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You need a di�erent way of looking at them than starting from single particle descriptions.
You don’t try to explain the ocean in terms of individual water molecules.

Sean Hartnoll, in Quanta Magazine

2
Lightning review of hydrodynamics and

gauge/gravity duality

In this chapter, I brie�y review some basic concepts of hydrodynamics and
gauge/gravity duality. I will start by constructing the simplest relativistic hy-
drodynamics from global symmetry and gradually introduce more elements
which are essential for chapters 3,4 and 5. The following section review more
technical details on how to compute 2-point correlation function and extract
transport coe�cients from hydrodynamic equations. Then I present a very
short introduction to the holographic duality with the minimum technical de-
tails possible. I will also restrict all of the discussion to relativistic hydrody-
namics, ignoring non-relativistic model.

None of the material presented in this chapter is new. Hydrodynamics is,
strictly speaking, a millennia-old subject. Many aspects of relativistic hydro-
dynamics can be found in a classic textbook by Landau and Lifshitz [48] or, for

12



Chapter 2. Lightning review of hydrodynamics and gauge/gravity duality

a more modern notation and applications, by Rezzolla and Zanotti [49]. The
discussion in section 2.1-2.2 is inspired by [50, 51] complemented by the dis-
cussion about global symmetry in [46]. The procedures presented in section
2.2 are widely used in the holography community to compute correlation func-
tion and the review of the method itself (without reference to holography) is
neatly summarised in [51]. The basic principle of gauge/gravity duality has
been very well documented over the last few decades from both string theory
[52, 53] and applications to condensed matter or quark-gluon plasma perspec-
tives(see e.g. reviews, lecture notes [54–57]) and books [4, 58–60]). Therefore I
will spare the reader the details and only cover the portion of the story that is
most relevant to this thesis.

2.1 Global symmetry, conserved current
and background �elds

As mentioned in the previous chapter, one way to think about hydrodynamics
as the e�ective theory describing the low-energy dynamics of many-body sys-
tems where the excitation wave length is much longer than the mean free path.
Thess low-energy dynamics are governed only by the conservation laws of the
system. Thus, one may say that hydrodynamics owes its existence to continu-
ous global symmetries, which are related to conserved currents by the Noether
theorem.

Usually, we derive the Noether current from a certain global symmetry
transformation of �elds in the microscopic theory. However, there is another
way to look at it. A more Lagrangian-free way to access a global symmetry
is to couple the system to a non-dynamical background �eld. For example, to
introduce the chemical potential in the grand canonical ensemble, we deform
the Hamiltonian in the following way

H → H − µQ , (2.1)

where Q is the number of particles. Now, we know that particle number is the
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Chapter 2. Lightning review of hydrodynamics and gauge/gravity duality

Noether charge of a conserved U(1). In relativistic notation, this deformation
can instead be written as

H → H −
∫
dd−1xJµAµ, where ∂µJ

µ = 0, (2.2)

where the U(1) charge is obtained by integrating the current Jµ over the spa-
tial volume Q =

∫
dd−1Sµ J

µ. The vector �eld Aµ plays the role of the non-
dynamical background �eld we discussed earlier. This background �eld can also
transform in the same way as the U(1) gauge �eld: Aµ → Aµ+ ∂µΛ. Thus we
should think about this background �eld as a non-dynamical background gauge

�eld.
Interestingly, the background gauge �eld with the gauge group G can be

used to singled out the Noether current associated to the global symmetry
group G. This can be seen due to the fact that the minimum coupling between
the matter and the background gauge �eld,

∫
ddxJµAµ, will not be invariant

under the gauge transformation, unless Jµ is a conserved current.
The global symmetry also plays a crucial role in quantum physics. The state

of a quantum system can be characterised by the eigenvalues of the conserved
charge operators. In the study of the hydrodynamic limit of quantum systems,
the quantity we are interested in is therefore the expectation of the operator
Ĵµ acting on the thermal state 〈Ĵµ〉thermal. To access these quantities without
directly specifying the Lagrangian, we put the theory on a curved manifold
M with metric gµν and, if the theory possesses the U(1) global symmetry, we
couple it to the background U(1) gauge �eld Aµ. The background metric is
introduced to capture the stress-energy tensor 〈Tµν〉thermal. With these ingre-
dients, we can write down the partition function, which has the background
�elds as its arguments. For example, the partition function of the relativistic
charged �uid in the presence of a background metric gµν and gauge �eld Aµ
can be schematically written as

Z[gµν ,Aµ] =
〈

exp
[
i

∫
ddx
√
−g

(1
2T

µνgµν + JµAµ

)]〉
(2.3)

The background �elds can now be used as a source for the conserved currents.
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Chapter 2. Lightning review of hydrodynamics and gauge/gravity duality

The variational derivative of the partition function with respect to the back-
ground �elds gives

〈Tµν〉 = −2i√
−g

δ logZ
δgµν

, 〈Jµ〉 = −i√
−g

δ logZ
δAµ

(2.4)

The next step is to to express the conserved currents in the long wavelength
limit. This can be done by gradient expanding the conserved currents and writ-
ing down all possible terms allowed by symmetry at a given order. This is not
yet a physical hydrodynamics as the theory has to be augmented by additional
physical requirements such as the extensivity condition and the positivity of
the local entropy production near equilibrium.1

To make things more explicit, I �rst illustrate how this procedure works in
a typical charge neutral �uid in section 2.1.1. The relevant global symmetries
of this section are only spacetime translational symmetries (equivalently, Tµν

is the only conserved current). Then I will brie�y review the hydrodynamic
constructions relevant to the work of chapter 3-5, where some global symmetry
groups are added or broken.

2.1.1 Charge neutral relativistic �uid

First of all, one needs to express Tµν(x) in terms of the local macroscopic vari-
ables in order to solve the conservation equation

∇νTµν = 0 (2.5)

which is a requirement that the system is invariant under di�eomorphism. To
do this, we split the system into small pieces and assume that each piece, called
�uid elements, which occupy an in�nitesimal volume at position xµ. This al-
lows one to de�ne local thermodynamics variables: the temperature T (x), the
entropy s(x), the energy density ε(x) and the pressure p(x), which are small
variations of their global equilibrium values. Each �uid element is also allowed

1Alternatively, one can also attempt to gradient expand the e�ective action. It turns out that
this approach gives us more insight on the emergent symmetry of the system once dissipative
e�ects are properly taken into account properly. We will come back to this approach in chapter
6.

15



Chapter 2. Lightning review of hydrodynamics and gauge/gravity duality

to move around with relativistic velocity uµ(x), which satis�ed the condition
uµuµ = −1 (see Fig 2.1).

Figure 2.1. An illustration of a �uid
living on the manifoldM with metric
gµν . The red box denotes a �uid ele-
ment at point xµ which moves with a
velocity uµ.

We are now ready to construct the stress-energy tensor. Since the stress-
energy tensor is a rank-2 symmetric tensor, the possible 0th order in derivative
expansion is

Tµν = Euµuν +P∆µν +O(∂1), ∆µν = gµν + uµuν . (2.6)

where ∆µν is acting as a projector to a d− 1 dimensional plane perpendicular
to uµ i.e. uµ∆µν = 0 and ∆µνgµν = d− 1. The reader might notice that this
form of the stress-energy tensor is similar to the one describing an ideal �uid if
E = ε and P = p. However, at this level, E and P are just arbitrary functions
of thermodynamics variables. The expression of the conserved currents in term
of these variables is called the constitutive relation.

To rigorously give a physical meaning to these two coe�cients, we will fol-
low a beautiful analysis of the equilibrium partition function in the presence
of a background �elds, introduced in [61, 62]. In this setup, the �nite temper-
ature can be incorporated by putting the system in the cylinder M̃d−1 × S1

(or equivalently by performing the Wick rotation which transforms the origi-
nal manifoldM to M̃d−1 × S1), where we denote the radius of S1 as L0. The
�uid velocity uµ in equilibrium is proportional to the Killing vector ξµ of the
system2. In this language, the temperature and �uid velocity can be expressed

2This is a more re�ned version of saying that if ξµ = (1, 0, ..., 0), then ξµ∂µ(Lagrangian) =
∂t(Lagrangian) = 0

16



Chapter 2. Lightning review of hydrodynamics and gauge/gravity duality

as
T =

1
L0
√
−ξµξµ

, uµ =
ξµ√
−ξλξλ

. (2.7)

In the equilibrium con�guration, the free energy can be expressible in terms of
these two quantities. In the Ginzburg-Landau style, the only term at 0th order
in derivative expansion is

F = − logZ =
∫
ddx
√
−g p(T ) (2.8)

where F is the Gibbs free energy and p(T ) is the pressure. Now, varying the
above partition function with respect to the metric gµν and substituting it in
the de�nition of the stress-energy tensor in (2.4), we immediately �nd that

Tµνequilbrium =

(
T
∂p

∂T
− p

)
uµuν + p∆µν +O(∂1). (2.9)

The �rst term is nothing but the energy density obtained by the Euler relation
ε+ p = sT . With this, we obtain the stress-energy tensor for an ideal �uid
as promised. The above method may seem like overkill but its true power will
be manifest when the global symmetry structure is more complicated or when
higher order derivative terms are involved.

Next, we move to add terms at �rst order in the derivative expansion. This
gives the following stress-energy tensor

Tµν = Euµuν + P∆µν +
∑

all vectors
α(i)(T )

(
V
µ
(i)u

ν + uµVν
(i)

)
+

∑
all tensors

β(i)T
µν

(2.10)

Here, we denote

E = ε+
∑

all scalars
γ(i)S(i), P = p+

∑
all scalars

δ(i)S(i) (2.11)

The structures S, V, T are respectively all possible independent scalar, vector,
tensor constructed from uµ and T at �rst order in the derivative expansions.
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Chapter 2. Lightning review of hydrodynamics and gauge/gravity duality

The list of all possible structures is

scalar : ∇µuµ,uµ∇µT ,

vector : ∆µν∇νT ,uν∇νuµ,

tensor : σµν := ∆µρ∆νσ
(
∇ρuσ +∇σuρ −

2
d− 1gρσ∇λu

λ
)

,

(2.12)

and {α(i),β(i), γ(i), δ(i)} are unknown functions of thermodynamic variables,
which are referred to as transport coe�cients. However, a straightforward in-
vestigation will reveal that not all structures listed above are linearly indepen-
dent. First of all, the variables uµ(x),T (x) must satisfy the conservation law
∇νTµν = 0 order by order. By substituting in the 0th order terms in Tµν , one
�nds relations between the following quantities

uµ∇µT ∼ ∇µuµ, uν∇νuµ ∼ ∆µν∇νT . (2.13)

Thus, one can see that uµ∇µT and uν∇νuµ are not independent and can be
remove from the list (2.12). The other type of redundancy is due to the fact that
the temperature �eld T (x) and �uid velocity uµ have no microscopic speci�ca-
tion out of equilibrium. This allows us to shift the velocity uµ and temperature
�eld T (x) by terms subleading in the gradient expansion i.e.

uµ(x)→ uµ(x) + Vµ(∂T , ∂u), T (x)→ T (x) + T (∂T , ∂u) (2.14)

where the vector Vµ and the scalar T only contain terms at �rst order in the
gradient expansion. This redundancy is known in the literature as frame choices.
For chapter 3 and 5, we will use the hydrodynamics construction in the Landau
frame where Vµ and T are chosen such that

uµT
µν = −εuν , (2.15)

which essentially set α(i) and γ(i) to zero. Imposing these constrains, one �nds
that there are only two the remaining terms at 1st order :

Tµν�rst derivative = −ησ
µν − ζ∆µν(∂λuλ), (2.16)
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Chapter 2. Lightning review of hydrodynamics and gauge/gravity duality

where η and ζ are the shear and bulk viscosity respectively.
The last constraint to be imposed in this system is the positivity of local

entropy production near equilibrium [48]. This condition is widely believed to
be related by the second law of thermodynamics. This is, however, not entirely
true since there is no such thing as the second law for local entropy (for exam-
ple, refrigerators do exist). However, this condition gives a sensible constraint
in most cases and, only recently, has �nally been shown to emerge from consis-
tency conditions of e�ective action for dissipative systems close to equilibrium
[63].

This constraint demands the existence of a local entropy current JµS such
that uµJµS = s and ∇µJµS ≥ 0. In practice, we can express JµS in the gradient
expansion as

JµS = suµ +
∑

all vectors
α̃(i)(T )V

µ
(i) +

∑
all scalars

γ̃(i)S(i)u
µ (2.17)

where α̃(i), γ̃(i) are some unknown coe�cients. Then, one can proceed by sub-
stituting the equation of motion ∇νTµν = 0 in ∇µJµS . In many cases, the
coe�cients α̃, γ̃ can be chosen to eliminate terms that are not positive de�-
nite3, resulting in the desired structure

∇µJµS =
∑

Fj
(
α(i),β(i), γ(i), δ(i)

)
(positive de�nite combinations of ∂u, ∂T )2

where Fj are some linear combinations of the transport coe�cients. The pos-
itivity of ∇µJµS implies that Fj ≥ 0. In this setup, fortunately, the entropy
current is well-de�ned and one �nds that

JµS = T−1 (p uµ − Tµνuν) , T ∇µJµS =
1
2η σµνσ

µν + ζ(∂λu
λ)2 (2.18)

which implies that η ≥ 0 and ζ ≥ 0. In this case, the positivity of the local
entropy production does not put a lot of constraint in the system but as we
crank up the complexity of the system, its consequences will be more dramatic.

3Unfortunately, this does not always happen, causing the de�nition of entropy current to be
ambiguous as it depends on arbitrary constants {α̃, ...}, see e.g. [64].
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Again, this condition seems very simple but the constraints it impose will
become more dramatic as we crank up the complexity of our system.

If the system also possesses a U(1) global symmetry, we can also couple it
to a background U(1) gauge �eld Aµ and write down the constitutive relation.
The stress energy tensor Tµν and the conserved current Jµ can be expressed in
terms of the same hydrodynamic quantities and background �eld. The caveat
is that, since Tµν , Jµ are physical quantities and therefore cannot depend on
the gauge choice, they can only depend on the �eld strength Fµν . In this case
the constitutive relation for Jµ is

Jµ = nuµ − σ ∆µν
(
Fνλu

λ − T∇ν(µ/T )
)

+ χE∆µν
(
Fνλu

λ
)
+ χT (∆µν∇νT )

(2.19)

The parameter n is the density of the U (1) charge and {σ,χE ,χT } are trans-
port coe�cients. In this case, the coe�cients χE and χT will generate a non-
positive de�nite term in∇µJµS thus forcing them to be zero.

2.1.2 Breaking translational symmetry

Translational symmetry breaking is one of the de�ning properties of solid state
physics. The lack of translational symmetry is caused by the presence of a
lattice or disorder, which is responsible for the �nite conductivity of the system.
Typically, the lattice/disorder spacing `dis is very short compared to the mean
free path `mfp, causing the hydrodynamic gradient expansions to breakdown
as `dis � `mfp. However, we can still study hydrodynamic properties in the
opposite limit, where the translation symmetry is only weakly broken such
that the mean free path is still much shorter than the lattice/disorder spacing
`dis � `mfp. Arguably, the quantum system will still behave like a �uid at a
certain scale (see e.g. illustration in Fig. 1.3)

The simplest way to break translational symmetries in this system is to add,
by hand, a term analogous to the Drude model. The Ward identity for Tµν in
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Chapter 2. Lightning review of hydrodynamics and gauge/gravity duality

�at space is modi�ed to

∂µT
µt = 0, ∂µT

µi =
1
τimp

T ti (2.20)

where T ti is the momentum in xi direction and 1/τimp is momentum relaxation
rate [23, 65]. The second equation breaks the spatial translational symmetry
in all directions. One can then proceed to compute hydrodynamic quantities
by assuming that the stress-energy tensor still retain the original form in (2.6)
and (2.16). This approach is a good approximation for conductivities, which
are mostly governed by the zeroth order terms in Tµν and continues to give
interesting results [65–68]. However, �rst order hydrodynamics in (2.16) turns
out to be inconsistent with the modi�ed conservation equation (2.20).

This formalism can be made more systematic. Instead of adding the term
1/τimp by hand, the translational symmetry can be incorporated by making the
background metric or the background gauge �eld spatially dependent, similar
to suspended graphene or an optical lattice in cold atom experiments. This
program has been put forth [69–71] and found applications in a clean graphene
experiment where hydrodynamic signatures have been found [24, 25], see e.g.
�gure 2.2.

Figure 2.2. An illustration of a nega-
tive local resistance caused by viscous
electron back�ow in graphene experi-
ment in [25]. The vortices, which are
signatures of hydrodynamics are ap-
parent in sub-panel A and B.
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In chapter 3 of this thesis, we proceed with the same background �eld ap-
proach but instead of using the background metric to break translational sym-
metry, we introduce additional scalar �elds to do the job. We couple the system
to the background metric and spatially dependent scalar �elds φi such that the
new generating function is

Z[gµν ,φi] =
〈

exp
[
i

∫
ddx
√
−g

(1
2T

µνgµν +Oiφi
)]〉

(2.21)

where 〈Oi〉 is the operator that corresponds to the scalar �eld source φi. The
stress-energy tensor of this theory obeys the following modi�ed conservation
law

∇νTµν = 〈Oi〉∇νφi (2.22)

The key advantage of this theory is that it has a much simpler holographic dual
compared to the previous case, allowing us to compute transport coe�cients
explicitly. The constitutive relations can be derived systematically in terms of
thermodynamic quantities, �uid velocity uµ, background metric gµν and the
scalar �elds φi. We then explore this system and the fate of the KSS bound
when the translational symmetry is broken in this particular way.

2.1.3 Introducing anomalous U(1) current

Quantum anomalies are one of the most beautiful and genuine quantum e�ects.
They are phenomena where the classical theory is invariant under a certain
global symmetry but this symmetry does not survive when the theory tran-
sitions to the quantum regime. The most well-known anomaly is the chiral
anomaly. An illustrative example is the massless fermion in even spacetime di-
mensions. For example, in 3+1 dimensions, the massless Dirac Lagrangian in
the presence of a background gauge �eld is invariant under two U(1) global
symmetries called U(1)V and U (1)A, which transform the fermion �eld as

ψ → ψ exp(iθ), and ψ → ψ exp(iγ5θ) (2.23)
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Chapter 2. Lightning review of hydrodynamics and gauge/gravity duality

However, only one current is conserved. The conservation of current in this
setup can be written in the following ways

∂µJ
µ
V = 0, ∂µJ

µ
A = κ εµνρσFµνFρσ. (2.24)

where the coe�cient κ is called theanomaly coe�cient. Similarly, one observes
that putting the theory in curved space also has a similar e�ect but, this time,
with an additional term associated to the gravitational anomaly

∇µJµA = εµνρσ
(
κFµνFρσ + λRµναβR

αβ
ρσ

)
(2.25)

The quantum anomaly has been studied intensively over the last few decades
since the study of pions in the pre-QCD era. Since then, it has been well un-
derstood and play an important role in our understanding of particle physics,
string theory and condensed matter (see e.g. [72–75] for reviews). The quantum
anomaly claim to fame came from its non-renormalisation nature: the diagram-
matic computation of the anomaly coe�cient is 1-loop exact [76–78], which
originates from a topological quantity in the index theorem [79]. Despite all
their theoretical success, these beautiful anomaly coe�cients had never been
measured in nature until the recent developments in the last few years.

The mentioned development materialised from the realisation that a quan-
tum system with anomaly gives rise to a new kind of transport phenomena. We
learned from high school physics that a charged particle will circulate around
the magnetic �eld line as it is subjected to an external magnetic �eld. In a sys-
tem with an anomaly, however, there exists an unusual current which �ows
along the magnetic �eld line and the magnitude of the current is proportional
to the magnetic �eld itself! This phenomenon is dubbed chiral magnetic e�ect

[80] and from known microscopic theories, the conductivity associated to this
anomalous current is indeed �xed by the anomaly coe�cients ( see e.g. [80–
86]). Subsequently, the strong interaction computation has also been done us-
ing gauge/gravity duality and the same relations between anomaly coe�cients
and anomalous conductivity are also found in simple models .

We are interested to see whether there exists a version of the non-renormalisation
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theorem for anomalous conductivities, especially at �nite temperature and in
the presence of the gravitational anomaly4. We investigate this possibility in
a large class of strongly interacting quantum �eld theories with holographic
duals and present the result in chapter 4. The theory we are interested in has
two U(1) global symmetries i.e. U (1)V × U(1)A and we couple them to two
background gauge �elds, Vµ andAµ respectively. The partition function of this
theory is

Z[gµν ,Vµ,Aν ] =
〈

exp
[
i

∫
d4x
√
−g

(1
2T

µνgµν + JµV Vµ + JµAAµ

)]〉
.

We construct the theory such that one of the global symmetries, namelyU(1)A
is anomalous. The Ward identities for the currents in this theory are

∇µJµV = 0,

∇µJµA = εµνρσ
(
κFA,µνFA,ρσ + γFV ,µνFV ,ρσ + λRαβµνR

β
αρσ

) (2.26)

where FV ,µν ,FA,µν are the �eld strengths associated to the background �eld
Vµ,Aµ respectively.

2.1.4 Generalised global symmetry

The global symmetries mentioned earlier are the one that people have been
familiar with since the nineteenth or early twentieth centuries. As we men-
tioned in section 2.1, these symmetries (Poincaré symmetry and U (1) global
symmetry) are often associated with transformations of point-like objects (such
as a particles) which leave the theory unchanged. Consequently, the conserved
charges in d–dimensional systems are obtained by integrating the conserved
currents over a spatial volume, e.g. for the U (1) charge

Q =
∫
d (volume) J t =

∫
dd−1SµJ

µ. (2.27)

where the spatial volume Sµ is a vector pointing in the time direction. We can
also couple the system to the vector gauge �eld Aµ as we did in the previous

4See recents review about this issue in e.g. [44, 87–89]
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section. In the language of di�erential geometry, the conserved current and the
gauge �eld can be classi�ed as a 1–form object (since it contains one index).

But of course, this is not the only global symmetry in quantum �eld theory,
especially when they system consists of extended objects such as super�uid
vortices, strings, domain walls, membranes etc. The study of such extended ob-
jects plays a crucial role in many areas of physics, particularly in string theory
[90]. In these examples, there is also a notion of global symmetry and conserved
charge. However, in contrast to the typical conserved charge (2.27) where we
integrate the conserved current over the spatial volume, the conserved charge
for extended objects is obtained by integrating over a surface (see �gure 2.3).

Figure 2.3. An illustration of a conserved
charge for a system with string-like ob-
jects. In this case, the conserved charge
is a �ux obtained by integrating the num-
ber of a string/�eld line passing through a
2–dimensional surface (�gure from [47]).

For an extended q − 1 dimensional object (q=1 for a particle and q=2 for a
string), the integration is done over a p := d− q dimensional surface. Mathe-
matically, the conserved charge for such an object is

Qgen =
∫
dSµ1µ2...µpJ

µ1µ2...µp
(p) , (2.28)

where Sµ1µ2...µp is a totally antisymmetric tensor of rank p or a p–form ob-
ject (and so is Jµ1...µp

(p) ). Similar to the conventional conserved current (2.27),
we can couple this p–form current J(p) to the background gauge �eld. How-
ever, instead of the 1-form gauge �eld, it will couple to the q–form gauge �eld
Aµ1µ2...µq which is a totally antisymmetric tensor of rank q. Recently, higher–
form symmtry has been systematically categorised in [46], although it has been
a recurring theme in various areas such as symmetry protected topological
phase and topological order e.g. [46, 91, 92], phenomenological models for su-
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per�uid vortices [93–95], dislocation/disclination in liquid crystals [96, 97].
How does this have anything to do with plasma physics in 3+1 dimensions?

Naively, one may argue that the plasma, which is charged matter coupled to an
electromagnetic �eld, has aU(1) symmetry associated to the conserved current
jµ in the Maxwell equation

∇µFµν = jν , ∇ν (εµνρσFρσ) = 0. (2.29)

Here, we can see from the �rst equation that ∇µjµ = 0 by de�nition. The
second equation is usually thought of as a constraint and trivially vanishes
when one expresses the �eld strength Fµν in terms of the gauge �eld Aµ i.e.
Fµν = ∂µAν − ∂νAµ. However, this current jµ is not associated with a global
symmetry but a gauge symmetry. It is not a true symmetry but rather a re-
dundancy of the description. The other subtle di�erences between global and
gauge symmetry can be found in the table below

global symmetry Gauge symmetry

Intrinsic property of the system a redundancy rather than real symmetry
can be spontaneously broken cannot be spontaneously broken

classi�es physical states all physical states are gauge invariant
can be anomalous cannot have anomaly

can couple to background gauge �elds gauge �eld is dynamical

So, is there any global symmetry in a system described by (2.29) ? It was
argued by [46] that the true global symmetry is encoded in the second set of
Maxwell equation (2.29). It is the 2-form global symmetry with the current Jµν

de�ned as
Jµν =

1
2ε

µνρσFρσ. (2.30)

The conserved chargeQ =
∫
dSµνJ

µν is nothing but the magnetic �ux passing
though the system as depicted in Fig. 2.3.

With the knowledge of global symmetries at our disposal, we can play the
same game we did in the previous section. First we de�ne a partition function
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of the theory coupled to the background metric gµν and the 2-form gauge �eld
bµν which sources the 2-form current Jµν in the following way :

Z[gµν , bµν ] =
〈

exp
[
i

∫
d4x
√
−g

(1
2T

µνgµν + Jµνbµν

)]〉
.

The conserved currents can be obtained by varying the partition function

〈Tµν〉 = −2i√
−g

δ logZ
δgµν

, 〈Jµν〉 = −i√
−g

δ logZ
δbµν

. (2.31)

The low energy e�ective theory with these global symmetries can then be ob-
tained by expressing Tµν and Jµν in terms of hydrodynamic variables. How-
ever, with this system, one has to take the direction of the magnetic �eld lines
into account. This amounts to introducing a vector hµ, pointing along the mag-
netic �eld lines, as a dynamical variable. After analysing the equilibrium parti-
tion function similar to those in section 2.1.1, the conserved currents at zeroth
order in the gradient expansion are [47]

Tµν = (ε+ p)uµuν + pgµν − µρhµhν +O(∂1),

Jµν = ρ (uµhν − uνhµ) +O(∂1).
(2.32)

Here ρ denotes the magnetic �ux density and µ is the chemical potential asso-
ciated with the 2-form charge (or equivalently, the rate of change of the free
energy with respect to the number of magnetic �eld line). The details of this
derivation and the constitutive relations at �rst order in derivative expansion
can be found in [47] and in chapter 5 of this thesis.

In the context of plasma physics, the situation where the matter (which
obeys the Navier-Stoke equation) coupled to the dynamical electromagnetic
�eld has been studied in the framework called magnetohydrodynamics (MHD).
And while it is a successful self-consistent description, it has one unsatisfying
underlying assumption, namely the equation of state is independent of the mag-
netic �eld. On the other hand, the framework of [47], discussed in this section,
is obtained by utilising only the global symmetry of the system. Hence, the
equation of state in this approach is free from the assumptions of the standard
MHD formulation. This new framework allows us to explore a larger param-
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eter space than that of the standard formulation. We apply this framework to
a strongly interacting quantum �eld theory with holographic dual coupled to
the dynamical U(1) gauge �eld and report our �ndings in chapter 5.

2.2 2-point correlation functions and Kubo formulae

The focus of this section is the retarded 2-point correlation function, GR, of
conserved currents. The introduction of a background �eld allows us to com-
pute this quantity in a very natural way. For example, the the stress-energy
tensor in the almost �at metric gµν = ηµν + hµν (where ηµν is the Minkowski
metric and hµν is a small perturbation) can be written as5

〈Tµν(x)〉g = 〈Tµν(x)〉h=0 −
1
2

∫
d4y GRTµνT ρσ (x, y)hρσ(y) +O(h2) (2.33)

where the retarded 2-point function is de�ned in the operator language as

GRTµνT ρσ (x, y) := −Θ(x0 − y0) 〈[Tµν(x),T ρσ(y)]〉 (2.34)

This method can be applied for all the conserved currents and background �elds
in previous sections.

The retarded 2-point function play a central role in this thesis for two rea-
sons which are detailed below.

• Firstly, the pole of the 2-point function in Fourier space captures the dis-
persion relation of the low energy excitations. For hydrodynamics, there
are two types of low energy excitations: di�usive mode and sound mode

GR(ω, k)−1 = 0 ⇒

 ω = −iDpk2, di�usive mode

ω = ±csk− iDlk2 sound mode

where cs is the speed of sound, Dp is the di�usion constant and Dl is the
sound attenuation. The speed of sound only depends on the thermody-

5The computation for the real-time correlation function in the presence of the background
�eld is best treated using Schwinger-Keldysh (or Closed-Time-Path) formalism. See, for example,
[50, 98, 99] for the derivation.
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namic quantities while the Dp,l are linear combinations of the �rst order
transport coe�cients and thermodynamics quantity.

• This bring us to the second point. The residue of some of the retarded
functions GR(ω, k) is proportional to the �rst-order transport coe�-
cients. This allows us to express transport coe�cients as linear combina-
tions of correlation functions. Such expressions are referred to as Kubo
formulae.

For the reader’s convenience, I will use the charge neutral �uid as an ex-
ample although the extension to a more complicated system is straightforward.
The procedure to obtain (2.33) in hydrodynamic models is the following:

1) First, we perturb the background �elds, such as gµν , around their means
values gµν = g

(0)
µν + hµν . For the metric, the mean value g(0)µν is usually

the �at space metric as in (2.33).

2) Then, we solve the conservation equation e.g. ∇µTµν = 0 for dynami-
cal variables (such as the temperature �eld T (x) and �uid velocity uµ).
As a result, these dynamical variables will be expressed in terms of the
background �eld perturbation hµν .

3) Lastly, one can substitute the perturbed background �elds and the solu-
tion of {T ,uµ}, expressed in terms of hµν , into the constitutive relations.
The conserved currents can be expanded to linear order in hµν and by
comparing this result to (2.33), we obtain the correlation function.

As an example, let me present a result for a few interesting correlation func-
tion in the charged neutral �uid. Firstly, the energy density correlation function
is

GRT ttT tt =
(ε+ p)|k|2

ω2 −
(
∂p
∂ε

)
|k|2 + iω|k|

2

ε+p

(
ζ + 2d−2

d ζ
) . (2.35)

The pole of this 2-point function indicates that the energy in the system is car-
ried by the sound mode with the speed cs = (∂p/∂ε)1/2 and the sound atten-
uation Dl = (ζ + (2d− 2)η/d) /2(ε+ p). On the other hand, the correlation
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function of momentum density T t⊥, orthogonal to the momentum ki, is gov-
erned by the di�usive mode

GRT t⊥T t⊥ =
η|k|2

iω− η
ε+p |k|2

+ contact term (2.36)

with the di�usion constant Dp = η/(ε+ p). The remaining correlation func-
tions can be obtained by the Ward identities

∂µT
µν = 0 ⇒ kµGRTµνT ρσ = 0. (2.37)

Finally, one can �nd linear combinations for these correlations functions and
obtain Kubo formulae for the shear and bulk viscosity

η = − lim
ω→0

Im ∂ωG
R
TxyTxy (ω, k = 0),

ζ +
2d− 2
d

η = − lim
ω→0

Im ∂ωG
R
TxxTxx(ω, k = 0).

(2.38)

It is important to notice that while these formulae do not depend on the
microscopic information, they are direct consequences of the conservation law.
Therefore they will be modi�ed once we consider systems with di�erent global
symmetries e.g. those in section 2.1.1-2.1.3. Nevertheless, the procedure out-
lined here can still be applied, as we show explicitly in chapter 3-5.

2.3 Bottom-up approach to holographic duality

Obviously, there are a lot more details from string theory and supersymmetric
gauge theory which play an important role in the fully �edged gauge/gravity
duality. Nevertheless, the following discussion will be about a few essential
aspects of the duality which allow us to show that the dual QFT exhibits hy-
drodynamic behaviour.

In the following sections, we present the gauge/gravity duality as a set of
dictionary rules relating QFT physical quantities such as global symmetries,
“source” background �elds and conserved currents in section 2.1 to quantities
in the gravity dual. We then continue by brie�y review features in gravity which
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are relevant to chapters 3-5 of this thesis.

2.3.1 Capturing global symmetry

The precise form of the duality is obtained by stating that the partition func-
tion of a strongly interacting QFT discussed in section 2.1 is equal to the semi-
classical partition function of a certain gravity theory with at least one dimen-
sion higher. Both partition function are also functions of the same arguments,
namely the background metric and the other background �elds, which act as
sources. This is the celebrated Gubser-Klebanov-Polyakov-Witten (GKPW) re-
lation [100, 101]

ZQFT[gµν , ...] = Zgravity[gµν , ...]. (2.39)

But what is the generating function of the gravitational theory? How can it
depend on the background �elds in the QFT? In order to answer these question,
let us analyse this dual gravity theory in more details to see how the global
symmetry and background �elds are manifested.

First of all, we need to recall that this gravity theory is, in fact, a certain
low energy limit of string theory. It does not consist of only dynamical gravi-
ton but also all sort of scalar �elds Φi and higher form gauge �elds A(p)

µ1...µp .
Schematically, the action of the “gravity dual” in d+ 1 dimensions is

L = R−
∑

all scalars
Zn(Φi)(∂Φi)

2 − V (Φi) +
∑

all gauge �elds
Ym(Φi)(F(p))

2

+ (even more complicated terms involvingR, Φi,A(p),F(p))
(2.40)

whereR is the Ricci scalar in d+ 1 dimensions. The functions {Zm,Ym} can be
either constant or non-trivial functions of scalar �elds Φi. The detail of these
functions and more complicated terms can be �xed by knowing their string
theory origin. For example, the gravity dual to d = 4, SU(Nc) N = 4 super-
symmetric Yang-Mills at strong coupling is governed by following action

S =
N2
c

8π2

∫
d5X
√
−G (R+ 12) (2.41)
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Alternatively, one can treat {Zm,Ym} as phenomenological parameters to “cook
up” gravity duals with desirable properties. I will follow the second approach
in this thesis.

Examples where we have evidence that the duality exists are when the so-
lution of the action (2.40) has an asymptotic region which is described by the
Anti-de Sitter (AdS) metric

ds2 = GabdX
adXb =

du2

4u2 +
L

u
(gµν(u)dx

µdxν) (2.42)

whereXa describes d+ 1 dimensional coordinate system (xµ,u), xµ describes
the coordinates on a surface where u = constant and L is the characteris-
tic length scale of the AdS space, called the AdS radius. The aforementioned
asymptotic region is when u→ 0, referred to as the boundary of the AdS space.
Here, the �rst dictionary rule can be introduced to relate the metric gµν(u) to
the source metric gµν in the QFT.

• The background metric gµν coupled to the QFT stress-energy tensor Tµν

is the asymptotic value of the metric gµν(u) describing the geometry of
a d dimensions surface at u→ 0.

gµν |QFT = lim
u→0

uGµν = gµν(u→ 0). (2.43)

In fact, a similar procedure can be applied to other �elds in the gravity dual. The
small u expansion in the asymptotic region of all the �elds F = {gµν , Φi, ...}
in (2.40) can be written as

F(u,x) = um
[
f (0)(x) + f (1)(x)u+ ... + unf (n)(x) + ...

+ f̃ (n)(x)un log u
]
, where f̃ (n) = 0 for d odd.

(2.44)

Solving this expansion using the equation of motion, one �nds that all the func-
tions f (i) can be written in terms of two independent functions f (0)(x) and
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f (n)(x). A standard procedure [101, 102] indicates that the leading term in the
expansion, f (0) should be interpreted as a source in the QFT picture. This leads
us to a more general dictionary rule:

• The non-dynamical background �eld f (0)(x) = {gµν(x),Aµ(x), ...},
which couple to the operator in QFT in d dimensions sets the asymp-
totic value of the classical dynamical �elds F(u,x) propagating in the
d+ 1 dimensional spacetime, i.e.

f (0)(x)|QFT = lim
u→0

u−mF(u,x). (2.45)

Consequently, the global symmetry G of the QFT is translated to a gauge sym-
metry G on the dual gravity side. This is due to the fact that the gauge re-
dundancy of the background �elds f (0) is transferred to the dynamical �elds
F(u,x) via the expansion (2.44). As a result, the gravity action de�ned in (2.40)
is gauge invariant under the gauge transformations of F if the QFT operator
sourced by f (0) is a conserved current.

The other crucial point is how to incorporate �nite temperature in the grav-
ity dual. One can start by putting a QFT on a cylinder as in section 2.1.1. Ac-
cording to the dictionary rule (2.43), this introduces a time circle, set by the
QFT temperature, at AdS boundary. One �nd that the thermal cycle smoothly
shrinks to a point as we move further in the bulk of the AdS space, leaving the
geometry in a cigar shape depicted in Fig. 2.4. Interestingly, this geometry is
nothing but the Euclideanised black hole geometry. By undoing the Wick rota-
tion, we �nd that the temperature e�ect can be obtained by introducing a black
hole horizon with Hawking temperature equal to the temperature of the dual
QFT.

The black hole also plays another important role in determining the un-
known function coe�cients f (n)(x) in the near boundary expansion (2.44). Es-
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sentially, the boundary condition at the black hole horizon (e.g. ingoing bound-
ary condition, regularity condition) allows one to determine f (n)(x), thus the
pro�le of F(u,x) is uniquely determined by f (0).

Figure 2.4. The evolution of the ther-
mal cycle from the boundary u → 0
into the bulk region u > 0. The circle
shrinks smoothly to a point at distance
u = uh. The geometry is terminated at
this point and forms a cigar-like struc-
ture.

By piecing together all this information, we now have the ingredients in
the gravity dual that correspond to the physical quantities we are interested in,
namely the global symmetries, background �elds that source the conserved cur-
rents and �nite temperature. With this, we will be able to construct a strongly
interacting quantum �eld theory from a gravity dual that has a desirable global
symmetry structure. To be more explicit, a few examples of bottom-up holo-
graphic models and their corresponding QFT properties are listed below.

• Conformal �eld theory in d dimensions with no additional global sym-
metries at �nite temperature corresponds to the black hole geometry in
the Einstein-Hilbert action

S =
1

2κ

∫
dd+1x

√
−G (R+ d(d− 1)) . (2.46)

This can be seen from the fact that the only relevant background �eld and
conserved charges are the background metric gµν and the stress-energy
tensor Tµν . The cosmological constant originates from the string theory
setup. For our purposes, we can view it as a term added to ensure that
the geometry on the gravity dual side has an asymptotic AdS region.

• To add additional global symmetries, such as a global U (1) symmetry on
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the QFT side, we can add a Maxwell term to the action:

S =
1

2κ

∫
dd+1x

√
−G

(
R+ d(d− 1)− 1

4e2FabF
ab
)

. (2.47)

where Fab = ∂aAb − ∂bAa where Aµ(u→ 0,x) is the QFT background
gauge �eld that sources the U(1) conserved current Jµ. If the global
symmetry happens to be a non-Abelian group, such as SU(2), we simply
change the gauge �eldAa in the gravity dual to a non-Ablelian gauge �eld
Aia, where i runs over the group index.

2.3.2 Holographic thermal 1-point and 2-point function

We are now ready to use the GKPW to obtain expectation values and correlation
functions.

In the semi-classical approximation, the partition function of the gravity
theory is determined by the onshell action, i.e.

Z[gµν , ...] = exp [iSgravity] = exp
[
i

2κ

∫
dd+1√−G (R+ ...)

]
(2.48)

where �eldsF(u,x) inSgravity are determined by the sources f (0)(x) = {gµν(x), ...}
and the boundary condition at the horizon. I would like to emphasise that, by
keeping track of the background �elds, we can conveniently use the same def-
inition of the stress-energy tensor and the other conserved currents as in sec-
tion 2.1, such as (2.4) and (2.31). Moreover, the retarded 2-point functions of
these operators can also be obtained straightforwardly using the prescription
in (2.33). For example, the stress-energy tensor 1-point and 2-point function are

〈Tµν〉 = 2√
−g

δSgravity
δgµν

, GRTµνT ρσ = −2 δ

δgµν
(
√
−g 〈Tµν〉) (2.49)

One can clearly see that this way of computing 1-point and 2-point function is
a lot easier compared to the conventional QFT method beyond a few loops cor-
rection. Practically, one only needs to solve a di�erential equation for F(u,x)
with the boundary condition determined by f (0), insert solutions in the gravity
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action Sgravity and apply the formulae (2.49). A similar procedure can be used
to obtain correlation functions of the other conserved currents.

Historically, this procedure made contact with hydrodynamics in a series of
heroic works by Policastro, Son and Starinets [103–105] for the gravity theory
dual to N = 4 supersymmetric Yang-Mills. They found that the 2-point func-
tions that agree with those predicted by hydrodynamics (2.35)-(2.36) with the
equation of state

p =
1
3ε ∼ T

4, η =
s

4π , ζ = 0 (2.50)

Soon after, this computation was extended to holographic system with di�erent
symmetries and equations of state (see e.g. [106–109] for early work on this
construction). Later on, the way to extract the constitutive relation (in section
2.1.1) was developed [110–113], allowing one to link properties of the black
hole dynamics and hydrodyhamics (this prescription is known under the name
�uid/gravity correspondence). These works have been inspirations as well as the
foundation for numerous works in the past few years, including those in this
thesis.

2.3.3 Holographic RG �ow

It is natural to ask what the physical meaning of the radial direction labelled
by the coordinate u in the previous section is. This is a long-standing question
which still remains unanswered. Earlier work [22, 114, 115] strongly suggested
that it is related to the energy scale of the theory and that the gauge/gravity
duality is the geometric realisation of the Wilsonian renormalisation group �ow
(see Fig. 2.5), where the region near the boundary u = 0 is associated to the
UV �x point.

Although the precise relation between the radial direction and Wilsonian
RG �ow is still unclear, there are evidences to suggest that the above statement
is not completely wrong. For example, the action of simple holographic models
such as those in (2.46)–(2.47) diverges as u → 0, reminiscent of a UV diver-
gence in conventional QFT. Thus, for the holographic generating function to
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Figure 2.5. The comparison between the AdS space and series of block spin transfor-
mation along the Wilsonian RG �ow.

be physical, one needs to regularise the gravity action by introducing a “cuto�
surface” at u = ε � 1 then add a local counter-term to Sgravity to subtract
the divergence [101, 102]. One may also extract the Callan-Symanzik equation
by integrating out the near boundary region u < 1/Λ, analogous to momen-
tum shell renormalisation [116, 117] (see also [118] for a review of development
before 2011 and references).

If we adopt this notion of RG �ow, one can drive the theory away from
its UV �xed point by turning on a relevant deformation. The simplest way to
do this is to add a scalar �eld φ, which sources a relevant operator 〈Oφ〉 with
scaling dimensions ∆O < d. In holography, this can be done by introducing
a scalar �eld Φ, whose boundary condition set by the source φ, in the gravity
action i.e.

Sgravity =
∫
dd+1X

√
−G

(
R− (∂Φ)2 − V (Φ)

)
, (2.51)

where the potential V (Φ) triggers the deformation away from the AdS bound-
ary. It can also be tuned to obtained a desirable geometry in the bulk (or IR
QFT) [119, 120]. This procedure is also extendable to the holographic RG �ow
for a QFT with �nite density [121, 122] by studying the action

Sgravity =
∫
dd+1X

√
−G

(
R− (∂Φ)2 − V (Φ)− Z(Φ)

4 FabF
ab
)

, (2.52)

37



Chapter 2. Lightning review of hydrodynamics and gauge/gravity duality

where the function Z(Φ) sets the relevance of the U(1) charge at di�erent
stage along the RG �ow. This ingredient of the holographic construction al-
lows us to explore large classes of theories with the same global symmetry but
di�erent equations of state and thus allows us to check the validity of universal
statements such as the KSS bound (1.1) and those in section 1.2. Interestingly,
one can engineer holographic theories with the same scaling relations as those
found in high temperature superconductor materials [123, 124].

2.3.4 The “membrane paradigm”

If we take seriously the AdS radius u as an energy scale in the Wilsonian renor-
malisation scheme, it is tempting to say that the low energy dynamics, such as
DC conductivity and viscosities are captured by the deep interior of the AdS
spacetime (see e.g. Fig. 2.5). In systems with �nite temperature, the “IR cuto�”
is generated by the black hole horizon, see Fig. 2.6. Since we know that the
QFT dual to a black hole is governed by hydrodynamic principles, one might
be tempted to say that the region near the black hole horizon (called the stretch
horizon) can be thought of as some sort of �uid and might even be the same
�uid in dual QFT. The idea that the black hole horizon behaves as a �ctitious
�uid is not new. In fact, it dates back to work on black hole in 70’s-80’s known
as the black hole membrane paradigm [125].

Figure 2.6. An illustration of AdS
space with black hole. The horizon is
located at u = uh > 0 where the scale
uh is set by the temperature. This ge-
ometry can be obtained by Wick ro-
tating the cigar geometry in Fig. 2.4.
The excitations with low energy probe
deeper in the interior near the horizon,
suggesting that the low energy dynam-
ics is governed by the physics near the
black hole horizon.

However, a more careful analysis of the �uid/gravity correspondence indi-
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cates that the �ctitious �uid at the horizon and the �uid described by the dual
QFT are not the same in general [110, 116, 126–130]. This is due to the fact that
the hydrodynamic data of the dual QFT contain not only a contribution from the
stretched horizon but also from the bulk of AdS spacetime. Nevertheless, some
hydrodynamic data of the �ctitious �uid at the horizon can still be mapped to
that of the dual QFT [126]. This is due to the fact that there exist “conserved
currents” along the AdS radial direction (u–direction) which carry the hydro-
dynamic data from the stretched horizon over to the boundary, allowing one to
map them to the dual QFT.

Let us brie�y outline how this works for the computation of the shear vis-
cosity. Typically, if one wants to compute GRTxyTxy (ω, 0) to feed into the Kubo
formula (2.38), it is required to solve Einstein’s equation, which is a second or-
der di�erential equation. However, for the shear viscosity, one can arrange the
equation of motion in such a way that it becomes a total derivative along the
u–direction i.e.

Second order Di�Eqn
∣∣∣∣
low energy

⇒ d

du

[
J (u)

]
= 0. (2.53)

In this case, the radially conserved current J contains the information about
the shear viscosity of the stretched horizon and the dual QFT when evaluate it
at the horizon u = uh and at the AdS boundary u→ 0 respectively. Once the
explicit form of J is known, one can use (2.53) to extract the shear viscosity of
the dual QFT purely from the near-horizon data.

The existence of this radially conserved current not only simpli�er the com-
putation of the transport coe�cients but is also a smoking gun for a universal-
ity relation. To be more precise, the physical quantities contained in the radial
conserved currents are fully captured by the deep IR information (i.e. at the
stretched horizon) and do not depend on the speci�c details of the “ RG �ow”
along the u–direction. This concept plays a crucial role in identifying which
quantities we should expect to display universal behaviour.
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2.3.5 Higher derivative holography

From a string theory point of view, the fact that some QFTs have a simply grav-
ity dual such as those dual toN = 4 supersymmetric Yang-Mills in (2.41) is not
a coincidence. String theory is a quantum theory of gravity with two funda-
mental parameters: the string characteristic length `s and the string coupling
gs, which controls the quantum �uctuations in the dual gravity theory. For
QFTs such as SU(N) N = 4 supersymmetric Yang-Mills to have a simple
gravity dual, both of these parameters have to be small. This limit corresponds
to sending the rank N of the gauge group SU(N) and the ’t Hooft coupling
λ := g2

YMN in the dual QFT to in�nity. To be more precise, one can relate the
string parameters `s, gs to the QFT parameters λ, gs,N as

L

`s
= λ� 1 and 4πgs = g2

YM =
λ

N
� 1. (2.54)

Similar limits can also be found for the other supersymmetric theory with holo-
graphic dual, see e.g. [52].

While the large N limit is somewhat pathological, the large ’t Hooft cou-
pling limit represents the fact that the QFT we are interested in has in�nitely
strong coupling. The combination of the two limits greatly simpli�es the com-
putations in the gravity dual. However, this is nothing but one corner in the
parameter space. To explore di�erent regions of parameter space and make a
universal statement such as the bound (1.1), one needs to �nd a way to extend
our computation beyond large N ,λ limit.

While it is very di�cult to move away from the large N limit due to the
more problematic nature of the string coupling gs corrections6, the large N
limit with 1/λ correction is much more tame and very well-documented [135–
141]. It turns out that, in order to include �nite λ corrections in the gravity
dual, one has to add higher-derivative terms. For example, in N = 4 SYM, the
�rst ’t Hooft coupling correction comes from the following higher derivative

6See recent developments on 1/N corrections in the large ’t Hooft coupling limit in e.g.
[131–134].
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term [141]
∆S =

∫
d5X
√
−G

(
γW

)
(2.55)

where W is a linear combination of forth powers of the Weyl tensor Cabcd (c.f.
[141]).

W = CabcdCmbcnC
rsm
a Cnrsc +

1
2C

adbdCmnbcC
rsm
a Cnrsd. (2.56)

Note also that, in the string theory construction, the constant γ would also
depends on scalar �elds in the dual gravity side.

The above �nite ’t Hooft coupling correction is speci�c to SU(N) N = 4
supersymmetric Yang-Mills. Given the vast landscape of string theory, it is
reasonable to expect that generic higher derivative corrections could occur for
the other QFTs with holographic duals. The higher derivative couplings e.g. γ
could also depend on the scalar �elds as in the case of N = 4 supersymmetric
Yang-Mills but they are constrained by consistency conditions such as unitarity,
causality, etc., as illustrated in [142–147].
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