may expect there to exist strong constraints on
the structure of extremal bulk surfaces associated with entanglement entropy.
It would be interesting to better understand the connection between geomet-
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ric constraints on holographic entanglement entropy and non-renormalisation
theorems for anomalies.

4.6 Appendices

4.6.1 Anomaly polynomials and the replacement rule

As noted in the Introduction, the full set of chiral conductivities (4.2) can be en-
coded in the anomaly polynomial de�ned in terms of the Chern-Simons action
[73, 74, 202, 203]:

P(F ,R) = dSCS [A, Γ] . (4.74)

If we restrict ourselves only to global anomalies in four spacetime dimensions,
then the anomaly polynomial can be written as

P =
κ

3 (FA ∧ FA ∧ FA) + γ (FA ∧ FV ∧ FV ) + λ
(
FA ∧Rµν ∧Rνµ

)
.

(4.75)
The replacement rule states that, for an anomaly polynomial P , one can de�ne
the generating function G[µ5,µ,T ]:

G [µ5,µ,T ] = P
[
FA → µ5, FV → µ, TrR2 → 2(2πT )2

]
, (4.76)

where T is the temperature and µ5, and µ are chemical potentials associated
with the axial and the vector currents Jµ5 and Jµ. The anomalous conductivities
can then be computed by using

σJ5B = − ∂2G
∂µ5∂µ

, σJB = − ∂2G
∂µ∂µ

,

σJ5ω =
∂G
∂µ5

, σJω =
∂G
∂µ

. (4.77)

For the anomaly polynomial in (4.75), the anomalous conductivities are pre-
cisely those stated in Eq. (4.39).

In the work of [204], the replacement rule (4.76) with (4.77) was derived for
a �eld theory dual to the AdS Reissner-Nördstrom background. Our work can
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be seen a check of the validity of this replacement rule prescription for more
general, higher-derivative holographic theories.

104


