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Abstract
A two-dimensional electron system in the presence of amagnetic field andmicrowave irradiation can
undergo a phase transition towards a zero-resistance state (ZRS). Awidely usedmodel predicts the
ZRS to be a domain state, which responds to applied dc voltages or dc currents by slightly changing the
domain structure. Herewe propose an alternative response scenario, according towhich the domain
pattern remains unchanged. Surprisingly, afixed domain pattern does not destroy zero-resistance,
provided that the resistance is direction independent. Otherwise, if the symmetry of the domain
pattern allows a direction dependence of the resistance, the domain state can be dissipative.We give
examples for both situations and simulate the response behavior numerically.

1. Introduction

At the beginning of this century,Mani et al [1] andZudov et al [2]discovered a newdissipationless state of a 2D
electron gas that is exposed tomicrowave irradiation and an out-of-planemagnetic field [3]. Upon entering this
so-called zero-resistance state (ZRS), the longitudinal conductivity of the sample drops to zero, while theHall
conductivity, unlike in the quantumHall effect, does not show any discontinuity. Great experimental and
theoretical efforts have beenmade to understand this phenomenon, yielding at present strikingly different
explanations.While theories involving pondermotive forces near the contacts [4] or the effect of radiation on
edge states [5] seem to be less likely in view of recentmeasurements [6], other theories, predicting the ZRS to be
either homogeneous or inhomogeneous, constitute competing alternatives. The radiation-driven electron orbit
model combines semiclassics with an exact solution of a quantum-harmonic-oscillator problem and explains
the ZRS in termswave-packet dynamics andPauli exclusion principle [7]. According to this theory the ZRS is
homogeneous.

An in turn different group of theoreticalmodels instead predicts that the ZRS is an inhomogeneous domain
state. Here the basicmechanism can been understood via a combination ofmicroscopic calculations of the non-
equilibrium state [8–11] and considerations of the electrodynamics of the system [12–15].

This work is based on the domain-statemodel, whichwewill now introduce inmore detail.Microscopic
calculations show that the interplay of photon absorption and scattering of the electrons lead to a longitudinal
conductivity that oscillates upon changing themicrowave frequency, themagnetic field strength, or the electric
field strength. Forfixed frequency andmagnetic field, the conductivity tensor, i.e., the tensor that relates the
local electric field ( )e r and the local current density, s=( ) ( ) ( )ej r e r , can be approximated as [16]
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where the dissipative part sd depends on the absolute value of the local electric field, º ∣ ( )∣e e r . In the parameter
range of the ZRS, the dissipative part is negative at e=0 and becomes positive only above a critical value e0, with
s s¢ º >( ) ( )e e ed d 0d 0 d 0 . This criticalfield strength is set by the radiationfield and is thus typicallymuch larger
than an external dc field of a linear-responsemeasurement [9].

Naively the theoretical prediction of negative s ( )0d seems to imply a negative-resistance state instead of a
ZRS. This however is only true if the system is assumed to be homogeneous and the effect of boundaries and
contacts can be neglected. Indeed, numerical simulations of a systemwith boundaries, fixed homogeneous
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charge distribution, and negative s ( )0d predict the resistance to have positive dissipative part and a sign-reversed
Hall part [17], which, however, still contradicts experimental observations.

A different ansatz is to allow for an inhomogeneous charge distribution. In this case, neglecting boundary
and contact effects, a conventional linear-response experimentmeasures the effective conductivityΣ, which
determines the linear relation

= S ( )J E 2

between the spatially averaged electric field = á ñ( )E e r and current density = á ñ( )J j r , where òá ñ º /r V... d ...2

denotes the spatial average over the sample volumeV. Generally, in inhomogeneous systems the local
conductivityσ does not coincide with the effective conductivityΣ. Inhomogeneities in turn can be stabilized if
the local conductivity is not positive semidefinite [18], which is the case in the regime of the ZRS for <e e0.
Andreev et al [12] thus proposed that upon entering the ZRS, the systemundergoes a dynamical phase transition
towards a statewith an inhomogeneous internal electric spacefield

=( ) ( ) ( )e r e r , 30

which direction can vary in space but themagnitude isfixed to e0 everywhere, barring isolated singular points
and lines. For the average field to vanish, the systemmust formdomains [12, 13, 15, 16]with accumulated charge
at domain boundaries, as sketched infigure 1. It has been shown that time-dependent fluctuations around ( )e r0

do not divergewith time, signifying the stability of a steady domain state characterized by (3) [12, 13].
The restriction (3) allows for a variety of possiblefield patterns ( )e r0 that can be formed upon entering the

ZRS regime.While in clean systems the system tends tominimize the total length of domain boundaries,
impurities canmake the domain patternmore complex and disordered [13, 14].Measurements that are sensitive
to localfield changes provide experimental support for the domain-statemodel [19, 20] and indicate that the
pattern tends to be rather complex [21]. An unambiguous evidence for the existence of domains, however, is still
missing and the exact shape and size, could not be observed so far.

In the followingwe assume that the system is in a domain statewith an arbitrary domain pattern and focus
on the response of the domain state to an external homogeneous dc electric field E or an imposed current
density J. Assuming that each domain statemust strictly satisfy (3), one can obtain the effective conductivity by
averaging themicroscopic relation s=( ) ( ) ( )ej r e r0 0 and comparingwith (2), giving
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s
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0

which is in agreementwith experiments. The interpretation of the responsemechanism is then the following:
switching on an infinitesimal electricfield E, the system responds in formof an infinitesimal shift of the domain
walls, as sketched infigure 1. Compared to the initial state ( )e r0 , some domains become shrunk, other domains
become expanded such that the final state = + D˜ ( ) ( ) ( )e r e r e r0 0 satisfies the new boundary condition,
á ñ =˜ ( )e r E0 . The induced field changesD ( )e r are zero everywhere except at domain boundaries, where they are
huge (∼e0), thus constituting a locally nonlinear response.

Figure 1. Left: sketch of a general domain realization of the ZRS characterized by large internal electric fields =( ) ( )e r e r0 . The thick
lines indicate the domain boundaries with accumulated charge. Right: two possible ways to respond to an external electric field E. In
the domain-wall scenario the domainwalls shift, leading to large localfield changesDe with D ~∣ ∣ ee 0. In the linear scenario the
domainwalls retain their position and only the low-field pattern de with d ∣ ∣ ee 0 changes.
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In this work, we argue that the response of the domain state can be locally linear andmust not involve
domain-wall shifting.Our scenario, whichwewill call linear scenario, involves only small changes of the local
electric field d ( )e r , as sketched infigure 1. In general, thismicroscopically differentmechanism results in a
different effective conductivity, the determination of which turns out to bemore difficult then in the domain-
wall scenario.Wewill derive general symmetry relations that restrict the space of possible effective-conductivity
tensors. These relationsfix the effective conductivity to (4) only if the effective conductivity is isotropic. In the
anisotropic case we insteadfind that the domain state can be dissipative.

The outline of this work is as follows. First we define the linear-response scenario. In section 3we consider
the effective conductivity in this scenario, and separately discuss the isotropic and the anisotropic cases. In
section 4we discuss the time relaxation of the ZRS that is brought out of the steady state by a dc voltage for two
examples.We conclude in section 5.

2. Linear-response states

Wedefine a linear-response state as d= +( ) ( ) ( )e r e r e r0 , composed of a high-field pattern ( )e r0 with
=∣ ( )∣ ee r0 0 [12], that averages to zero, and a low-field pattern d ( )e r with d ∣ ( )∣ ee r 0 that averages to the

external electric field tomeet the imposed boundary condition á ñ =( )e r E.
The steady high-field pattern ( )e r0 is rotation free and the corresponding current density s=( ) ( ) ( )ej r e r0 0 0

satisfies the stationary continuity equation.Mathematically, it is thus the solution of the differential equations

 =  ´ =· ( ) ( ) ( )j r e r0, 0, 50 0

with the boundary condition á ñ =( )e r 00 .
Similarly, a steady linear-response state with the current density s=( ) ( ) ( )ej r e r and the electricfield

pattern ( )e r must solve the same differential equation (5)with the boundary condition á ñ =( )e r E. Due to
linearity of the differential operators in equation (5) and the spatial average á ñ... , this is equivalent to the
requirement of a steady low-field subsystem d ( )e r , d ( )j r , which then is the solution of

d d =  ´ =· ( ) ( ) ( )j r e r0, 0, 6

with the boundary condition dá ñ =( )e r E. The current density of the low-field system is obtained by subtracting
s=( ) ( ) ( )ej r e r0 0 0 from s=( ) ( ) ( )ej r e r and expanding to linear order in d ( )e r giving

d s d=( ) ˜ ( ) ( ) ( )j r r e r , 7

with the local conductivity

s s s= + Ä˜ ( ) ( ) ˆ ( ) ˆ ( ) ( )er e r e r 8D0 0 0
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where s sº ¢ ( )e eD d 0 0 and f f= =ˆ ( ) ( ) ( ( ) ( ))ee r e r r rcos , sin0 0 0 is the direction of the high-field electric field,
parametrized by the polar angle f ( )r .

The key observation is that the electrodynamics of the low-field subsystem resembles the electrodynamics of
a conventional inhomogeneous conductor [22], with an r-dependent conductivity s̃( )r , a local electricfield
d ( )e r , and a local current density d ( )j r that are induced by the external electric field E. Like for a conventional
conductor, the stability of the steady low-field subsystem is thus guaranteed by the positive semidefiniteness of
the symmetric part of the local conductivity s̃( )r . From (9), this is easily proven to be satisfied for any high-field
pattern ( )e r0 for all r. Amore explicit discussion of the stability is presented in section 4.

3. Effective conductivity

Given that the domain state responds according to the linear scenario instead ofmoving the domainwalls, we
now consider its effective conductivity. Particularly interesting is the questionwhether the domain state is a ZRS
if the system responds according to the linear scenario, i.e., the field pattern slightly deviates from a pure domain
state ( )e r0 .

For a given s̃( )r the effective conductivityΣ can be defined as

d s dS á ñ = á ñ( ) ˜ ( ) ( ) ( )e r r e r 10
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for all possible d ( )e r . From this definition it is in general difficult to calculateΣ explicitly. However, thanks to a
certain symmetry inherent in the electrodynamics of 2D systems, which has been found byDykhne in 1971 [23],
we can derive exact symmetry relations that restrict the space of possible tensorsΣ.

We introduce newfields d ¢( )j r and d ¢( )e r via the transformation

d d s d= ¢ + ¢( ) ( ) ( ) ( )Rj r j r e r , 11H

d d s d= ¢ + ¢-( ) ( ) ( ) ( )Re r e r j r3 , 12H
1

whereR is a 90°-rotationmatrix. Using the 2D-specific relations

 = - ´  ´ = · · ( )R Rv v v vand , 13

one can easily show that the newfields are another solution of (6) and (7)with the same conductivity tensor (9),
like the originalfields. The two solutions correspond to different boundary conditions, i.e., the averagedfields

d¢ = á ¢ ñ( )J j r and d¢ = á ¢ ñ( )E e r differ, in general, from J and E. The effective conductivity, however, does not
depend on thefields, so ¢J and ¢E must be related by the same effective conductivityS as thefields J and E.
Averaging equations (11) and (12), and using ¢ = S ¢J E and = SJ E, wefind

s sS = - S S -- -( ) ( ) ( )R R1 3 . 14H H
1 1

For a general effective conductivity tensor, this relation is equivalent to

sS = ( )det , 15H
2

sS - S = ( )2 , 16H12 21

whereSij are the components ofS. Note that equations (15) and (16) hold for an arbitrary domain pattern. It
can be easily seen that a conductivity tensor satisfying (15) and (16) is positive semidefinite, which allows for
dissipationless as well as dissipative response.

3.1. Isotropic effective conductivity
Isotropy, i.e., direction independence of the effective conductivity imposes two additional equations,

S = S S = -S ( ), . 1711 22 12 21

Togetherwith the derived symmetry relations (15) and (16) thisfixes the effective conductivity unambiguously
to

s
s

S =
-

⎜ ⎟⎛
⎝

⎞
⎠ ( )0

0
. 18H

H

This shows that a domain state with an isotropic effective conductivity is indeed a ZRS. The linear scenario thus
correctly reproduces the experiments [1, 2] in this case. Isotropy of the effective conductivity can be assumed if
the domain pattern has four-fold rotational (C4) symmetry, or the domain pattern is randomized by
impurities [13, 14].

3.2. Anisotropic effective conductivity
Without additional restrictions on the effective conductivity, equations (15) and (16)no longer guarantee the
absence of dissipation. In fact, the response can be dissipative in this case, whichwe shownowby calculating the
effective conductivity for a specific domain pattern.

We consider amodel with a single domainwall separating two domainswith opposite directions of e0, as
illustrated infigure 2(a). Inserting these directions into equation (9)wefind

s s
s s= -( )˜ ( ) ( )r 0 . 19H

H D

For this simple structure the local conductivity (9) is the same in both domains and thus, according to (10), equal
to the effective conductivity,

s
s sS = -( ) ( )0 . 20H

H D

Since s > 0D the response is dissipative in contrast to the prediction of the domain-wall scenario [12].

4.Dynamical response

So farwe have discussed the possibility of the linear scenario as an alternative to the domain-wall scenario in the
steady regime, i.e., at timeswhen the systemhad enough time to rearrange the charge density d ( )n tr, after the
application of an externalfield E. To decide, which type of response the systemwill choose, we now consider the
time dependence of the charge density right after the application of an external field.

4
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The dynamics are governed by the continuity equation, the Poisson equation, andOhm’s law,

= -
( ) · ( ) ( )n t

t
t a

r
j r

d ,

d
, , 21

= - +( ) ( ) ( )t Un t be r r E, , , 21

s=( ) ( ( )) ( ) ( )t e t t cj r r e r, , , , 21

where ( )Un tr, is the electrostatic potential of the charge distribution, written in terms of a positive definite
operatorU, which encodes theCoulomb interaction, acting on the charge distribution. ConsideringU as a finite
matrix with indices r and ¢r , its positive definiteness is due to the fact that the diagonal elements are infinite
while the sumover each columnor row isfinite.

We decompose the charge density into d= +( ) ( ) ( )n t n n tr r r, ,0 , where ( )n r0 is the given charge density
of the accumulated charge at the domainwalls that produce the pattern = -( ) ( )U ne r r0 0 and d ( )n tr, is the
time-dependent deviation induced by the externalfield. Then, as previously, the local electric field decomposes
into the high-field pattern ( )e r0 and the low-field pattern d d= - +( ) ( )t U n te r r E, , and the current
density, to linear order in de, decomposes into s=( ) ( ) ( )ej r e r0 0 0 and d s d=( ) ˜ ( ) ( )t tj r r e r, , , where s̃( )r is
given in (9). The linearization of d ( )tj r, is valid as long as d ∣ ( )∣t ee r, 0.

Inserting into equation (21), wefind the response entirely in the low-field subsystem, governed by

d
d= -

( ) · ( ) ( )n t

t
t a

r
j r

d ,

d
, , 22

d d= - +( ) ( ) ( )t U n t be r r E, , , 22

d s d=( ) ˜ ( ) ( ) ( )t t cj r r e r, , . 22

It is useful to consider∇,U, and s̃ ( )rij asmatrices and d ( )e tr,i , d ( )n tr, ,Ei, and d ( )j tr,i as vectors by
considering the spatial arguments as indices. Doing so and combining equations (22), we canwrite

d
d s s= - -  =  

( ) ( ) ˜ ˜ ( )n t

t
P n t E P U

d

d
, , 23i ij j i

T
ij j

where the sumover repeated indices Î { }i j x y, , is implied andwe used that∇i is skew symmetric. To bring
equation (23) in the usual formof linear differential equations, we subtract the time-independent part,
d d d= -¯ ( ) ( ) ( )n t n t n E0 with

d s= ( ) ˜ ( )P n E E . 24i ij j0

The solution d =¯ ( )n t 0 of

d
d= -

¯ ( ) ¯ ( ) ( )n t

t
P n t

d

d
25

is Lyapunov stable if the real parts of the eigenvalues ofP are non-negative and those that are zero are semi-
simple (i.e. its algebraic and geometricmultiplicities coincide). That this is indeed the case can be seen by using
theCholesky decomposition =U LLT to obtain

s= =  -( ) ˜ ( )P L ML M L L, . 26T T T
i
T

ij j
1

Figure 2. Single-domain-wall model. (a)The high-field pattern ( )e r0 produced by accumulated charge at the domainwall (thick line)
in themiddle of the sample. (b) Infinitesimal increase of the local electric field by d ( )e r in response to an external field E applied in the
y-direction. The effective conductivity is positive definite, hence the induced current has a component parallel to E—the response is
dissipative.
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The symmetric part ofM can bewritten as

s s
=

+
= 

+


˜ ˜
( )M

M M
L L

2 2
27S

T
T

i
T ij ji

j

s=  ˜ ( )L L, 28T
i
T

ij jS,

where s̃S is the symmetric part of s̃. Similarly, the skew symmetric partMA is given by the skew symmetric part
of s̃, which has s H on its off-diagonal. Since sH is r independent, it commutes with∇i andwe obtain

s=   =[ ] ( )M L L, 0. 29A H
T

y x

For an arbitrary vector vwe can thuswrite a square form as

s= ˜ ( )v Mv V V , 30T T
S

where =  ( )V Lv Lv,x y is a vector from a squared vector space compared to the vector space of v. Since s̃S is
positive semidefinite in this squared vector space, we conclude that v Mv 0T for all v, henceM is also positive
semidefinite. SinceMA= 0,M is symmetric, consequently its eigenvectors are linearly independent. These
properties are inherited by P because it is similar toM andwe can conclude that the eigenvalues ofP are non-
negative and thosewhich are zero belong to linearly-independent eigenvectors, are thus semi-simple. These are
sufficient criteria for the Lyapunov stability of the steady solution d =¯ ( )n t 0, or equivalently d d=( ) ( )n t n E0 .

For =E 0, the considerations above are essentially a revision of the argumentsmade in [12] on the stability
of the state =( ) ( )e r e r0 . For ¹E 0, however, this shows that the linear-response states are also stable, although
they deviate from =( ) ( )e r e r0 by d ( )e r with d ∣ ( )∣ ee r 0.

A solutionwith the boundary condition d = =( )n t 0 0 reads

d d= - -( ) ( ) ( ) ( )n t n E1 e , 31P t
0

fromwhichwe see that only the decaying non-zeromodes ofP contribute, which according to (24) scalewith E.
Ourmain conclusion from this is that the application of an external field E=e0 on a domain state with
=( ) ( )e r e r0 will lead to small changes of the local electric field, which scale withE. In particular, this implies that

the domainwalls will not shift, since this would require d ~∣ ( )∣ ee r0 0.
We nowdemonstrate this behavior with two examples: the single-domain-wallmodel from the previous

section and aC4 symmetricmodel.

4.1. Single-domain-wallmodel
Weconsider again the single-domain-wall model shown infigure 2. Suppose that for <t 0 the domain state has
the high-field pattern ( )e r0 as shown infigure 2(a). At t=0we switch on an external electric field E, so that
d = =( )te r E, 0 , as illustrated infigure 2(b). Since the local conductivity (19) is equal in both domains, the
induced current density d s= =( ) ˜ ( )tj r r E, 0 is r-independent, hence d = =· ( )tj r, 0 0. From this
follows immediately d =( )n tr, 0, thus the systemwill remain in the t=0 state, which is a linear-response state
with d = ∣ ∣ ∣ ∣ ee E 0.

For this particular domain pattern, the linear-response state coincides with the state at the instancewhen the
electric fieldwas switched on. In general, this is not true as is shown in the next example.

4.2. Checkerboardmodel
The domain pattern for thismodel is shown infigure 3(a). According to equation (9), the local conductivity in
the domains A andB reads

Figure 3.Checkerboardmodel. (a)The domain pattern consisting of four domainswith different directions of e0 and the resulting
circulating current j0. (b) s̃ ( )rx y, on a 200×200 grid with s s= 3D 0 and s s= 5H 0.
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At t=0, the local current density has afinite divergence, so the charge density will evolve, governed by
equation (23).We simulate the time evolution numerically by discretizing the timewith afinite time step dt and
discretizing the space by anN×N gridwith periodic boundary conditions in both directions.Wemeasure the
length in units of the domain length l, so that = ( )x yr , with e= -[ ]/x y li N i N, 2 , 0, 1 .

To provide a reasonable description on the discretized space, we have to smoothen the domain boundaries
over a few space points, i.e., find a continuous version of equation (32). To do so, we convolute theN×N
matrices ( )e rx0, and ( )e ry0, with aGaussian kernel of size l0.15 and standard deviation l0.1 to determine the
continuous version of the angle f =( ) ( ( ) ( ))e er r rarctan y x0, 0, in (9). At points where the angle is not defined,
we suppress sD by the function + -[(∣ ∣ ) ]l lr1 2 tanh 0.15 0.05 2. The resulting spatial dependence of s̃ is
shown infigure 3(b).We checked that the variation of these parameters does not have qualitative influence on
the result.

We approximate the action of the interaction operatorU on dn by a convolution of dn with a kernel

x h
=

+ +( )
( )U

U

x y
33x y,

0

2 2 2 2

of size l l´ andwith parameters set to x = l0.1 and h = -10 2 (η can be seen as a finite out-of-plane
component andwe consider numerically the limit h  0). The variation of these parameters and the size of the
kernel within the physical parameter regime (which is restricted by the requirement of a positive definiteness of
U), does not lead to qualitative differences. Representative numerical results are summarized infigure 4.

As predicted by our symmetry considerations, in the steady state the average currentflows perpendicular to
the appliedfield, according to the simple relation = SJ E with

Figure 4.Time evolution of the checkerboardmodel. (a)The initial state at t=0, when an external electricfield = ( )EE 1, 1 2 has
been turned on. (b)The state at =t t2 0, where s= -( )t lE U100

2 2
0 0. Further time evolution gives no visible changes fromwhichwe

conclude that the system essentially reached the steady state. In the streamplots the linewidth is proportional to the fieldmagnitude.
Allmagnitudes are proportional toE. (c)Time evolution of the angle between the applied field E and the induced total current

d= á ñ( ) ( )t tJ j r, . As predicted analytically in section 3, in the steady state ( t t2 0), the averaged currentflows perpendicular and is
equal to S E withΣ form (34). The parameters for these plots are l = l , s s= 3D 0, s s= 5H 0, and = ´ -t td 5 10 4

0. The spatial
grid is 200×200, which turns out to be sufficient since already a halved precision gives no visible differences in the plots (except for a
coarser grain).
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In contrast to this, the localfields and the charge density acquire a non-universal structure during the evolution,
which depends on the details of the interaction, domain length, and the direction of the applied electricfield.
This dependence is illustrated infigure 5, wherewe showplots of the steady state for the electric spacefield
= ( )EE 1, 0 and l = l0.4 (comparewith figure 4: = ( )EE 1, 1 2 and l = l1 ). Comparing the figures, we

see that the localfield patterns change dramatically. The effective conductivity (34) stays the same.
It is interesting to compare this ZRS to the quantumHall effect formagnetic fields at theHall plateaus. The

Hall effect also shows a purely transversal resistance, hence a very similarmacroscopic response. The
microscopic currentflow, however, turns out to be different: while in theHall effect bulk states are localized and
current is carried entirely by the edge states, in the domain state currentflows through the bulk, albeit in an
inhomogenous pattern.

5. Conclusion

In conclusion, we have considered the response of domain states to externalfields (induced by a dc voltage) that
aremuch smaller then the internalfields within the domains (induced bymicrowave radiation).We have
proposed a new responsemechanism,which, contrary to the established one, does not involve domain-wall
shifting. In our view, small externalfields lead only to smallmodulations of the localfields, leaving the domain
patterns unchanged. The theoretical justification of the linear scenario is based on the fact that small deviations
from the pure domain state are not unstable, whichwe have shown by analyzing the electrodynamics of a general
domain state.We tested these predictions on two specific realizations numerically.

Ourmain results address the effective conductivity of the domain state in the linear scenario: if the effective
conductivity is isotropic, which is the case if the domain pattern is chaotic orC4 symmetric, then the response is
dissipationless. Otherwise the response can be dissipative, whichwe have shown for the single-domain-wall
pattern—the energeticallymost favorable pattern in a clean system [12].

Combining this result with the fact that disorder can pin the domainwalls in a chaotic pattern [13, 14], this
work supports the idea that the radiation-induced ZRS is a disordered domain state, where the disorder is strong
enough to allow for a chaotic domain pattern. Clean domain states, instead, are allowed to have a dissipative
response. The explicit value of the longitudinal conductivity is presumably non-universal in this case. This is in
stark contrast to the domain-wall response, which predicts strictly zero-resistance in the clean case and
dissipative response in the regime of pinned domainwalls [13].

Measurements that are sensitive to local changes of the electric field [20, 21] indicate that the domain
structure is indeed rather complex and show that the local electricfields change proportional to the applied
voltages. These observations, hard to reconcile with the domain-wall-response scenario, are in qualitative
agreementwith our theory.

We stress that this work is based on the assumption that the system is in a domain state, which at present
appears to be the dominant picture for the ZRS but not indisputably established one. Steadiness of the domain
pattern is also an essential ingredient for our analysis, which is a justified assumption in radiation-induced ZRSs
[15, 19]. Time-dependent patterns, however,may occur inmany other cases, e.g., including the zero-
differential-resistance states in dc biased 2D electron gases in strongmagnetic fields [24], where the domain

Figure 5. Steady state of the checkerboardmodel for = ( )EE 1, 0 and l = l0.4 . Otherwise same parameters as infigure 4. The length
scale of the weak substructure, visible in dn, corresponds to the size of the interaction kernel, is thus a numerical artifact, which
however has no influence on the effective conductivityΣ.
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structuremoves between boundaries of the sample. The extension of the present analysis to time-dependent
domain patterns remains a subject for futurework.
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