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3
Shear viscosity in holography and

e�ective theory of transport without
translational symmetry

3.1 Motivation

In recent years, numerous developments in relativistic strongly interacting quan-
tum �eld theory at �nite temperature have been made using the guage/gravity
duality [22, 100, 101], which reduces the computations of 2-point functions to
solving certain di�erential equations in the classical general relativity. In the IR
limit, if the theory remains translational invariant, many theories of this type
can be described using macroscopic variables governed by the conservation of
energy-momentum : the hydrodynamic theory. Equipped with this description,
the Green’s functions obtained from gauge/gravity duality can be interpreted
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in terms of the language of relativistic hydrodynamics [103, 110] and allow us
to predict universal bound for transport coe�cients [30, 32–35, 148], de�ned
by hydrodynamics constitutive relations. One of the most interesting bounds
is the shear viscosity/entropy density, η/s ≥ 1/4π [30], which has been con-
jectured to be related to the minimum entropy production of the black hole in
the dual gravity theory [149, 150].

Interesting applications of the gauge/gravity duality and relativistic hydro-
dynamics have also been found in the condensed matter systems [23, 31, 151,
152]. Despite the fact that the translational symmetry in such systems is broken
due to lattice/disorder, the transport properties derived in holographic models
[65, 69, 124, 153–174] �t surprisingly well with the hydrodynamic prescriptions.
Moreover, the universal bounds, similar to those mentioned earlier, have been
proposed [36] and some of them can also be demonstrated explicitly [38, 39].
Recently [129, 175, 176] also demonstrate that the DC transport coe�cients can
be extracted from the forced Navier-Stokes equations. Evidences from the work
mentioned above hint that there should be a hydrodynamics-like description for
the disordered theory.

If there is indeed a hydrodynamics-like description for theory without trans-
lational symmetry, one would naturally ask the following : how would such
description di�er from the standard relativistic hydrodynamics ? Which of the
intuitions and universal results in the hydrodynamics are still applicable1? In
this work, despite there are potentially interesting physics to be explored at
strong disordered theory, we focus on the hydrodynamics-like theory when
translational symmetry is weakly broken as it should be more closely related to
the standard hydrodynamics. We also restrict ourselves to the type of models
where translational symmetry breaking is the one in simple holographic models
described below.

In ref [23], the e�ective theory motivated by hydrodynamics was proposed
to describe the quantum critical transport where the translational symmetry
is weakly broken. The dynamics of this theory is governed by the following

1Some aspect of this question has already been explored in [69]

43



Chapter 3. Shear viscosity in holography and e�ective theory of transport
without translational symmetry

equation of motion

∇µTµ0 = 0, ∇µTµi = −Γ T 0i, (3.1)

where the index i = 1, 2, d− 1 denotes the spatial dimensions. The dimension-
ful quantity Γ sets the scale for the broken translational symmetry and corre-
sponds to the width of the Drude peak (see e.g. [65]). The stress-energy tensor
is assumed to have the standard relativistic hydrodynamics form

Tµν = ε uµuν + p∆µν − η σµν , (3.2)

where the notation can be found in e.g. [51] and in the Appendix 3.5.1. The
model successfully captures, in particular, thermo-electric conductivity and seems
to be consistent with holographic computations mentioned above, see also [69]
and references therein.

However, the theory described by (3.1)-(3.2) has a few draw back. As pointed
out in [65, 177, 178], the above model’s predictions do not agree with those from
simple holographic model of [179, 180] beyond the leading order in the deriva-
tive expansion. Moreover, the correlation functions are not correctly related by
the Ward identity derived from (3.1).

Alternatively, we use insight from holographic models [65, 158, 163, 168,
173, 180, 181]. In these models the translational symmetry is broken by the
massive graviton or spatial dependent massless scalar �elds in the dual grav-
ity theory.2 We following the terminology of [69] and refer to these models as
theories with mean �eld disorder. From the dual theory point of view of the
holographic theory with massless scalar �elds, the source φi breaks the trans-
lational symmetry explicitly and the conservation of stress-energy tensor is
modi�ed to be

∇µTµν = 〈Oi〉∇νφi (3.3)

where 〈Oi〉 is the expectation value of the operator sourced by φi. From the
point of view of hydrodynamics, the above setup is equivalent to putting the

2Relations between classes of massive gravity and models with scalar �elds are discussed in
[173].
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�uid in the manifold with background metric gµν and background source �elds
φi which breaks translational symmetry. At the equilibrium, the metric is set to
be �at and the scalar sources have the pro�le φi = mxi. Taking the scalar �eld
φi into account, the constitutive relation will also depend on the scalar �elds,
unlike (3.1). This coupling between �uid and spatial dependent scalar �elds
has already been explored earlier in [182] and more recently in [177, 178]. The
modi�ed constitutive relation for Tµν generally has more terms than those in
(3.2). The coe�cients in front of independent structures in the modi�ed con-
stitutive relations in [177, 178, 182] are obtained by �uid/gravity method[110]
for certain gravity dual theories. However, there should be general relations
between the Green’s function and the coe�cients in the constitutive relations,
which may di�er from those in the standard hydrodynamics3.

The purpose of this work is to �nd a systematic way of constructing the
constitutive relations that also include the spatially dependent scalar �elds and
try to answer the questions mentioned earlier. We pay special attention to the
shear viscosity and the viscosity/entropy density bound. One of our key re-
sult is that the shear viscosity η de�ned as coe�cients of the shear tensor σµν ,
beyond the leading order in gradient expansion, di�ers from the value η? ex-
tracted from standard de�nition η? = − limω→0(1/ω)ImGRTxyTxy (ω, k = 0).
This can be seen both from the constitutive relation, where we see that η? is
polluted by the additional terms due to the scalar �elds, and from holographic
computation, where η is extracted using �uid/gravity method [177, 178, 182]
while η? is obtained by directly computing the retarded Green’s function.

The body of this work is consist of two main parts. In section 3.2, we focus
on the constitutive relation of the e�ective hydrodynamics theory while the
holographic computations are discussed in section 3.3. To be more precise, in
section 3.2.1, we build up the constitutive relation of Tµν and 〈Oi〉 in terms
of hydrodynamics variables and ∇φi, up to the second order in the deriva-
tive expansions. The gradient expansion in this work is organised using the
anisotropic scaling of [177, 178]. This procedure is inspired by the construction
of higher order hydrodynamics [50, 64, 110, 184]. In section 3.2.2, we outline

3The readers can �nd modern reviews of the subjects in e.g. [51, 183]
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a consistent method to extract the retarded Green’s function and show that η?

also include the other transport coe�cients, not only the shear viscosity η. We
then move on to the holographic computation, where the action and thermo-
dynamics quantities are summarised in 3.3.1. We then compute η/s using the
result from �uid/gravity [177, 178] and show that the KSS bound is violated in
section 3.3.2. The computation of η?/s at the leading order can be found in
3.3.3, which are di�er from the expression of η/s in the previous section. The
numerical pro�le of η?/s and η/s at arbitrary value of disorder strength m/T
are shown in 3.3.4. We discuss the results of this work and open questions in
4.5. An appendix contain structures in the constitutive relation.

Note added : Near the �nal stage of this work, we learned that [185] found
the same result for η?/s. While the manuscript is in the preparation stage,
[40] appears and has overlaps with our computations in section 3.3 but with
di�erent interpretation.

3.2 E�ective theory for systems with broken transla-
tional symmetry

In this section, we �rst outline the procedure of how to construct the constitu-
tive relation when the zero density �uid is coupled to the background metric
gµν and the scalar �eld φi. Our expressions valid only in 2+ 1 dimensions �uid
but it would be straightforward to extend them to arbitrary dimensions. Our
notation is closely related to those in [64] and are explained in Appendix 3.5.1.
We make a small comment regarding how the role of shear viscosity, η, in the
entropy production rate compared to the conformal �uid. Next, we describe
the procedure to extract Green’s function from the constitutive relation and
the equation of motion. We show that GRTxyTxy also contains higher derivative
terms even at linear order in ω.
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3.2.1 Constructing the constitutive relation

Just as in the construction of the standard hydrodynamics (those with transla-
tional symmetry), we expand Tµν , Jµ, 〈Oi〉 in terms of the macroscopic vari-
ables {E ,uµ} and background �elds {gµν ,φi} order by order in the derivative
expansion along xµ direction. Since the scalar �eld, φi is explicitly proportional
to xi, Instead of the usual gradient expansion, we also set the momentum re-
laxation scale to be a small parameter as in [177, 178]. Let us call this small
parameter δ, the magnitude of the gradient of the �uid variables {T ,uµ, gµν}
and the momentum relaxation scale m have the following scaling

∂T ∼ δ, ∂u ∼ δ, ∂g ∼ δ, m ∼ δ1/2. (3.4)

This is done according to the previous study that the momentum relaxation rate
Γ ∼ m2 e.g. [65]. Therefore, the frequency ω of the �uid is of the same scale as
Γ.

To systematically construct the constitutive relation, it is convenient to de-
compose the stress energy tensor into the following form

Tµν = Euµuν +P∆µν + tµν , (3.5)

where we choose to work with the Landau frame i.e. uµtµν = 0. Note that
the above assumption might not be applicable for the theory without transla-
tional symmetry in general. In this work, we assume that the �uid remains
translational invariant at equilibrium as this also happens in the holographic
models with mean �eld disorder. Consequently, around the equilibrium, one
can choose terms E ,P such that they contain no derivative in {uµ, E} and the
scalar �elds φi only enters tµν as ∇φi. Thus, the nontrivial task is reduced
to building the transverse symmetric tensor out of the macroscopic variables
{T (x),uµ, gµν , ∂µφi} and their derivatives upto order δ2. Note that constitu-
tive relation in (3.5) must also satisfy the equation of motion (3.3). In other
words, the modi�ed Ward identity (3.3) implies that the constitutive relations
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must satify one scalar and one vector equation

0 = −DE − (E +P)∇µuµ + uν∇µtµν − 〈Oi〉Dφi,

0 = (E +P)Duµ +∇µ⊥P + ∆µν∇ρtρν − 〈Oi〉∇
µ
⊥φi.

(3.6)

Here, we de�ne the derivative D ≡ uµ∇µ and∇µ⊥ ≡ ∆µν∇ν . The above equa-
tions put constraints on all scalars and vectors one can put into the constitutive
relation. Using the �rst constraint, one may choose to write down a scalar in
terms of the other scalars at the same order. The second constraint can be used
in the same way to eliminate one vector. We follow the convention of [51] to
eliminate DE and Duµ so that the derivatives of T (x) and uµ only enter the
constitutive relation as∇µ⊥T and∇µ⊥uν . The scalar �elds, φi, however, contain
both derivatives. Nevertheless, it is still convenient to decompose them into
Dφi and ∇µ⊥φi as the former vanishes at equilibrium uµ = (1, 0, 0).

The procedure described so far is almost identical to the construction of the
standard relativistic hydrodynamic constitutive relation. However, we would
like to point out a few caveats in the above construction. First of all, despite
the similarity of the notation, the parameters E is the energy density but P is
not the pressure. Under our assumption, the energy density, ε ≡ T 00 = E ,
as tµν is chosen in the Landau frame. At order δ1, the spatial diagonal parts
are T xx = T yy = P . However, terms such as ∆µν∇(φ)2N with N = 1, 2, ..
may also be part of tµν at higher order in δ due to the fact that they are not
ruled out by the frame choice. Nevertheless, the correction terms to P will
be vanishes in the traceless case Tµµ = 0. Regardless of the ambiguity, the
spatial components T ii of the stress-energy tensor is still not the pressure in the
simple holographic theory [180]. There, the pressure, p, is obtained from the
thermodynamics relation ε+ p = sT . Lastly, the scaling scheme (3.4), implies
that the scalar expectation value Oi must be expanded up to order δ5/2 so that
equation of motion (3.3) can be solved consistently order by order. We would
also like to emphasize that it is not necessary to set the scaling such thatω ∼ m2

as in (3.4)The constitutive relation for the �uid coupled to the scalar �eld with
spatial dependence has already been considered in [182]. There, the consitutive
relations are expanded with the scaling scheme ∂u ∼ ∂T ∼ ∂g ∼ ∂φ upto
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the second order in the derivative expansion. The scaling scheme is indeed
convenient to incorporate the e�ect of broken translational symmetry into the
�rst order hydrodynamics. However, it should also be possible to take ω ∼ mN

(with N > 2) to take into account the higher order e�ect of the translational
symmetry breaking scale m. We will come back to comment on this point later
in this section.

We list all possible independent scalars, vectors and transverse symmetric
tensors, which we used to construct the consitutive relation up to order δ1 in
Appendix 3.5.1. The structures of higher order than δ1 can be consistently built
up but the number of independent terms grows very quickly. For the purpose
of our work, we only list the tensors that would enter the stress-energy tensor.

The most general tensor tµν in (3.5), expanded up to order δ2 can be written
as

tµν =− ησµν − ηφΦµν + tµν(2)

− ∆µν
(
ζ∇µuµ + ζ1DφiDφi + ζ2∇⊥µφi∇µ⊥φi − P(2)

)
.

(3.7)

The scalar, P(2), and orthogonal tensor, tµν(2), of order δ2 terms can be written
explicitly as4

P(2) = ζτπD(∇µuµ) + ξ1σ
µνσµν + ξ2(∇µuµ)2 + ξ3ΩµνΩµν + ξ̃4∇⊥µE∇µ⊥E

+ ξ5R+ ξ6u
µuνRµν + ξ7(∇⊥µφ · ∇µ⊥φ)

2 + ξ8(Dφ ·Dφ)2

+ ξ9(∇⊥µφ · ∇µ⊥φ)(Dφ ·Dφ) + ξ10(∇µ⊥φ ·Dφ)(∇⊥µφ ·Dφ)

+ ξ11(∇⊥µφ ·Dφ)∇µ⊥E + ξ12(∇⊥µφ · ∇µ⊥φ)(∇λu
λ)

+ ξ13(Dφ ·Dφ)(∇λuλ) + ξ14σ
µν(∇⊥µφ · ∇µ⊥φ),

(3.8)
4The notation of the �rst seven terms of P(2) and �rst eight terms of tµν

(2) are adopted from
second order hydrodynamics constitutive relation of [50, 64, 184] where they write down the
constitutive relation in terms of {uµ, ln s}. We convert derivative of ln s into E using the ther-
modynamics relation, dE = Tds. The coe�cient ã ≡ a/(sT )2 where a = ξ4,λ4 in [64, 184]
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and

tµν(2) = ητπ

[
〈Dσµν〉 +

1
2σ

µν∇λuλ
]
+ κ

[
R〈µν〉 − uρuσRρ〈µν〉σ

]
+

1
3ητ

?
πσ

µν(∇λuλ) + 2κ?uρuσRρ〈µν〉σ + λ1 σ
ρ〈µσν〉ρ + λ2 σ

ρ〈µΩν〉
ρ

+ λ3 Ωρ〈µΩν〉
ρ + λ̃4∇〈µ⊥ E∇

ν〉
⊥ E + λ5σ

µν(Dφ ·Dφ) + λ6Φµν(Dφ ·Dφ)

+ λ7 σ
µν(∇λ⊥φ · ∇⊥λφ) + λ8Φµν(∇λuλ) + λ9 Φµν

ij DφiDφj

+ λ10Φµν(∇⊥λφ · ∇µ⊥φ) + λ11Φµν
ij ∇⊥λφi∇

λ
⊥φj .

(3.9)
Similarly, the scalar �elds expectation value 〈Oi〉 can be written in terms of
linear combination of independent scalars with index i of the scalar �elds, φi,
namely

〈Oi〉 = c0Dφi + c1(∇µuµ)Dφi + c2(∇µ⊥E)∇µφ+ c3(Dφ ·Dφ)Dφi
+ c4(∇⊥µφ · ∇µ⊥φ)Dφi + c5(Dφ · ∇⊥µφ)∇µ⊥φi + Si(δ

3/2, δ2, δ5/2).
(3.10)

where Si is a linear combination of scalar of order δ3/2, δ2, δ5/2 that transforms
in the same way asOi. The explicit form ofSi is omitted as they are not relevant
for the discussion in this work. In the holographic theory described by Einstein-
Maxwell-scalar �elds action in e.g.[180], the stress-energy tensor is traceless,
Tµµ = 0. Such condition imposed on tµν implies that

ζ = 0, ζ1 = 0, ζ2 = 0, P(2) = 0. (3.11)

Note that, even if Tµµ = 0 resembles the conformal �eld theory, this theory is
not conformal due to the presence of nonzero expectation value 〈Oi〉. More-
over, in the computation involving 2-point function, one can also perturb the
�uid velocity as an additional small parameter. This allows one to ignore the
term proportional to c3 and terms with higher order of Dφ in (3.7)-(3.10).

Before moving on, let us comments on the above form of Tµν andOi, which
are the result of the gradient expansions to the higher order while keeping the
anisotropic scaling ω ∼ m2 ∼ δ. The main reason which cause these expres-
sions to be so lenghtly is the fact that that the tensors and scalars structures
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built from ∂u and ∂g at higher order in δ. Keeping the same scaling and going
beyond order δ2 is simply overkill since most of the terms in the expressions
similar to those in (3.8)-(3.10) are not even entering the 2-point functions’ com-
putations. It would be interesting to �nd the constitutive relation for theory
with anisotropic scaling ω ∼ mN ∼ δ where N is a big number. This way, the
constitutive relation will be able to capture more terms due to scalar �elds.

We end this section by commenting on the entropy current. Demanding
that the entropy production is positive locally implies that some of the coe�-
cients in tµν andOi are constrained [64, 186, 187]. In the case where the scalar
�eld is not present, the entropy current is assumed to have the a canonical form
[51]

TSµ = p uµ − Tµνuν (3.12)

which is reduced to the Smarr-like relation, ε+ p = Ts, when uµ = δµt. Upon
substituting the equation of motion and the constitutive relation for the con-
formal �uid at zero density, one will �nd that ∇µSµ = η σµνσµν ≥ 0. Conse-
quently, this inspired the origin of the bound on η to the minimum entropy pro-
duction rate of the black hole [149, 150]. It turns out that the entropy production
for the theory with broken translational symmetry is not as straightforward
as in the standard conformal hydrodynamics. Let us demonstrate by consider
the theory at order δ and assume that the entropy current take the canonical
form(3.12), the entropy production rate contain three additional terms

T∇µSµ = (sT −E −P)D lnT − 〈Oi〉Dφi + ηφΦµνσµν + ησµνσµν

(3.13)
where we use the thermodynamics relation, dp = sdT to eliminate ∇µp. The
�rst three terms vanish in the absence of the scalar �eld but it is not so straight-
forward to eliminate or rearrange them to the positive de�nite structures. To be
more precise, let us expand Oi at order δ3/2 ( to make (3.3) consistent at order
δ3). One �nds that
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〈Oi〉Dφi = c0(Dφ ·Dφ) + c1(Dφ ·Dφ)∇µuµ + c2(∇⊥µ ·Dφi)∇µ⊥E

+ c3(Dφ ·Dφ)2 + c4(∇⊥µφ · ∇µ⊥φ)(Dφ ·Dφ)

+ c5(Dφ · ∇µ⊥φ)(Dφ · ∇⊥µφ).
(3.14)

It is likely that one can add vectors that vanish at equilibrium to the canonical
entropy current (3.12) to eliminate terms that containsD lnT ,∇⊥E ,∇µuµ,σµν .
However, we can see that the term proportional to the coe�cients of c0, c3, c4, c5

are already positive de�nite. Given a more complicated structure of the entropy
current, it is possible that the entropy could also be produced by terms other
than η σµνσµν . It would be very interesting to carefully analyse the entropy
production in this type of models but we leave the complete analysis of the
entropy current in the future work.

3.2.2 Kubo’s formula for η?

In this section, we discuss the way to consistently extract the retarded Green’s
function. This method is slightly modi�ed from variational method in [51] and
is closely related to holographic computation. Extracting the Green’s function
in this way is also proven to be useful in deriving Kubo’s formula for higher
order hydrodynamics, see e.g. [99, 188]

The procedure for the variational method can be explained as the following.
Firstly, one put the system in the manifoldM with metric gµν and background
scalar �elds φi. We write down these background �elds as their equilibrium
value + small perturbations, namely

gµν = ηµν + hµν , φi = mxi + δφi (3.15)

where {hµν , δφi} are small perturbations. At the same time, we perturb the
energy density E and �uid velocity to linear order {δE , δρ, vµ}, which are also
small perturbations. Then, we use the equation of motion (3.3) to solve for
{δE , δρ, vµ} in terms of {hµν , aµ, δφi}. After solving, substitute the solution
for {δE , δρ, vµ} into the constitutive relation (3.5).
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We denoted the stress-energy tensor, where {δE , δρ, vµ} are written in
terms of {hµν , aµ, δφi}, as 〈Tµν〉. This is precisely the 1-point function from
the �eld theory point of view. The retarded Green’s function, GRAB of operator
ϕA and ϕB where ϕA = {Tµν , Jµ,Oi},ϕB = {hµν , aµ, δφi} can be written
as

GROiOj (x) = −δ
√
−g〈Oi(x)〉
δφj(0)

, (3.16)

GROiTµν (x) = −2δ
√
−g〈Oi(x)〉
δhµν(0)

, (3.17)

GRTµνOi(x) = −2δ
√
−g〈Tµν(x)〉
δφi(0)

, (3.18)

GRTσρTµν (x) = −2δ
√
−g〈T σρ(x)〉
δTµν(0)

, (3.19)

where all variations are performed with subsequent φi = h = 0 insertion. Note
that these 2-point functions are not entirely independent. They are related by
the 2-point function’s Ward’s identity derived from (3.3).

To compute the shear viscosity, it is convenient to start from known result
in translational invariant theory. In that case, the shear viscosity can be ex-
tracted from the retarded Greens’ function of T xy operator. Let us emphasize
here again that, a priori, the relation between shear viscosity η and the 2-point
functions is not necessary the same as in the usual hydrodynamics. For simplic-
ity, we �rst study the perturbation that only depends on time. It turns out that
one can bypass many steps in the above procedure as the stress-energy tensor
δT xy can be written in terms of the {hµν , vµ, δφi, δE} as

δT xy =
1
2Phxy +

1
2ηφm

2hxy −
1
2 (η−m

2λ7)∂thxy +O(h2) (3.20)

whereO(h2) denotes the terms that are products of perturbations {hµν , vµ, δφi, δE}.
We can see that this component of the stress-energy tensor is independent
of the primary variables i.e. {vµ, δE}. Thus, by Fourier transform hxy(t) ∼
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dω eiωthxy(ω), we immediately arrive at the 2-point function for GRTxyTxy ,

GRTxyTxy =
(
P + ηφm

2
)
− iω (η−m2λ7) +O(h2),

⇒ η? = η− λ7m
2

(3.21)

This implies that −ω−1ImGRTxyTxy are polluted by the terms proportional to
m2 and, unless one only consider Tµν at order δ1, the above Kubo formula is
not the same as η in the constitutive relation. Note also that

η? = − lim
ω→0

(1/ω)ImGRTxyTxy (3.22)

is also bound from below at zero, for ω ≥ 0 because of the Hermitian property
of T xy . The relation between this lower bound of η? and the entropy production
is still unclear at this stage.

3.3 Holographic computation

If we use the e�ective “hydrodynamics” framework outlined in section 3.2 as
a basis to de�ne transport (or hydrodynamic) coe�cients in arbitrary systems,
it is then natural to expect that η and η? are not identical evan at the leading
order in δ expansion. However, from the hydrodynamics point of view, we do
not known whether the quantites η/s and η?/s violate the KSS bound or not.
Moreover, as the coe�cient λ7 and possible higher order corrections are yet to
be determined, we do not have an insight of how η and η? are di�erent before
computing them explicitly.

To investigate these problems, we compute both η/s and η?/s in a simple
holographic model and shows that both of them violate the KSS bound. The
ratio of η/s can be computed analytically using the results from �uid/gravity
from [178]. The ratio η?/s can also be computed analytically at small m and ω
and are found be identical to η/s at the same order of m. Beyond the leading
order, they start to deviate from each other.

To perform a holographic calculation of the shear viscosity and other ther-
modynamic quantities, we use a 3 + 1 dimensional Einstein-Maxwell-Scalar
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action with a charged black brane solution ansatz. The scalar �elds are as-
sumed to have a �xed pro�le that explicitly breaks the translational symme-
try. Thermodynamic quantities of the black hole are identi�ed with those of
the corresponding �uid. In Section 3.3.1, we specify the model and compute
thermodynamic quantities. The �uid/gravity calculations are discussed in Sec-
tion 3.3.2, demonstrating the violation of the KSS bound. Section 3.3.3 shows
the perturbative calculation of the shear viscosity/entropy density ratio by the
Kubo’s formula method. The results of Section 3.3.2 and 3.3.3 shows that the
η/s and η?/s are not identical even at small m, as expected. Numerical cal-
culations of η?/s are in Section 3.3.4. Notably, Fig. 3.1 shows that the values
of shear viscosity/entropy density ratio calculated by the two methods deviate
more from one another as m increases.

3.3.1 Action and Thermodynamics

Let us start by specifying the action for the holographic model where the trans-
lational symmetry of the boundary theory is broken by the massless bulk scalar
�elds

S =
∫
M
dd+1x

√
−g

R− 2Λ− 1
2

d−1∑
i=1

(∂φi)
2 − 1

4F
2

+ Sbnd (3.23)

with appropriate boundary and counter terms Sbnd. This action exhibits a sim-
ple planar charged black hole solution where the translational symmetry of the
boundary theory is broken explicitly by the scalar �elds. For this solution, the
background metric, gauge �eld and scalar �elds can be written as the follow-
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ing [180]

ds2 = −r2f(r)dt2 + r2dxidx
i +

dr2

r2f(r)
, A = At(r)dt, φi = mxi,

f(r) = 1− m2

2(d− 2)r2 −
(

1− m2

2(d− 2)r2
h

+
(d− 2)µ2

2(d− 1)r2
h

)(
rh
r

)d
+

(d− 2)µ2

2(d− 1)r2
h

(
rh
r

)2(d−1)
,

At = µ

(
1−

(
rh
r

)d−2
)

,

(3.24)
where i = 1, 2, ..., d − 1. We denote the chemical potential by µ. For con-
creteness, we will focus on the theory with d = 3, which is an arena for many
condensed matter systems. The temperature, entropy density, energy density
and charge density can be written as

T =
rh
4π

(
3− m2

2r2
h

− µ2

4r2
h

)
, s = 4πr2

h,

ε = 2r3
h

(
1− m2

2r2
h

+
µ2

4r2
h

)
, ρ = µrh.

(3.25)

Finally, the pressure can be computed using the renormalised Euclidean action
[180].

p = 〈T xx〉+m2rh =
ε

2 +m2rh = sT + µρ− ε. (3.26)

As mentioned earlier, the pressure here is not the same as the expectation value
〈T ii〉.

In [65], the value of parameter m is restricted to be 0 < m < rh
√

6 so that
the temperature remains non-negative for µ = 0. Once the density of turned
on, the allowed range of m becomes 0 < m <

√
6r2
h − µ2/2.
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3.3.2 Coherent regime and constitutive relation from�uid/grav-
ity correspondence

The background parametrisation where we keep the entropy density �xed is
suitable to �nd the numerical solution. However, it is more convenient to �x the
energy density in order to compare with the result from �uid/gravity [177, 178]
and the constitutive relation constructed in section 3.2.1.

We will work on zero density case for simplicity. It is also convenient to
introduce a scale r0 related to the energy density as ε = 2r3

0 . In the absence
of the scalar �eld, the position of the horizon in the gravity dual theory is pre-
cisely rh = r0. The relation between r0 and rh can be found by the following
relation [178]

0 = 1−
(
r0
rh

)3
− m2

2r2
h

. (3.27)

This relation can be found by equating the energy density wherem = 0, r = r0

and the case where m is nonzero given in Eqn. (3.25). The coe�cients in the
constitutive relation of Tµν for theory with zero density were found using the
�uid/gravity computation [178], where Tµν is expanded up to order δ in the
anisotropic scaling (3.4), to be

E = 2r3
0, P = r3

0, η = r2
0, ηφ = r0. (3.28)

Interestingly, if one �x the energy density and start to slightly break the trans-
lational symmetry, the shear viscosity remains unchanged. Now, the entropy
density can be found, in terms of r0, using (3.25) and (3.27) as

s = 4πr2
h = 4π

(
r2

0 +
m2

3 +O(m4)

)
. (3.29)

Note that the full expression of rh is given by

rh =

(√
6
√

54r6
0 −m6 + 18r3

0

)2/3
+ 61/3m2

62/3(
√

6
√

54r6
0 −m6 + 18r3

0)
1/3

. (3.30)
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This immediately implies the violation of the KSS bound [30] as

η

s
=

1
4π

(
1− 1

3

(
m

r0

)2
+O(m4)

)
, rh = r0 +

m2

6r0
+O(m4). (3.31)

For completeness, we write down the coe�cients ci in the constitutive relation
of 〈Oi〉 obtained from �uid/gravity [178] i.e.

c0 = −r2
0, c1 = r0(1− λ), c2 = − (1 + λ)

2r3
0

, c4 = −1
6, c5 =

2
3.

(3.32)
where λ can be found analytically for µ = 0 to be

λ = −1
2

(
π

3
√

3
− log 3

)
. (3.33)

The coe�cient c3 is not speci�ed as it depends on (Dφ)3 and is subleading in
the expansions uµ = δ0µ + vµ mentioned in section 3.2.1. It is interesting to
observe that the value of −2λ = π/3

√
3− ln 3 is identical to the coe�cient of

m2 in Eqn. (3.48) of η∗/s calculated to ωm2 ∼ δ2 order. Incidentally, λ appears
in the two terms of order δ2 in Eqn. (3.10) of 〈Oi〉. It is possible that this is not
a coincidence and the two quantities are actually the same.

We will not discuss the details of the transport coe�cient at �nite density,
ρ 6= 0, but would like to mention that the relation between rh and r0 in that
case can be found by solving

0 = 1−
(
r0
rh

)3
− m2

2r2
h

+
ρ2

4r4
h

. (3.34)

The ratio between the entropies when m = 0 and nonzero value of m at the
�xed energy density, in this case, at the leading order, is found to be

η

s
=

1
4π

(
1− (2m/r0)2

12− ρ2

)
+ higher order terms. (3.35)

The above relation indicates that the shear viscosity/entropy density decreases
more rapidly with the density.
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3.3.3 Fluctuations and violation of the viscosity bound at lead-
ing order

Let us focus on the computation in the asymptotic AdS4 space. We will choose
the direction of the metric �uctuations to propagate in the x direction, i.e.
~k · x̂ = k and consider the shear viscosity with respect to the perpendicular
directions. In asymptotic AdS4, the metric �uctuation can be split into those
with odd and even parity under y ↔ −y. We are interested in odd parity modes
namely {hyx,hyr ,h

y
t }. In the presence of the two massless scalar �elds, φ1,φ2,

in AdS4, only the �uctuation δφ2 couples to the odd parity channel. The full
equations of motion of the relevant modes are

d

dr

[
r4f(hy′x − ikhyr)

]
+
ω

f
(ωhyx + khyt )−m2hyx + ikmδφ2 = 0,

d

dr

[
r4(hy′t + iωhyr)

]
− k

f
(ωhyx + khyt )−

m2

f
hyt −

iωm

f
δφ2 + r2a′yA

′
t = 0,

d

dr

[
r4f(δφ′2 −mhyr)

]
+

1
f
(ω2 − k2f)δφ2 −

m

f
(iωhyt + ikfhyx) = 0,

iωhy′t + ikfhy′x − (ω2 −m2f − k2f)hyr −mfδφ′2 +
iω

r2 ayA
′
t = 0.

The combination of the �rst and the third equations gives

d

dr

(
r4fΨ′

)
+
ω2 − (k2 +m2)f

f
Ψ = 0 (3.36)

where Ψ(r) = Ψy ≡ hyx − i(k/m)δφ2. The scalar �eld generates mass term
for the metric perturbation hyx proportional to its pro�le parameter m2. It also
breaks the translational invariance with respect to the in�nitesimal shift in y
direction.

To �nd the shear viscosity, we study the near boundary behaviour of Ψ(r) =

Ψ(0) + r−3Ψ(3), which is equivalent to hyx(r) = h
y(0)
x + r−3h

y(3)
x in k → 0

limit. Plugging this into the onshell action [65]

S =
∫
dωdk

(2π)2
3

2(k2 +m2 − ω2)

[
hy(0)x

{
(m2 − ω2)hy(3)x − imkδφ(3)2

}
+δφ

(0)
2

{
imkhy(3)x + (k2 − ω2)δφ

(3)
2

}]
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and then apply the formula for the “shear viscosity” i.e.

η∗ ≡ − lim
ω→0

1
ω

ImGRTxyTxy (ω, k = 0) = 3
ω

Im
(

Ψ(3)

Ψ(0)

) ∣∣∣∣∣∣
ω→0

. (3.37)

The equation of motion (3.36) can be solved analytically for small ω,m limit.
However, for the large m limit, one is required to solve it numerically. The
numerical procedure to �nd η∗ is straightforward as one only need to impose
the ingoing boundary condition to in the region region close to the horizon,
namely

Ψinner = α+f(z)
[−iω/(3−m

2
2 −

µ2
4 )]
(
1 + a(1− z) + b(1− z)2 + c(1− z)3

)
,

where we de�ne the new coordinate to be z = rh/r. We present the numerical
results in Section 3.3.4.

Let us proceed by solving (3.36) analytically at the leading order in m2. In
the following calculation, the dimensionful parameters, ω,m,µ are rescaled by
the horizon radius rh to make them dimensionless. For simplicity, let us focus
on the case where µ = 0, k = 0. The gauge invariant �eld Ψ is assumed,
consistently, to have the following expansion in m2

Ψ = f(z)iω/f ′(1)S(z),

S(z) = A(z) +m2B(z) +O(m4), (3.38)

where at each m order we expand with respect to ω,

A(z) = A0(z) + ωA1(z) + ω2A2(z) +O(ω3), (3.39)

B(z) = B0(z) + ωB1(z) + ω2B2(z) +O(ω3). (3.40)

The equation of motion atO(m0) order after substituting (3.38) into Eqn. (3.36)
when k → 0 is

0 = A′′(z)− 2 + (1− 2iω)z3

z(1− z3)
A′(z) +

ω2(1 + z + z2 + z3)

(1− z)(1 + z + z2)2A(z).

This equation can be solved perturbatively by substituting (3.39) and solve order
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by order in ω. Once we obtain the solution satisfying the appropriate boundary
condition, it can be used to solve for the solution at the higher order in m.

The equation of motion at O(m2) order (the coe�cient of m2 in (3.36)) in
k → 0 limit is given by

0 =
z
(
4iω+ 2iωz3 + 3z2 + 3z − 6

)
A′(z)

6(1− z) (z2 + z + 1)2 +
g(z)A(z)

3(1− z) (z2 + z + 1)3

+B′′(z)−
(
2 + (1− 2iω)z3)B′(z)

z (1− z3)
+
ω2 (z3 + z2 + z + 1

)
B(z)

(1− z) (z2 + z + 1)2 ,

(3.41)
where

g(z) ≡
(
− iω+ ω2z5 +

(
ω2 − iω− 3

)
z4 +

(
ω2 − 2iω− 6

)
z3

+ 3
(
ω2 − iω− 3

)
z2 + (−6− 2iω)z − 3

)
.

(3.42)

The boundary conditions of A0(z),A1(z),A2(z) are set as the following

A0(0) = 1, |A0(1)| <∞; A1(z = 0, 1) = A2(z = 0, 1) = 0. (3.43)

We can solve to obtain A0(z) = 1,A1(z) = 0 so that A(z) = 1 + ω2A2(z).
The full expression of A2(z) is lengthy but since we are interested in its be-
haviour near z = 0, we can Taylor expand A(z) giving

A(z) = 1 + ω2
(
z2

2 −
z3

54 (18 +
√

3π− 9 ln 3)
)
+O(z4). (3.44)

The function B(z) can also be straightforwardly solved in a perturbative way
by substituting A(z) into (3.41) and solve order by order in ω. Requiring the
boundary condition B0(0) = 0, |B0(1)| <∞, the leading order solution is

B0(z) =
1√
3

[
arctan

(1 + 2z√
3

)
− π

6

]
− ln

(√
3
4 + (

1
2 + z)2

)
. (3.45)

The resulting functional form is a lengthy expression satisfying boundary con-
ditionnext to leading order soluton, B1, can be obtained in a similar way by
requiring B1(z = 0) = B1(z = 1) = 0. Again, since we are interested in the
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behaviour of B(z) near z = 0, we can Taylor expand to get

B(z) = −1
6 (3 + iω)z2 +

z3

3

(
1 + iω

9 (3 +
√

3π− 9 ln 3)
)
+O(z4). (3.46)

The perturbative solution is thus

Ψ(z) = 1− z2

6

(
3(m2 − ω2) +

iωm4

m2 − 6

)
+ z3

(
iω(m2 − 2)
m2 − 6

+
m2

27 [9 + iω(3 +
√

3π− 9 ln 3)]− ω2

54 (18 +
√

3π− 9 ln 3)
)
+O(z4).

(3.47)
Then the shear viscosity can be calculated by the usual relation

η? = lim
ω→0

3
ω

Im
(

Ψ(3)(0)
Ψ(0)(0)

)
' 1−m2

(
ln 3− π

3
√

3

)
, (3.48)

where we expand Ψ = Ψ(0) + Ψ(1)z + Ψ(2)z2 + Ψ(3)z3 + ....
Interestingly, the coe�cient of m2,π/3

√
3− ln 3, is identical to the value

of −2λ in (3.33) calculated from the �uid/gravity approach. We speculate that
the two quantities could actually be related despite being at di�erent order in
the derivative expansion. 5

3.3.4 Numerical results and beyond the leading order

In this section, we solve the equation for Ψ numerically with �xed rh = 1, using
the procedures outlined in the previous section. The purpose of these numerical
computaion is two-fold. First of all, we would like to check the validity of the
analytic computation and the prediction from �uid/gravity when the disorder
strength is small. Secondly, it would be interesting to see the pattern of how
the retarded correlation GRTxyTxy behave at higher order. The main point of
the latter part is to emphasize that, when the higher order in δ is included,
the quantity η∗ = −ω−1ImGRΨΨ|ω→0 is not the value of η in the constitutive
relation. This is due to the fact that the 2-point function is polluted by the term

5Note added : We would like to mention that the expression for η?/s here agrees with those
presented in [40, 185].
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of the form (scalars)σµν e.g. λ7σ
µν(∇⊥φ)2 in (3.8) and (3.8).
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Numerical result

Entropy ratio

Figure 3.1. Numerical value of viscosity ratio 4πη∗/s at zero chemical potential com-
pared with 4πη/s in the �uid/gravity calculation as a function of m/T . The dotted
curve is the ratio 4πη?/s computed using Kubo’s formula for η? as described in section
3.3.3. The solid curve (�uid/gravity) is computed from η/s where s = 4πr2

h and rh is
given by the full expression in (3.30). We refer to this curve as entropy ratio since the
value of η is proportional to the entropy density when m = 0 with the same energy
density. It is clear that there is a large deviation between the numerical η∗ and the
�uid/gravity η.

In �gure 3.1, we demonstrate that both η/s and η?/s violate the KSS bound.
The violation of KSS bound for η/s can be understood as η is only sensitive to
r0 as we pointed out in section 3.3.2. On the other hand, the violation of η?/s
comes from the change in entropy and the higher order terms in δ expansion..
Interestingly, our numerical result indicates that the di�erences η− η? is mono-
tonically increasing as m/T grows.

We can also consider what happens in the �nite chemical potential case. In
�gure 3.2, we can see that the ratio η?/s violate the bound for even small value
of m. The numerical value of η?/s decrease more rapidly as one increase the
chemical potential. Although we don’t have an analytic expression to see the
explicit µ/rh dependence, this feature can already be observed at a small value
of m. In the regime where the di�erence between η? and η is small, the above
feature agrees with the prediction from (3.35).

A simple Mathematica code used to produced plots in this section is avail-
able upon request.
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Figure 3.2. The numerical pro�le of 4πη∗/swith respect to them/rh at various µ/rh,
where η∗ = −ω−1ImGRΨΨ|ω→0 for di�erent chemical potentials. Each curve truncates
at zero temperature where m/rh =

√
6− µ2/2r2

h.

3.4 Discussions and outlook

We follow up on the insight from [177, 178], which suggest that coupled the
�uid to the background spatially dependent scalar �elds φi is an accurate and
consistent framework to study the hydrodynamics behaviour of the theory with
broken translational symmetry. We construct the constitutive relation to order
δ2 and shows that the standard hydrodynamic formula we used to extract the
usual shear viscosity, η, is no longer applicable when the scalar �elds are in-
cluded in the constitutive relation. With the modi�ed constitutive relation, we
speculate that the shear viscosity may not be the only channel to produce the
entropy. However, the correct form of the entropy current has yet to be found.
Thus, our constitutive relation should be considered as the worse case scenario,
where no hydrodynamics coe�cient is constrained by the positivity of local en-
tropy production and we cannot make a clear statement on the minimum en-
tropy production conjecture of [149, 150]. It would be very interesting to make
the entropy production rate argument more precise in this class of theories and
study the manifestation of the minimum entropy production conjecture in this
class of theory, particularly, possible connection between the conjecture and
the universal bound in disordered systems [36, 38, 39].

Regarding the holographic computation, we have analytically and numer-
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ically computed the “shear viscosity” per entropy density ratio, η∗/s, in the
�nite-density holographic models with translational symmetry breaking for an
asymptoticallyAdS4 spacetime. The analytic computation has been done using
a perturbative method order by order in m2 and ω. The ratio is found to vio-
late the KSS bound η/s = 1/4π for arbitrary translational symmetry breaking
parameter m. In 4 (d = 3) dimensions for small m, the ratio is

4πη∗

s
' 1− m2

r2
h

(
log 3− π

3
√

3

)
+O(m4).

At larger m, the deviation of η∗/s and η/s grows as we can see from Fig. 3.1.
Incidentally, the di�erence η− η? is monotonically increasing. As we saw that
the di�erence is caused by the higher order terms e.g. λ7, it would be interesting
to understand whether the coe�cient λ7 and other terms participate in η? are
constrained by some underlying principles or not.

A simple explanation of the violation of KSS bound is the entropy contri-
bution from the scalar �elds. In the presence of the translational symmetry
breaking scalar �eld pro�le, the entropy is increased as we can see from the
enlarged horizon in Eqn. (3.29). On the other hand, the shear viscosity remains
insensitive to m at the leading order. The η/s ratio thus becomes smaller than
the KSS bound for any m. Remarkably, the violation persists even in the zero
temperature limit the degree of violation depends on the chemical potential µ
through dependency onm. Inspired by the viscosity bound violation, it is inter-
esting to investigate other hydrodynamic bounds in the translational symme-
try breaking axion-gravity model. First, let us consider the sound speed bound
c2
s ≤ 1/2 [148]. From Eqn. (3.25), we might think that the sound speed cs

should be calculated from p = m2r0 + ε/2 by the quantity (∂p/∂ε). But if we
choose to �x m,µ

∂p

∂ε

∣∣∣∣
m,µ

=
1
2 +m2∂r0

∂ε

∣∣∣∣
m,µ

=
1
2 +

2m2

µ2 + 2(6r2
0 −m2)

≥ 1
2, (3.49)

For m = 0, this quantity saturates the bound (∂p/∂ε) ≤ 1/2. However, when
m is turned on, the above de�nition of the speed of sound violates the sound-
speed bound. A more consistent candidate for c2

s is the quantity (∂P/∂E) as
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the modi�ed constitutive relation has the following sound pole

ω2 −
(
∂P
∂E

) ∣∣∣∣
µ,µ
k2 + ... = 0, (3.50)

instead of the physical pressure p in the standard hydrodynamics. Using (3.28),
the speed of sound bound is trivially satis�ed.

c2
s ≡

∂P
∂E

=
1
2, (3.51)

saturating the sound-speed bound regardless of the translational symmetry
breaking. The other interesting bound related to the sound speed is the bulk
viscosity bound [32] for d = 3,

ζ

η
≥ 2

(1
2 − c

2
s

)
. (3.52)

Since in our model the �uid is traceless so that the bulk viscosity ζ = 0 [180],
the bulk viscosity bound is trivially saturated.

One obvious next goal is also to �nd an e�ective hydrodynamic framework
for a theory with strong disorder. As we also mentioned earlier, the main ob-
stacle for the current framework is due to the complexity when one includes
higher order terms in gradient expansions. It would be interesting to �nd a
constituent way to incorporate terms higher order in ∇φi without including
higher order hydrodynamic terms containing ∂u and ∂g. In fact, the formalism
to extract DC conductivities from forced Navier-Stokes equation has been re-
cently developed in [129, 175, 176] without invoking the derivative expansions.
The connection between this method and the one studied in this work has been
discussed in [178]. It would be interesting to see how robust the connection
between the two frameworks is when one includes higher order terms in∇φ.
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3.5 Appendices

3.5.1 Scalars, vectors and tensors from basic structures

The constitutive relation of the “hydrodynamics” e�ective theory in this work
are constructed from the following local macroscopic variables E(x),uµ(x) and
the background �elds gµν(x),φi(x) For simplicity, let us work on zero density.
To �nd the structures that enter the consitutive relation, we organise the scalar,
vector and tensor at each order in the expansion in δ.

• Structures of order δ0 : For the system where the low energy limit is
homogenous, as considered in this work, the zeroth order term cannot
explicitly contain the scalar �eld φi = mxi. The objects at this order are

Scalar : E(x)

Vector : uµ(x)

Tensor : uµuν , ∆µν
(3.53)

The projector, ∆µν = gµν + uµuν is orthogonal to the 4-velocity i.e.
∆µνuµ = 0.

• Structures of order δ1/2 : Terms at this order can only be linear in the
derivative ofφi as the expansion in δ is organised using anisotropic sclaing

Scalar : Dφi

Vector : uµDφi,∇µ⊥φi
(3.54)

where we introduce the notation for the directional derivative along the
direction of the 4-velocity asD = uµ∇µ and the derivative perpendicular
to uµ as ∇µ⊥ = ∆µν∇ν

• Structures of order δ1 : The basic structure at this order can be con-
structed from∇E ,∇u and (∇φi)2. We only construct the tensors orthog-
onal to uµ the Landau frame uµtµν is chosen. Combining these objects
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together, we obtain

Scalar : ∇µuµ, (Dφi)(Dφj),∇⊥µ φi∇
µ
⊥φj

Vector : uµDφiDφj ,∇µ⊥E ,∇µ⊥φi(Dφj),

Tensor : σµν , Φµν
ij

(3.55)

where σµν and Φµν
ij are de�ned as

σµν = 2∆µα∆νβ∇(αuβ) − ∆µν(∇λuλ),

Φµν
ij = ∇µ⊥φi∇

ν
⊥φj −

1
2∆µν(∇⊥λφi∇λ⊥φj)

(3.56)

The trace of tensor Φµν
ij over the index i, j is denoted by Φµν =

∑3
i=1 Φµν

ii .
To avoid the cluttering of indices, we denote, φ ·φ =

∑
i φiφi and Φijφiφj =∑

i,j Φijφiφj . Note also that, the divergent of the �uid velocity ∇µuµ is
equivalent to ∇⊥µuµ since uµDuµ = 0.

• Structures of order δ3/2 : Only relevant part in the constitutive relation
that requires structure at this order is 〈Oi〉. Thus, we need to construct
scalar objects under spacetime transformation which contain the index i
of the scalar �elds φi. All possible combination of objects that satisfy the
above requirements are listed below

mixed term : (∇µuµ)Dφ,∇⊥µφi∇µ⊥E ,

pure φi terms : Dφi(DφjDφj), (Dφi)(∆µν∇µφj∇νφj),

(Dφj)(∆µν∇µφi∇νφj)

(3.57)
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