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2. Post-Error Slowing as a Consequence of Disturbed Low-Frequency 

Oscillatory Phase Entrainment 

 

 

 

 

 

 

Abstract 

 

A common finding across many reaction-time tasks is that people slow down on trials 

following errors, a phenomenon known as post-error slowing. In the present study we 

tested a novel hypothesis about the neural mechanism underlying post-error slowing. 

Recent research has shown that when task-relevant stimuli occur in a rhythmic 

stream, neuronal oscillations entrain to the task structure, thereby enhancing reaction 

speed. We hypothesized that under such circumstances post-error slowing results 

from an error-induced disturbance of this endogenous brain rhythm. To test this 

hypothesis, we measured oscillatory EEG dynamics while human subjects performed 

a demanding discrimination task under time pressure. We found that low-frequency 

neuronal oscillations entrained to the stimulus-presentation rhythm, and that low-

frequency phase at stimulus onset predicted the speed of responding. Importantly, 

we found that this entrainment was disrupted following errors, and that the degree of 

phase disturbance was closely related to the degree of post-error slowing on the 

subsequent trial. These results describe a new mechanism underlying behavioral 

changes following errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on:  

van den Brink RL, Wynn SC, and Nieuwenhuis, S (2014). Post-error slowing as a 

consequence of disturbed low-frequency oscillatory phase entrainment. The Journal 

of Neuroscience, 34(33): 11096-11105   
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2.1 Introduction 

 

One of the most common findings in empirical studies employing reaction time 

(RT) measures is that RTs slow down on trials following errors, a phenomenon known 

as post-error slowing (PES, Rabbitt, 1966; Laming, 1979). PES has been shown to 

occur across many different tasks and response modalities, including go/no-go 

(Cohen et al., 2009); flanker (Cavanagh et al., 2009b; Eichele et al., 2010); 

categorization (Dudschig and Jentzsch, 2009; Jentzsch and Dudschig, 2009); Stroop 

(Gehring and Fenscik, 2001a); Simon (Ridderinkhof, 2002); and saccade 

countermanding tasks (Endrass et al., 2005). Researchers have proposed several 

accounts of the cognitive mechanisms that are responsible for PES (Danielmeier and 

Ullsperger, 2011), suggesting that PES can arise from strategic adjustments in 

response caution (Botvinick et al., 2001; Dutilh et al., 2012a) as well as a detrimental 

processing interference caused by the error (Jentzsch and Dudschig, 2009; 

Notebaert et al., 2009). However, although studies have started to elucidate the 

neural mechanisms underlying error-related strategic adjustments (King et al., 2010; 

Danielmeier et al., 2011; Narayanan et al., 2013), the neural basis of error-related 

processing interference is still poorly understood.  

In the present study, we tested the hypothesis that this component of PES results 

from an error-evoked disturbance of internally generated brain rhythmicity. It has 

been suggested that under circumstances of high external predictability, the timing of 

endogenous periodic processes is systematically aligned with the environmental 

rhythmicity (Large and Jones, 1999; Schroeder and Lakatos, 2009). Such temporal 

alignment can be implemented by neuronal oscillations, which are rhythmic 

fluctuations in the excitability of large-scale neuronal ensembles (Wang, 2010). This 

oscillatory phase locking, or entrainment, ensures that behaviorally relevant stimuli 

are processed in the optimal neuronal context, thereby optimizing speed and 

accuracy of behavioral responses. Indeed, low-frequency neuronal oscillations have 

been shown to align with stimulus-presentation rates, are modulated by expectations 

about stimulus onset, and predict the latency of behavioral responses (Lakatos et al., 

2008; Schroeder and Lakatos, 2009; Saleh et al., 2010; Stefanics et al., 2010a; Besle 

et al., 2011b; Henry and Obleser, 2012). 

To test our hypothesis that errors slow down subsequent responses through a 

disturbance of low-frequency EEG oscillatory phase entrainment, we examined the 

oscillatory dynamics of EEG signals from participants performing a modified Eriksen 

flanker task under high time pressure. We found that low-frequency neuronal 

oscillations entrained to the stimulus-presentation rhythm, and that low-frequency 

phase at stimulus onset predicted the speed of responding. Importantly, we found 

that this entrainment was disrupted following errors, and that the degree of phase 

disturbance was closely related to the degree of PES on the subsequent trial. These 

results support our novel hypothesis regarding the neural origin of PES. 
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2.2 Materials and Methods 

 

Participants. Twenty-one participants (aged 17-29 years, 17 female, all right-

handed) gave informed consent to take part in this study. Following EEG artifact 

rejection, one participant was excluded from further analysis due to an insufficient 

number of error trials (<30). All participants had normal or corrected-to-normal vision, 

and were free from any neurological or psychiatric disorders. Participants were 

recruited via the Leiden University Research Participation website and received 

€7,50/h or course credit. The experiment was approved by the Leiden University 

Institute of Psychology Ethics Committee. 

Behavioral task. The participants performed a modified version of the flanker task 

(Eriksen and Eriksen, 1974), in which a target letter (‘H’, ‘K’, ‘C’ or ‘S’) was flanked by 

three identical flanker letters (‘H’, ‘K’, ‘C’ or ‘S’) on each side. Participants had to 

classify the target letter by giving one of two left-hand responses or one of two right-

hand responses. The flanking letters were always incongruent with the target letter 

(e.g., SSSHSSS or KKKCKKK) and mapped to a finger of the hand opposite to the 

hand associated with the correct response. This ensured similar difficulty across 

trials, enabling cross-trial comparisons of RTs, while retaining a sufficiently high error 

rate.  

Stimuli were presented in black on a white background for 200 ms at 2.77ᵒ 

horizontal visual angle and at a viewing distance of 120 cm. Stimulus onset 

asynchronies (SOAs) were randomly selected from a uniform distribution with a mean 

of 1350 ms, and varying between 1200 ms and 1500 ms with 50 ms increments 

(Figure 1A). During the inter-trial interval, a black fixation cross was shown. 

Participants were instructed to keep their eyes fixated on the cross at all times.  

Between task blocks participants received RT and accuracy feedback, and were 

pressed for speed. In total there were 10 blocks of 104 trials each. Participants 

practiced the task beforehand (120 trials), to ensure they understood the task. 

Because several studies have found that PES is exclusively found for errors of 

which participants are aware (Hughes and Yeung, 2011; Murphy et al., 2012), we 

conducted a pilot experiment (N=4) to verify whether participants detected the errors 

made in our challenging version of the flanker task. If they detected an error, 

participants were to press an error-signaling button (space bar) with their thumb, 

immediately after the error, and before the next trial started (an additional task on top 

of the already demanding flanker task). All other methods were identical to those 

described for the main experiment. Participants correctly signaled over 76% of their 

errors, which provides a lower bound on the percentage of aware errors, while 

misclassifications of correct responses as errors were rare (<2%). This suggests that 

participants were aware of the large majority of their errors. 

Behavioral data acquisition and analysis. The experiment was run on a personal 

computer with an 18-inch monitor. Stimulus presentation and the recording of 

responses were performed using E-Prime (v2.0; Psychology Software Tools, Inc.).  
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In order to quantify PES, researchers usually subtract the mean reaction time 

(MRT) on post-error trials from the MRT on post-correct trials  (MRTpost-error – MRTpost-

correct). This will hereafter be referred to as PEStraditional (Dutilh et al., 2012b). However, 

Dutilh et al. (2012b) have shown that this measure of PES is vulnerable to confounds 

related to global performance fluctuations. They therefore proposed an alternative 

measure of PES, dubbed PESrobust.  Following this method, we conducted a pairwise 

comparison of correct trials around each error (RTpost-error – RTpre-error), resulting in 

single-trial values of PES. For the calculation of PESrobust,we included error trials that 

were both preceded and followed by at least one correct trial. To test for group-level 

significance of PEStraditional and PESrobust, MRTs on post-error trials were compared to 

post-correct and pre-error trials, respectively, with one-tailed paired-sample t-tests. 

Additionally, Pearson’s correlation was used to determine whether PEStraditional and 

PESrobust were correlated.  

EEG recording and preprocessing. EEG data were recorded using a BioSemi 

ActiveTwo system from 18 electrodes placed according to the international 10/20 

system: F3; Fz; F4; C3; Cz; C4; P3; Pz; P4; PO7; PO3; POz; PO4; PO8; O1; Oz; O2; 

and Iz. Additionally, a reference electrode was placed on each earlobe, and bipolar 

electro-oculogram (EOG) recordings were obtained from electrodes placed 

approximately 1 cm lateral of the outer canthi (horizontal EOG) and from electrodes 

placed approximately 1 cm above and below the left eye (vertical EOG). During 

acquisition, impedances were kept below 30 kΩ. The EEG signal was pre-amplified 

at the electrode to improve the signal-to-noise ratio with a gain of 16×, and digitized 

at 24-bit resolution with a sampling rate of 1024 Hz. Each active electrode was 

measured online with respect to a common mode sense (CMS) active electrode 

producing a monopolar (non-differential) channel.  

All EEG data were analyzed in MATLAB 2011b, using the EEGLAB toolbox 

(Delorme and Makeig, 2004a) and custom in-house code. First, EEG data were down 

sampled to 512 Hz and re-referenced off-line to the average of the earlobe electrodes. 

Next, to remove drifts, the continuous EEG data were high-pass filtered offline at 0.5 

Hz with a zero-phase-shift, two-way, least-squares finite impulse response filter 

(constructed using MATLAB’s ‘fir1’ function which smooths the filter kernel using a 

Hamming window by default). Zero-phase-shift filters prevent the introduction of filter 

artefacts that could distort real oscillatory phase information. Filtering the continuous 

time course rather than epoched data also prevented edge artifacts from 

contaminating the data. Nevertheless, to verify that high-pass filtering did not 

influence low-frequency phase estimates, we also ran the relevant analyses on data 

to which no high-pass filter was applied, and found that it did not influence the results.  

Additionally, the EEG data were notch-filtered at 50 Hz to remove line-noise. 

Following filtering, the continuous data were segmented into epochs ranging from -1 

to 3s centered on stimulus onset and baseline-corrected by subtracting the average 

offset during the -400 to -100 ms pre-stimulus window. Next, the following types of 

trials were excluded from further analysis: trials in which the participant failed to 
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respond, trials which were part of a sequence of more than three consecutive errors, 

and trials with an RT exceeding 1200 ms.  Trials with transient artifacts and eye 

movements were manually rejected. Following trial rejection, per participant on 

average 609 correct trials, and 78 error trials remained (393 and 47 respective lower 

limits) and 693 post-correct trials and 94 post-error trials remained (501 and 51 

respective lower limits). Next, eye blinks and continuous electromyogram (EMG) 

artifacts were identified using JADE independent component analysis as 

implemented in the EEGLAB toolbox (Delorme and Makeig, 2004a) and the 

corresponding components were removed from the data.  

ERP analysis. To confirm that our task showed the event-related potential (ERP) 

components that are typically found during flanker tasks—the error-related negativity 

and error positivity—we computed response-locked ERPs for correct and error trials, 

and baseline-corrected them by subtracting the average offset during the -100 to 0 

ms pre-response window. These ERPs were then compared on each time-point with 

two-tailed t-tests with a p-threshold of 0.001 or less, and cluster-corrected for multiple 

comparisons across time-points (Maris and Oostenveld, 2007).  

Time-frequency analyses. Spectral power and phase dynamics were extracted 

via Morlet wavelet decomposition. Wavelet decomposition involves convolving the 

data with a set of Gaussian-windowed complex sine waves, here defined as: 
2

22 2w w

w

t

i f t s

f e e
π

−

ψ = ⋅   

where fw denotes frequency, which ranged from 0.5 to 30 Hz with 30 logarithmically-

spaced steps. Time is denoted by t, and sw determines the width of the Gaussian 

window, and thus the tradeoff between time and frequency precision. A wider 

Gaussian will result in a wider wavelet, and thus results in more temporal smearing 

of instantaneous power/phase estimates. Because we were primarily interested in 

lower frequencies, and the lower frequencies inherently span a wider temporal range, 

we preferred to minimize temporal smearing at the expense of frequency resolution 

in the lower frequency bands. We therefore linearly increased the Gaussian width 

with frequency, such that: 

2

w
w

w

c
s

fπ
=   

where cw denotes the number of wavelet cycles, which ranged from 3 to 12.  

To accommodate the large wavelet width at the lower frequencies, prior to 

running wavelet decomposition we expanded each data epoch with a mirror (time-

reversed) image of itself such that each epoch consisted of a mirror image of the 

epoch, then the ‘true’ epoch, and another mirror image following it. This increased the 

effective epoch size from 4 s to 12 s while preserving data continuity, thereby 

preventing the introduction of transients in the signal that could cause edge artifacts 

(Cohen, 2014b). 
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After convolution, frequency-specific instantaneous power (P) is given by: 

2 2
( , ) ( , ) ( , )w w wP f t ReM f t iM f t= +   

where ReM and iM denote the magnitude of the real and imaginary components of 

the convolution result, respectively. To enable comparisons across frequency bands, 

power was converted to decibel (dB) scale via: 10�log10[P(t,f)/P(tbaseline,f)] where 

tbaseline baseline ranged from -300 to -100 ms. Frequency-specific instantaneous 

phase (ϕ) is given by the angle of the convolution result (arctangent of iM over ReM) 

at time t.  

To demonstrate entrainment of EEG oscillations to the task rhythm, we computed 

inter-trial phase coherence (ITPC), a measure of the consistency of phase across 

trials. This measure ranges between 0 (no consistency) and 1 (perfect consistency), 

and can be computed using: 

,1

1

ITPC( , ) | n |w

n
i f t

w

N

f t e
φ( )−

=

= ∑   

where n is the number of trials.  

Statistical analyses of time-frequency data. As randomly distributed phases 

across trials produce a known (Rayleigh) distribution, the significance of observed 

ITPC can be assessed by comparing it to ITPC under the null hypothesis. Conversely, 

a critical value (ITPCcrit) at which ITPC significantly deviates from randomly distributed 

phases can be calculated, given a p-value (0.001 in our case), via:  

 ( ) 1

critITPC = log np −− ⋅   

where n is the number of trials (Zar, 1999; Cohen, 2014b). We thus calculated ITPCcrit, 

and for each time-frequency point values higher than ITPCcrit were considered 

significant.  

We used non-parametric permutation testing to assess whether power deviated 

from the -300 to -100 ms pre-stimulus baseline window, for each time-frequency 

point. Permutation testing is robust against violations of assumptions about data 

distributions that can occur with conventional parametric statistics (Maris and 

Oostenveld, 2007). First, within each frequency, the assignment of evoked power to 

‘baseline’ or ‘power’ distributions was shuffled, and t-statistics specific to each time-

frequency point were computed iteratively 1000 times. The resulting t-value 

distribution was then Z-scored, and the standardized value of the non-shuffled 

comparison (actual baseline vs. power) was then computed per time-frequency point. 

This procedure generated a time-frequency matrix with a Z-value for each time-

frequency point that indicated the statistical likelihood of finding the experimentally 

obtained power values, given that the null hypothesis (no difference in power 

compared to baseline) is true. To correct for multiple comparisons, the threshold for 

the time-frequency matrix was set as Z-scores corresponding to p-values of 0.001 or 

less. In a second step, a distribution of maximum cluster sizes (the number of 

contiguous significant time-frequency points) under the null hypothesis was 
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computed. The cluster size corresponding to the 95th percentile of this distribution 

was then taken as the lower bound for cluster correction of the time-frequency matrix, 

resulting in a cluster-level threshold of p<0.05  (c.f. Cohen et al., 2012). 

To test whether phase distributions differed from a uniform distribution, we used 

Rayleigh’s test for uniformity (Fisher, 1993).  

Fixed-effects analysis. Circular-linear correlations (i.e correlations between 

single-trial phase and behavioral measures) were performed using a similar non-

parametric permutation testing approach as described above. Correlation 

distributions under the null hypothesis in this case were created by shuffling the 

assignment of pooled behavioral data (i.e. RT or PESrobust) to phase information at 

the single-trial level. The test statistic which was subsequently Z-scored for each time-

frequency point was the correlation coefficient resulting from circular to linear 

correlation as implemented in the circular statistics (CircStat) toolbox (Berens, 2009). 

To assess differences in average phase angle between conditions (i.e. correct 

vs. error; post-correct vs. post-error; and post-correct vs. large and small PES bins), 

we again used a similar procedure, but instead shuffled the assignment of pooled 

single-trial phase to trial types to compute a standardized distribution of angle 

differences under the null hypothesis. We used the Watson-Williams test for angular 

means to obtain the test-statistic that was informative of the angle differences 

between conditions. This test statistic was subsequently standardized, similar to the 

analyses described above. Because there were more correct and post-correct trials 

than error and post-error trials, respectively, we matched these trial numbers between 

conditions by selecting a random subset of trials from the larger condition prior to 

computing differences between them in the average phase angle. 

Random-effects analysis. Because the fixed-effects procedure described above 

does not take into account the between-subjects variance in effect size, we repeated 

these analyses for a number of select time-frequency points (stimulus onset, and 600 

ms post-stimulus /response), but without assuming constant between-subject 

variance. Specifically, we computed phase-RT and phase-PES correlations for each 

individual participant to obtain a distribution of correlation coefficients. Because 

circular-to-linear correlations are bound between zero and one, correlation 

coefficients under the null hypothesis are unlikely to be exactly zero. We therefore 

computed the correlations again but with shuffled phase-behavior assignments for 

1000 permutations. This resulted in a distribution of correlation coefficients under the 

null hypothesis. To assess the group-level significance of the observed distribution of 

correlation coefficients, we used a paired-sample t-test to compare them to the 

distribution under the null hypothesis averaged across permutations.  

To test for differences in phase angle between conditions, we first computed the 

average phase angle and resultant vector length across trials for each participant and 

each condition. Then, group-level differences in phase angle between conditions 

were assessed using the parametric Hotelling paired-sample test for angular means 

(Zar, 1999). The extension of this test described by Zar (1999) takes into account the 
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resultant vector lengths of the phase distributions of individual cases (participants, in 

our case), which carries meaningful information regarding the consistency of the 

phase angle difference between the average distributions. It is therefore more suited 

to be used in second-level, random-effects analyses than the Watson-Williams test.  

 

 

2.3 Results 

 

Behavioral and ERP results. The average RT on correct trials was 608 ms (SD 

69 ms); average RT on error trials was 604 ms (SD 87 ms; p = 0.53). The average 

percentage of correct responses was 86.7% (SD 5.8%). To confirm that participants 

were sensitive to the average stimulus-presentation rate (one stimulus every 1350 

ms), we binned correct trials by preceding SOA, and expected the shortest RTs in the 

1350-ms bin. A repeated-measures ANOVA revealed that correct RT had an inverted 

U-shaped relationship with the preceding SOA (Figure 1B; quadratic trend: F(1,19) = 

12.73, p < 0.01), indicating that participants were good at estimating the average SOA 

of 1350 ms. No such trend was found for accuracy (F(1,19) = 0.8, p = 0.38), ruling 

out preceding SOA as a confounding factor in our comparisons between post-error 

and post-correct trials. 

As a next step we wanted to confirm that PES occurred in our flanker task with 

only incongruent stimuli. In line with our expectations, both PEStraditional (mean 27 ms, 

SD 25 ms) and PESrobust (mean 44 ms, SD 24 ms) were significantly larger than zero 

(p < 0.001; Figure 1C). Although PESrobust was significantly larger (p < 0.001), the two 

measures of PES were highly correlated (p < 0.001, Figure 1D), suggesting that 

PESrobust, although more precise (Dutilh et al., 2012b), does not provide radically 

different values for PES than the more traditional measure. Post-error accuracy 

(mean: 84.1%; SD 12.0%) was somewhat lower than post-correct accuracy (mean: 

87.7; SD 4.2%), but this difference was not significant, p = 0.24.  

Figure 1E shows that the error-related negativity and error positivity, two well-

known error-related ERP components, were present in our EEG data.  

Functional entrainment of oscillations. To replicate previous results indicating that 

low-frequency oscillations entrain to the stimulus-presentation rhythm (Lakatos et al., 

2008; Schroeder and Lakatos, 2009; Stefanics et al., 2010a; Henry and Obleser, 

2012; Ng et al., 2012), we computed ITPC, a measure of the consistency of oscillatory 

phase across trials. We calculated ITPC averaged across all trial types and 

electrodes to assess which frequencies showed the highest degree of consistency, 

and expected greatest consistency in low (< 2Hz) frequencies, overlapping with our 

task rhythm. In line with this expectation, Figure 2A shows that ITPC was significantly 

higher than expected by chance in the lowest frequency range. Additionally, the 

cluster of time-frequency points that showed significant ITPC extended into the higher 

frequencies.  
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Figure 1. Task, behavioral and ERP results. a) Timing of trial events. SOA: stimulus onset 

asynchrony. b) Response time (RT) and accuracy as a function of (binned) preceding SOA. 

Intermediate bins are averaged for display purposes. The dashed line in the upper panel is a 

fitted quadratic curve. c) Behavioral results showing post-error slowing, as measured by both 

the traditional and robust methods of quantifying PES. Asterisks indicate significant (p < 

0.001) differences. d) PESrobust and PEStraditional correlated significantly across subjects (p < 

0.01). e) Response-locked event-related potentials for correct and error trials, averaged 

across electrodes Fz and Cz. Shaded area indicates a significant (p < 0.001) difference 

between conditions. All error bars show the standard error of the mean. 

 

 

To confirm the dependence of ITPC on the task rhythm, we ran a control 

experiment (N = 4) with the same task, except that the stimulus-presentation rhythm 

was manipulated in a block-wise fashion (0.5 and 0.85 Hz). All other task parameters  
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Figure 2. Functional entrainment of oscillations to the task rhythm. a) Low-frequency 

oscillations entrain to the task rhythm, as indicated by inter-trial phase coherence (ITPC) 

averaged across all trials and all channels. b) Evoked (ERP) power averaged across all 

conditions and all channels. Only frequencies above the task rhythm show significant 

increases in evoked power, suggesting that elevated low-frequency ITPC reflects entrainment 

of endogenous oscillations. Significant (p<0.001) regions are outlined in black using 

MATLAB’s contourf function. c) Channel- and condition-averaged ERP showing oscillations 

entrained to the stimulus-presentation rhythm. The solid gray lines show the ERPs of 

individual participants. The solid black line shows the average. The vertical dashed gray lines 

show the time of average stimulus onsets. d) Low-frequency (0.76Hz) phase distribution at 

correct trial onset for the average of channels Fz and Cz. The solid black line shows the 

average. Gray lines show individual participants. The inset shows a rose histogram, where 

the radial extent of the bars indicates the probability of a given phase occurring on a single 

trial. The red line is the average vector of the histogram. e) Topographical distribution of Z-

scored correlation of correct RTs with low-frequency phase at trial onset. The two highlighted 

channels are Fz and Cz, the average of which was used in all further reported analyses. f) 

Correct RTs sorted by low-frequency (0.76Hz) phase at trial onset, smoothed with a moving 

average of 100 trials for display purposes. The non-linearity in the curve arises due to a 

correlation of phase with RT. The error bars represent the standard error of the mean and are 

the result of smoothing. The light gray line and corresponding y-axis on the right-hand side 

represent phase for each of the sorted trials. g) Box plots of the correlation coefficients for 

permuted (black) and observed (blue) correlations between correct RT and 0.76Hz phase at 

trial onset for the average of channel Fz and Cz. A 95% confidence interval around the 

median of each distribution is indicated by the notches in the boxes. The whiskers extend to 

the most extreme values of each distribution. The circles show the correlation coefficients of 

individual participants. ** p < 0.001.  
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were as in the main experiment. For each of the four participants, we found clearly 

dissociable peaks in ITPC (at 0.5 and 0.85 Hz) that differed between blocks, 

indicating that oscillatory phase locking was highly dependent on the stimulus-

presentation rhythm. 

Elevated ITPC can come about in two ways (Tallon-Baudry and Bertrand, 1999; 

Donner and Siegel, 2011). The first possibility is that ITPC arises due to cross-trial 

phase alignment of true, endogenously driven oscillatory activity. The second 

possibility is that ITPC is a result of stimulus-evoked activity, meaning simple 

stimulus-evoked EEG components cause consistency in phase across trials. To 

exclude the possibility that stimulus-evoked activity was the driving force behind 

consistency in phase across trials, we computed oscillatory power of stimulus-locked 

trial-averaged (ERP) data. As Figure 2B shows, no significant evoked power was 

found below ~2Hz, indicating that ITPC in these low frequencies was likely driven by 

endogenous oscillatory activity. Above ~2Hz, however, we found significant evoked 

power, indicating that elevated ITPC in those frequencies was most likely stimulus-

evoked. In sum, lower frequencies showed significant ITPC, which likely reflected 

entrainment of endogenous neuronal oscillations to the stimulus-presentation rhythm, 

in line with our prediction. These entrained oscillations are readily visible in the 

stimulus-locked grand-average ERP (Figure 2C). Moreover, the phase angle of our 

frequency of interest (0.76Hz) at stimulus onset was highly consistent across 

participants (Figure 2D; deviation from uniform distribution: Rayleigh’s Z = 11.3, p < 

0.0001).  

Next, to show that this entrainment is directly linked to task performance, we 

correlated correct RTs with single-trial instantaneous phase at trial onset, pooling the 

trials of all participants, and focusing on the frequency corresponding with the 

average stimulus-presentation rate (0.76 Hz). The relationship between phase and 

RT was strongest over fronto-central scalp regions (Figure 2E), in accord with 

previous findings (Stefanics et al., 2010a; Henry and Obleser, 2012; Ng et al., 2012). 

Accordingly, all subsequent analyses were performed on the average of the signals 

recorded at Fz and Cz. The significant phase-RT relationship (r = 0.12, p < 0.001) 

with trials pooled across participants is shown in more detail in Figure 2F. This 

correlation was also significant (p < 0.001) at the group level with a random-effects 

analysis approach (Figure 2G). Thus, the entrainment of oscillations is functional, in 

that it predicts the latency of responding, and this effect is consistent across 

participants. 

Error-induced disturbance in phase entrainment. To test our hypothesis that 

errors result in a disturbance of phase entrainment, we calculated the difference in 

phase angle between correct and error trials (response-locked, i.e., aligned with the 

commission of errors / correct responses), and post-correct and post-error trials 

(stimulus-locked, i.e. aligned with the onset of stimuli following errors / correct 

responses). If the average phase angle on correct responses facilitates response 

speed, then PES may reflect a temporary deviation from this phase angle. Note that  
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Figure 3. Relation between phase angle and post-error slowing. a) Z-scored differences in 

absolute phase angle between correct (C) and error (E) trials, pooled across participants. 

Red colors indicate phase on error trials significantly lagging behind correct trials. Time zero 

indicates the time of a response. b) Z-scored differences in absolute phase angle between 

post-correct (C+1) and post-error (E+1) trials, pooled across participants. Red colors indicate 

phase on post-error trials significantly lagging behind post-correct trials. Time zero indicates 

the onset of the stimulus. c) Low-frequency (0.76 Hz) phase distributions for post-correct and 

post-error trials for individual subjects. Each participant is denoted by a uniquely colored dot 

on the circle. The average vector of the distribution is shown in red. ** p < 0.001. d) Low-pass 

(<2Hz) filtered ERPs for the average of channel Fz and Cz. Error bars denote the standard 

error of the mean. Dashed vertical lines show the average stimulus onset times. e) Z-scored 

phase angle differences between trials that show a low degree of PES (small PES bin) and 

post-correct trials. f) Z-scored phase angle differences between trials that show a high 

degree of PES (large PES bin) and post-correct trials. g) Same as d), but error trials are 

binned according to PESrobust. h) Z-scored correlations of [caption continues on next page]  
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[continued caption Figure 3]  single-trial phase on post-error trials with single-trial PESrobust. In 

all time-frequency plots, significant (p < 0.001) regions are outlined in black using MATLAB’s 

contourf function. i) Box plots of the correlation coefficients for permuted (black) and 

observed (blue) correlations between single-trial 0.76Hz phase at 600 ms post-stimulus on 

post-error trials and single-trial PESrobust. A 95% confidence interval around the median of 

each distribution is indicated by the notches in the boxes. The whiskers extend to the most 

extreme values of each distribution. The circles show the correlations coefficients of 

individual participants. ** p < 0.001.  

 

 

if errors result in a systematic disturbance of phase entrainment, this will become 

apparent as a difference in phase angle following correct and erroneous responses 

rather than as a difference in phase-locking strength. 

As Figure 3A shows, following the response, low-frequency phase angle on error 

trials significantly differs from that of correct trials. Although the difference in phase 

angle between correct and error trials is already evident before the response, this 

pre-response difference is likely the result of temporal smearing of the effect that is 

inherent to wavelet decomposition. To confirm this, we re-ran our wavelet 

decomposition with a lower number of wavelet cycles, thereby increasing the 

temporal resolution at the expense of frequency resolution. We found that this 

eliminated all pre-response differences in phase angle between errors and correct 

trials, while post-response differences were still present (results not shown). This 

indicates that the disturbance in phase entrainment following the response is likely to 

be error-induced. The difference in phase angle following correct and error responses 

was highly consistent across participants (Figure 3C, upper panel; F(2,18) = 19.3, p 

< 0.001).  

Figure 3B shows that this error-induced disturbance in phase entrainment 

extends into the post-error trial, where it could potentially influence RT, thereby 

causing slowing on post-error trials. The difference in phase angle at trial onset for 

post-correct and post-error trials was highly consistent across participants (Figure 3C, 

lower panel; F(2,18) = 6.04, p < 0.001). The error-induced disturbance in entrainment 

is also visible in the low-pass filtered ERPs. Figure 3D shows that around the average 

response time, the phase of the error-trial ERP starts to lag behind that of the correct-

trial ERP. This phase difference extends into the subsequent trial and then dissolves 

again.  

If the error-related disturbance in phase entrainment relates to how much PES 

occurs, phase angle should differ between trials that show a large degree of PES and 

trials with a small degree of PES. To test this prediction we divided up the post-error 

trials into three equally sized bins according to the amount of PESrobust, and 

compared, for each time and frequency point, the phase angle of these bins to the 

phase angle on post-correct trials. We expected to see a more pronounced 

disturbance in phase angle on trials with a large degree of PES. Consistent with our 

prediction, Figures 3E and 3F show that the disturbance in phase entrainment  
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Figure 4. Power and inter-trial phase coherence (ITPC) comparisons for the average of 

channel Fz and Cz, between a) correct and error trials, and b) post-correct and post-error 

trials. Significant (p < 0.001) regions are outlined in black using MATLAB’s contourf function.     

 

 

extended for a longer period of time on trials with a large degree of PES. This 

indicates that the longer the disturbance in phase entrainment lasts following an 

erroneous response, the slower the participant is in responding on the subsequent 

trial. This strongly suggests a link between PES and disturbed phase entrainment.  

The prolonged disturbance during trials that show a large degree of PES is also 

visible in the ERPs (Figure 3G). Whereas the ERP of the small PES bin rejoins the 

ERP of correct trials before the trial N+1 response period, the ERP of the large PES 

bin is still out of phase with respect to correct trials during that period. The difference 
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in 0.76Hz phase angle between post-error trials with large PES and post-correct trials 

was highly consistent across participants (at stimulus onset: F(2,18) = 7.32, p = 

0.0047; at 600 ms post-stimulus: F(2,18) = 3.74, p = 0.0053). The difference in phase 

angle between post-error trials with small PES and post-correct trials was not 

significant (F(2,18) = 2.40, p = 0.12), conceivably due to the fact that binning resulted 

in too few trials for an accurate estimate of average phase angle for each participant 

separately.  

Next, to test directly whether PES can be predicted by the level of phase 

disturbance, we correlated phase on post-error trials with PESrobust at the single-trial 

level. Figure 3H shows that on post-error trials, low-frequency phase predicted PES, 

demonstrating a trial-by-trial relationship between disturbed phase entrainment and 

PES. Interestingly, the time-window in which phase predicted PES overlapped with 

the period during which trials with large PES (Figure 3F) but not trials with small PES 

(Figure 3E) differed in phase angle from post-correct trials. This suggests that post-

error trials were generally characterized by some degree of phase disturbance, and 

that the amount of PES on a given trial was mainly dependent on the duration of the 

error-induced phase disturbance. The correlation between post-error phase around 

the time of the response (~600 ms) and single-trial PES was highly consistent across 

participants (Figure 3I). 

Finally, in order to confirm that the disturbance is specific to the entrained low-

frequency oscillations rather than reflecting a broader spectral perturbation, we 

computed power and ITPC for correct- and error trials, and post-correct and post-

error trials, as well as respective differences between them. As can be seen in Figure 

4, there are no significant differences in power or ITPC between conditions, except 

for the well-documented error-related increase in theta-band power (Narayanan et 

al., 2013). This indicates that the phase angle differences between correct and error 

trials, and between post-correct and post-error trials are unlikely to result from a 

broad-band perturbation. Instead, the results are in line with our hypothesis of a 

specific phase disturbance in the task-entrained frequency.  

 

 

2.4 Discussion 

 

In the present study, we tested the hypothesis that PES results from a 

disturbance of internally generated brain rhythmicity. Taken together, our results 

show that: 1) endogenous low-frequency neuronal oscillations entrain to the stimulus-

presentation rhythm; 2) the entrainment facilitates speeded responding; 3) 

entrainment is disturbed following the commission of an error; and importantly, 4) the 

level of disturbance of entrainment predicts how much slowing occurs on the following 

trial. These results support our novel hypothesis about the neural origin of PES. 

 What might be the mechanism underlying this error-related disturbance of phase 

entrainment? One possibility is that errors evoke a transient process that temporarily 
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distracts from the current task and therefore results in slower responding on the 

subsequent trial (Jentzsch and Dudschig, 2009). This possibility is suggested by the 

orienting account of PES (Notebaert et al., 2009), which posits that errors, due to their 

infrequent occurrence, automatically draw attention away from the ongoing task, 

much like other surprising events tend to do. The orienting account is supported by 

the finding that slowing occurs following correct trials instead of errors when correct 

responses are infrequent (Notebaert et al., 2009; Nunez Castellar et al., 2010); and 

by the observation that participants who make fewer errors (i.e. for whom errors are 

more unexpected) show larger PES (Steinborn et al., 2012). Our findings suggest that 

this hypothesized orienting response may cause the phase angle of entrained 

oscillations to deviate from the more advantageous phase angle observed following 

correct trials, thus leading to slower responding. This account is consistent with recent 

studies that have linked the phase of ongoing delta oscillations to the rate of 

perceptual evidence accumulation (Wyart et al., 2012; Cravo et al., 2013). 

Other evidence in support of a limited-duration orienting response during which 

attention is distracted from the task is provided by studies that examined the 

relationship between post-error performance and the interval between the error and 

the subsequent trial (Dudschig and Jentzsch, 2009; Jentzsch and Dudschig, 2009; 

Danielmeier and Ullsperger, 2011). By varying the response-stimulus interval (RSI), 

these studies found that short RSIs (<500 ms) are typically associated with large PES 

and a post-error decrease in accuracy. As the RSI increases up to 1000 ms and 

larger, PES strongly diminishes and the post-error decrease becomes a post-error 

increase in accuracy. We found an intermediate pattern of results (modest PES, 

slightly decreased accuracy after errors) that seems consistent with the intermediate 

length of our average RSI (~750 ms). The orienting account can explain these 

findings by claiming that at short RSIs, attentional reorientation is the dominant cause 

for the impaired performance on the subsequent trial. As the RSI increases, it 

becomes increasingly likely that the system has recovered from the orienting 

response by the time the next stimulus is presented. The timing of the error-induced 

disturbance in phase entrainment observed here, which partially overlapped with the 

subsequent trial (and more so on trials characterized by large PES), is consistent with 

the notion that at intermediate RSIs there is a substantial probability of overlap 

between the orienting response and the subsequent trial. Of course, due to the 

correlative nature of our methods, we cannot unequivocally conclude that disturbed 

entrainment is the causative mechanism underlying PES. This issue can be 

addressed by manipulating entrainment directly, for example using transcranial 

magnetic stimulation.   

A disturbance in phase entrainment is unlikely to be the only cause of PES. Dutilh 

et al. (2012a), using drift-diffusion modelling of performance on a lexical decision task, 

found that when the RSI is relatively long (1000 ms), PES can be attributed almost 

exclusively to increased response caution. This suggests that a strategic change in 

response threshold (Botvinick et al., 2001) can also contribute to PES. Another study 
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using drift-diffusion model analysis found that PES could be explained by a change 

in several model parameters, including an increased response threshold and a 

decreased rate of evidence accumulation, consistent with disturbed phase 

entrainment (White et al., 2010). However, in this study participants received trial-to-

trial feedback, so post-error effects may have been contaminated by the possibly 

distracting presence of error feedback. Additionally, several studies have found PES 

with inter-trial intervals of several seconds (Hajcak et al., 2003; Marco-Pallarés et al., 

2008; King et al., 2010; Danielmeier et al., 2011), precluding a contribution of a 

transient disturbance of phase entrainment. However, these studies either measured 

PEStraditional, which is confounded by global fluctuations in motivation and task 

performance (Dutilh et al., 2012b), which are often present in tasks with long RSIs; or 

they used PESrobust but did not control for differences in trial type (e.g., congruent vs 

incongruent) between pre- and post-error trials—a plausible source of confound 

(Steinhauser and Yeung, 2012). Therefore, it is uncertain if PES truly occurred in 

these studies. Nonetheless, taken together, the literature suggests that in contrast to 

the intermediate RSI effects discussed in the previous paragraph, at longer RSIs PES 

is mainly determined by a time-consuming strategic change in speed-accuracy trade-

off. This notion is corroborated by the finding that post-error accuracy is increased 

following errors only at longer RSIs (Jentzsch and Dudschig, 2009).  

An important question is what neural mechanism orchestrates the alignment of 

neuronal oscillations to environmental rhythmicity. The widespread cortical 

topography and slow temporal dynamics of the entrained oscillations observed here 

suggest a possible neuromodulatory involvement. Accordingly, the norepinephrine-

producing neurons of the locus coeruleus (LC) are phase-locked in firing to ongoing 

cortical slow-wave oscillations during sleep (Eschenko et al., 2012; Sara and Bouret, 

2012). Specifically, neurons of the prefrontal cortex and the LC fire in phasic 

opposition, suggesting a mutual excitatory drive. Additionally, one concurrent EEG-

fMRI study has provided tentative evidence of temporal alignment of human LC 

activity with slow-wave oscillations (Dang-Vu et al., 2008). These findings have led to 

the suggestion that the LC facilitates transitions from the down- to the up-state of slow 

cortical oscillations (Eschenko et al., 2012; Sara and Bouret, 2012), which would 

provide a plausible mechanism for temporal alignment of slow oscillations with 

environmental rhythmicity. In line with the concept of an orienting response, phasic 

norepinephrine release has also been proposed to act as a neural interrupt signal, 

whereby unexpected events (e.g., errors) lead to a reset and reorganization in target 

neuronal networks, and subsequent behavioral adaptation (Bouret and Sara, 2005; 

Dayan and Yu, 2006). Interestingly, several proposals have linked PES to 

noradrenergic activity (Cohen et al., 2000; Nunez Castellar et al., 2010), and 

preliminary evidence suggests that PES is partly determined by a genetic marker of 

norepinephrine synthesis (Colzato et al., 2013). Thus, it is possible that the 

noradrenergic system is involved in the entrainment of cortical oscillations, and that 

this entrainment and consequent mode of behavioral responding are disrupted by an 
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error-evoked orienting response (or interrupt signal) in the noradrenergic system 

(Nieuwenhuis et al., 2010; Nunez Castellar et al., 2010; Ullsperger et al., 2010).  

A remaining question is whether our findings will generalize to other task designs. 

Here, phase entrainment followed the low-frequency stimulus-presentation rhythm. 

However, phase entrainment does not always occur in the lower frequency range 

(e.g. Maltseva et al., 2000), raising the question whether an error-induced disturbance 

might also occur in higher frequencies. Indeed, because we used only one stimulus-

presentation frequency, it is conceivable that the error-induced disturbance in phase 

angle occurred independent of endogenous entrainment. This possibility seems 

unlikely given that the choice of stimulus-presentation rhythm was motivated by 

earlier work on entrainment (Stefanics et al., 2010a; Lakatos et al., 2013) rather than 

a specific hypothesis about the involvement of 0.76-Hz oscillations in error 

processing. Furthermore, others have shown attention-related phase shifts of 

entrained oscillations in substantially higher frequencies (Lakatos et al., 2008; Besle 

et al., 2011b). Nevertheless, the specificity of the error-related disturbance in phase 

angle to the task frequency warrants further investigation using multiple stimulus-

presentation rhythms.  

Furthermore, in our experiment the task rhythm was determined mainly by the 

highly predictable SOA, whereas in many other studies of PES the RSI instead of 

SOA is the predictable time interval. So an interesting question is whether in these 

studies PES is also related to a disturbance of phase entrainment. Previous studies 

have shown that participants can use various temporal cues to facilitate entrainment 

(Stefanics et al., 2010a). However, it remains to be investigated whether response 

time can function as a temporal cue to entrain oscillations to subsequent stimulus 

onset. Alternatively, to the extent that variability in RTs is modest and the RSI and 

other intervals are fixed, the SOA will be relatively constant across trials. The 

entrainment in the current study was robust to a certain amount of temporal variability 

(SOA 1200-1500 ms), suggesting that even in tasks in which RSI is the predictable 

factor, neuronal oscillations may entrain to the SOA.  

In conclusion, our brain exploits the innate periodicity in the environment by 

means of oscillatory entrainment. We have shown that when an error is made, a 

temporary perturbation occurs such that the entrained oscillations are ‘out of sync’ 

with the current task, the degree of which predicts the magnitude of slowing of the 

subsequent behavioral response.  

 


