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4. Catecholamines Modulate Intrinsic Long-Range Correlations in the Human 

Brain 

 

 

 

 

 

Abstract 

 

Brain activity fluctuates intrinsically, even in the absence of changes in sensory input 

and motor output. These fluctuations are correlated across large-scale networks of 

brain regions, and their strength and topography changes dynamically. Such dynamic 

changes in functional connectivity may be induced by brainstem neuromodulatory 

systems: in particular the locus coeruleus, which projects widely to the forebrain where 

it co-releases the catecholamines norepinephrine and dopamine. In the current study 

we examined whether catecholamines change the strength or the spatial structure 

(topology) of intrinsic long-range correlations, or both. Using a double-blind placebo-

controlled crossover design, we pharmacologically increased central catecholamine 

levels in healthy human participants by administering atomoxetine. We used two 

complementary analysis approaches to examine the effect of catecholamines on fine-

grained strength and topology of intrinsic functional connectivity patterns: ‘dual 

regression’ and ‘spatial mode decomposition’. Both approaches provided converging 

evidence for an atomoxetine-related reduction in correlation strength between 

distributed brain regions. Importantly, the pre-dominant effects of the drug were 

quantitative changes of correlations within existing functional networks that left the 

spatial structure of these networks intact, rather than reconfigurations of the topology 

of these networks. We conclude that catecholamines modulate dynamic changes in 

the strength of intrinsic inter-regional correlations. 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

van den Brink RL, Rombouts SARB, Donner TH, and Nieuwenhuis S (under review). 
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4.1 Introduction 

 

In the absence of changes in sensory input and motor output, brain activity 

fluctuates in intrinsically organized correlated networks (Biswal et al., 1995; Fox and 

Raichle, 2007). The strength and spatial structure of these intrinsic correlations predict 

task-based brain activation (Cole et al., 2016; Tavor et al., 2016), behavior (De Luca 

et al., 2005; Seeley et al., 2007), and are useful to study neural dysfunction in clinical 

populations (Greicius et al., 2004; De Luca et al., 2005; Rombouts et al., 2005; Di 

Perri et al., 2016). The topology of this ‘functional connectivity’ is constrained by the 

(largely) fixed structural connectivity between brain regions (Deco et al., 2011; Deco 

et al., 2013), which determines the anatomical backbone along which functional 

connectivity patterns can change dynamically (Allen et al., 2014; Zalesky et al., 2014; 

Barttfeld et al., 2015). It has been proposed that such changes in functional 

connectivity patterns may be induced by brainstem neuromodulatory systems 

(Leopold et al., 2003; Drew et al., 2008; Schölvinck et al., 2010). An important example 

is the locus coeruleus, which sends diffuse, ascending projections to the forebrain, 

where noradrenergic terminals release the catecholamines norepinephrine (NE) and 

dopamine (DA) (Devoto and Flore, 2006). 

Several lines of evidence suggest that catecholamines might shape intrinsic 

correlations in activity between brain regions, possibly in diverse ways, changing 

either the strength or the topology of these correlation patterns, or both. First, at the 

single-cell level, catecholamines enhance neuronal responses to excitatory synaptic 

input (Rogawksi and Aghajanian, 1980; Seamans et al., 2001b; Wang and O'Donnell, 

2001) and can amplify GABAergic inhibition (Moises et al., 1979; Seamans et al., 

2001a). Such enhanced synaptic efficacy results in system-level signal amplification 

(Berridge and Waterhouse, 2003). Second, direct pharmacological manipulations of 

synaptic catecholamine levels have been shown to alter the global strength of inter-

regional cofluctuations (Guedj et al., 2016; van den Brink et al., 2016; Warren et al., 

2016). Third, evidence from small-scale circuits in crustaceans suggests that 

(catecholaminergic) neuromodulation can dynamically reconfigure functional 

networks, despite a constant structural connectome (Marder, 2012; Bargmann and 

Marder, 2013; Marder et al., 2014). Analogous effects have been suggested to 

underlie fast “resets” of brain network dynamics in the mammalian brain (Bouret and 

Sara, 2005), but direct evidence for catecholaminergic reconfiguration of cortical 

networks in humans has been lacking so far. 

Here, we investigated catecholaminergic modulations of large-scale patterns of 

intrinsic fMRI signal correlations in the human brain at ‘rest’. To this end, we re-

analyzed data from a double-blind placebo-controlled crossover study (van den Brink 

et al., 2016) of central catecholamine effects using atomoxetine, a selective NE 

transporter blocker. Our previous study quantified atomoxetine-induced modulations 

of the global strength of intrinsic correlations (van den Brink et al., 2016). Here, by 

contrast, we examined finer-grained patterns of intrinsic correlations, in order to test 
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for possible atomoxetine-induced quantitative changes in existing correlation patterns 

versus reconfiguration of correlation patterns.  

We used two complementary analysis approaches. The first approach, known as 

‘dual regression’, has been widely used to study the effects of pharmacological 

manipulations on fMRI signal correlations during the resting state (Beckmann, 2009; 

Filippini et al., 2009). The dual regression approach first delineates patterns of 

intrinsically correlated brain regions, so-called functional networks, and then 

compares voxel-level cofluctuation strength with those networks between conditions 

or groups. This method has proven useful for elucidating pharmacological effects on 

fMRI functional connectivity (Chamberlain et al., 2007; Klumpers et al., 2012; Cole et 

al., 2013; Klaassens et al., 2015; Guedj et al., 2016; Schrantee et al., 2016; Klaassens 

et al., 2017). The second approach was linear decomposition of intrinsic signal 

correlation matrices into so-called ‘spatial modes’, again constituting patterns (or 

‘networks’) of cofluctuations in brain activity (Mitra and Pesaran, 1999; Friston and 

Büchel, 2004; Donner et al., 2013). We used a generalization of the spatial mode 

decomposition that, different from dual regression, directly delineated networks 

showing the strongest drug-related changes in correlations, without prior selection of 

certain candidate networks (Friston & Büchel, 2004; Donner et al, 2013).  

Both approaches provided converging evidence for the notion that 

catecholamines reduce the strength of fine-grained cofluctuation between diverse 

brain regions (including sensory- and motor-related networks). In addition, spatial 

mode decomposition revealed an atomoxetine-related shift from left to right-lateralized 

frontoparietal dominance in cofluctuation strength. Importantly, the predominant 

changes of correlation patterns we detected, all reflected quantitative changes in 

existing correlations, rather than a qualitative reconfiguration of network topology. 

 

 

4.2 Materials and Methods 

 

Design and MRI preprocessing. We reanalyzed data from van den Brink et al. 

(2016). This dataset comprised eyes open ‘resting-state’ (blank fixation) fMRI scans 

of 28 participants who received either placebo or atomoxetine (40 mg) on two separate 

sessions, scheduled one week apart. Atomoxetine is a selective NE transporter 

blocker that increases synaptic catecholamine levels (Bymaster et al., 2002; Devoto 

et al., 2004; Swanson et al., 2006; Koda et al., 2010). The study had a double-blind 

placebo-controlled crossover design, and was approved by the Leiden University 

Medical Ethics Committee. All participants gave written informed consent before the 

experiment, in accordance with the declaration of Helsinki.  

Salivary markers of central catecholamine levels confirmed drug uptake (Warren 

et al., 2017). A full description of scan parameters and preprocessing details can be 

found in van den Brink et al. (2016). In brief, we applied the following preprocessing 

steps to the fMRI data (TR = 2.2 s; voxel size = 2.75 mm isotropic): realignment and 
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motion correction; B0 unwarping; high-pass filtering at 100 s; prewhitening; smoothing 

at 5 mm FWHM; coregistration of the functional scans with an anatomical T1 scan to 

2 mm isotropic MNI space; artifact removal using FMRIB’s ICA-based X-noiseifier 

(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014); and retrospective image 

correction to account for differences in heart and breath rate between the atomoxetine 

and placebo conditions (Glover et al., 2000). In the current article, we focus on the 

runs following atomoxetine / placebo ingestion.  

Dual regression analysis. We estimated a set of independent components (ICs) 

that were representative of the combined set of resting-state runs (i.e., runs from all 

participants and both the atomoxetine and placebo conditions) by applying a spatial 

independent component analysis (ICA) to all temporally concatenated data using 

FSL’s MELODIC. The number of ICs to be detected (51) was automatically estimated 

from the data. Each IC represented a statistical parametric map and corresponding 

time series of consistent spatio-temporal dynamics. Next, we spatially correlated each 

IC spatial map with the 10 intrinsic connectivity networks reported by Smith et al. 

(2009) and selected the ICs that showed the highest correlation coefficient. The 

selected components showed an average correlation coefficient of 0.48 (range: 0.28 

- 0.70), which indicated that the ICs as expressed in our data corresponded relatively 

well to previously reported intrinsic connectivity networks (Smith et al., 2009). 

The 10 selected ICs represented spatial maps of ICs that were reliably expressed 

across the combined set of resting-state runs. They were thus representative of group-

level spatiotemporal dynamics, but did not necessarily represent spatiotemporal 

dynamics within individual runs. To produce a time series and a spatial map for the 

individual resting-state runs and for each IC, we used dual regression (Beckmann, 

2009; Filippini et al., 2009). Figure 1 shows a schematic overview of this analysis  

 

 

 
Figure 1. Schematic overview of the dual regression method. First, a group-level independent 

component analysis is run to produce spatial maps. A selection of these maps is subsequently 

regressed onto the individual runs to produce participant- and component-specific time series. 

Finally, these time series are used in temporal regression to produce participant- and 

component-specific spatial maps, which can then be compared between conditions. P: 

placebo; A: atomoxetine; EPI: echo planar imaging; IC: independent component 
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approach. In a first step, we used the group-level IC spatial maps in multiple spatial 

regression onto the individual runs. This produced a time series for each IC as 

expressed within the individual runs. Then, in a second step, we used the participant-

level IC time series as temporal regressors to produce spatial maps of regression 

coefficients for each IC and each run. Thus, this two-stage regression approach 

resulted in a spatial map for each participant, condition, and IC, that indicated the 

degree of covariation between individual voxels and the IC time series.  

Finally, we collected the IC spatial maps of the individual runs into single 4D files 

(one per condition, per IC). This allowed us to compare these spatial maps to zero 

across participants to examine which brain regions cofluctuated with the IC time 

series, and compare them between conditions to assess which voxels displayed 

changes in cofluctuation strength with the IC, using non-parametric permutation 

testing (10,000 iterations) as implemented in FSL’s Randomise. The α level was set 

at 0.05, family-wise error (FWE) corrected for multiple comparisons using threshold-

free cluster enhancement.      

Brain parcellation and inter-regional covariance analysis. We extracted the fMRI 

time series of individual brain regions using the Automated Anatomical Labeling (AAL; 

Tzourio-Mazoyer et al., 2002) atlas, which contained 90 regions (cf. van den Brink et 

al., 2016). In addition, we used an alternate atlas that was based on a functional 

parcellation (Craddock et al., 2012). This atlas contained 140 individual brain regions. 

After averaging across voxels within each brain region (for each atlas separately), we 

Z-scored the multivariate time series (M, with dimensionality imaging volumes by brain 

regions) for each run i and then computed the group-averaged covariance matrices 

(C) for the placebo and atomoxetine conditions (subscript P and A, respectively) via 

the following:  

(1) 

T TN N
1 1P P A A

P A

P 1 A 1

C N    ,  C  N  
1 1

i i i i

i i

M M M M

nTR nTR

− −

= =

⋅ ⋅
= =

− −∑ ∑   

where nTR is the number of volumes (211), N is the number of participants (24), and 
T denotes a matrix transposition. The matrices CP and CA represented the covariance 

between the BOLD time series of all brain regions, averaged across participants. Note 

that by variance normalizing (Z-scoring) the time series, the units of C (covariance) 

are equivalent to the Pearson correlation coefficient. 

Singular value decomposition of covariance matrices. The dual regression 

analysis described at the beginning of this section relies on a linear decomposition of 

the data (ICA). An alternative linear decomposition, eigenvalue decomposition (SVD) 

as used in principal component analysis, can be extended to comparisons of 

correlation patterns between two conditions. Singular value decomposition (SVD) is a 

multivariate linear decomposition that identifies spatial modes of signal cofluctuations; 

each of these spatial modes can be conceptualized as a ‘network’ of correlated (or 

anti-correlated) brain regions (Mitra and Pesaran, 1999; Friston and Büchel, 2004; 

Donner et al., 2013). The decomposition can be generalized to extract spatial modes 
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that are more strongly expressed in one experimental condition than in the other, in 

other words: maximize the ratios of explained variance between conditions (Friston 

and Büchel, 2004; Donner and Nieuwenhuis, 2013).  

Our first objective was to determine if SVD (specifically: principal component 

analysis) identified similar correlation patterns as ICA. We thus submitted the 

covariance matrices (C) of the placebo and atomoxetine conditions to SVD:  

(2) 
TC V V= ⋅ λ ⋅   

where T denotes transposition, λ is an n-by-n matrix with eigenvalues on its diagonal, 

and V is an n-by-n matrix of corresponding eigenvectors in which rows are brain 

regions (n = 90) and columns define individual modes (p).  

 

 

 
Figure 2. Schematic overview of the spatial mode decomposition method. The covariance 

matrices CA and CP are submitted to generalized eigenvalue decomposition to produce a 

matrix of eigenvalues (λ) and eigenvectors (V). The decomposition equation as given here 

delineated modes that were more strongly expressed in the placebo condition than in the 

atomoxetine condition. To identify modes that were more strongly expressed in the 

atomoxetine condition, the covariance matrices CA and CP were swapped. After 

decomposition, the participant-level time series (t) corresponding to each individual spatial 

mode (p) can be computed for each run i by projecting the mode onto the data (M). The 

number of brain regions in the parcellation scheme is denoted by n. A spatial map of brain 

regions that consistently covaried with the mode time series is computed by regressing the 

spatial mode time series for the atomoxetine (A) and placebo (P) conditions onto the voxel-

level fMRI time series, and comparing the regression coefficients to zero across participants.  
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The overall sign of the elements in p is arbitrary but the sign of one element with 

respect to another indicates their relative co-variation, with equal signs indicating 

positive correlation and unequal signs indicating negative correlation.  

For each run i, separately for the atomoxetine and placebo condition, we 

calculated participant-level time series t corresponding to each mode by projecting the 

mode onto the participant-level multivariate time series M via:  

(3) i it M p= ⋅   

The so-computed t described the time-varying strength of the expression of the spatial 

mode (functional network) in each individual participant’s data. Next, we obtained 

voxel-level spatial maps for each mode and each run by regressing the vectors ti onto 

the corresponding voxel-level BOLD data using multiple linear regresson. We then 

selected modes based on maximal spatial correlation with the 10 intrinsic connectivity 

networks reported by Smith et al. (2009), similar to the selection of ICA components 

described above. For the placebo condition, the average correlation coefficient was 

0.41 (SD 0.12, min 0.16, max 0.56), and for the atomoxetine condition the average 

correlation coefficient was 0.40 (SD 0.12, min 0.15, max 0.53), indicating that SVD 

was able to identify networks of intrinsically cofluctuating activity reasonably well 

(Figure S1 and S2). Similar results were obtained with the Craddock atlas. Next, we 

describe the generalization of SVD to extract modes that are more strongly expressed 

in one condition relative to the other. 

Generalized eigenvalue decomposition of covariance matrices. We used 

generalized eigenvalue decomposition to decompose the covariance matrices into 

spatial modes that maximized the ratio of explained variance in the placebo condition 

relative to the atomoxetine condition (Mitra and Pesaran, 1999; Friston and Büchel, 

2004; Donner et al., 2013). Figure 2 shows a schematic overview of this analysis 

approach. We refer to previous work for experimental validation of generalized 

eigenvalue decomposition for use on fMRI data (Donner et al, 2013). For simplicity, 

we here refer to this method as ‘spatial mode decomposition’. Using the ‘eig’ function 

in MATLAB 2012a, we decomposed the participant-averaged atomoxetine covariance 

matrix CA and placebo covariance matrix CP by solving the equation: 

(4) P AC V C V⋅ = ⋅ ⋅λ   

where λ is an n-by-n matrix with generalized eigenvalues on its diagonal, and V is an 

n-by-n matrix of corresponding eigenvectors in which rows are brain regions (n = 90 

for the AAL atlas, and n = 140 for the Craddock atlas) and columns define individual 

modes (p). Here, p were spatial patterns that maximized the variance accounted for 

in one condition relative to the other (as measured by the corresponding λp). The 

above equation identified spatial modes that were more strongly expressed in the 

placebo condition than in the atomoxetine condition. To identify spatial modes that 

were more strongly expressed in the atomoxetine condition, the covariance matrices 

CA and CP were swapped. We arranged V and λ such that their first entries 
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corresponded to the modes that explained most variance. In other words, we sorted λ 

in descending order and then sorted V by λ. 

We next calculated participant-level time series t corresponding to p for each 

individual run i via: 

 (5) i it M p= ⋅   

Here, ti was a vector with length 211 (the number of volumes), and Mi was a matrix of 

Z-scored fMRI time series from the run, with size 211 by n (volumes by brain regions). 

To examine the spatial distribution of each mode, we used the corresponding time 

series in multiple temporal regression. Specifically, for each participant and condition 

separately, we regressed the mode time series onto the single-voxel time series from 

the corresponding run. This yielded one spatial map of regression coefficients per 

participant, condition, and mode. For each mode and for each condition, we could 

then compare the regression coefficients to zero using non-parametric permutation 

testing (10,000 iterations). The α level was set at 0.05, FWE-corrected for multiple 

comparisons using threshold-free cluster enhancement. The resulting statistical 

parametric maps indicated which voxels (if any) covaried with the mode time series 

consistently across participants, and were thus indicative of the spatial distribution of 

the modes.  

Quantifying the across-subject consistency and reliability of spatial modes. The 

spatial modes were computed such they explained more variance in the group-

average data, in the atomoxetine condition than in the placebo condition (or the 

converse). We aimed to quantify, in a cross-validated fashion, how consistently the 

fluctuation strength of these group-average spatial modes distinguished between 

conditions within individual subjects. The fluctuation amplitude si corresponding to 

each mode’s time series in each individual run from each participant quantified the 

amount of variance that the mode explained in the data, and was calculated via: 

(6) 
T

i i is t t= ⋅   

Note that this is equivalent to: 

(7) 
T T T Ci i i ip M M p p p s⋅ ⋅ ⋅ = ⋅ ⋅ =   

We then divided si by the sum of eigenvalues (λ) to convert it to units of percentage 

variance explained. In contrast to the eigenvalues, which capture the group-level 

mode’s ratio of explained variance between conditions,  si captured the amount of 

variance that the mode captured in the condition-specific runs at the individual 

participant-level. For cross-validation, we defined modes (using eq. 4) based on the 

group-average covariance matrices CA and CP that were generated from the first half 

of volumes in Mi  (using eq. 1). Then, each mode was projected onto the (independent) 

remaining half of volumes in Mi as described above (eq. 5) and their corresponding 

fluctuation amplitudes were calculated (via eq. 6). We then used the second half of 

volumes to define the modes and projected them onto the first half, and averaged the 

two values of si. The percentage variance explained by each mode could then be 
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compared between conditions with non-parametric permutation testing (10,000 

iterations). 

We used receiver operating characteristic (ROC) analysis to quantify the reliability 

of the spatial modes in discriminating between experimental conditions, at the level of 

short segments (25% of volumes, ~114 s) of individual fMRI runs. ROC analysis 

performs more accurately with densely populated distributions of measurements. 

Thus, we defined spatial modes based on the group average covariance matrices 

calculated from a smaller subset of volumes (25%), as described above (using eq. 1 

and eq. 4). We subdivided the remainder of volumes into 20 equal-sized bins, and 

computed si for each of them. We cross-validated the fluctuation amplitude calculation 

by computing modes and projecting them onto the remaining data four times such that 

eventually all data were used to define the modes. This yielded four distributions of si 

per condition and participant that were submitted to ROC analysis, resulting in four 

ROC-curves per participant.  We calculated the area under the ROC-curve (AUC) and 

averaged the resulting AUC values across the four ROC-curves of each participant. 

This AUC value could then be interpreted as the probability with which we could 

predict the condition from the mode’s fluctuation strength in a given data segment. 

The AUC values were tested for significance by comparing them to chance level (0.5) 

using non-parametric permutation testing (10,000 iterations). In order to exclude the 

possibility that the significance of the ROC results depended on the number (25%) of 

volumes on which the mode was defined, we repeated the ROC analyses for modes 

defined on ~14%, 20%, and ~33% of the data, and found identical results in terms of 

direction and significance.  

Correlation between mode spatial maps and independent components. To 

determine if the mode spatial maps depended on the parcellation scheme, we used 

spatial correlation. Specifically, for each individual participant and condition, we 

correlated the (unthresholded) spatial maps of regression coefficients of the modes 

that were generated with the AAL atlas, and those that were generated with the 

Craddock atlas. We then compared the distribution of Fisher-transformed correlation 

coefficients to zero using a two-tailed t-test. Similarly, we characterized the 

correspondence in mode spatial maps between the individual conditions by correlating 

the unthresholded spatial maps at the individual participant level, and comparing the 

resulting distribution of Fisher-transformed correlation coefficients to zero using a two-

tailed t-test. 

To characterize correspondence between the mode spatial maps and well-

characterized intrinsic connectivity networks, we first created a mode spatial map by 

temporally concatenating the mode time-series of the atomoxetine and placebo 

conditions, and regressing this concatenated time series onto the temporally 

concatenated BOLD time-series data for each participant. The purpose of this 

concatenation procedure was to create spatial maps that were independent of drug 

condition, similar to ICA components that were identified in temporally concatenated 

EPI data. We could then correlate these condition-invariant unthresholded participant-
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level mode spatial maps with the IC spatial maps that were selected for dual 

regression analysis, and compare the distribution of Fisher-transformed regression 

coefficients to zero using a two-tailed t-test. In all cases where we report average 

correlation coefficients, we applied Fisher’s r-to-Z transform prior to averaging, and 

subsequently applied the Z-to-r transform.  

 

 

4.3 Results 

 

Our first aim was to characterize atomoxetine-induced changes in fine-grained 

(voxel-level) cofluctuation strength with a set of 10 well-characterized intrinsic 

connectivity networks (Smith et al., 2009) using conventional methods for the analysis 

of pharmacological resting-state fMRI: dual regression (Figure 1) (Beckmann, 2009; 

Filippini et al., 2009). Second, we report the results of an alternative analysis approach 

that is targeted at finding spatial patterns (“modes”) of correlated activity that maximize 

the ratio of explained variance between conditions in a fully data-driven manner 

(Figure 2). Thus, instead of testing if any of an a priori selection of networks showed  

 

 

 

 
Figure 3. Spatial maps of the independent components that were selected for dual regression 

analysis. Components were selected based on spatial correlation with the 10 canonical resting-

state networks presented by Smith et al. (2009). 
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drug-induced changes in the cofluctuation strength (as with dual regression), spatial 

mode decomposition directly yielded the networks that exhibited drug-induced 

changes incofluctuations, in terms of cofluctuation strength or spatial pattern, or both. 

In contrast to singular value decomposition of condition-level data (see Materials and 

Methods) or linear decomposition of the data using ICA, spatial mode decomposition 

directly reveals those patterns that cofluctuate more/less in one condition than in the 

other. Moreover, this analysis allows us to characterize to what extent atomoxetine- 

 

 

 
Figure 4. Results of the dual regression analysis. a) Brain areas that significantly (p < 0.05, 

FWE-corrected) cofluctuated with the sensorimotor network. b) Atomoxetine-induced changes 

in cofluctuation strength with the sensorimotor network. c) Brain areas that significantly 

cofluctuated with the visual 1 network. d) Atomoxetine-induced changes in cofluctuation 

strength with the visual 1 network. Blue colors indicate reduced cofluctuation strength 

following atomoxetine compared to placebo. e) Cofluctuation strength (range-normalized 

across participants to between -1 and 1 for illustrative purposes only) for each condition and 

each significant (p < 0.05, FWE-corrected) cluster of atomoxetine-induced changes in 

cofluctuation strenth. Error bars show the SEM. Abbreviations: PC: precuneous cortex; Th: 

thalamus; SMG: supramarginal gyrus; PCG: precentral gyrus; LOC: lateral occipital cortex; 

SPL: superior parietal lobule. 
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related modulations of covariance reflect reconfigurations in the topological structure 

of cofluctuations by directly comparing the mode’s spatial structure between the 

atomoxetine and placebo conditions.  

Results dual regression analysis. We first computed group-level ICA spatial maps 

and then submitted a selection to dual regression analysis (Figure 1). The spatial 

maps of the included components are shown in Figure 3.  

The sensorimotor network and first visual network both showed significant (p < 

0.05, FWE-corrected) atomoxetine-induced changes in cofluctuation strength (Figure 

4a-d). In all significant clusters, atomoxetine reduced the strength of cofluctuation, 

consistent with our earlier findings obtained at coarser levels of spatial granularity (van 

den Brink et al., 2016). All clusters that showed a significant atomoxetine-related 

reduction in cofluctuation strength also covaried positively with the component time 

series in the placebo condition (Figure S3), and were thus functionally linked to the 

networks. In most cases, atomoxetine moved cofluctuations from positive towards 

zero, and in some cases cofluctuations reversed polarity, at least numerically (Figure 

4e; Figure S3). Cofluctuations with the component time series in the clusters that 

numerically reversed polarity, however, were not significantly negative in the 

atomoxetine condition (Figure S4). Thus, the primary effect of atomoxetine on 

cofluctuation strength was to move positive cofluctuations towards zero. The MNI 

coordinates and peak T-statistics of all significant clusters are summarized in Table 1. 

Together, these results suggest that atomoxetine attenuated voxel-level cofluctuation 

strength between brain regions that cofluctuated positively with sensory- and motor-

related networks, and the fluctuations of those networks. 

 

Table 1. Clusters that showed an atomoxetine-induced change in cofluctuation strength 

with resting-state networks. 

Cluster locations were assessed using the Harvard-Oxford structural atlas. Peak MNI 

coordinates are indicated in mm. Abbreviations: PC: precuneous cortex; Th: thalamus; SMG: 

supramarginal gyrus; PCG: precentral gyrus; LOC: lateral occipital cortex; SPL: superior 

parietal lobule. 

Component Location           MNI     

Coordinates (x y z) 

Peak T-statistic 

Visual 1 Left PC -4 -56 12 -4.91 

 Left Th 0 -22 12 -4.21 

Sensorimotor Vermis 0 -72 -14 -6.04 

 Left insula -40 -12 8 -4.65 

 Left SMG -66 -34 34 -5.71 

 Right SMG 58 -44 28 -4.57 

 Left PCG -50 -10 56 -4.85 

 Left LOC -34 -82 26 -4.36 

 Right LOC 18 -66 72 -4.73 

 Right SPL 38 -54 68 -3.30 

 Left SPL -34 -42 70 -3.43 
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Spatial modes that are less strongly expressed in the atomoxetine condition 

relative to placebo. The above reported atomoxetine-related reductions in 

cofluctuation strength with sensory- and motor-related networks resulted from dual 

regression analysis. In the following, we report the results of an alternative analysis 

approach that directly reveals those patterns that cofluctuate more/less in one 

condition than in the other, and that allows us to characterize to what extent 

atomoxetine-related modulations of covariance reflect reconfigurations in the 

topological structure of cofluctuations. Given that dual regression analysis identified 

only atomoxetine-reductions in the strength of cofluctuations, we first focus on spatial 

modes that reflected an atomoxetine-related reduction in cofluctuations. 

The eigenvalues of the modes that were less strongly expressed in the 

atomoxetine condition are shown in Figure 5a. We focused on mode number 1 

because it had the largest eigenvalue and thus accounted for most variance in the 

data, and because mode orthogonality can obscure the interpretation of modes with 

higher ranks (c.f. Donner et al., 2013).  

This first spatial mode robustly differed in its fluctuation strength (i.e., variance 

explained) between the atomoxetine and placebo conditions. We first tested, using 

cross-validation, if the first spatial mode consistently explained less variance in the 

atomoxetine condition than in the placebo condition across subjects: we computed the 

mode based on covariance in each half of the volumes in each participant’s runs, 

projected the mode onto the remaining half of the volumes, and calculated the mode’s 

proportion of explained variance in each condition (see Materials and Methods). 

Indeed, the first spatial mode accounted for significantly less variance in the 

atomoxetine condition than in the placebo condition, for both parcellation schemes 

(AAL: p = 0.003; Craddock: p < 0.001; Figure 5b). Further, ROC analysis showed that 

even at the level of short individual data segments (~114 s), the first spatial mode’s 

fluctuation strength reliably discriminated between drug and placebo conditions, with 

AUC-values larger than 0.6 for both parcellation schemes (Figure 5c).  This indicates 

that the spatial mode identified by our analysis reflected a robust effect of the 

pharmacological intervention on brain-wide intrinsic correlations. 

We next compared the spatial distributions of the expressions of the first spatial 

mode, between different parcellation schemes and with the spatial maps obtained 

from the dual regression analysis. The unthresholded spatial map of mode 1 

(reflecting voxel-level covariation with the mode’s time series) is shown in Figure 5d, 

separately per condition and for modes that were generated using the AAL atlas, and 

for modes that were generated using the Craddock atlas. Figure S5 shows 

thresholded (p < 0.05, FWE-corrected) mode spatial maps. Despite using parcellation 

schemes that differed both in the number of brain regions and in the way the brain 

regions were defined (anatomical parcellation and functional clustering, respectively), 

the mode spatial maps generated with the two atlases corresponded robustly across  
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Figure 5. Spatial modes that are less strongly expressed in the atomoxetine condition. a) 

Eigenvalues of all modes. b) A comparison between conditions of the percentage of variance 

explained by the first mode. c) ROC curves to distinguish conditions based on the fluctuation 

amplitude of the first mode. d) Spatial map of the first mode. Colored regions show covariation 

with the mode time series. Error bars show the SEM. **: p < 0.01; ***: p < 0.001. The r values 

indicate the average correlation coefficient across participants. 

 

 

participants (placebo: t(23) = 10.43, p < 0.001; atomoxetine: t(23) = 9.54, p < 0.001; 

Figure 5d).  

To determine if the mode corresponded to any of the intrinsic connectivity 

networks that were used for dual regression analysis, we correlated the mode spatial 

map with the ICA component spatial maps at the individual participant level. The 

spatial map of mode 1 that was generated with the AAL atlas correlated most strongly 

with the left-lateralized frontoparietal ICA component (mean r = -0.15, SD 0.05; t(23) 

= -16.33, p < 0.001). The spatial map of mode 1 that was generated with the Craddock 

atlas also correlated significantly across participants with the left-lateralized 
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frontoparietal component (mean r = -0.07, SD 0.04; t(23) = -8.68, p < 0.001). 

Moreover, for both atlases the spatial map of mode 1 correlated significantly with the 

sensorimotor component (AAL: mean r = 0.13, SD 0.04; t(23) = 17.41, p < 0.001; 

Craddock: mean r = 0.07, SD 0.03; t(23) = 14.36, p < 0.001), suggesting that 

atomoxetine reduced the strength of cofluctuations in a network that resembled the 

ICA-identified sensorimotor network (Figure S6). If this is indeed the case, then the 

regions that showed an atomoxetine-related reduction in cofluctuations in the dual 

regression analysis (Figure 4) should show a similar sign in the mode spatial map (i.e. 

be part of the same cofluctuating network). We therefore masked the thresholded 

spatial map of mode 1 in the placebo condition (Figure S5) with the significant clusters 

in Figure 4. All clusters showed the same sign (Figure S7), indicating that the spatial 

mode reflected a reduction in cofluctuation strength across brain regions that showed 

similar reductions in the dual regression analyses.  

Spatial correlation also enabled us to examine if the mode reflected a 

reconfiguration of the spatial structure of cofluctuations or if it reflected a quantitative 

change in strength that left the structure of cofluctuations intact. To this end, we 

operationally defined reconfiguration as a change in mode topology, implying a spatial 

mode that was only expressed in one condition, but not in the other. By contrast, 

quantitative changes would entail the spatial mode to be expressed in both conditions, 

only to a different degree. Note that both scenarios might lead to a robust spatial mode 

maximizing the ratio between variance accounted for in both conditions.  

We correlated the mode spatial map of the placebo condition with that in the 

atomoxetine condition (Figure 5d). Inconsistent with the notion of an atomoxetine-

related reconfiguration of cofluctuation structure, the mode spatial map correlated 

between conditions for both atlases (AAL: t(23) = 15.57, p < 0.001; Craddock: t(23) = 

14.89, p < 0.001). In other words, the spatial distribution of the expression of the first 

spatial mode that most discriminated between conditions, was in fact similar between 

conditions. This indicates that the predominant effect of atomoxetine was a 

quantitative reduction of the strength of cofluctuations rather than a topological 

reconfiguration of intrinsic functional connectivity networks (see Discussion). 

Spatial modes that are more strongly expressed in the atomoxetine condition 

relative to placebo. Thus far we have shown, using dual regression analysis, that 

atomoxetine reduced cofluctuation strength between distributed brain regions 

(including sensory- and motor-related networks). Spatial mode decomposition 

revealed similar reductions in cofluctuation strength, and further indicated that these 

changes in cofluctuation strength left the spatial structure of cofluctuations intact. We 

now turn to spatial modes that reflected an atomoxetine-related increase in 

cofluctuations (see Materials and Methods), which may have not been identified by 

dual regression analysis.  

The eigenvalues of the modes that were more strongly expressed in the 

atomoxetine condition are shown in Figure 6a. Again, we selected mode 1 because it 

accounted for most variance in the data. Similar to the above reported analysis of  
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Figure 6. Spatial modes that are more strongly expressed in the atomoxetine condition. a) 

Eigenvalues of all modes. b) A comparison between conditions of the percentage of variance 

explained by the first mode. c) ROC curves to distinguish conditions based on the fluctuation 

amplitude of the first mode. d) Spatial map of the first mode. Colored regions show covariation 

with the mode time series. Error bars show the SEM. **: p < 0.01; ***: p < 0.001. The r values 

indicate the average correlation coefficient across participants. 

 

 

mode variance, we computed the mode based on covariance in each half of the 

volumes, and projected it onto the remaining half. For both atlases, the mode  

explained significantly more variance in the atomoxetine condition than in the placebo 

condition (AAL: p = 0.002; Craddock: p < 0.001; Figure 6b), and consistently 

throughout the resting-state runs (ROC values >0.6; p < 0.001; Figure 6c). Thus, the 

mode reflected a pattern of brain regions in which activity cofluctuated more strongly 

following atomoxetine than following placebo.  

Figure 6d shows the (unthresholded) spatial map of mode 1, separately per 

condition, for modes that were generated using the AAL atlas, and for modes that 
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were generated using the Craddock atlas. Figure S8 shows thresholded (p < 0.05, 

FWE-corrected) mode spatial maps. Again, the spatial map of the modes generated 

with the two atlases corresponded robustly across participants (placebo: t(23) = 3.96,  

p < 0.001; atomoxetine: t(23) = 3.98,  p < 0.001).  

The spatial map of mode 1 correlated most strongly with the right-lateralized 

frontoparietal component (AAL atlas: mean r = -0.05, SD 0.03; t(23) = -7.98, p < 0.001; 

Craddock atlas: mean r = -0.09, SD 0.03; t(23) = -14.44, p < 0.001). Together, these 

results suggest that atomoxetine increased the strength of cofluctuations in a 

distributed network that resembled the right-lateralized frontoparietal network. 

Next, we again examined if the mode reflected a change in cofluctuation network 

structure, or if it reflected a modulation of cofluctuation strength alone. We thus 

correlated the mode spatial map in the atomoxetine condition and in the placebo 

condition, and found robust correlations (AAL atlas: t(23) = 6.93, p < 0.001; Craddock 

atlas: t(23) = 14.89, p < 0.001). Thus, the spatial structure of the first mode was similar 

between conditions, and therefore the most prominent atomoxetine-related increases 

in cofluctuations can be interpreted as a quantitative increase in the strength of those 

cofluctuations rather than a more profound reconfiguration of network topology. 

In sum, dual regression analysis and spatial mode decomposition converge on 

the conclusion that atomoxetine weakens cofluctuation strength between distributed 

brain regions, including sensory- and motor-related networks. In addition, spatial 

mode decomposition revealed a shift from left- to right-lateralized frontoparietal 

network dominance, as confirmed by a significant interaction in the strength of 

correlation between mode polarity (atomoxetine-induced increase versus decrease) 

and component (frontoparietal left versus right) (repeated-measures ANOVA; AAL: 

F(1,23) = 163.14, p < 0.001; Craddock: F(1,23) = 56.15, p < 0.001). Lastly, spatial 

mode analysis revealed that the predominant effect of atomoxetine was the 

quantitative scaling of preexisting cofluctuation patterns whereby the overall spatial 

structure of these cofluctuating networks was left intact.  

 

 

4.4 Discussion 

  

In the present study, we examined the effect of the selective NE transporter 

blocker atomoxetine on the fine-grained spatial structure of resting-state fMRI 

cofluctuations using dual regression and spatial mode decomposition. First, dual 

regression analysis revealed that atomoxetine reduced cofluctuation strength 

between a distributed set of brain regions that included sensory- and motor-related 

networks. Second, spatial mode decomposition provided converging evidence for 

such a reduction in sensory- and motor related coupling. Third, spatial mode 

decomposition revealed an atomoxetine-related shift in the dominance from left-

lateralized to right-lateralized frontoparietal network activity. Importantly, spatial mode 

decomposition indicated that the most prominent atomoxetine-related changes in 
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cofluctuations did not alter the topology of the networks in which these changes 

occurred, but instead reflected quantitative modulations within these networks that left 

the overall cofluctuation structure intact.   

The study of small neural circuits has revealed dynamical reconfigurations of 

functional networks through neuromodulators, including catecholamines (Marder, 

2012; Bargmann and Marder, 2013; Marder et al., 2014). Yet, our results show that 

the total landscape of cofluctuation changes is dominated to a greater extent by 

quantitative catecholamine-related changes (i.e. mode 1 accounted for most variance 

relative to other modes, and it reflected quantitative changes). It is worth noting that 

more subtle catecholamine-related reconfigurations may have occurred, but were not 

detected by our current analyses (e.g. may have been captured by modes that 

accounted for less variance, which we did not examine). Additionally, our findings 

leave open the possibility that the rapid and transient (i.e. phasic) release of 

catecholamines has a more profound influence on the topological organization of 

intrinsic cofluctuations, given that such phasic catecholamine release can have 

qualitatively different effects on neural conductance properties (Rodgers et al., 2011b; 

Rodgers et al., 2011a) and behavioral performance (de Gee et al., 2017) than changes 

in tonic levels. Moreover, the dynamical structure of time-varying changes in network 

topology may be more susceptible to influence by neuromodulatory tone than the 

stationary network topology, given that such time-varying topological changes have 

been reported to covary with behavioral performance and pupillary indices of 

neuromodulation (Shine et al., 2016).  

Our findings are broadly consistent with an earlier study (Guedj et al., 2016) that 

examined the effect of atomoxetine on resting-state cofluctuations in rhesus 

macaques using dual regression, and found widespread atomoxetine-related 

cofluctuation reductions within and between networks, including the somatomotor, 

somatosensory, (peripheral) visual, and a bilateral frontoparietal network. 

Interestingly, the authors report an atomoxetine-related reduction in cofluctuations 

between the somatomotor network and bilateral clusters that strongly resemble the 

bilateral clusters in the supramarginal gyrus reported here (Figure 4, Table 1), 

suggesting that the supramarginal gyrus is a particularly prominent target region of 

catecholaminergic neuromodulation. Moreover, the general correspondence between 

the findings reported by Guedj et al. (2016) and those reported here suggests that the 

modulation of cofluctuating networks, mediated by catecholamines, is a mechanism 

that occurs consistently across species. However, in contrast to the interpretation by 

Guedj et al. (2016) our findings suggest that these altered cofluctuation dynamics may 

reflect quantitative changes rather than broad network reconfigurations. 

The finding that atomoxetine reduced cofluctuation strength with the sensorimotor 

network is noteworthy in light of the therapeutic profile of atomoxetine. Atomoxetine 

has been shown to improve inhibitory motor control in rats (Robinson et al., 2008), 

patients with ADHD (Chamberlain et al., 2007), and healthy humans (Chamberlain et 

al., 2006b). Our findings suggest that these response inhibition-enhancing effects of 
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atomoxetine may be the result of catecholaminergic action within the sensorimotor 

system. Nevertheless, the potential link between the here reported reduction in 

cofluctuation strength with the sensorimotor network and the response inhibition-

enhancing effects of atomoxetine awaits further investigation. 

Furthermore, we found that atomoxetine caused a shift in the dominance from left- 

to right-lateralized frontoparietal network dominance. Frontoparietal regions in the 

right hemisphere have been implicated in attentional reorientation and the regulation 

of goal-directed stimulus selection (Corbetta and Shulman, 2002; Corbetta et al., 

2008; Thiebaut de Schotten et al., 2011). Interestingly, right-lateralized frontoparietal 

regions have also been suggested to be particularly susceptible to noradrenergic 

influences (Corbetta and Shulman, 2002; Corbetta et al., 2008), and atomoxetine has 

been reported to improve the precision of neural representations of stimuli (Warren et 

al., 2016). It is tempting to speculate that the here observed atomoxetine-related shift 

from left- to right-lateralized frontoparietal network dominance may indicate a shift 

towards goal-oriented stimulus processing. While our participants were not engaged 

in a task (other than active fixation), this speculation provides an interesting avenue 

for future research.  

Our findings show the utility of spatial mode decomposition for the analysis of 

pharmacological resting-state fMRI data. One of its primary advantages over dual 

regression analysis is that it does not require an a priori selection of functional 

networks, but instead automatically yields the networks (spatial modes) that show the 

strongest drug-related effects. Thus, it reduces the chances of overlooking prominent 

drug-related changes in inter-regional cofluctuations, as evidenced by the 

atomoxetine-related increases in covariance that were identified by spatial mode 

decomposition, but not by dual regression. Moreover, spatial mode decomposition is 

computationally inexpensive when used in combination with an anatomical atlas, as 

we have done here. We should note, however, that even though our results 

demonstrate some robustness of the method to the particular parcellation scheme, it 

is not a certainty that the resulting networks will generalize to other parcellation 

schemes, in particular those of radically different densities. In addition, we only 

examined the first modes because they explained the largest amount of variance in 

the data, but modes with higher rank numbers may contain information regarding 

relevant changes in connectivity as well. Examining these, however, would require 

additional statistical corrections that could increase the false negative rate. Moreover, 

the interpretability of modes with higher ranks may be hindered by mode orthogonality. 

Lastly, the decomposition can only be used to compare two separate conditions (or 

groups), which limits its applicability in complex (e.g., longitudinal) study designs. 

Nevertheless, spatial mode decomposition offers a thorough characterization of drug-

related changes in the structure of cofluctuating activity.  

In sum, we have shown that dual regression and spatial mode decomposition 

converge on the conclusion that catecholamines reduce cofluctuation strength within 

and between distributed systems, including sensory- and motor-related networks. In 
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addition, spatial mode decomposition revealed an atomoxetine-related shift from left 

to right-lateralized frontoparietal network dominance. Importantly, however, these 

quantitative changes left the overall spatial structure of cofluctuations intact, 

suggesting that the predominant effect of increased synaptic catecholamine levels 

was to quantitatively scale cofluctuations in preexisting networks. Lastly, our findings 

lend support to the notion that catecholamines modulate dynamic changes in the 

strength of intrinsic inter-regional coupling, possibly to coordinate flexible modulations 

of network interactions to facilitate goal-directed behavior. 

 

 

4.5 Supplementary Materials 

 

Ruling out confounding artifacts in the global signal. Recent findings have 

suggested that the global MRI signal may contain artifacts that are related to various 

non-neural sources, and these artifacts are not effectively removed by standard 

preprocessing techniques (Power et al., 2017). While the independent components 

that were used for dual regression analysis by definition do not contain such global 

artifacts (due to the spatial independence of components), these artifacts may have 

caused spurious differences between conditions in the structure of inter-regional 

covariance. We therefore applied global signal (the mean of all regional time series) 

regression to the regional BOLD time series prior to computing covariance matrices, 

and repeated our key spatial mode decomposition analyses. 

For the decomposition placebo < atomoxetine, the percentage variance explained 

of mode 1 differed between conditions and in the expected direction (AAL: t(23) = 

4.45, p < 0.001, area under ROC curve = 0.64, t(23) = 6.88, p < 0.001; Craddock: t(23) 

= 4.55, p < 0.001, area under ROC curve = 0.69, t(23) = 7.54, p < 0.001). Similarly, 

for the decomposition placebo > atomoxetine the percentage variance explained of 

mode 1 also differed between conditions and in the expected direction (AAL: t(23) = -

5.15, p < 0.001, area under ROC curve = 0.63, t(23) = 8.97, p < 0.001;  Craddock: 

t(23) = -6.23, p < 0.001, area under ROC curve = 0.63 t(23) = 7.06, p < 0.001). 

Moreover, the spatial distribution of mode 1 computed without global signal regression 

correlated significantly with the spatial distribution of mode 1 computed on global 

signal-removed time series, for both atlases and for the decomposition in both 

directions (all p values < 0.001). Thus, the findings as presented in the main text were 

unlikely to be driven by spurious differences between conditions relating to artifacts in 

the global signal.   
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4.6 Supplementary Figures 

 

 

 
 

Figure S1. Modes resulting from singular value decomposition of AAL atlas 

covariance in the placebo condition. The modes were selected based on maximal 

spatial correlation with the independent component topographies presented by 

Smith et al. (2009). The rank number indicates the relative proportion of explained 

variance of each mode, where lower rank numbers account for relatively more 

variance in the data than high rank numbers.  
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Figure S2. Modes resulting from singular value decomposition of AAL atlas 

covariance in the atomoxetine condition. The modes were selected based on 

maximal spatial correlation with the independent component topographies presented 

by Smith et al. (2009). The rank number indicates the relative proportion of 

explained variance of each mode, where lower rank numbers account for relatively 

more variance in the data than high rank numbers.   
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Figure S3. Covariation with component time-series in the individual conditions, only 

for clusters that showed a significant (p < 0.05, FWE-corrected) atomoxetine-

induced reduction in coupling.  
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Figure S4. Covariation with component time-series in the individual conditions, only 

for clusters that both showed a significant (p < 0.05, FWE-corrected) atomoxetine-

induced reduction in coupling, and significant (p < 0.05, FWE-corrected) covariation 

with the component time series. Note that brain regions that showed (numerically) 

an atomoxetine-induced polarity reversal are not significant.   
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Figure S5. Spatial mode 1 for the decomposition placebo > atomoxetine, with FWE-

corrected threshold of p < 0.05. 
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Figure S6. Unthresholded spatial maps of average regression coefficients of the 

ICA-identified sensorimotor component, and spatial maps of mode 1 generated 

using the AAL atlas, and for the decomposition placebo > atomoxetine.  
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Figure S7. Spatial mode 1 in the placebo condition generated with the AAL atlas (top 

left panel of Figure S5), masked with the regions that showed a significant reduction 

in connectivity with the sensorimotor network in the dual regression analysis.  
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Figure S8. Spatial mode 1 for the decomposition placebo > atomoxetine, with FWE-

corrected threshold of p < 0.05. 

 


