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Abstract

A two-dimensional electron system in the presence of a magnetic field and microwave irradiation can
undergo a phase transition towards a zero-resistance state (ZRS). A widely used model predicts the
ZRS to be a domain state, which responds to applied dc voltages or dc currents by slightly changing the
domain structure. Here we propose an alternative response scenario, according to which the domain
pattern remains unchanged. Surprisingly, a fixed domain pattern does not destroy zero-resistance,
provided that the resistance is direction independent. Otherwise, if the symmetry of the domain
pattern allows a direction dependence of the resistance, the domain state can be dissipative. We give
examples for both situations and simulate the response behavior numerically.

1. Introduction

At the beginning of this century, Mani et al[ 1] and Zudov et al [ 2] discovered a new dissipationless state ofa 2D
electron gas that is exposed to microwave irradiation and an out-of-plane magnetic field [3]. Upon entering this
so-called zero-resistance state (ZRS), the longitudinal conductivity of the sample drops to zero, while the Hall
conductivity, unlike in the quantum Hall effect, does not show any discontinuity. Great experimental and
theoretical efforts have been made to understand this phenomenon, yielding at present strikingly different
explanations. While theories involving pondermotive forces near the contacts [4] or the effect of radiation on
edge states [5] seem to be less likely in view of recent measurements [6], other theories, predicting the ZRS to be
either homogeneous or inhomogeneous, constitute competing alternatives. The radiation-driven electron orbit
model combines semiclassics with an exact solution of a quantum-harmonic-oscillator problem and explains
the ZRS in terms wave-packet dynamics and Pauli exclusion principle [7]. According to this theory the ZRS is
homogeneous.

Anin turn different group of theoretical models instead predicts that the ZRS is an inhomogeneous domain
state. Here the basic mechanism can been understood via a combination of microscopic calculations of the non-
equilibrium state [8—11] and considerations of the electrodynamics of the system [12—15].

This work is based on the domain-state model, which we will now introduce in more detail. Microscopic
calculations show that the interplay of photon absorption and scattering of the electrons lead to a longitudinal
conductivity that oscillates upon changing the microwave frequency, the magnetic field strength, or the electric
field strength. For fixed frequency and magnetic field, the conductivity tensor, i.e., the tensor that relates the
local electric field e(r) and the local current density, j(r) = o (e)e(r), can be approximated as [16]

oe) = (Ud(e) oH )) (1)

—oy oy(e)

where the dissipative part oy depends on the absolute value of the local electric field, e = |e(r)|. In the parameter
range of the ZRS, the dissipative part is negative at e = 0 and becomes positive only above a critical value e,, with
al(ep) = dog(ep)/de > 0. This critical field strength is set by the radiation field and is thus typically much larger
than an external dc field of a linear-response measurement [9].

Naively the theoretical prediction of negative oy (0) seems to imply a negative-resistance state instead of a
ZRS. This however is only true if the system is assumed to be homogeneous and the effect of boundaries and
contacts can be neglected. Indeed, numerical simulations of a system with boundaries, fixed homogeneous
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Figure 1. Left: sketch of a general domain realization of the ZRS characterized by large internal electric fields e(r) = e((r). The thick
lines indicate the domain boundaries with accumulated charge. Right: two possible ways to respond to an external electric field E. In
the domain-wall scenario the domain walls shift, leading to large local field changes Ae with |Ae| ~ e. In the linear scenario the
domain walls retain their position and only the low-field pattern e with |de| < e changes.

charge distribution, and negative g4 (0) predict the resistance to have positive dissipative part and a sign-reversed
Hall part [17], which, however, still contradicts experimental observations.

A different ansatz is to allow for an inhomogeneous charge distribution. In this case, neglecting boundary
and contact effects, a conventional linear-response experiment measures the effective conductivity 3, which
determines the linear relation

J=XE @)

between the spatially averaged electric field E = (e(r)) and current density J] = (j(r)), where (...) = f & .../ V
denotes the spatial average over the sample volume V. Generally, in inhomogeneous systems the local
conductivity o does not coincide with the effective conductivity . Inhomogeneities in turn can be stabilized if
the local conductivity is not positive semidefinite [ 18], which is the case in the regime of the ZRS for e < ey.
Andreev et al[12] thus proposed that upon entering the ZRS, the system undergoes a dynamical phase transition
towards a state with an inhomogeneous internal electric space field

e(r) = ey(n), 3

which direction can vary in space but the magnitude is fixed to e, everywhere, barring isolated singular points
and lines. For the average field to vanish, the system must form domains [12, 13, 15, 16] with accumulated charge
at domain boundaries, as sketched in figure 1. It has been shown that time-dependent fluctuations around e(r)
do not diverge with time, signifying the stability of a steady domain state characterized by (3) [12, 13].

The restriction (3) allows for a variety of possible field patterns ey(r) that can be formed upon entering the
ZRS regime. While in clean systems the system tends to minimize the total length of domain boundaries,
impurities can make the domain pattern more complex and disordered [ 13, 14]. Measurements that are sensitive
to local field changes provide experimental support for the domain-state model [19, 20] and indicate that the
pattern tends to be rather complex [21]. An unambiguous evidence for the existence of domains, however, is still
missing and the exact shape and size, could not be observed so far.

In the following we assume that the system is in a domain state with an arbitrary domain pattern and focus
on the response of the domain state to an external homogeneous dc electric field E or an imposed current
density J. Assuming that each domain state must strictly satisfy (3), one can obtain the effective conductivity by
averaging the microscopic relation j(r) = o (eo)eo(r) and comparing with (2), giving

5 = o(e0) = ((;H (g’), @)

which is in agreement with experiments. The interpretation of the response mechanism is then the following:
switching on an infinitesimal electric field E, the system responds in form of an infinitesimal shift of the domain
walls, as sketched in figure 1. Compared to the initial state e((r), some domains become shrunk, other domains
become expanded such that the final state &)(r) = ey(r) + Ae(r) satisfies the new boundary condition,

(&y(r)) = E.Theinduced field changes Ae(r) are zero everywhere except at domain boundaries, where they are
huge (~ey), thus constituting a locally nonlinear response.

2
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In this work, we argue that the response of the domain state can be locally linear and must not involve
domain-wall shifting. Our scenario, which we will call linear scenario, involves only small changes of the local
electric field de(r), as sketched in figure 1. In general, this microscopically different mechanism resultsin a
different effective conductivity, the determination of which turns out to be more difficult then in the domain-
wall scenario. We will derive general symmetry relations that restrict the space of possible effective-conductivity
tensors. These relations fix the effective conductivity to (4) only if the effective conductivity is isotropic. In the
anisotropic case we instead find that the domain state can be dissipative.

The outline of this work is as follows. First we define the linear-response scenario. In section 3 we consider
the effective conductivity in this scenario, and separately discuss the isotropic and the anisotropic cases. In
section 4 we discuss the time relaxation of the ZRS that is brought out of the steady state by a dc voltage for two
examples. We conclude in section 5.

2. Linear-response states

We define alinear-response state as e(r) = eq(r) + de(r), composed of a high-field pattern e((r) with
leg(r)| = eq [12], that averages to zero, and alow-field pattern de(r) with |de(r)| < ey that averages to the
external electric field to meet the imposed boundary condition (e(r)) = E.

The steady high-field pattern e((r) is rotation free and the corresponding current density j, (r) = o (eo)eo(r)
satisfies the stationary continuity equation. Mathematically, it is thus the solution of the differential equations

Vo =0, ¥ x eyr) =0, )

with the boundary condition (ey(r)) = 0.

Similarly, a steady linear-response state with the current density j(r) = o (e)e(r) and the electric field
pattern e(r) must solve the same differential equation (5) with the boundary condition (e(r)) = E.Dueto
linearity of the differential operators in equation (5) and the spatial average (...), this is equivalent to the
requirement of a steady low-field subsystem de(r), 6j(r), which then is the solution of

V- 6jxr) =0, V x de(r) =0, 6)

with the boundary condition (6e(r)) = E. The current density of the low-field system is obtained by subtracting
jo(r) = o (ep)ep(r) from j(r) = o(e)e(r) and expanding to linear order in de(r) giving

5j(r) = &(r)be(r), (7)
with the local conductivity
F(r) = o(eo) + ap €(r) ® €(r) (8)

o 0 oy
- (924 0
cos? p(r) cos ¢ (r)sin ¢ (r)
Pl cos @ (r)sin p(r) sin ¢ (r)

where op = o) (eg)epand éy(r) = ey(r) /ey = (cos ¢ (r), sin ¢ (r))is the direction of the high-field electric field,
parametrized by the polar angle ¢ (r).

The key observation is that the electrodynamics of the low-field subsystem resembles the electrodynamics of
a conventional inhomogeneous conductor [22], with an r-dependent conductivity &(r), a local electric field
be(r), and alocal current density §j(r) that are induced by the external electric field E. Like for a conventional
conductor, the stability of the steady low-field subsystem is thus guaranteed by the positive semidefiniteness of
the symmetric part of the local conductivity &(r). From (9), this is easily proven to be satisfied for any high-field
pattern ey(r) for all r. A more explicit discussion of the stability is presented in section 4.

&)

3. Effective conductivity

Given that the domain state responds according to the linear scenario instead of moving the domain walls, we
now consider its effective conductivity. Particularly interesting is the question whether the domain state is a ZRS
if the system responds according to the linear scenario, i.e., the field pattern slightly deviates from a pure domain
state eq(r).

For a given &(r) the effective conductivity X can be defined as

¥ (Se(r)) = (F(r)e(r)) (10)
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for all possible 6e(r). From this definition it is in general difficult to calculate X explicitly. However, thanks to a
certain symmetry inherent in the electrodynamics of 2D systems, which has been found by Dykhne in 1971 [23],
we can derive exact symmetry relations that restrict the space of possible tensors X.

We introduce new fields 6j'(r) and §€’(r) via the transformation

6j(r) = 6j'(r) + ou R 6€'(v), (11)
Se(r) = 3 6¢/(r) + o' R 6§ (x), (12)

where R isa 90°-rotation matrix. Using the 2D-specific relations
V-Rv=-V xv and V XRv=V_ v, (13)

one can easily show that the new fields are another solution of (6) and (7) with the same conductivity tensor (9),
like the original fields. The two solutions correspond to different boundary conditions, i.e., the averaged fields
) = (6j'(r)) and E’ = (8€/(r)) differ, in general, from J and E. The effective conductivity, however, does not
depend on the fields, so J’ and E’ must be related by the same effective conductivity ¥ as the fields J and E.
Averaging equations (11) and (12), and using )’ = ¥ F'and J = X E, we find

Y=(01-0g YR 3% — oy R). (14)

For a general effective conductivity tensor, this relation is equivalent to
detY = o7, (15)
Y — Yy = 2o0m, (16)

where ¥;; are the components of 3. Note that equations (15) and (16) hold for an arbitrary domain pattern. It
can be easily seen that a conductivity tensor satisfying (15) and (16) is positive semidefinite, which allows for
dissipationless as well as dissipative response.

3.1.Isotropic effective conductivity
Isotropy, i.e., direction independence of the effective conductivity imposes two additional equations,

X = Y, Y = -2 17)
Together with the derived symmetry relations (15) and (16) this fixes the effective conductivity unambiguously
to
> ( 0 UH), (18)
—O0H 0

This shows that a domain state with an isotropic effective conductivity is indeed a ZRS. The linear scenario thus
correctly reproduces the experiments [1, 2] in this case. Isotropy of the effective conductivity can be assumed if
the domain pattern has four-fold rotational (C,) symmetry, or the domain pattern is randomized by
impurities [13, 14].

3.2. Anisotropic effective conductivity
Without additional restrictions on the effective conductivity, equations (15) and (16) no longer guarantee the
absence of dissipation. In fact, the response can be dissipative in this case, which we show now by calculating the
effective conductivity for a specific domain pattern.

We consider a model with a single domain wall separating two domains with opposite directions of ey, as
illustrated in figure 2(a). Inserting these directions into equation (9) we find

a(r):( 0 "H). (19)

—O0H OD

For this simple structure the local conductivity (9) is the same in both domains and thus, according to (10), equal
to the effective conductivity,
5= ( 0 "H). (20)

—O0H 0D

Since op > 0 the response is dissipative in contrast to the prediction of the domain-wall scenario [12].

4. Dynamical response

So far we have discussed the possibility of the linear scenario as an alternative to the domain-wall scenario in the
steady regime, i.e., at times when the system had enough time to rearrange the charge density én(r, t) after the
application of an external field E. To decide, which type of response the system will choose, we now consider the
time dependence of the charge density right after the application of an external field.

4
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Figure 2. Single-domain-wall model. (a) The high-field pattern e((r) produced by accumulated charge at the domain wall (thick line)
in the middle of the sample. (b) Infinitesimal increase of the local electric field by de(r) in response to an external field E applied in the
y-direction. The effective conductivity is positive definite, hence the induced current has a component parallel to E—the response is
dissipative.

The dynamics are governed by the continuity equation, the Poisson equation, and Ohm’s law,

% = -V i@ 1), 21a)
e(r,t) = —VUn(r, t) + E, (21b)
j(x, t) = o(e(r, t))e(r, t), (21c)

where Un(r, t) is the electrostatic potential of the charge distribution, written in terms of a positive definite
operator U, which encodes the Coulomb interaction, acting on the charge distribution. Considering U as a finite
matrix with indices r and r’, its positive definiteness is due to the fact that the diagonal elements are infinite
while the sum over each column or row is finite.

We decompose the charge density into n(x, t) = no(r) + én(r, t), where ny(r) is the given charge density
of the accumulated charge at the domain walls that produce the pattern eo(r) = —V U n(r) and én(x, t)is the
time-dependent deviation induced by the external field. Then, as previously, the local electric field decomposes
into the high-field pattern ey(r) and the low-field pattern de(r, t) = —V U én(r, t) + E and the current
density, to linear order in ée, decomposes into j,(r) = o (eg)eo(r) and 6j(r, t) = &(r)de(r, t), where 5(r) is
givenin (9). The linearization of 6j(r, t)isvalid aslongas |de(r, t)| < eo.

Inserting into equation (21), we find the response entirely in the low-field subsystem, governed by

% =~V - 8j(r, 1), (22a)
be(x,t) = —V U én(r, t) + E, (22b)
0j(r, t) = a(r)be(r, 1). (22¢)

Itis useful to consider V, U, and &;;(r) as matrices and de; (r, t), én(r, t), Ej, and 6j;(r, t) as vectors by
considering the spatial arguments as indices. Doing so and combining equations (22), we can write

don(t)

e

where the sum over repeated indices 1, j € {x, y}isimplied and we used that V;is skew symmetric. To bring

equation (23) in the usual form oflinear differential equations, we subtract the time-independent part,
6 (t) = én(t) — bny(E) with

—Pén(t) — Vig; Ej,  P=Vi5;V,U, (23)

P 6no(E) = Vi&; Ej. 24
The solution 671 () = 0 of
dén®) = —P éa(t) (25)
dr

is Lyapunov stable if the real parts of the eigenvalues of P are non-negative and those that are zero are semi-
simple (i.e. its algebraic and geometric multiplicities coincide). That this is indeed the case can be seen by using
the Cholesky decomposition U = LL' to obtain

P = (L) 'MIT, M= L"V]5; VL. (26)
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Figure 3. Checkerboard model. (a) The domain pattern consisting of four domains with different directions of e; and the resulting
circulating current j. (b) &, (r) ona200 x 200 grid with op = 3 0pand oy = 5 0p.

The symmetric part of M can be written as

T i + G
Mg = M+M _ LTviTuij 27)
2 2
= L'V} 5 VIL, (28)

where s is the symmetric part of 5. Similarly, the skew symmetric part M is given by the skew symmetric part
of &, which has £ oy on its off-diagonal. Since oy is r independent, it commutes with V; and we obtain

My = oy LT[V, VIL = 0. (29)

For an arbitrary vector v we can thus write a square form as
vIMy = V55V, (30)

where V' = (V,Lv, V, Lv)is avector from a squared vector space compared to the vector space of v. Since s is
positive semidefinite in this squared vector space, we conclude that v’ Mv > 0 for all v, hence M is also positive
semidefinite. Since M4 = 0, M is symmetric, consequently its eigenvectors are linearly independent. These
properties are inherited by Pbecause it is similar to M and we can conclude that the eigenvalues of Pare non-
negative and those which are zero belong to linearly-independent eigenvectors, are thus semi-simple. These are
sufficient criteria for the Lyapunov stability of the steady solution 671 (t) = 0, or equivalently én(t) = 6ny(E).

For E = 0, the considerations above are essentially a revision of the arguments made in [12] on the stability
of the state e(r) = ey(r). For E = 0, however, this shows that the linear-response states are also stable, although
they deviate from e(r) = ey(r) by de(r) with |de(r)| < ey.

A solution with the boundary condition én(t = 0) = 0 reads

Sn(t) = (1 — e P Hény(E), (31

from which we see that only the decaying non-zero modes of P contribute, which according to (24) scale with E.
Our main conclusion from this is that the application of an external field E < e, on a domain state with
e(r) = eq(r) will lead to small changes of the local electric field, which scale with E. In particular, this implies that
the domain walls will not shift, since this would require |6ey(r) | ~ eo.
We now demonstrate this behavior with two examples: the single-domain-wall model from the previous
section and a C, symmetric model.

4.1. Single-domain-wall model
We consider again the single-domain-wall model shown in figure 2. Suppose that for ¢ < 0 the domain state has
the high-field pattern e(r) as shown in figure 2(a). At t = 0 we switch on an external electric field E, so that
be(r, t = 0) = E,asillustrated in figure 2(b). Since the local conductivity (19) is equal in both domains, the
induced current density 6j(r, t = 0) = &(r)E is r-independent, hence V - §j(r, t = 0) = 0. From this
follows immediately én(r, t) = 0, thus the system will remain in the ¢t = 0 state, which is alinear-response state
with |6e| = |E| < eq.

For this particular domain pattern, the linear-response state coincides with the state at the instance when the
electric field was switched on. In general, this is not true as is shown in the next example.

4.2. Checkerboard model
The domain pattern for this model is shown in figure 3(a). According to equation (9), the local conductivity in
the domains A and B reads
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Figure 4. Time evolution of the checkerboard model. (a) The initial state at t = 0, when an external electric field E = E(1, 1)/ V2 has
been turned on. (b) The state at t = 2 o, where t, = (1072E)?/U,0y. Further time evolution gives no visible changes from which we
conclude that the system essentially reached the steady state. In the stream plots the line width is proportional to the field magnitude.
All magnitudes are proportional to E. (c) Time evolution of the angle between the applied field E and the induced total current

J(t) = (6j(x, 1)). As predicted analytically in section 3, in the steady state (t > 2 t), the averaged current flows perpendicular and is
equal to ¥ E with ¥ form (34). The parameters for these plotsare A\ = I, op = 3 0y, oy = 5 0p,and dt = 5 X 10~*¢,. The spatial
gridis 200 x 200, which turns out to be sufficient since already a halved precision gives no visible differences in the plots (except for a
coarser grain).

ap ap
= O—H_’_i
_02+U£ @2 rcA
_ HT 5 2
F(r) = 1 . , (32)
T w3
o recB
'D ap
“OH T 5 2

Att = 0, thelocal current density has a finite divergence, so the charge density will evolve, governed by
equation (23). We simulate the time evolution numerically by discretizing the time with a finite time step dtand
discretizing the spacebyan N x N grid with periodic boundary conditions in both directions. We measure the
length in units of the domain length [, so that r = (x, y) with x, y = 2li/N, i €[0, N — 1].

To provide a reasonable description on the discretized space, we have to smoothen the domain boundaries
over a few space points, i.e., find a continuous version of equation (32). To do so, we convolute the N x N
matrices e (r) and ey, (r) with a Gaussian kernel of size 0.15 I and standard deviation 0.1 [ to determine the
continuous version of the angle ¢ (r) = arctan(ey,, (r) /e« (r)) in (9). At points where the angle is not defined,
we suppress op by the function 1/2 + tanh[(|r] — 0.15 [) /0.05 I] /2. The resulting spatial dependence of & is
shown in figure 3(b). We checked that the variation of these parameters does not have qualitative influence on
the result.

We approximate the action of the interaction operator U on én by a convolution of én with a kernel

U, Y%

y \/(xz =+ )’2)/52 + 772

of size A x A and with parameterssetto £ = 0.1 land 7 = 1072 () can be seen as a finite out-of-plane
component and we consider numerically the limit 7 — 0). The variation of these parameters and the size of the
kernel within the physical parameter regime (which is restricted by the requirement of a positive definiteness of
U), does not lead to qualitative differences. Representative numerical results are summarized in figure 4.

As predicted by our symmetry considerations, in the steady state the average current flows perpendicular to
the applied field, according to the simple relation ] = 3 E with

7
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Figure 5. Steady state of the checkerboard model for E = E(1, 0) and A = 0.4 [. Otherwise same parameters as in figure 4. The length
scale of the weak substructure, visible in 611, corresponds to the size of the interaction kernel, is thus a numerical artifact, which
however has no influence on the effective conductivity 3.

2:( 0 UH). (34)

—O0H 0

In contrast to this, the local fields and the charge density acquire a non-universal structure during the evolution,
which depends on the details of the interaction, domain length, and the direction of the applied electric field.
This dependence is illustrated in figure 5, where we show plots of the steady state for the electric space field

E = E(1, 0)and A = 0.4 [ (compare with figure 4: E = E(1, 1)/+/2 and A = 1 I). Comparing the figures, we
see that the local field patterns change dramatically. The effective conductivity (34) stays the same.

Itis interesting to compare this ZRS to the quantum Hall effect for magnetic fields at the Hall plateaus. The
Hall effect also shows a purely transversal resistance, hence a very similar macroscopic response. The
microscopic current flow, however, turns out to be different: while in the Hall effect bulk states are localized and
current is carried entirely by the edge states, in the domain state current flows through the bulk, albeit in an
inhomogenous pattern.

5. Conclusion

In conclusion, we have considered the response of domain states to external fields (induced by a dc voltage) that
are much smaller then the internal fields within the domains (induced by microwave radiation). We have
proposed a new response mechanism, which, contrary to the established one, does not involve domain-wall
shifting. In our view, small external fields lead only to small modulations of the local fields, leaving the domain
patterns unchanged. The theoretical justification of the linear scenario is based on the fact that small deviations
from the pure domain state are not unstable, which we have shown by analyzing the electrodynamics of a general
domain state. We tested these predictions on two specific realizations numerically.

Our main results address the effective conductivity of the domain state in the linear scenario: if the effective
conductivity is isotropic, which is the case if the domain pattern is chaotic or C, symmetric, then the response is
dissipationless. Otherwise the response can be dissipative, which we have shown for the single-domain-wall
pattern—the energetically most favorable pattern in a clean system [12].

Combining this result with the fact that disorder can pin the domain walls in a chaotic pattern [13, 14], this
work supports the idea that the radiation-induced ZRS is a disordered domain state, where the disorder is strong
enough to allow for a chaotic domain pattern. Clean domain states, instead, are allowed to have a dissipative
response. The explicit value of the longitudinal conductivity is presumably non-universal in this case. This is in
stark contrast to the domain-wall response, which predicts strictly zero-resistance in the clean case and
dissipative response in the regime of pinned domain walls [13].

Measurements that are sensitive to local changes of the electric field [20, 21] indicate that the domain
structure is indeed rather complex and show that the local electric fields change proportional to the applied
voltages. These observations, hard to reconcile with the domain-wall-response scenario, are in qualitative
agreement with our theory.

We stress that this work is based on the assumption that the system is in a domain state, which at present
appears to be the dominant picture for the ZRS but not indisputably established one. Steadiness of the domain
pattern is also an essential ingredient for our analysis, which is a justified assumption in radiation-induced ZRSs
[15, 19]. Time-dependent patterns, however, may occur in many other cases, e.g., including the zero-
differential-resistance states in dc biased 2D electron gases in strong magnetic fields [24], where the domain
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structure moves between boundaries of the sample. The extension of the present analysis to time-dependent
domain patterns remains a subject for future work.
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