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Abstract

A recently discovered natural family of light-gated anion channelrhodopsins (ACRs) from 

cryptophyte algae provides an effective means of optogenetically silencing neurons. The most 

extensively studied ACR is from Guillardia theta (GtACR1). Earlier studies of GtACR1 have 

established a correlation between formation of a blue-shifted L-like intermediate and the anion 

channel “open” state. To study structural changes of GtACR1 in the K and L intermediates of the 

photocycle, a combination of low-temperature Fourier transform infrared (FTIR) and ultraviolet–

visible absorption difference spectroscopy was used along with stable-isotope retinal labeling and 

site-directed mutagenesis. In contrast to bacteriorhodopsin (BR) and other microbial rhodopsins, 

which form only a stable red-shifted K intermediate at 80 K, GtACR1 forms both stable K and L-

like intermediates. Evidence includes the appearance of positive ethylenic and fingerprint 

vibrational bands characteristic of the L intermediate as well as a positive visible absorption band 

near 485 nm. FTIR difference bands in the carboxylic acid C=O stretching region indicate that 

several Asp/Glu residues undergo hydrogen bonding changes at 80 K. The Glu68 → Gln and 

Ser97 → Glu substitutions, residues located close to the retinylidene Schiff base, altered the K:L 
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ratio and several of the FTIR bands in the carboxylic acid region. In the case of the Ser97 → Glu 

substitution, a significant red-shift of the absorption wavelength of the K and L intermediates 

occurs. Sequence comparisons suggest that L formation in GtACR1 at 80 K is due in part to the 

substitution of the highly conserved Leu or Ile at position 93 in helix 3 (BR sequence) with the 

homologous Met105 in GtACR1.

Graphical abstract

A new type of channelrhodopsin (ChR) has recently been discovered in cryptophyte algae 

termed anion channelrhodopsins (ACRs).1 Unlike the more extensively studied cation 

channelrhodopsins (CCRs) from the phylogenetically distinct green chlorophyte algae, 

ACRs are exclusively anion selective and exhibit the highest conductance among ChRs thus 

far observed.1,2 Importantly, ACRs provide an unprecedented effective means for low-light 

inhibition of neuronal and cardiomyocyte activity.3 Silencing occurs because of light-

induced anion channel opening that causes an influx of Cl− and subsequent 

hyperpolarization. In comparison to outwardly directed proton pumps such as 

archaerhodopsin-3 (AR3) or inwardly directed anion pumps such as halorhodopsins (HRs), 

both of which transport one ion for each photocycle,4 ACRs require as little as 1/1000th of 

the light intensity necessary to achieve neuronal silencing.1 ACRs also provide an 

opportunity to study the molecular basis for anion permeation and selectivity in seven-helix 

TM proteins.

An important goal is to understand the difference in molecular mechanisms that distinguish 

ACRs from CCRs and microbial rhodopsins in general. Recent studies of the light-induced 

photocurrent and photochemical reaction cycle of an ACR from Guillardia theta (designated 

GtACR1) reveal several distinct differences.5,6 Most importantly, in 6 ns laser flash 

photolysis measurements, the Schiff base-deprotonated M intermediate occurs much later in 

ACRs than in any other microbial rhodopsins, including CCRs. The formation of a blue-

shifted L-like intermediate (which may be in rapid equilibrium with pre-M red-shifted 

intermediate(s)) in the GtACR1 photocycle is correlated with the anion conducting “open” 

state of the channel while decay of the L intermediate (and formation of an M intermediate) 

with channel closing.5,6 This is an unusual feature of ACRs because the “activated state” of 
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most microbial rhodopsins, such as signaling states of sensory rhodopsins, is associated with 

M formation and not the earlier K or L intermediates. For example, in the case of CCRs, the 

open channel state occurs after formation of an M-like intermediate often designated P2
3807 

and subsequent red-shifted (N/O) intermediates.8,9

To study the structural and protonation changes that occur in GtACR1 upon formation of the 

K and L intermediates, we performed low-temperature FTIR and ultraviolet–visible (UV–

vis) difference spectroscopy on GtACR1 purified from a yeast (Pichia pastoris) expression 

system and reconstituted into a model lipid bilayer composed of Escherichia coli polar lipids 

(EPCLs). Several techniques were used to assign infrared vibrational bands, including 

stable-isotope retinal labeling, hydrogen/deuterium exchange, and site-directed mutagenesis. 

A surprising finding is that unlike most microbial rhodopsins, which form a stable K-like 

intermediate at 80 K, GtACR1 also forms a stable L-like intermediate. Sequence 

comparisons of ACRs with CCRs and microbial rhodopsins in general suggest that the 

substitution of a methionine for leucine or isoleucine at position 93 in CCRs (BR sequence) 

weakens steric interaction with the retinal 13-methyl group that at low temperatures blocks 

the relaxation of the retinylidene chromophore to form L. FTIR difference bands appearing 

in the carboxylic acid C=O stretch region at 80 K indicate that L formation involves 

hydrogen bonding changes of several Asp and/or Glu groups. The Glu68 → Gln and Ser97 

→ Glu substitutions, residues located close to the retinylidene Schiff base (SB), alter the 

ratio K:L produced at 80 K in addition to hydrogen bonding changes of Asp/Glu residues. In 

the case of the Ser97 → Glu substitution at neutral pH, a red-shift of the unphotolyzed state 

as well as the K and L states occurs compared relative to WT absorption. This indicates that 

the environment near the Schiff base becomes significantly altered and possibility less polar 

despite the addition of a carboxylic group.

MATERIALS AND METHODS

Expression, Purification, and Reconstitution of GtACR1

The 7TM domain of GtACR1 was expressed from P. pastoris,1 purified, and reconstituted 

using a procedure described previously.10 Purification was performed on a Ni-NTA agarose 

column (Qiagen, Hilden, Germany) after solubilization by incubation overnight in 3% N-

octyl D-glucopyranoside (OG). For reconstitution, E. coli polar lipids (ECPL) (Avanti Polar 

Lipids, Alabaster, AL) were used at a 1:10 (w/w) ratio (GtACR1:ECPL). The final buffer 

used for storage of the membranes at 5 °C consisted of 5 mM K2HPO4 and 100 mM NaCl 

(pH 7.3). All mutants were generated using a similar procedure as described above (see also 

refs 5 and 10).

Chromophore Substitution with Isotope-Labeled all-trans-Retinal and Resonance Raman 
Measurements

The substitution of the native all-trans-retinal chromophore of GtACR1 with all-trans-

[15-13C,15-2H]retinal and all-trans-[14,15-2H2]retinal followed similar procedures described 

previously for CaChR1.11 Reconstituted GtACR1 membranes were suspended in 100 mM 

hydroxylamine buffer with 300 mM NaCl and 20 mM HEPES (pH 7) and exposed to 530 

nm light-emitting diode (LED) illumination (5 mW/cm2) for 40 min. Bleaching was 
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monitored by UV–visible spectroscopy using a Cary 6000 spectrometer (Agilent 

Technologies, Inc., Santa Clara, CA). After >95% conversion of the retinal chromophore to 

retinal oxime, the sample was pelleted using a SCILOGEX D3024 centrifuge spun at 

21000g for 3 min and resuspended in wash buffer [300 mM NaCl and 20 mM HEPES (pH 

7)]. This was repeated at least three times to remove unreacted/excess hydroxylamine and 

free retinal oxime. A 2-fold stoichiometric excess of the isotope-labeled retinal was then 

added as a 2 mM EtOH solution. The incorporation of the isotope-labeled retinal was 

verified by resonance Raman spectroscopy (RRS) using a Renishaw inVia confocal Raman 

microscope with 785-nm laser excitation similar to measurements previously reported.10

Low-Temperature FTIR Difference Spectroscopy

Low-temperature FTIR difference measurements were performed using procedures similar 

to those previously reported for CaChR1.11,12 A GtACR1/EPCL membrane sample 

containing approximately 50 μg of the protein was resuspended in 50 μL of buffer [50 mM 

NaCl and 5 mM HEPES (pH 7)] and deposited on a 17 mm diameter BaF2 window. The 

sample was slowly dried in a drybox and then rehydrated through the vapor phase with a 

small drop (∼0.5 μL) of H2O or D2O and sealed in a sample cell with another BaF2 window. 

The cell was mounted in a liquid nitrogen cryostat (Oxford Instruments, OptistatDN). 

Measurements at different temperatures ranging from 80 to 270 K were performed by first 

cooling the sample from room temperature in the dark to avoid trapping of 

photointermediates. Once the sample reached the desired temperature, it was allowed to 

equilibrate in the dark for at least 30 min.

All spectra were recorded using a Bio-Rad FTS-60A FTIR spectrometer (Agilent 

Technologies, Inc.) equipped with a liquid nitrogen-cooled HgCdTe detector. Each acquired 

spectrum consisted of 200 scans (approximately 1 min of total acquisition time) recorded at 

4 cm−1 resolution. “First-push” difference spectra consisted of a spectrum recorded 

immediately before illumination (spectrum 1) subtracted from a spectrum recorded during 

illumination (spectrum 2) and termed “2–1” difference spectra. The light is then turned off, 

and 11 additional spectra are recorded (i.e., spectra 3–13) that are termed “decay” spectra 

and corresponding differences such as “3–1”, “4–1”, etc. Note that as the first-push and 

decay spectra were recorded at a specific temperature, samples were warmed to room 

temperature and allowed to rest in dark for at least 15 min before additional spectra were 

recorded at the same or different temperatures.

Difference spectra were also recorded at 80 K using photoreversal methods to measure 

multiple cycles of differences, which are subsequently averaged. In this case, individual 

spectra were recorded using the same FTIR acquisition parameters described above. A 

photoreversal cycle of four successively recorded spectra consisted of the following sample 

illumination conditions: (1) dark, (2) illumination with a 530 or 455 nm light (all LED 

illumination and LED control systems from Thorlabs, Inc., Newton, NJ), (3) dark, and (4) 

illumination with a 590 nm LED. This cycle was repeated at least 30 times, and the 

corresponding difference spectra (e.g., 2–1, 3–1, and 4–3) were calculated.
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Low-Temperature UV–Visible Absorption Difference Spectroscopy

Almost identical methods as described above for the FTIR difference first-push 

measurements were used to record low-temperature UV–visible difference spectra of 

GtACR1 (see also earlier UV–visible absorption studies of BR films13). Samples were 

prepared on BaF2 windows as described above and loaded into the same liquid nitrogen 

cryostat except it was mounted in the sample compartment of a Cary6000 UV–visible 

absorption spectrometer. Spectra were acquired from 350 to 800 nm using a 0.1 s averaging 

time with 1 nm steps; each spectrum took slightly less than 1 min to acquire. Samples were 

cooled in the dark from room temperature and equilibrated at the desired temperature as 

described above. Three successive spectra were initially acquired, each starting 1 min apart, 

before the sample was illuminated with 530 nm light for 1 min. Immediately following the 

illumination, 30 or 120 successive spectra were acquired, each starting 1 min apart. The 

average of the three preillumination spectra is termed “pre-LED”, and the postillumination 

spectra are designated by the number of minutes after the illumination, with the first 

spectrum starting at “1”. The absolute absorbance spectra of GtACR1 films included 

contributions from the BaF2 windows whose absorption changes as a function of 

temperature and contributes to the absorption at wavelengths of <400 nm. Individual 

difference spectra were baseline-corrected separately to account for the baseline drifts that 

occur throughout the experiment. The difference spectra were smoothed using five-point 

symmetric moving average, and then they were baseline-corrected using a combination of 

Tyndall and Rayleigh scattering terms and an additional linear term for the regions of spectra 

below 400 nm and above 700 nm.

RESULTS

Low-Temperature FTIR Difference Spectroscopy

Ethylenic Region—First-push “2–1” FTIR difference spectra of GtACR1 membranes 

recorded at 80 and 170 K are shown in Figure 1. These difference spectra reflect structural 

changes that occur in the protein and retinylidene chromophore during 530 nm illumination 

(e.g., photostationary state). Negative bands reflect vibrational modes arising from the 

unphotolyzed GtACR1 and positive bands those arising from the photo-products produced 

during illumination. To demonstrate the high reproducibility of even very small bands in 

these spectra, we show two independent measurements taken at each temperature (Figure 1). 

Overall, these difference spectra provide information about the progression of light-induced 

conformational changes that occur under these conditions during the early GtACR1 

photocycle.

At 80 K, there are several unusual features of the GtACR1 FTIR difference spectrum 

compared to those of most other microbial rhodopsins, including BR and CaChR1 (Figure 

2). As discussed below, several of these features are consistent with formation of an L-like 

intermediate at 80 K. First, the difference spectra in the ethylenic C=C stretch region (1500–

1600 cm−1) do not display the strong ethylenic “marker” band indicative of the formation of 

a red-shifted K-like photo-intermediate. The higher-frequency negative band normally 

corresponds to the depletion of the unphotolyzed state, while the positive lower-frequency 

bands correspond to the formation of the red-shifted K intermediate. For example, in the 

Yi et al. Page 5

Biochemistry. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



case of BR and CaChR1 (Figure 2), a pair of strong negative/positive bands appears at 

1530/1514 and 1535/1522 cm−1, respectively. The downshift in ethylenic frequency (νC=C) 

upon formation of K is expected due to the red-shift and the well-known inverse linear 

relationship between λmax and νC=C.14–16

In the case of GtACR1, a strong negative band appears at 1530 cm−1 (Figures 1 and 2), in 

agreement with near-IR resonance Raman measurements10 (Figure S1). However, only a 

weak positive band appears at a lower frequency near 1506 cm−1 in the first-push differences 

(Figure 1) and 1514 cm−1 in the averaged photoreversal differences (Figure 2). In contrast, a 

much stronger positive band appears near 1545 cm−1. On the basis of the inverse linear 

relationship between λmax and νC=C,14–16 this corresponds to a photoproduct with a λmax 

near 485 nm, in the range of the λmax of the GtACR1 L-like intermediate deduced from 

global fitting of the transient visible absorption spectra measured at room temperature.5

Because the amide II mode of α-helices can also give rise to bands near 1545 cm−1,17 we 

measured GtACR1 regenerated with isotopically labeled all-trans-retinal at the [15-2H,

15-13C] and [14,15-2H2] positions. These isotope labels are expected to decrease the 

ethylenic frequency (νC=C) based on earlier FTIR difference studies of BR and CaChR1.11 

As seen in Figure 3, the [15-2H,15-13C]- and [14,15-2H2]retinal substitutions cause the 1530 

cm−1 negative band to downshift by 10 and 18 cm−1, respectively. Importantly, this agrees 

with shifts observed from near-IR resonance Raman measurements that are expected to be 

sensitive to predominantly the chromophore vibrational modes (Figure S1). In addition, the 

1545 cm−1 positive band downshifts 8 and 10 cm−1 for the [15-2H,15-13C]- and 

[14,15-2H2]retinal labels, respectively (Figure 3). The different extent of isotope band shifts 

for the 1530 cm−1 negative and 1545 cm−1 positive bands most likely reflects the different 

extent of mode coupling expected for all-trans and 13-cis isomeric states of the retinylidene 

chromophore.18,19 Overall, these results indicate that at 80 K the 1545 cm−1 band arises 

from a retinal ethylenic mode of an L-like intermediate and not from the amide II mode of 

the protein. In addition, the absence of a strong positive band corresponding to the K 

intermediate may indicate a level of K production much lower than that normally observed 

under these conditions. The possibility also exists that considerable positive intensity of the 

K intermediate ethylenic band is canceled by the negative band at 1530 cm−1, which could 

reflect less separation between the unphotolyzed and photolyzed visible absorption (λmax).

We also considered the possibility that an L-like species observed at 80 K arises from 

photoreaction of a stable K intermediate formed at 80 K. However, almost identical results 

are obtained using 455 nm illumination (Figure S2) even though the K intermediate is 

expected to absorb less light of this wavelength compared to 530 nm light. This result may 

indicate the K and L intermediates produced at 80 K exist in equilibrium, similar to the 

conclusion from room-temperature visible absorption measurements.5 In addition, 

successive first-push decay difference spectra recorded at approximately 1 min intervals 

after the exciting light is turned off (Figure S3) reveal very little change compared to the 

initial “2–1” difference spectrum. This result eliminates the possibility that an L-like 

photoproduct corresponding to the 1545 cm−1 band is a transient species at 80 K that 

accumulates during illumination.
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Fingerprint Region—A second unusual feature of the GtACR1 80 K difference spectra is 

found in the fingerprint region (1100–1250 cm−1) (Figures 1 and 2). Bands in this region 

arise from the mixed C–C stretching modes of the retinal polyene chain. Such band 

frequencies (νC−C) are highly sensitive to the retinal configuration.18,19 In the case of 

GtACR1, the negative bands in this region appear near 1200 and 1161 cm−1 similar to the 

νC−C frequencies found for BR and CaChR1 (Figure 2). This supports the earlier conclusion 

based on near-IR resonance Raman spectroscopy (RRS) that the unphotolyzed state of 

GtACR1 has a predominantly all-trans-retinal configuration.20

GtACR1 also displays a strong positive band in the fingerprint region at 1182 cm−1 along 

with an additional shoulder at 1192 cm−1 (Figures 1 and 2). However, the 1182 cm−1 band is 

at an unusually low frequency for a K-like intermediate. For example, CaChR1 and BR 

display the most intense positive band in this region near 1195 cm−1 (Figure 2) as do most 

other microbial rhodopsins. Another unusual feature compared to BR is the appearance of a 

positive 1146 cm−1 band. This band is close to the frequency of a positive band at 1154 

cm−1 appearing in the BR → L difference spectrum21 and assigned to the C14–C15 stretch 

mode on the basis of isotope labeling.22 In the case of GtACR1, the effect of the [15-2H,

15-13C] and [14,15-2H2] retinylidene isotope labels (Figure 3) is also consistent with the 

assignment of this band to the C14–C15 stretch mode (Figure 3).

Schiff Base and Amide I Region—Bands due to both the Schiff base (SB) C=N 

stretching mode and the amide I mode of the protein peptide backbone can appear in the 

1600–1700 cm−1 region.17,23 In the case of GtACR1, the strongest band in this region is 

located at (−)1634 cm−1 (Figures 1 and 2), close to the frequency assigned to the C=N SB 

mode in the RRS of GtACR1.10 Confirming this assignment, we found the (−)1634 cm−1 

band downshifts to 1622 cm−1 upon H/D exchange (Figure 4) because of deuteration of the 

SB, again in agreement with the RRS results.10 Much smaller bands also appear in this 

region at (+)1676, (−)1666, (−)1661, and (−)1651 cm−1, which are not affected by isotope 

labeling or H/D exchange (Figures 3 and 4). Thus, we conclude that only small protein 

structural changes involving the peptide backbone of GtACR1 occur at 80 K.

Carboxylic Acid C=O Stretch Region—Bands in the 1700–1800 cm−1 region arise 

mainly from changes in the C=O stretching mode of carboxylic acid groups reflecting 

protonation and/or hydrogen bond changes of Asp/Glu residues.24–26 Several weak but 

highly reproducible bands are detected at 80 K, near (+)1748, (−)1741, (+)1734, (−)1728, 

(+)1722, (−)1705, and (+)1697 cm−1 (Figure 5). At 170 K, all of these bands are still 

detected; however, the intensities of several increase significantly [(+)1748 and (−)1741 

cm−1], while others appear to maintain their intensity at (+)1734, (−)1728, and (+)1697 

cm−1. Two new bands also appear at (+)1724 and (−)1709 cm−1 (Figure 5), which grow 

more intense at even higher temperatures (A. Yi et al., unpublished data) along with the 

(+)1748 and (−)1741 cm−1 bands. Although it is not possible from these data to clearly 

separate out the bands due to the K and L intermediates, it is likely the (+)1724 and (−)1709 

cm−1 bands reflect changes occurring in the L intermediate at 170 K but not 80 K (see 

Discussion).

Yi et al. Page 7

Biochemistry. Author manuscript; available in PMC 2017 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Low-Temperature UV–Visible Absorption Difference Spectroscopy

UV–visible absorption spectra of GtACR1 were recorded at 80 and 170 K on hydrated films 

under conditions almost identical to those used for the FTIR measurements. A major band 

appears at 517 nm with a shoulder at 467 nm (Figure 6A), close to the wavelengths of bands 

measured at room temperature from suspensions of the reconstituted GtACR1 membrane 

(see the Supporting Information of ref 10).

Difference spectra, which reflect changes in the UV–visible absorption immediately before 

and at specific times after 530 nm illumination (see Materials and Methods), reveal no 

significant spectral change over a 30 min period. This indicates that the photocycle 

intermediates produced at this temperature are stable (Figure 6B). A positive peak appears at 

565 nm corresponding to the production of a K-like red-shifted intermediate, while two 

negative bands appear at 510 and 467 nm, which are close to the wavelengths of the 

absorption maxima of the unphotolyzed GtACR1 (Figure 6A). However, the ratios of the 

negative band intensities at 467 and 510 nm are similar despite the much smaller absorbance 

of the 467 nm band relative to that of the 517 nm band in the absolute absorption (Figure 

6A).

One explanation for this effect is that at 80 K an L-like blue-shifted photoproduct is 

produced in addition to K. This L-like intermediate is expected to produce positive intensity 

near 485 nm and thus could act to cancel negative intensity due to depletion of the 

unphotolyzed state. To test this explanation, we measured the difference spectra of GtACR1 

at 170 K, where in analogy to BR the K intermediate is not expected to be stable.27,28 In 

fact, a K → L decay at this temperature is directly inferred from the difference spectrum 

(Figure 6C), where the intensity of the positive band at 570 nm reflecting the level of the K 

intermediate slowly decreases while the intensity of the positive feature near 485 nm 

increases. Postillumination differences (e.g., changes in absorption immediately after 

illumination subtracted from those at later times) clearly show the formation of a broad band 

centered near 485 nm reflecting accumulation of the L intermediate, concomitant with a 

decrease in the intensity of a negative band near 570 nm indicative of a decay of the K 

intermediate (Figure 6D). Note that the L intermediate produced during K decay may consist 

of several different species as indicated by the apparent subcomponent bands.

The K decay kinetics were also curve fit in the range of 535–595 nm with a double 

exponential revealing two time constants for the K → L transition of approximately 5 and 

50 min (Figure S4). L rise kinetics fit over 455–475 and 500–520 nm ranges also gave 

similar but not identical kinetics of approximately 4 and 40 min (data not shown). We thus 

conclude on the basis of both the low-temperature FTIR and UV–visible absorption 

measurements that at 80 K, photo-illumination of GtACR1 results in the production of both 

K and L-like intermediates that are stable (e.g., do not decay). At 170 K, the K intermediate 

is no longer stable and slowly decays to produce the L intermediate.

Effects of Substitutions Located near the Schiff Base. Glu68 → Gln—Glu68, 

located on helix 2 of GtACR1 (Figure S5) (the homologue of Glu90 in CrChR2, the cation 

channel from Chlamydomonas reinhardtii), is predicted to be close to the Schiff base on the 

basis of the X-ray crystallographic structure of the ChR chimera (termed the C1–C2 
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chimera)29 (see Figure 10B). Previous studies have shown that the Glu68 → Gln 

substitution (E68Q) has significant effects on the channel gating mechanism6 but only a 

weak effect on the visible absorption.5,10 In agreement, at 80 K, UV–visible absorption of 

E68Q is very similar to that of WT (Figure S6A). However, the difference spectrum 

compared to that of WT (Figure 7 and Figure S6B) displays an increased negative intensity 

and a downshift in the wavelength of the major negative band (from 510 to 503 nm). Both 

effects can be explained if less L intermediate in E68Q is produced than in WT (thereby 

producing less cancelation of the negative band due to depletion of the unphotolyzed 

species). Similar to WT, E68Q still exhibits a stable K and L at 80 K and a K → L decay at 

170 K with kinetics similar to those of WT (Figures S4 and S6B–D).

The 3–1 first-push FTIR difference spectrum of E68Q also indicates that less L is produced 

and more K intermediate is produced at 80 K after the light is turned off (Figure 8). The 

intensity of the negative ethylenic band at (−)1530 cm−1 is lower than that of the WT 

ethylenic bands. This decrease in intensity can be explained by an increased level of 

cancellation of the negative 1530 cm−1 band by a hidden positive K band near 1520 cm−1. In 

addition, the most intense band in the fingerprint region is at 1190 cm−1, which may be 

associated with the K intermediate (see above), while the peak at 1146 cm−1 associated with 

the L intermediate is weaker than that of WT. In the 1700–1800 cm−1 carboxylic acid C=O 

stretch region (Figure 9), bands located at (+)1734, (−)1728, (+)1722, and (−)1705 cm−1 in 

WT are all absent in E68Q while a new set of bands appears at (−)1693 and (+)1686 cm−1. 

These later bands might arise from the C=O stretch of the substituted Gln residue similar to 

assignment of Gln residues in proteorhodopsin in this region.30 At 170 K, the magnitudes of 

several of the bands in this region in WT increase [(+)1748, (−)1742, (+)1724, and (−)1709 

cm−1] and may therefore be associated with L formation at higher temperatures. The most 

prominent effect of the E68Q mutation at this temperature is the disappearance of the 

(+)1724 and (−)1709 cm−1 bands, which indicates that these bands may arise directly from 

the Glu68 residue.

Ser97 → Glu—Ser97, located on helix 3 (Figure S5), is the homologue of Asp85, the 

primary SB counterion and proton acceptor in BR. An earlier study of the Ser97 → Glu 

substitution (S97E) using RRS found that at pH 7 the ethylenic νC=C undergoes an ∼4 cm−1 

downshift that would correspond to an ∼16 nm red-shift in the visible λmax.10 This indicates 

that at neutral pH the substituted Glu97 carboxylic acid group exists in a neutral form, or 

else one would expect the substitution to cause a substantial blue-shift. This red-shifting 

effect is analogous to formation of the BR blue membrane, where protonation of the Asp85 

counterion at low pH causes a red-shift of the visible absorbance and a corresponding 

downshift in νC=C.31 However, in the case of GtACR1 S97E, the pKa of the carboxylic acid 

group of Glu97 appears to be much higher than that of Asp85 in BR.

Although the 80 K visible absorption of S97E did not show a red-shift in the wavelength 

maximum and indeed appears to be blue-shifted to 512 nm (Figure S7A), the initial 

difference spectrum and subsequent spectra reveal a shoulder at a higher wavelength near 

540 nm (Figure S7B). This may indicate that the S97E mutant under these conditions 

comprises a mixture of two different species that are blue-shifted and red-shifted relative to 

WT. In fact, RRS studies reveal at pH >7 a mixture of red- and blue-shifted species exist 
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corresponding to ethylenic bands at 1528 and 1545 cm−1 (note WT is at 1530 cm−1). It was 

predicted that the intensity of the blue-shifted species that increases at higher pH 

corresponds to deprotonation of Glu97.10 The S97E UV–visible difference spectra at 80 K 

also reveal that the K intermediate formed at this temperature is significantly red-shifted as 

indicated by the upshift in the positive band by 25 nm compared to WT (Figure S7B). At 

170 K, the K intermediate still appears to be significantly red-shifted compared to WT by 

the same extent (Figure S7C). In addition, the L intermediate formed from decay of the K 

intermediate at this temperature is red-shifted (Figure S7D).

The FTIR difference spectrum of S97E (Figures 8 and 9) also supports many of the 

conclusions from low-temperature visible absorption measurements. The negative ethylenic 

band downshifts from 1530 to 1528 cm−1, indicating the existence of a red-shifted species. 

This band is also more negative relative to WT potentially because of less overlap with a 

hidden positive K ethylenic, which has also downshifted, although we do not see a positive 

ethylenic corresponding to the K intermediate. The (+)1545 cm−1 band in WT assigned to 

the L intermediate ethylenic is also downshifted to 1541 cm−1, and its intensity is reduced, 

the latter effect potentially being caused by the lower level of L production. Interestingly, at 

170 K, there is almost no accumulation of the L intermediate immediately after the light is 

turned off as indicated by the near disappearance of the 1545 cm−1 band. This is in accord 

with the rapid L to M decay found at room temperature for the S97E mutant compared to 

WT based on flash-induced absorption changes.5 One of the most unusual features of the 

FTIR difference spectrum is the appearance of a negative/positive pair of peaks near 

(−)1709/(+)1720 cm−1 in the C=O stretch region (see Figure 9), which may reflect a 

hydrogen bonding change in the E97 carboxylic acid residue.

DISCUSSION

Earlier studies of GtACR1 based on laser flash photocurrent measurement and transient 

visible absorption spectroscopy have established a correlation between anion channel 

opening and formation of the L intermediate and possibly pre-M red-shifted species with 

which the L intermediate is in rapid equilibrium.5,6 This is an unusual feature because the 

“activated state” of microbial rhodopsins (e.g., the open-channel form of CCRs) normally 

occurs after transfer of a proton from the SB to an acceptor group during M formation (e.g., 

Asp85 in BR). However, in the case of GtACR1, the channel is open and the SB of L is still 

protonated similar to the case for other microbial rhodopsins as indicated by its visible 

absorption near 485 nm (see Results and ref 5).

A key goal of this work is to investigate the molecular changes underlying the early steps in 

the GtACR1 photocycle and especially changes that occur upon K and L formation. Until 

now, only the structure of the unphotolyzed GtACR1 retinylidene chromophore has been 

characterized and found using RRS to exist in an all-trans conformation similar to light-

adapted BR.10 A similar conclusion was also reached on the basis of RRS for CaChR1 (a 

cation conducting channel from Chlamydomonas augustae).20 Both of these ChRs do not 

exhibit light–dark adaptation.5,10,20 In contrast, a heterogeneous chromophore configuration 

consisting of a mixture of all-trans- and 13-cis-retinal has been found to be present in 

CrChR2, which does undergo light–dark adaptation.20,32,33 In general, ACRs similar to 
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CCRs exhibit diverse properties such as kinetics, conductance, and spectral sensitivity,34 and 

thus, it is not possible to generalize about their chromophore and protein structures, even in 

the unphotolyzed state, without detailed examination of individual ChRs.

This work advances our understanding of GtACR1 by providing information about the 

structural changes that occur at low temperatures leading to formation of the K and L 

intermediates. Low-temperature spectroscopic studies have previously been extensively 

performed on a variety of microbial rhodopsins and provided important information. For 

example, the ability to trap or partially block the decay of photocycle intermediates offers a 

means to characterize their spectral properties for example by the application of resonance 

Raman, FTIR, UV–visible, and NMR.35–39 In conjunction with the ability to crystallize 

some microbial rhodopsin such as BR, low temperatures provide a way to trap these proteins 

in pure or mixtures of different photointermediates that can be analyzed in parallel by both 

spectroscopy and X-ray crystallography.40

However, low-temperature spectroscopic studies may introduce changes relative to the 

room-temperature photocycle of microbial rhodopsins.41 For this reason, time-resolved 

room-temperature spectroscopic studies performed under more physiological conditions are 

an important complement to low-temperature studies. For example, extensive time-resolved 

visible and FTIR difference studies have been performed on BR42 and more recently 

CrChR2.8,33,43–49 In one study, time-resolved FTIR and UV–vis difference spectroscopy 

combined with MSD calculation led to the proposal that a downward movement of Glu90 

(homologue of Glu68 in GtACR1) causes helix 2 to tilt downward, thereby resulting in 

channel opening.44

Several key results of this study are discussed below.

Substitution of a Met in ACRs at the Position of Conserved Leu93 (BR sequence) Might 
Allow the L Intermediate To Form at Lower Temperatures

The primary photoproduct of almost all microbial rhodopsins is a red-shifted K intermediate. 

In the case of BR, formation of K entails the light-induced all-trans, 15-anti to 13-cis, 15-

anti isomerization of the retinylidene chromophore.50 At room temperature, the K 

intermediate undergoes a rapid (∼2 μs) thermal decay to a blue-shifted L intermediate with a 

more planar 13-cis, 15-anti configuration.51–53 However, at 80 K, the K → L transition is 

normally blocked. Besides BR,35,54 this block has been observed in prokaryotic sensory 

rhodopsins (SRI and SRII),55,56 fungal Neurospora rhodopsin (NO),15 Anabaena sensory 

rhodopsin from cyanobacteria (ASR),57 and green- and blue-absorbing proteorhodopsin 

proton pumps from marine protobacteria (GPR and BPR, respectively),14,30,58–63 

archaerhodopsin-3 (AR3, also known as ARCH), a BR-like proton pump,64,65 and 

channelrhodopsins (ChRs) from chlorophyte algae.10–12,20 Even in the case of animal 

rhodopsins, which contain an 11-cis-retinylidene chromophore in the unphotolyzed 

rhodopsin state, the primary red-shifted bathorhodopsin photoproduct is blocked at 80 K 

from decaying to lumirhodopsin, the next step in the rhodopsin bleaching sequence.66

In contrast, this study indicates that both the K and L intermediates are formed at 80 K upon 

illumination of GtACR1. Evidence includes the appearance of bands in the FTIR spectrum 
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and the visible absorption difference spectra that are characteristic of the K and L 

intermediates (see Results). One possible explanation for this effect is that steric hindrance 

between the protein and retinal chromophore, which acts to block the K → L transition in 

most microbial rhodopsins, is reduced in the case of GtACR1.

In the case of BR, a major source of this steric hindrance is the well-known interaction 

between the 13-methyl group of retinal and the Leu93 located on helix 3.67,68 On the basis 

of the X-ray structure of the C1–C2 chimera,29 Ile170 (C1–C2 numbering) is in the 

proximity of the 13-methyl group (Figure 10B) and thus likely to play a similar role in 

blocking the K → L transition in CCRs. We suggest that replacement of the conserved 

Leu93 in BR and Leu/Ile in most other microbial rhodopsins with a methionine residue 

(Met105) in GtACR1 (see Figure 10A and Figure S5)1 acts to lower the thermal barrier for 

the K → L transition at 80 K, thereby allowing the retinal to more easily relax into a more 

planar form characteristic of the L intermediate.69 In support of this suggestion, the Leu93 

→ Met substitution in BR allows formation of the L intermediate at 80 K21 similar to the 

case for GtACR1. Evidence includes results of low-temperature FTIR difference 

spectroscopy at 80 K where bands characteristic of the L intermediate appear to be similar to 

results described above for GtACR1. Similar effects were also found to occur for the Trp182 

→ Phe substitution, which is also expected to reduce steric hindrance in BR due to the 

proximity of Trp182 to the 13-methyl group.21 However, in the case of GtACR1, this 

tryptophan residue is conserved and thus cannot be responsible for the difference between 

BR and GtACR1 with regard to L formation in the latter at 80 K. The presence of a Met 

residue at the Leu93 position in BR is not an absolute requirement for an ACR. Sequence 

alignments of ACR homologues show high conservation of Met, but an Ile or Leu residue is 

also observed at this position.70

It is not clear why a Leu to Met substitution would cause this effect because they have 

approximately the same average volume calculated from the surface area of the side chain.71 

One possibility is that the lower thermal barrier for the K → L transition in GtACR1 is due 

in part to an alteration in the arrangement of water molecules located near the SB when Met 

instead of Leu or Ile is present at homologous position 93 in BR. For example, an earlier 

study indicated that the Leu93 → Met substitution in BR causes substantial changes in the 

hydrogen bonding of one or more internal water molecules located near the SB.21

The importance of the residue present in position 93 is also supported by studies of 

proteorhodopsin (PR), a member of an extensive family of microbial rhodopsins found in 

marine proteobacteria distributed throughout the world’s oceans.72,73 Substituting the 

homologous residue from Leu105 with Gln switches the major properties of PRs from the 

green-absorbing GPRs to blue-absorbing BPRs.74 FTIR studies of the primary transition of 

BRP and GPR demonstrated that one of the major effects of this substitution is to cause a 

rearrangement of internal waters located in the active site.61 Further studies of mutants at 

this position in GtACR1 (e.g., M105L) as well as other microbial rhodopsins will be 

necessary to further test this hypothesis.
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Protein Changes Accompanying K and L Formation at Low Temperatures in GtACR1

FTIR difference measurements taken at 80 and 170 K reveal that only local protein structural 

changes occur in GtACR1 during formation of the K and L intermediates at these 

temperatures. For example, relatively small bands appear in the amide I region (excluding 

the SB C=N vibration assigned to the negative 1634 cm−1 band) indicating that no large 

protein conformational changes occur under these conditions. However, much larger bands 

appear at higher temperatures in the amide I and II regions that may correspond to more 

global changes in the protein structure associated with the L intermediate and channel 

opening that are inhibited at lower temperatures (A. Yi et al., unpublished data).

A similar pattern is observed in the carboxylic C=O stretching region. At 80 K, only small 

bands are observed, consistent with a change in hydrogen bonding of several Asp/Glu 

carboxylic residues. At 170 K, the intensity of the pair of bands at (+)1748 and (−)1742 

cm−1 increases, while a new set of bands appear at (+)1724 and (−)1709 cm−1. The intensity 

of both sets of bands continues to increase to 250 K (A. Yi et al., unpublished data). 

However, the (+)1724 and (−)1709 cm−1 bands are abolished by the E68Q mutation, while 

the (+)1748 and (−)1741 cm−1 bands are not. On this basis, we tentatively assign the 

(+)1724 and (−)1709 cm−1 bands to changes in the hydrogen bonding of Glu68. Previously, 

Glu68, which is located close to the SB (Figure 10B), has been implicated as the proton 

acceptor for SB deprotonation during M formation.6 We therefore suggest that the positive 

and negative bands at (+)1724 and (−)1709 cm−1 may be associated with a repositioning 

and/or change in the environment of Glu68. This change could be associated with channel 

opening, which puts E68 in a position to act as the SB proton acceptor during channel 

closing.

Effect of the Substitution of a Glu at Ser97 Causes a Red-Shift of the K and L Intermediates

It has previously been reported that the Ser97 → Glu substitution causes a redshift in the 

unphotolyzed state of GtACR1.5,10 The current results show that a similar red-shift also 

occurs for the K and L intermediates. This indicates that the substituted Glu97 remains in a 

neutral state at pH 7 at least until production of the M intermediate (see also ref 6), or else 

we would expect the negative charge on the carboxylate Glu97 side chain to cause a 

significant blue-shift. One possible explanation for the red-shifts observed in the 

unphotolyzed GtACR1 and the K and L intermediates is that the hydroxyl group of the 

Ser97 is more effective in providing an electronegative environment for the SB relative to 

the longer Glu97 even though the carboxylic group of Glu contains an additional 

electronegative oxygen. This might occur via the direct proximity of the serine hydroxyl or 

via one or more water molecules positioned near the SB.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

ChRs channelrhodopsins

ACR anion channelrhodopsin

CCR cation channelrhodopsin

RRS resonance Raman spectroscopy

FTIR Fourier transform infrared

GtACR1 ACR from G. theta

CaChR1 channelrhodopsin-1 from C. augustae

CrChR2 channelrhodopsin-2 from C. reinhardtii

BR bacteriorhodopsin

HR halorhodopsin

WT wild-type

H/D hydrogen/deuterium

SB protonated Schiff base

C1–C2 chimera of CrChR1 and CrChR2
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Figure 1. 
Comparison of first-push FTIR difference spectra (see Materials and Methods) for GtACR1 

recorded at 80 and 170 K. Black lines and gray lines are the result of two independent 

experiments. Spectra are scaled using the negative peak near 1234 cm−1. The Y-axis tick 

mark spacing corresponds to approximately 1.5 mOD for 80 K spectra and 1 mOD for 170 

K spectra.
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Figure 2. 
Comparison of averaged photoreversal FTIR difference spectra (see Materials and Methods) 

for BR, CaChR1, and GtACR1 recorded at 80 K. The Y-axis tick mark spacing corresponds 

to approximately 5 mOD for BR and 1 mOD for CaChR1 and GtACR1. Each difference 

spectrum consisted of average of at least 30 spectra.
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Figure 3. 
Comparison of first-push FTIR difference spectra at 80 K for GtACR1 WT sample and 

samples regenerated using [15-D,15-13C]- and [14-D,15D]retinals as described in Materials 

and Methods. Black lines are spectra from single-push experiments using 530 nm 

illumination, and gray lines are averaged spectra (see Materials and Methods). Spectra are 

scaled such that the positive and negative peaks in the 1510–1550 cm−1 regions are similar 

in size. The Y-axis tick mark spacing corresponds to approximately 1.5, 1, 1, 0.5, 1, and 0.5 

mOD from top to bottom, respectively.
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Figure 4. 
Comparison of first-push FTIR difference spectra for GtACR1 in H2O and D2O recorded at 

80 K. Spectra are scaled using the negative peak near 1200 cm−1. The Y-axis tick mark 

spacing corresponds to approximately 0.5 mOD for the H2O spectrum and 0.1 mOD for the 

D2O spectrum.
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Figure 5. 
Comparison of first-push FTIR difference spectra for GtACR1 recorded at 80 and 170 K 

over the 1680–1800 cm−1 region. Spectra are scaled using the negative peak near 1234 

cm−1. Black lines and gray lines are results from two independent experiments. The Y-axis 

tick mark spacing corresponds to approximately 0.15 mOD for 80 K spectra and 0.1 mOD 

for 170 K spectra.
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Figure 6. 
(A) Low-temperature UV–visible baseline-corrected spectra of GtACR1 recorded at 80 K 

before and various times after illumination. (B) UV–visible difference spectra computed 

from spectra in panel A (differences consist of subtraction of postspectra from the 

prespectrum) using baseline correction. (C) Same as panel B but spectra recorded at 170 K. 

(D) Difference of difference spectra shown in panel C computed by subtracting the first 

difference spectrum from subsequent difference spectra. All legends for figures are in 

minutes.
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Figure 7. 
Comparison of UV–vis difference spectra of GtACR1 WT (blue) and its mutants E68Q (red) 

and S97E (green) recorded at 80 K. Spectra were baseline-corrected as described in Methods 

and Materials and scaled using the positive peak near 656 nm (WT and E68Q) and 592 nm 

(S97E). The Y-axis tick mark spacing corresponds to approximately 4 mOD for WT and 2 

mOD for the two mutants.
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Figure 8. 
Comparison of first-push “3–1” (see Materials and Methods) FTIR difference spectra for 

GtACR1 with its mutants E68Q and S97E recorded at 80 and 170 K. Gray lines are wild-

type spectra, and black lines are E68Q or S97E spectra. Spectra are scaled using the negative 

peak near 1234 cm−1. The Y-axis tick mark spacing corresponds to approximately 2 mOD 

for WT at 80 K, 1.5 mOD for WT at 170 K, 1.5 mOD for E68Q at both temperatures, and 

0.5 mOD for S97E at both temperatures.
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Figure 9. 
Comparison of first-push 3–1 (see Materials and Methods) FTIR difference spectra for 

GtACR1 with its mutants E68Q and S97E recorded at 80 and 170 K over the 1680–1800 

cm−1 region. Gray lines are wild-type spectra, and black lines are E68Q or S97E spectra as 

indicated. Spectra are scaled using the negative peak near 1234 cm−1. The Y-axis tick mark 

spacing corresponds to approximately 0.4 mOD for WT at 80 K, 0.3 mOD for WT at 170 K, 

0.3 mOD for E68Q at both temperatures, and 0.1 mOD for S97E at both temperatures.
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Figure 10. 
Alignments of transmembrane helix 3 for various microbial rhodopsins. Microbial 

rhodopsins listed are color-coded with blue representing anion channelrhodopsins (ACRs), 

green representing cation channelrhodopsins (CCRs), red representing proton (H+) pumps, 

and orange representing chloride (Cl−) pumps. Residues homologous to BR Leu93 are 

shown with a red border. The top numbering is from the BR sequence, and numbers to the 

right show the last residue in the sequence for each microbial rhodopsin listed. The proteins 

are further divided as indicated by arrows into classifications of cryptophyte algae, 

chlorophyte algae, and haloarchae (see the arrow). Abbreviations: Gt, G. theta; Psu, 

Proteomonas sulcata; Cr, C. reinhardtii; Ca, C. augustae; Mv, Mesostigma viride; Ps, 

Platymonas subcordiformis; Hs, Halobacterium salinarum; Hsp, Halobacterium sp. aus-2; 

Hso, Halorubrum sodomense; Ha, Haloarcula argentinos. Note that Nanolabens marimus is a 

flavobacterium. (B) Three-dimensional structure of the C1–C2 chimera from ref 29 (Protein 

Data Bank entry 3UG9) with selected residues from GtACR1 substituted (E68, S97, M105, 

D234, and K238) instead of C1–C2 residues (E129, E162, I170, D292, and K296). The 

numbering is based on the GtACR1 sequence.
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