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1. General introduction  
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1.1 Introduction 

 

The locus coeruleus (LC) is a small nucleus that is located in the pontine 

tegmentum, and derives its name (literally meaning ‘blue spot’) from its color, which 

is a result of neuromelanin deposits within its cell bodies. The LC projects widely to 

the forebrain (Figure 1) where it releases norepinephrine (NE; also referred to as 

noradrenaline) (Aston-Jones et al., 1984; Berridge and Waterhouse, 2003).  

Catecholamines such as NE do not have a unitary effect on their target neurons, 

but instead influence the function of other neurotransmitters, a process that is known 

known as neuromodulation. By virtue of the LC’s wide projection profile and the 

neuromodulatory properties of NE, the LC-NE system profoundly influences neural 

firing characteristics and associated cognitive processes (Berridge and Waterhouse, 

2003; Aston-Jones and Cohen, 2005; Bouret and Sara, 2005; Yu and Dayan, 2005).  

In this introductory chapter, an overview of current findings and accounts 

pertaining to the LC-NE system and its relationship with ‘brain state’ (defined further 

below) and cognition is presented, followed by a summary of the chapters of this 

dissertation.    

 

 
Figure 1. Schematic illustration of the locus ceuruleus and its projections. 

 

 

1.2 Anatomical overview of the LC-NE system 

 

     The LC is situated directly anterior to the fourth ventricle, in the dorsal pons. In the 

healthy adult brain, the LC contains approximately 35,000 neurons in either 

hemisphere, which amount to a bilateral nucleus that is roughly the size of a grain of 

rice (Mouton et al., 1994). Despite its size, the LC sends wide, ascending, projections 

to the forebrain. For example, major innervation targets of the LC include the 

amygdala, hippocampus, thalamus, basal ganglia, cerebellum, spinal cord, and all 
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cortical lobes (Aston-Jones et al., 1984), Consequently, the LC is the dominant 

source of NE in the central nervous system.  

     While the projections that emanate from the LC have long been believed to be 

homogenously distributed across the brain, recent evidence suggests that distinct 

portions of the LC preferentially innervate select brain areas (Chandler et al., 2014; 

Schwarz and Luo, 2015; Schwarz et al., 2015). Moreover, recent evidence suggests 

that the LC does not solely supply the brain with NE, but, but may also release the 

catecholaminergic neuromodulator dopamine (DA) (Devoto et al., 2004; Kempadoo 

et al., 2016; Takeuchi et al., 2016). Although this introductory chapter is focused 

primarily on NE function, it should be noted that NE shares some of its functional 

properties with DA, such as its effect on neural gain (see below).  

 

 

1.3  Functional overview of the LC-NE system and theories of LC-NE function in  

       cognition 

 

     When released from noradrenergic terminals, NE acts on receptors that can be 

divided into three major classes: α1, α2, and β. Following release, NE is cleared from 

the synaptic cleft by the NE transporter (NET). Due to the cortical paucity of DA 

transporters, NET is also responsible for the reuptake of DA within the cortex. In 

chapters 3 and 4, NET is blocked pharmacologically in order to causally manipulate 

catecholamine levels in healthy human participants.  

     Direct measurements in monkeys have suggested that the LC has two distinct 

modes of operation (Aston-Jones and Cohen, 2005). In the ‘phasic’ mode, the LC 

fires rapidly and transiently in response to salient, novel, or otherwise behaviorally 

relevant stimuli. During bursts of phasic activity, LC neurons discharge en masse in 

a highly synchronized manner as a consequence of direct electrical coupling between 

individual neurons of the LC (Ishimatsu and Williams, 1996), although asynchronous 

firing has also been reported (Totah et al., 2017). Phasic bursts show a close temporal 

relationship with behavioral responses, suggesting that bursts occur to facilitate 

internally generated top-down decision processes.  

     Conversely, in the ‘tonic’ mode, the LC shows a sustained and regular pattern of 

firing, without an immediate temporal correspondence between LC discharges and 

behavioral responses. Across extended periods of time, however, the level of tonic 

LC activity cofluctuates with task performance, whereby periods of strong tonic 

activity are marked by distractible behavior, periods of weak tonic activity are marked 

by under-arousal or sleep, and periods of intermediate tonic activity are marked by 

(near-) optimal task performance (Aston-Jones and Cohen, 2005). Moreover, the 

strongest phasic LC activity occurs at time points of intermediate tonic firing. 

     At the synaptic level, NE can enhance the effect of both excitatory and inhibitory 

input (Moises et al., 1979; Rogawksi and Aghajanian, 1980). These and other findings 

have led to the view that NE boosts the efficacy of synaptic interactions between 



  

C
h
a
p
te

r 
1
 

neurons (Berridge and Waterhouse, 2003), a phenomenon that is known as gain 

modulation (Aston-Jones and Cohen, 2005). An increase in neural gain results in an 

increased difference in firing rates between strongly and weakly active neurons 

(Waterhouse et al., 1998), and consequently yields a system-wide facilitation of signal 

transmission (Servan-Schreiber et al., 1990; Aston-Jones and Cohen, 2005). In other 

words, an increase in neural gain does not necessarily modify the likelihood of a 

single neuron responding to its input, but at the system-level, increased signal 

propagation emerges and allows dominant neural firing patterns to prevail at the 

expense of less dominant firing patterns (Servan-Schreiber et al., 1990). The gain-

regulating properties of the LC-NE system form a key ingredient of adaptive gain 

theory (Aston-Jones and Cohen, 2005), which is discussed further below. 

     In addition to the regulation of neural gain, work done primarily on crustaceans 

has revealed that NE has the ability to fundamentally reshape the firing properties of 

the combined set of its target neurons (Marder, 2012; Bargmann and Marder, 2013; 

Marder et al., 2014). For example, depending on the concentration of NE, the firing 

pattern in target neurons, and the presence of other neuromodulators, NE can elicit 

a shift towards rapid, synchronous bursting, or intermittent and asynchronous firing 

(Marder, 2012; Marder et al., 2014). These findings form the basis of another 

influential account of LC-NE function, ‘network reset’ (Bouret and Sara, 2005), also 

discussed further below.  

     The study of the LC-NE system in humans has been limited by methodological 

problems associated with its size and location. Consequently, almost everything we 

know about its function is based on animal work and computational modeling. 

Nevertheless there are several major theoretical accounts about how the LC-NE 

system affects brain state, cognition, and behavior, making it a rare example in 

cognitive neuroscience where theory outweighs data. The major theoretical accounts 

regarding LC-NE function will be discussed next. 

 

1.3.1 Adaptive gain theory 

 

     In their adaptive gain theory, Aston-Jones and Cohen (2005) propose that the LC-

NE system balances the trade-off between exploitation of the current task set and 

exploration of alternative task sets through NE’s effect on neural gain. Because 

phasic LC activity predominantly occurs only in response to salient or motivationally 

relevant stimuli, phasic LC activity promotes immediately goal-relevant sensory 

information at the expense of goal-irrelevant and distracting information, and 

consequently, fast and accurate behavioral responses to goal-relevant information. 

Thus, timely bursts of LC activity result in the exploitation of reward from the current 

task set. Conversely, periods of sustained LC firing (tonic activity) provide a 

nonspecific and temporally less constrained amplification of incoming sensory 

information, and thus enable alternative, potentially rewarding, task sets to be 

explored. Thus, by balancing the trade-off between tonic and phasic activity, the LC 
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can orchestrate shifts in behavioral strategies in accordance with environmental 

demands.  

 

1.3.2 The network reset account 

 

     The network reset account by Bouret and Sara (2005) describes NE as inducing 

large-scale neuronal reorganization to promote behavioral adaptation following 

environmental changes in behavioral requirements. In this context, phasic bursts of 

LC activity elicit a dynamic reorganization of the LC’s target neuronal networks, 

thereby provoking or facilitating a cognitive shift in task set when such a shift is 

needed. In contrast to adaptive gain theory, the network reset account proposes that 

the distractible behavior that accompanies periods of strong tonic LC activation 

results from inappropriate and repeated cognitive shifts that are a consequence of 

the sustained and temporally nonspecific characteristics of tonic LC activity. However, 

in a broader sense, both adaptive gain theory and the network reset account 

converge on the notion that the LC facilitates goal-directed behavior via adaptation to 

environmental demands. 

 

1.3.3 Unexpected uncertainty and GANE  

 

     In addition to the adaptive gain theory and network reset account discussed 

above, other accounts exist. The latter, however, will be discussed only briefly here 

because they are not central to this dissertation.  

     The Bayesian theory outlined by Yu and Dayan (2005) proposes that NE signals 

unforeseen changes in task demands. This ‘unexpected uncertainty’ reflects changes 

in environmental parameters that require an appropriate modification of predictions 

about the environment, and therefore a change in behavior. In this sense, prolonged 

heightened NE release prompts behavioral adaptation, akin to the heightened 

exploration resulting from increased tonic activity in adaptive gain theory. Moreover, 

the theory by Yu and Dayan (2005) proposes that NE functions (partially) 

antagonistically with another neuromodulator, acetylcholine, which in this framework 

signals known uncertainty about task contingencies.  

     Another, more recent, and neurobiologically based account (Mather et al., 2015) 

proposes that the LC-NE system promotes neural representations of goal-relevant 

information through the ‘ignition’ of local hotspots with locally concentrated pockets 

of the neurotransmitter glutamate. In this ‘glutamate amplifies noradrenergic effects’ 

(GANE) account, high-priority perceptual representations are favored over low-

priority representations through the synergetic action of glutamate and phasically 

released NE.  

     The accounts outlined above broadly converge on the notion that NE prompts 

behavioral adaptation to the demands of the environment. Where these accounts 

differ lies mostly in how NE is proposed to orchestrate such behavioral adaptation 
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neurally. As discussed below, sensory information that informs an agent of the state 

of the environment is not processed neurally as a linear function of the stimulus, but 

instead interacts with ongoing, intrinsic, neural activity. Resent research indicates that 

NE may play a critical role in shaping the state of intrinsic neural activity and its 

interplay with external sensory information, offering new insights into the neural 

mechanisms by which LC-NE system dynamically regulates behavior. 

 

 

1.4 The junction between brain state, neuromodulation, and cognition 

 

     Brain activity does not simply follow from external (sensory) input, but instead 

arises from a nonlinear interaction between sensory input and spontaneous - 

internally generated - brain activity (Luczak et al., 2009; Harris and Thiele, 2011). The 

state of such spontaneous activity, and the way it shapes cortical responses to 

sensory input, fluctuates dynamically over time.  

     A well-known example of fluctuations in dynamic brain state is the sleep-wake 

cycle. In the deep stages of sleep, neural activity alternates rhythmically between 

mass-synchronized spiking and near-complete quintessence. These low-frequency 

fluctuations form a stark contrast with the cortical state that is seen during alert 

wakefulness, in which  neurons fire predominantly asynchronously (Pace-Schott and 

Hobson, 2002). More recently, less prominent fluctuations between such 

synchronous and asynchronous cortical firing states have been shown to occur within 

periods of wakefulness as well (Crochet and Petersen, 2006; Greenberg et al., 2008; 

Poulet and Petersen, 2008). The membrane potential of cortical neurons and their 

responsivity to input covary with fluctuations in cortical state (Zagha et al., 2013), 

leading to the view that the brain’s repertoire of possible activity states – the joint set 

of parameters that are subject to rapid variation, such as gamma power, spiking 

correlation, and intracellular potentials – is determined by the brain’s dynamic state 

(Okun and Lampl, 2008; Luczak et al., 2009; Harris and Thiele, 2011).         

     The ability to select and respond to the appropriate sensory information while 

ignoring irrelevant sensory information, known as top-down attention, shows similar 

neural characteristics as the desynchronized cortical state. In addition to the near-

complete absence of neural and behavioral responsivity to sensory input during 

sleep, fluctuations in cortical state during wakefulness determine responsivity of 

cortical neurons to relevant sensory input (Reimer et al., 2014; McGinley et al., 

2015b) as well as an animal’s ability to respond appropriately to such input (McGinley 

et al., 2015a). Specifically, local desynchronization in neural population activity co-

occurs with better signal detection performance at the behavioral level (McGinley et 

al., 2015a). Accordingly, attention to task-relevant stimuli has been proposed to rely 

on similar neural mechanisms as global cortical state change (Harris and Thiele, 

2011). 
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     Interestingly, the activity of the LC-NE system fluctuates as a function of brain 

state. For instance, the transition from wakefulness to the onset of sleep is marked 

by a progressive reduction of LC firing that continues until near-complete silence 

during paradoxical sleep (Aston-Jones and Bloom, 1981). Moreover, rapid changes 

in cortical activity state that occur during wakefulness co-occur with NE release within 

the cortex (Reimer et al., 2016), and with fluctuations in pupil diameter (Reimer et al., 

2014). Fluctuations in pupil diameter in turn co-vary with activity in the LC (Aston-

Jones and Cohen, 2005; Murphy et al., 2014b; Varazzani et al., 2015; Joshi et al., 

2016). As mentioned earlier, the changes in brain state that accompany changes in 

pupil diameter and cortical NE release also co-vary with behavioral signal detection 

performance (McGinley et al., 2015a). Moreover, the magnitude of the pupil-linked 

attentional orienting response predicts the degree of behavioral adaptation following 

performance errors (Murphy et al., 2016).   

    The above indicates that cortical state, noradrenergic neuromodulation, and 

cognitive processes such as attention, are tightly intertwined. It is this junction that 

forms the central theme of this dissertation. Below, an overview of the chapters of this 

dissertation is presented, and each chapter is discussed within the context of brain 

state, neuromodulation, cognition, or a combination of these sub-themes.  

 

 

1.5 An overview of the current dissertation 

 

1.5.1 Chapter 2: Post-Error Slowing as a Consequence of Disturbed Low-

Frequency Oscillatory Phase Entrainment 

 

     One of the most ubiquitous findings across reaction time (RT) tasks is that RTs 

slow down on trials following errors (Rabbitt, 1966; Laming, 1979). This phenomenon 

is known as post-error slowing (PES) and occurs across various task conditions and 

response modalities (Gehring and Fenscik, 2001b; Ridderinkhof, 2002; Endrass et 

al., 2005; Cavanagh et al., 2009a; Cohen et al., 2009; Dudschig and Jentzsch, 2009; 

Jentzsch and Dudschig, 2009; Eichele et al., 2010). PES has been suggested to 

reflect the strategic adjustment of behavior (Botvinick et al., 2001; Dutilh et al., 2012a) 

as well as a detrimental processing interference caused by the error (Jentzsch and 

Dudschig, 2009; Notebaert et al., 2009). 

     As discussed in the previous section, brain state influences our ability to select 

and respond to relevant sensory information. One line of literature suggests that, 

under conditions of rhythmic stimulus presentation, our brain may dynamically adjust 

its activity state in order to actively anticipate incoming stimuli by rhythmically aligning 

neural oscillations to the stimulus stream (Lakatos et al., 2008; Schroeder and 

Lakatos, 2009; Saleh et al., 2010; Stefanics et al., 2010b; Besle et al., 2011a; Henry 

and Obleser, 2012). Such ‘entrainment’ ensures that goal-relevant sensory 
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information is processed in the optimal neural context, and thus facilitates appropriate 

behavioral responses.  

     In chapter 2 of this dissertation, we test the novel hypothesis that PES may reflect 

a temporary perturbation of the entrained state. To test this hypothesis, we measured 

oscillatory EEG dynamics while human subjects performed a demanding 

discrimination task under time pressure. We show that brain state actively adjusts to 

the stimulus presentation rhythm by entraining low-frequency neuronal oscillations, 

and that the phase of these oscillations at stimulus onset predicts the speed of 

responding. Importantly, we show that entrainment is disrupted following errors, and 

that the degree of phase disturbance is closely related to the degree of PES on the 

subsequent trial.  

     Our results are consistent with the orienting account of PES, which proposes that 

errors, by virtue of being surprising events, result in the temporary reorientation of 

attention away from the current task, and as a consequence, longer RTs on the 

following trial (Notebaert et al., 2009). Interestingly, the LC-NE system is known to 

fire phasically in response to salient and surprising events, and theoretical accounts 

exist that link PES to the LC-NE system (Cohen et al., 2000; Nunez Castellar et al., 

2010). Moreover, and in line with the concept of an orienting response, phasic NE 

release has also been proposed to act as a neural interrupt signal, whereby 

unexpected events (e.g., errors) lead to a reset and reorganization in target neuronal 

networks, and subsequent behavioral adaptation (Bouret and Sara, 2005; Dayan and 

Yu, 2006). We speculate that it is possible that the entrained brain state and 

consequent mode of behavioral responding are disrupted by an error-evoked 

orienting response in the LC-NE system (Nieuwenhuis et al., 2010; Nunez Castellar 

et al., 2010; Ullsperger et al., 2010). An orienting response (or interrupt signal) may 

aid task performance at longer intervals between errors and subsequent trials by 

facilitating the appropriate adjustment of behavior (Murphy et al., 2016).  

 

1.5.2 Chapter 3: Catecholaminergic Neuromodulation Shapes Intrinsic MRI 

Functional Connectivity in the Human Brain 

 

     Spontaneously generated, ongoing, brain activity is correlated across brain 

regions (Biswal et al., 1995; Leopold et al., 2003; Fox and Raichle, 2007; Hiltunen et 

al., 2014). Moreover, the global structure of correlated activity changes dynamically 

with alterations in conscious state (Barttfeld et al., 2015) and task conditions (Nir et 

al., 2006; Sepulcre et al., 2010). In chapter 3 of this dissertation, we test the 

hypothesis that fluctuations in the strength of these intrinsic correlations are induced 

by the LC-NE system (Leopold et al., 2003; Drew et al., 2008; Schölvinck et al., 2010). 

Using a double-blind placebo-controlled cross-over design, we pharmacologically 

increase synaptic NE and DA levels by administering atomoxetine, a selective NET 

blocker, and examine the effects on the strength and spatial structure of ‘resting-state’ 

MRI functional connectivity.  
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     As discussed earlier in this introductory chapter, NE increases neural gain, and as 

a result facilitates brain-wide signal transmission (Servan-Schreiber et al., 1990; 

Berridge and Waterhouse, 2003; Aston-Jones and Cohen, 2005). Computational 

modeling has indicated that such an increase in signal transmission should result in 

a brain-wide increase in the strength of both positively and negatively correlated 

activity, and the degree of clustering of that activity (Eldar et al., 2013). Eldar et al. 

(2013) accordingly showed that increased pupil diameter is indeed accompanied by 

such an increase in the strength of connectivity and clustering. Based on these 

findings, we predicted that the administration of atomoxetine should increase the 

strength and clustering of connectivity. Moreover, given the putative spatial 

aselectivity of the LC-NE system, we expected that an atomoxetine-induced increase 

in connectivity should be homogenous across the brain. 

     However, in contrast to an atomoxetine-induced increase in the strength of 

connectivity, we show that atomoxetine reduced the strength of inter-regional 

correlations across three levels of spatial organization. Furthermore, this modulatory 

effect on intrinsic correlations exhibited a substantial degree of spatial specificity: the 

decrease in functional connectivity showed an anterior-posterior gradient in the 

cortex, depended on the strength of baseline functional connectivity, and was 

strongest for connections between regions belonging to distinct intrinsic connectivity 

networks.  

     Our findings are the first to show that neuromodulation shapes the topography of 

intrinsic correlations in the human brain in a spatially specific manner. The 

unexpected reduction of the strength of connectivity indicates that neuromodulation 

may shape intrinsic correlations in a brain state-dependent manner, which dovetails 

with positron emission tomography findings (Coull et al., 1999) and theoretical 

proposals (Mather et al., 2015), but is difficult to account for by a global modulation 

of neural gain alone. Moreover, spatial specificity in the effect of atomoxetine on 

intrinsic correlations may be explained by recent findings that the projection profile of 

the LC-NE system is more heterogeneous than once thought (Chandler et al., 2014; 

Schwarz and Luo, 2015; Schwarz et al., 2015), and by the heterogeneous distribution 

of noradrenergic receptors (e.g. α2) across the cortex (Zilles and Amunts, 2009; 

Nahimi et al., 2015).  

 

1.5.3 Chapter 4: Catecholamines Modulate Intrinsic Long-range Correlations in the 

Human Brain 

 

     In chapter 4, we test a prediction from the network reset account (Bouret and Sara, 

2005): an increase in NE should lead to a reorganization of brain functional networks. 

To do so, we reanalyzed the dataset used in chapter 3: a double-blind placebo-

controlled cross-over design in which we pharmacologically increase synaptic NE and 

DA levels by administering the selective NET blocker atomoxetine. We applied two 

complementary analysis approaches to examine the effect of NE on fine-grained 
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patterns of intrinsic functional connectivity patterns: ‘dual regression’ and ‘spatial 

mode decomposition’. As opposed to chapter 3, in chapter 4 we examine if 

atomoxetine results in changes to the spatial structure (topology) of intrinsic fMRI 

correlations rather than a modulation of their strength alone.  

     Both analysis approaches provided converging evidence for an atomoxetine-

related reduction in correlations between distributed brain regions, specifically 

sensory and motor-related networks. Additionally, spatial mode decomposition 

revealed a shift in dominance from left to right-lateralized frontoparietal network 

cofluctuations. Importantly, the pre-dominant effect of atomoxetine was a quantitative 

change to correlations within existing functional networks that left the spatial structure 

of these networks intact, rather than a reconfiguration of network topology.  

     Our findings are consistent with earlier work on primates (Guedj et al., 2016) which 

demonstrated similar connectivity atomoxetine-induced reductions in sensory and 

motor-related networks. However, we demonstrate that such reductions can be 

quantitative in nature, rather than necessarily stemming from a topological 

reconfiguration of network structure as would be predicted by the network reset 

account (Bouret and Sara, 2005). We conclude that catecholamines modulate 

dynamic changes in the strength of intrinsic inter-regional correlations, which may 

serve to coordinate flexible modulations of network interactions in order to facilitate 

goal-directed behavior. 

 

1.5.4 Chapter 5: Pupil Diameter Tracks Lapses of Attention 

 

     Sustained attention, our ability to continuously monitor and respond to goal-

relevant sensory information, is limited. Studies on the relationship between lapses 

of attention and psychophysiological markers of attentional state, such as pupil 

diameter, have yielded contradicting results. Adaptive gain theory (Aston-Jones and 

Cohen, 2005) predicts that baseline pupil diameter should show an inverted-U 

shaped relationship with attentional performance, whereby most lapses of attention 

occur in both periods where the pupil is relatively large, and where it is relatively small. 

In chapter 5, we test this prediction directly. Moreover, we explore additional markers 

of attentional state, based partially on recent research that showed a close 

relationship between the derivative of pupil diameter and brain state and attentional 

performance (Reimer et al., 2014; McGinley et al., 2015a).   

     We investigate the relationship between tonic fluctuations in pupil diameter and 

performance on a demanding sustained attention task. We found robust linear 

relationships between baseline pupil diameter and several measures of task 

performance, suggesting that attentional lapses tended to occur when pupil diameter 

was small. However, these observations were primarily driven by the joint effects of 

time-on-task on baseline pupil diameter and task performance. The linear 

relationships disappeared when we statistically controlled for time-on-task effects and 

were replaced by consistent inverted U-shaped relationships between baseline pupil 
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diameter and each of the task performance measures, such that most false alarms 

and the longest and most variable response times occurred when pupil diameter was 

both relatively small and large.  

     Finally, we observed strong linear relationships between the temporal derivative 

of pupil diameter and task performance measures, which were largely independent 

of time-on-task. Our results help to reconcile contradicting findings in the literature on 

pupil-linked changes in attentional state, and are consistent with the adaptive gain 

theory of LC-NE function. Moreover, our results suggest that the derivative of baseline 

pupil diameter is a potentially useful psychophysiological marker that could be used 

in the on-line prediction and prevention of attentional lapses.  

 

1.5.5 Chapter 6: Task-free Spectral EEG Dynamics Track and Predict Patient 

Recovery From Severe Acquired Brain Injury 

 

As previously discussed, our ability to process and respond to sensory 

information is dependent on the dynamic brain state. One prominent example in 

which brain state is fundamentally altered is that of disorders of consciousness 

resulting from brain injury. Some of these patients develop signs of awareness, while 

other patients remain in a state of unresponsiveness (Jennett and Plum, 1972; 

Laureys et al., 2004). At the neural level, the pathophysiological signatures of 

disorders of consciousness are reminiscent of hypoactivity in the LC-NE system that 

occurs during sleep or under-arousal, and concurrent mass-synchronization of 

cortical neurons. As shown in chapters 3 and 4 of this dissertation, brain activity that 

is synchronized across cortical areas in the absence of sensory input is susceptible 

to noradrenergic neuromodulation. In chapter 6 of this dissertation, we explore if the 

state (quantified as amplitude and connectivity) of such synchronized cortical activity 

in the absence of sensory input can be used to track and predict the level of 

awareness of patients with disorders of consciousness and their respective level of 

recovery. We analyze an existing dataset of patients who participated in an ‘Early 

Intensive Neurorehabilitation Programme’ (Eilander et al., 2005; Wijnen et al., 2007).  

We show that compared to healthy control participants, patients showed a 

general ‘slowing down’ of cortical rhythms, whereby low-frequency (synchronized) 

cortical states are relatively dominant. Moreover, across the course of their recovery, 

patients exhibit nonlinear frequency band-specific changes in spectral amplitude and 

connectivity metrics, and these changes align well with the metrics’ frequency band-

specific diagnostic value. Remarkably, connectivity during a single task-free EEG 

measurement could predict the level of patient recovery approximately 3 months later 

with 75% accuracy.  

     Our findings show that amplitude and connectivity metrics of spectral brain state 

track patient recovery in a longitudinal fashion, and that these metrics are robust 

pathophysiological markers that can be used for the automated diagnosis and 

prognosis of disorders of consciousness. These metrics can be acquired 
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inexpensively at bedside, and are fully independent of the patient’s neurocognitive 

abilities, which offers substantial improvements on existing methodologies. Lastly, 

our findings tentatively suggest that the relative preservation of ascending and 

recurrent interactions between the cortex and subcortical nuclei (speculatively, the 

thalamus or ascending arousal systems such as the LC), putatively responsible for 

desynchronized cortical states (Schiff, 2010; Schiff et al., 2014), may predict the later 

reemergence of awareness. Thus, our findings shed new light on the 

pathophysiological brain state-related processes that underlie disorders of 

consciousness. 
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2. Post-Error Slowing as a Consequence of Disturbed Low-Frequency 

Oscillatory Phase Entrainment 

 

 

 

 

 

 

Abstract 

 

A common finding across many reaction-time tasks is that people slow down on trials 

following errors, a phenomenon known as post-error slowing. In the present study we 

tested a novel hypothesis about the neural mechanism underlying post-error slowing. 

Recent research has shown that when task-relevant stimuli occur in a rhythmic 

stream, neuronal oscillations entrain to the task structure, thereby enhancing reaction 

speed. We hypothesized that under such circumstances post-error slowing results 

from an error-induced disturbance of this endogenous brain rhythm. To test this 

hypothesis, we measured oscillatory EEG dynamics while human subjects performed 

a demanding discrimination task under time pressure. We found that low-frequency 

neuronal oscillations entrained to the stimulus-presentation rhythm, and that low-

frequency phase at stimulus onset predicted the speed of responding. Importantly, 

we found that this entrainment was disrupted following errors, and that the degree of 

phase disturbance was closely related to the degree of post-error slowing on the 

subsequent trial. These results describe a new mechanism underlying behavioral 

changes following errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on:  

van den Brink RL, Wynn SC, and Nieuwenhuis, S (2014). Post-error slowing as a 

consequence of disturbed low-frequency oscillatory phase entrainment. The Journal 

of Neuroscience, 34(33): 11096-11105   
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2.1 Introduction 

 

One of the most common findings in empirical studies employing reaction time 

(RT) measures is that RTs slow down on trials following errors, a phenomenon known 

as post-error slowing (PES, Rabbitt, 1966; Laming, 1979). PES has been shown to 

occur across many different tasks and response modalities, including go/no-go 

(Cohen et al., 2009); flanker (Cavanagh et al., 2009b; Eichele et al., 2010); 

categorization (Dudschig and Jentzsch, 2009; Jentzsch and Dudschig, 2009); Stroop 

(Gehring and Fenscik, 2001a); Simon (Ridderinkhof, 2002); and saccade 

countermanding tasks (Endrass et al., 2005). Researchers have proposed several 

accounts of the cognitive mechanisms that are responsible for PES (Danielmeier and 

Ullsperger, 2011), suggesting that PES can arise from strategic adjustments in 

response caution (Botvinick et al., 2001; Dutilh et al., 2012a) as well as a detrimental 

processing interference caused by the error (Jentzsch and Dudschig, 2009; 

Notebaert et al., 2009). However, although studies have started to elucidate the 

neural mechanisms underlying error-related strategic adjustments (King et al., 2010; 

Danielmeier et al., 2011; Narayanan et al., 2013), the neural basis of error-related 

processing interference is still poorly understood.  

In the present study, we tested the hypothesis that this component of PES results 

from an error-evoked disturbance of internally generated brain rhythmicity. It has 

been suggested that under circumstances of high external predictability, the timing of 

endogenous periodic processes is systematically aligned with the environmental 

rhythmicity (Large and Jones, 1999; Schroeder and Lakatos, 2009). Such temporal 

alignment can be implemented by neuronal oscillations, which are rhythmic 

fluctuations in the excitability of large-scale neuronal ensembles (Wang, 2010). This 

oscillatory phase locking, or entrainment, ensures that behaviorally relevant stimuli 

are processed in the optimal neuronal context, thereby optimizing speed and 

accuracy of behavioral responses. Indeed, low-frequency neuronal oscillations have 

been shown to align with stimulus-presentation rates, are modulated by expectations 

about stimulus onset, and predict the latency of behavioral responses (Lakatos et al., 

2008; Schroeder and Lakatos, 2009; Saleh et al., 2010; Stefanics et al., 2010a; Besle 

et al., 2011b; Henry and Obleser, 2012). 

To test our hypothesis that errors slow down subsequent responses through a 

disturbance of low-frequency EEG oscillatory phase entrainment, we examined the 

oscillatory dynamics of EEG signals from participants performing a modified Eriksen 

flanker task under high time pressure. We found that low-frequency neuronal 

oscillations entrained to the stimulus-presentation rhythm, and that low-frequency 

phase at stimulus onset predicted the speed of responding. Importantly, we found 

that this entrainment was disrupted following errors, and that the degree of phase 

disturbance was closely related to the degree of PES on the subsequent trial. These 

results support our novel hypothesis regarding the neural origin of PES. 
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2.2 Materials and Methods 

 

Participants. Twenty-one participants (aged 17-29 years, 17 female, all right-

handed) gave informed consent to take part in this study. Following EEG artifact 

rejection, one participant was excluded from further analysis due to an insufficient 

number of error trials (<30). All participants had normal or corrected-to-normal vision, 

and were free from any neurological or psychiatric disorders. Participants were 

recruited via the Leiden University Research Participation website and received 

€7,50/h or course credit. The experiment was approved by the Leiden University 

Institute of Psychology Ethics Committee. 

Behavioral task. The participants performed a modified version of the flanker task 

(Eriksen and Eriksen, 1974), in which a target letter (‘H’, ‘K’, ‘C’ or ‘S’) was flanked by 

three identical flanker letters (‘H’, ‘K’, ‘C’ or ‘S’) on each side. Participants had to 

classify the target letter by giving one of two left-hand responses or one of two right-

hand responses. The flanking letters were always incongruent with the target letter 

(e.g., SSSHSSS or KKKCKKK) and mapped to a finger of the hand opposite to the 

hand associated with the correct response. This ensured similar difficulty across 

trials, enabling cross-trial comparisons of RTs, while retaining a sufficiently high error 

rate.  

Stimuli were presented in black on a white background for 200 ms at 2.77ᵒ 

horizontal visual angle and at a viewing distance of 120 cm. Stimulus onset 

asynchronies (SOAs) were randomly selected from a uniform distribution with a mean 

of 1350 ms, and varying between 1200 ms and 1500 ms with 50 ms increments 

(Figure 1A). During the inter-trial interval, a black fixation cross was shown. 

Participants were instructed to keep their eyes fixated on the cross at all times.  

Between task blocks participants received RT and accuracy feedback, and were 

pressed for speed. In total there were 10 blocks of 104 trials each. Participants 

practiced the task beforehand (120 trials), to ensure they understood the task. 

Because several studies have found that PES is exclusively found for errors of 

which participants are aware (Hughes and Yeung, 2011; Murphy et al., 2012), we 

conducted a pilot experiment (N=4) to verify whether participants detected the errors 

made in our challenging version of the flanker task. If they detected an error, 

participants were to press an error-signaling button (space bar) with their thumb, 

immediately after the error, and before the next trial started (an additional task on top 

of the already demanding flanker task). All other methods were identical to those 

described for the main experiment. Participants correctly signaled over 76% of their 

errors, which provides a lower bound on the percentage of aware errors, while 

misclassifications of correct responses as errors were rare (<2%). This suggests that 

participants were aware of the large majority of their errors. 

Behavioral data acquisition and analysis. The experiment was run on a personal 

computer with an 18-inch monitor. Stimulus presentation and the recording of 

responses were performed using E-Prime (v2.0; Psychology Software Tools, Inc.).  
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In order to quantify PES, researchers usually subtract the mean reaction time 

(MRT) on post-error trials from the MRT on post-correct trials  (MRTpost-error – MRTpost-

correct). This will hereafter be referred to as PEStraditional (Dutilh et al., 2012b). However, 

Dutilh et al. (2012b) have shown that this measure of PES is vulnerable to confounds 

related to global performance fluctuations. They therefore proposed an alternative 

measure of PES, dubbed PESrobust.  Following this method, we conducted a pairwise 

comparison of correct trials around each error (RTpost-error – RTpre-error), resulting in 

single-trial values of PES. For the calculation of PESrobust,we included error trials that 

were both preceded and followed by at least one correct trial. To test for group-level 

significance of PEStraditional and PESrobust, MRTs on post-error trials were compared to 

post-correct and pre-error trials, respectively, with one-tailed paired-sample t-tests. 

Additionally, Pearson’s correlation was used to determine whether PEStraditional and 

PESrobust were correlated.  

EEG recording and preprocessing. EEG data were recorded using a BioSemi 

ActiveTwo system from 18 electrodes placed according to the international 10/20 

system: F3; Fz; F4; C3; Cz; C4; P3; Pz; P4; PO7; PO3; POz; PO4; PO8; O1; Oz; O2; 

and Iz. Additionally, a reference electrode was placed on each earlobe, and bipolar 

electro-oculogram (EOG) recordings were obtained from electrodes placed 

approximately 1 cm lateral of the outer canthi (horizontal EOG) and from electrodes 

placed approximately 1 cm above and below the left eye (vertical EOG). During 

acquisition, impedances were kept below 30 kΩ. The EEG signal was pre-amplified 

at the electrode to improve the signal-to-noise ratio with a gain of 16×, and digitized 

at 24-bit resolution with a sampling rate of 1024 Hz. Each active electrode was 

measured online with respect to a common mode sense (CMS) active electrode 

producing a monopolar (non-differential) channel.  

All EEG data were analyzed in MATLAB 2011b, using the EEGLAB toolbox 

(Delorme and Makeig, 2004a) and custom in-house code. First, EEG data were down 

sampled to 512 Hz and re-referenced off-line to the average of the earlobe electrodes. 

Next, to remove drifts, the continuous EEG data were high-pass filtered offline at 0.5 

Hz with a zero-phase-shift, two-way, least-squares finite impulse response filter 

(constructed using MATLAB’s ‘fir1’ function which smooths the filter kernel using a 

Hamming window by default). Zero-phase-shift filters prevent the introduction of filter 

artefacts that could distort real oscillatory phase information. Filtering the continuous 

time course rather than epoched data also prevented edge artifacts from 

contaminating the data. Nevertheless, to verify that high-pass filtering did not 

influence low-frequency phase estimates, we also ran the relevant analyses on data 

to which no high-pass filter was applied, and found that it did not influence the results.  

Additionally, the EEG data were notch-filtered at 50 Hz to remove line-noise. 

Following filtering, the continuous data were segmented into epochs ranging from -1 

to 3s centered on stimulus onset and baseline-corrected by subtracting the average 

offset during the -400 to -100 ms pre-stimulus window. Next, the following types of 

trials were excluded from further analysis: trials in which the participant failed to 
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respond, trials which were part of a sequence of more than three consecutive errors, 

and trials with an RT exceeding 1200 ms.  Trials with transient artifacts and eye 

movements were manually rejected. Following trial rejection, per participant on 

average 609 correct trials, and 78 error trials remained (393 and 47 respective lower 

limits) and 693 post-correct trials and 94 post-error trials remained (501 and 51 

respective lower limits). Next, eye blinks and continuous electromyogram (EMG) 

artifacts were identified using JADE independent component analysis as 

implemented in the EEGLAB toolbox (Delorme and Makeig, 2004a) and the 

corresponding components were removed from the data.  

ERP analysis. To confirm that our task showed the event-related potential (ERP) 

components that are typically found during flanker tasks—the error-related negativity 

and error positivity—we computed response-locked ERPs for correct and error trials, 

and baseline-corrected them by subtracting the average offset during the -100 to 0 

ms pre-response window. These ERPs were then compared on each time-point with 

two-tailed t-tests with a p-threshold of 0.001 or less, and cluster-corrected for multiple 

comparisons across time-points (Maris and Oostenveld, 2007).  

Time-frequency analyses. Spectral power and phase dynamics were extracted 

via Morlet wavelet decomposition. Wavelet decomposition involves convolving the 

data with a set of Gaussian-windowed complex sine waves, here defined as: 
2

22 2w w

w

t

i f t s

f e e
π

−

ψ = ⋅   

where fw denotes frequency, which ranged from 0.5 to 30 Hz with 30 logarithmically-

spaced steps. Time is denoted by t, and sw determines the width of the Gaussian 

window, and thus the tradeoff between time and frequency precision. A wider 

Gaussian will result in a wider wavelet, and thus results in more temporal smearing 

of instantaneous power/phase estimates. Because we were primarily interested in 

lower frequencies, and the lower frequencies inherently span a wider temporal range, 

we preferred to minimize temporal smearing at the expense of frequency resolution 

in the lower frequency bands. We therefore linearly increased the Gaussian width 

with frequency, such that: 

2

w
w

w

c
s

fπ
=   

where cw denotes the number of wavelet cycles, which ranged from 3 to 12.  

To accommodate the large wavelet width at the lower frequencies, prior to 

running wavelet decomposition we expanded each data epoch with a mirror (time-

reversed) image of itself such that each epoch consisted of a mirror image of the 

epoch, then the ‘true’ epoch, and another mirror image following it. This increased the 

effective epoch size from 4 s to 12 s while preserving data continuity, thereby 

preventing the introduction of transients in the signal that could cause edge artifacts 

(Cohen, 2014b). 
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After convolution, frequency-specific instantaneous power (P) is given by: 

2 2
( , ) ( , ) ( , )w w wP f t ReM f t iM f t= +   

where ReM and iM denote the magnitude of the real and imaginary components of 

the convolution result, respectively. To enable comparisons across frequency bands, 

power was converted to decibel (dB) scale via: 10�log10[P(t,f)/P(tbaseline,f)] where 

tbaseline baseline ranged from -300 to -100 ms. Frequency-specific instantaneous 

phase (ϕ) is given by the angle of the convolution result (arctangent of iM over ReM) 

at time t.  

To demonstrate entrainment of EEG oscillations to the task rhythm, we computed 

inter-trial phase coherence (ITPC), a measure of the consistency of phase across 

trials. This measure ranges between 0 (no consistency) and 1 (perfect consistency), 

and can be computed using: 

,1

1

ITPC( , ) | n |w

n
i f t

w

N

f t e
φ( )−

=

= ∑   

where n is the number of trials.  

Statistical analyses of time-frequency data. As randomly distributed phases 

across trials produce a known (Rayleigh) distribution, the significance of observed 

ITPC can be assessed by comparing it to ITPC under the null hypothesis. Conversely, 

a critical value (ITPCcrit) at which ITPC significantly deviates from randomly distributed 

phases can be calculated, given a p-value (0.001 in our case), via:  

 ( ) 1

critITPC = log np −− ⋅   

where n is the number of trials (Zar, 1999; Cohen, 2014b). We thus calculated ITPCcrit, 

and for each time-frequency point values higher than ITPCcrit were considered 

significant.  

We used non-parametric permutation testing to assess whether power deviated 

from the -300 to -100 ms pre-stimulus baseline window, for each time-frequency 

point. Permutation testing is robust against violations of assumptions about data 

distributions that can occur with conventional parametric statistics (Maris and 

Oostenveld, 2007). First, within each frequency, the assignment of evoked power to 

‘baseline’ or ‘power’ distributions was shuffled, and t-statistics specific to each time-

frequency point were computed iteratively 1000 times. The resulting t-value 

distribution was then Z-scored, and the standardized value of the non-shuffled 

comparison (actual baseline vs. power) was then computed per time-frequency point. 

This procedure generated a time-frequency matrix with a Z-value for each time-

frequency point that indicated the statistical likelihood of finding the experimentally 

obtained power values, given that the null hypothesis (no difference in power 

compared to baseline) is true. To correct for multiple comparisons, the threshold for 

the time-frequency matrix was set as Z-scores corresponding to p-values of 0.001 or 

less. In a second step, a distribution of maximum cluster sizes (the number of 

contiguous significant time-frequency points) under the null hypothesis was 
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computed. The cluster size corresponding to the 95th percentile of this distribution 

was then taken as the lower bound for cluster correction of the time-frequency matrix, 

resulting in a cluster-level threshold of p<0.05  (c.f. Cohen et al., 2012). 

To test whether phase distributions differed from a uniform distribution, we used 

Rayleigh’s test for uniformity (Fisher, 1993).  

Fixed-effects analysis. Circular-linear correlations (i.e correlations between 

single-trial phase and behavioral measures) were performed using a similar non-

parametric permutation testing approach as described above. Correlation 

distributions under the null hypothesis in this case were created by shuffling the 

assignment of pooled behavioral data (i.e. RT or PESrobust) to phase information at 

the single-trial level. The test statistic which was subsequently Z-scored for each time-

frequency point was the correlation coefficient resulting from circular to linear 

correlation as implemented in the circular statistics (CircStat) toolbox (Berens, 2009). 

To assess differences in average phase angle between conditions (i.e. correct 

vs. error; post-correct vs. post-error; and post-correct vs. large and small PES bins), 

we again used a similar procedure, but instead shuffled the assignment of pooled 

single-trial phase to trial types to compute a standardized distribution of angle 

differences under the null hypothesis. We used the Watson-Williams test for angular 

means to obtain the test-statistic that was informative of the angle differences 

between conditions. This test statistic was subsequently standardized, similar to the 

analyses described above. Because there were more correct and post-correct trials 

than error and post-error trials, respectively, we matched these trial numbers between 

conditions by selecting a random subset of trials from the larger condition prior to 

computing differences between them in the average phase angle. 

Random-effects analysis. Because the fixed-effects procedure described above 

does not take into account the between-subjects variance in effect size, we repeated 

these analyses for a number of select time-frequency points (stimulus onset, and 600 

ms post-stimulus /response), but without assuming constant between-subject 

variance. Specifically, we computed phase-RT and phase-PES correlations for each 

individual participant to obtain a distribution of correlation coefficients. Because 

circular-to-linear correlations are bound between zero and one, correlation 

coefficients under the null hypothesis are unlikely to be exactly zero. We therefore 

computed the correlations again but with shuffled phase-behavior assignments for 

1000 permutations. This resulted in a distribution of correlation coefficients under the 

null hypothesis. To assess the group-level significance of the observed distribution of 

correlation coefficients, we used a paired-sample t-test to compare them to the 

distribution under the null hypothesis averaged across permutations.  

To test for differences in phase angle between conditions, we first computed the 

average phase angle and resultant vector length across trials for each participant and 

each condition. Then, group-level differences in phase angle between conditions 

were assessed using the parametric Hotelling paired-sample test for angular means 

(Zar, 1999). The extension of this test described by Zar (1999) takes into account the 
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resultant vector lengths of the phase distributions of individual cases (participants, in 

our case), which carries meaningful information regarding the consistency of the 

phase angle difference between the average distributions. It is therefore more suited 

to be used in second-level, random-effects analyses than the Watson-Williams test.  

 

 

2.3 Results 

 

Behavioral and ERP results. The average RT on correct trials was 608 ms (SD 

69 ms); average RT on error trials was 604 ms (SD 87 ms; p = 0.53). The average 

percentage of correct responses was 86.7% (SD 5.8%). To confirm that participants 

were sensitive to the average stimulus-presentation rate (one stimulus every 1350 

ms), we binned correct trials by preceding SOA, and expected the shortest RTs in the 

1350-ms bin. A repeated-measures ANOVA revealed that correct RT had an inverted 

U-shaped relationship with the preceding SOA (Figure 1B; quadratic trend: F(1,19) = 

12.73, p < 0.01), indicating that participants were good at estimating the average SOA 

of 1350 ms. No such trend was found for accuracy (F(1,19) = 0.8, p = 0.38), ruling 

out preceding SOA as a confounding factor in our comparisons between post-error 

and post-correct trials. 

As a next step we wanted to confirm that PES occurred in our flanker task with 

only incongruent stimuli. In line with our expectations, both PEStraditional (mean 27 ms, 

SD 25 ms) and PESrobust (mean 44 ms, SD 24 ms) were significantly larger than zero 

(p < 0.001; Figure 1C). Although PESrobust was significantly larger (p < 0.001), the two 

measures of PES were highly correlated (p < 0.001, Figure 1D), suggesting that 

PESrobust, although more precise (Dutilh et al., 2012b), does not provide radically 

different values for PES than the more traditional measure. Post-error accuracy 

(mean: 84.1%; SD 12.0%) was somewhat lower than post-correct accuracy (mean: 

87.7; SD 4.2%), but this difference was not significant, p = 0.24.  

Figure 1E shows that the error-related negativity and error positivity, two well-

known error-related ERP components, were present in our EEG data.  

Functional entrainment of oscillations. To replicate previous results indicating that 

low-frequency oscillations entrain to the stimulus-presentation rhythm (Lakatos et al., 

2008; Schroeder and Lakatos, 2009; Stefanics et al., 2010a; Henry and Obleser, 

2012; Ng et al., 2012), we computed ITPC, a measure of the consistency of oscillatory 

phase across trials. We calculated ITPC averaged across all trial types and 

electrodes to assess which frequencies showed the highest degree of consistency, 

and expected greatest consistency in low (< 2Hz) frequencies, overlapping with our 

task rhythm. In line with this expectation, Figure 2A shows that ITPC was significantly 

higher than expected by chance in the lowest frequency range. Additionally, the 

cluster of time-frequency points that showed significant ITPC extended into the higher 

frequencies.  
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Figure 1. Task, behavioral and ERP results. a) Timing of trial events. SOA: stimulus onset 

asynchrony. b) Response time (RT) and accuracy as a function of (binned) preceding SOA. 

Intermediate bins are averaged for display purposes. The dashed line in the upper panel is a 

fitted quadratic curve. c) Behavioral results showing post-error slowing, as measured by both 

the traditional and robust methods of quantifying PES. Asterisks indicate significant (p < 

0.001) differences. d) PESrobust and PEStraditional correlated significantly across subjects (p < 

0.01). e) Response-locked event-related potentials for correct and error trials, averaged 

across electrodes Fz and Cz. Shaded area indicates a significant (p < 0.001) difference 

between conditions. All error bars show the standard error of the mean. 

 

 

To confirm the dependence of ITPC on the task rhythm, we ran a control 

experiment (N = 4) with the same task, except that the stimulus-presentation rhythm 

was manipulated in a block-wise fashion (0.5 and 0.85 Hz). All other task parameters  
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Figure 2. Functional entrainment of oscillations to the task rhythm. a) Low-frequency 

oscillations entrain to the task rhythm, as indicated by inter-trial phase coherence (ITPC) 

averaged across all trials and all channels. b) Evoked (ERP) power averaged across all 

conditions and all channels. Only frequencies above the task rhythm show significant 

increases in evoked power, suggesting that elevated low-frequency ITPC reflects entrainment 

of endogenous oscillations. Significant (p<0.001) regions are outlined in black using 

MATLAB’s contourf function. c) Channel- and condition-averaged ERP showing oscillations 

entrained to the stimulus-presentation rhythm. The solid gray lines show the ERPs of 

individual participants. The solid black line shows the average. The vertical dashed gray lines 

show the time of average stimulus onsets. d) Low-frequency (0.76Hz) phase distribution at 

correct trial onset for the average of channels Fz and Cz. The solid black line shows the 

average. Gray lines show individual participants. The inset shows a rose histogram, where 

the radial extent of the bars indicates the probability of a given phase occurring on a single 

trial. The red line is the average vector of the histogram. e) Topographical distribution of Z-

scored correlation of correct RTs with low-frequency phase at trial onset. The two highlighted 

channels are Fz and Cz, the average of which was used in all further reported analyses. f) 

Correct RTs sorted by low-frequency (0.76Hz) phase at trial onset, smoothed with a moving 

average of 100 trials for display purposes. The non-linearity in the curve arises due to a 

correlation of phase with RT. The error bars represent the standard error of the mean and are 

the result of smoothing. The light gray line and corresponding y-axis on the right-hand side 

represent phase for each of the sorted trials. g) Box plots of the correlation coefficients for 

permuted (black) and observed (blue) correlations between correct RT and 0.76Hz phase at 

trial onset for the average of channel Fz and Cz. A 95% confidence interval around the 

median of each distribution is indicated by the notches in the boxes. The whiskers extend to 

the most extreme values of each distribution. The circles show the correlation coefficients of 

individual participants. ** p < 0.001.  
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were as in the main experiment. For each of the four participants, we found clearly 

dissociable peaks in ITPC (at 0.5 and 0.85 Hz) that differed between blocks, 

indicating that oscillatory phase locking was highly dependent on the stimulus-

presentation rhythm. 

Elevated ITPC can come about in two ways (Tallon-Baudry and Bertrand, 1999; 

Donner and Siegel, 2011). The first possibility is that ITPC arises due to cross-trial 

phase alignment of true, endogenously driven oscillatory activity. The second 

possibility is that ITPC is a result of stimulus-evoked activity, meaning simple 

stimulus-evoked EEG components cause consistency in phase across trials. To 

exclude the possibility that stimulus-evoked activity was the driving force behind 

consistency in phase across trials, we computed oscillatory power of stimulus-locked 

trial-averaged (ERP) data. As Figure 2B shows, no significant evoked power was 

found below ~2Hz, indicating that ITPC in these low frequencies was likely driven by 

endogenous oscillatory activity. Above ~2Hz, however, we found significant evoked 

power, indicating that elevated ITPC in those frequencies was most likely stimulus-

evoked. In sum, lower frequencies showed significant ITPC, which likely reflected 

entrainment of endogenous neuronal oscillations to the stimulus-presentation rhythm, 

in line with our prediction. These entrained oscillations are readily visible in the 

stimulus-locked grand-average ERP (Figure 2C). Moreover, the phase angle of our 

frequency of interest (0.76Hz) at stimulus onset was highly consistent across 

participants (Figure 2D; deviation from uniform distribution: Rayleigh’s Z = 11.3, p < 

0.0001).  

Next, to show that this entrainment is directly linked to task performance, we 

correlated correct RTs with single-trial instantaneous phase at trial onset, pooling the 

trials of all participants, and focusing on the frequency corresponding with the 

average stimulus-presentation rate (0.76 Hz). The relationship between phase and 

RT was strongest over fronto-central scalp regions (Figure 2E), in accord with 

previous findings (Stefanics et al., 2010a; Henry and Obleser, 2012; Ng et al., 2012). 

Accordingly, all subsequent analyses were performed on the average of the signals 

recorded at Fz and Cz. The significant phase-RT relationship (r = 0.12, p < 0.001) 

with trials pooled across participants is shown in more detail in Figure 2F. This 

correlation was also significant (p < 0.001) at the group level with a random-effects 

analysis approach (Figure 2G). Thus, the entrainment of oscillations is functional, in 

that it predicts the latency of responding, and this effect is consistent across 

participants. 

Error-induced disturbance in phase entrainment. To test our hypothesis that 

errors result in a disturbance of phase entrainment, we calculated the difference in 

phase angle between correct and error trials (response-locked, i.e., aligned with the 

commission of errors / correct responses), and post-correct and post-error trials 

(stimulus-locked, i.e. aligned with the onset of stimuli following errors / correct 

responses). If the average phase angle on correct responses facilitates response 

speed, then PES may reflect a temporary deviation from this phase angle. Note that  
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Figure 3. Relation between phase angle and post-error slowing. a) Z-scored differences in 

absolute phase angle between correct (C) and error (E) trials, pooled across participants. 

Red colors indicate phase on error trials significantly lagging behind correct trials. Time zero 

indicates the time of a response. b) Z-scored differences in absolute phase angle between 

post-correct (C+1) and post-error (E+1) trials, pooled across participants. Red colors indicate 

phase on post-error trials significantly lagging behind post-correct trials. Time zero indicates 

the onset of the stimulus. c) Low-frequency (0.76 Hz) phase distributions for post-correct and 

post-error trials for individual subjects. Each participant is denoted by a uniquely colored dot 

on the circle. The average vector of the distribution is shown in red. ** p < 0.001. d) Low-pass 

(<2Hz) filtered ERPs for the average of channel Fz and Cz. Error bars denote the standard 

error of the mean. Dashed vertical lines show the average stimulus onset times. e) Z-scored 

phase angle differences between trials that show a low degree of PES (small PES bin) and 

post-correct trials. f) Z-scored phase angle differences between trials that show a high 

degree of PES (large PES bin) and post-correct trials. g) Same as d), but error trials are 

binned according to PESrobust. h) Z-scored correlations of [caption continues on next page]  
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[continued caption Figure 3]  single-trial phase on post-error trials with single-trial PESrobust. In 

all time-frequency plots, significant (p < 0.001) regions are outlined in black using MATLAB’s 

contourf function. i) Box plots of the correlation coefficients for permuted (black) and 

observed (blue) correlations between single-trial 0.76Hz phase at 600 ms post-stimulus on 

post-error trials and single-trial PESrobust. A 95% confidence interval around the median of 

each distribution is indicated by the notches in the boxes. The whiskers extend to the most 

extreme values of each distribution. The circles show the correlations coefficients of 

individual participants. ** p < 0.001.  

 

 

if errors result in a systematic disturbance of phase entrainment, this will become 

apparent as a difference in phase angle following correct and erroneous responses 

rather than as a difference in phase-locking strength. 

As Figure 3A shows, following the response, low-frequency phase angle on error 

trials significantly differs from that of correct trials. Although the difference in phase 

angle between correct and error trials is already evident before the response, this 

pre-response difference is likely the result of temporal smearing of the effect that is 

inherent to wavelet decomposition. To confirm this, we re-ran our wavelet 

decomposition with a lower number of wavelet cycles, thereby increasing the 

temporal resolution at the expense of frequency resolution. We found that this 

eliminated all pre-response differences in phase angle between errors and correct 

trials, while post-response differences were still present (results not shown). This 

indicates that the disturbance in phase entrainment following the response is likely to 

be error-induced. The difference in phase angle following correct and error responses 

was highly consistent across participants (Figure 3C, upper panel; F(2,18) = 19.3, p 

< 0.001).  

Figure 3B shows that this error-induced disturbance in phase entrainment 

extends into the post-error trial, where it could potentially influence RT, thereby 

causing slowing on post-error trials. The difference in phase angle at trial onset for 

post-correct and post-error trials was highly consistent across participants (Figure 3C, 

lower panel; F(2,18) = 6.04, p < 0.001). The error-induced disturbance in entrainment 

is also visible in the low-pass filtered ERPs. Figure 3D shows that around the average 

response time, the phase of the error-trial ERP starts to lag behind that of the correct-

trial ERP. This phase difference extends into the subsequent trial and then dissolves 

again.  

If the error-related disturbance in phase entrainment relates to how much PES 

occurs, phase angle should differ between trials that show a large degree of PES and 

trials with a small degree of PES. To test this prediction we divided up the post-error 

trials into three equally sized bins according to the amount of PESrobust, and 

compared, for each time and frequency point, the phase angle of these bins to the 

phase angle on post-correct trials. We expected to see a more pronounced 

disturbance in phase angle on trials with a large degree of PES. Consistent with our 

prediction, Figures 3E and 3F show that the disturbance in phase entrainment  
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Figure 4. Power and inter-trial phase coherence (ITPC) comparisons for the average of 

channel Fz and Cz, between a) correct and error trials, and b) post-correct and post-error 

trials. Significant (p < 0.001) regions are outlined in black using MATLAB’s contourf function.     

 

 

extended for a longer period of time on trials with a large degree of PES. This 

indicates that the longer the disturbance in phase entrainment lasts following an 

erroneous response, the slower the participant is in responding on the subsequent 

trial. This strongly suggests a link between PES and disturbed phase entrainment.  

The prolonged disturbance during trials that show a large degree of PES is also 

visible in the ERPs (Figure 3G). Whereas the ERP of the small PES bin rejoins the 

ERP of correct trials before the trial N+1 response period, the ERP of the large PES 

bin is still out of phase with respect to correct trials during that period. The difference 
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in 0.76Hz phase angle between post-error trials with large PES and post-correct trials 

was highly consistent across participants (at stimulus onset: F(2,18) = 7.32, p = 

0.0047; at 600 ms post-stimulus: F(2,18) = 3.74, p = 0.0053). The difference in phase 

angle between post-error trials with small PES and post-correct trials was not 

significant (F(2,18) = 2.40, p = 0.12), conceivably due to the fact that binning resulted 

in too few trials for an accurate estimate of average phase angle for each participant 

separately.  

Next, to test directly whether PES can be predicted by the level of phase 

disturbance, we correlated phase on post-error trials with PESrobust at the single-trial 

level. Figure 3H shows that on post-error trials, low-frequency phase predicted PES, 

demonstrating a trial-by-trial relationship between disturbed phase entrainment and 

PES. Interestingly, the time-window in which phase predicted PES overlapped with 

the period during which trials with large PES (Figure 3F) but not trials with small PES 

(Figure 3E) differed in phase angle from post-correct trials. This suggests that post-

error trials were generally characterized by some degree of phase disturbance, and 

that the amount of PES on a given trial was mainly dependent on the duration of the 

error-induced phase disturbance. The correlation between post-error phase around 

the time of the response (~600 ms) and single-trial PES was highly consistent across 

participants (Figure 3I). 

Finally, in order to confirm that the disturbance is specific to the entrained low-

frequency oscillations rather than reflecting a broader spectral perturbation, we 

computed power and ITPC for correct- and error trials, and post-correct and post-

error trials, as well as respective differences between them. As can be seen in Figure 

4, there are no significant differences in power or ITPC between conditions, except 

for the well-documented error-related increase in theta-band power (Narayanan et 

al., 2013). This indicates that the phase angle differences between correct and error 

trials, and between post-correct and post-error trials are unlikely to result from a 

broad-band perturbation. Instead, the results are in line with our hypothesis of a 

specific phase disturbance in the task-entrained frequency.  

 

 

2.4 Discussion 

 

In the present study, we tested the hypothesis that PES results from a 

disturbance of internally generated brain rhythmicity. Taken together, our results 

show that: 1) endogenous low-frequency neuronal oscillations entrain to the stimulus-

presentation rhythm; 2) the entrainment facilitates speeded responding; 3) 

entrainment is disturbed following the commission of an error; and importantly, 4) the 

level of disturbance of entrainment predicts how much slowing occurs on the following 

trial. These results support our novel hypothesis about the neural origin of PES. 

 What might be the mechanism underlying this error-related disturbance of phase 

entrainment? One possibility is that errors evoke a transient process that temporarily 
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distracts from the current task and therefore results in slower responding on the 

subsequent trial (Jentzsch and Dudschig, 2009). This possibility is suggested by the 

orienting account of PES (Notebaert et al., 2009), which posits that errors, due to their 

infrequent occurrence, automatically draw attention away from the ongoing task, 

much like other surprising events tend to do. The orienting account is supported by 

the finding that slowing occurs following correct trials instead of errors when correct 

responses are infrequent (Notebaert et al., 2009; Nunez Castellar et al., 2010); and 

by the observation that participants who make fewer errors (i.e. for whom errors are 

more unexpected) show larger PES (Steinborn et al., 2012). Our findings suggest that 

this hypothesized orienting response may cause the phase angle of entrained 

oscillations to deviate from the more advantageous phase angle observed following 

correct trials, thus leading to slower responding. This account is consistent with recent 

studies that have linked the phase of ongoing delta oscillations to the rate of 

perceptual evidence accumulation (Wyart et al., 2012; Cravo et al., 2013). 

Other evidence in support of a limited-duration orienting response during which 

attention is distracted from the task is provided by studies that examined the 

relationship between post-error performance and the interval between the error and 

the subsequent trial (Dudschig and Jentzsch, 2009; Jentzsch and Dudschig, 2009; 

Danielmeier and Ullsperger, 2011). By varying the response-stimulus interval (RSI), 

these studies found that short RSIs (<500 ms) are typically associated with large PES 

and a post-error decrease in accuracy. As the RSI increases up to 1000 ms and 

larger, PES strongly diminishes and the post-error decrease becomes a post-error 

increase in accuracy. We found an intermediate pattern of results (modest PES, 

slightly decreased accuracy after errors) that seems consistent with the intermediate 

length of our average RSI (~750 ms). The orienting account can explain these 

findings by claiming that at short RSIs, attentional reorientation is the dominant cause 

for the impaired performance on the subsequent trial. As the RSI increases, it 

becomes increasingly likely that the system has recovered from the orienting 

response by the time the next stimulus is presented. The timing of the error-induced 

disturbance in phase entrainment observed here, which partially overlapped with the 

subsequent trial (and more so on trials characterized by large PES), is consistent with 

the notion that at intermediate RSIs there is a substantial probability of overlap 

between the orienting response and the subsequent trial. Of course, due to the 

correlative nature of our methods, we cannot unequivocally conclude that disturbed 

entrainment is the causative mechanism underlying PES. This issue can be 

addressed by manipulating entrainment directly, for example using transcranial 

magnetic stimulation.   

A disturbance in phase entrainment is unlikely to be the only cause of PES. Dutilh 

et al. (2012a), using drift-diffusion modelling of performance on a lexical decision task, 

found that when the RSI is relatively long (1000 ms), PES can be attributed almost 

exclusively to increased response caution. This suggests that a strategic change in 

response threshold (Botvinick et al., 2001) can also contribute to PES. Another study 
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using drift-diffusion model analysis found that PES could be explained by a change 

in several model parameters, including an increased response threshold and a 

decreased rate of evidence accumulation, consistent with disturbed phase 

entrainment (White et al., 2010). However, in this study participants received trial-to-

trial feedback, so post-error effects may have been contaminated by the possibly 

distracting presence of error feedback. Additionally, several studies have found PES 

with inter-trial intervals of several seconds (Hajcak et al., 2003; Marco-Pallarés et al., 

2008; King et al., 2010; Danielmeier et al., 2011), precluding a contribution of a 

transient disturbance of phase entrainment. However, these studies either measured 

PEStraditional, which is confounded by global fluctuations in motivation and task 

performance (Dutilh et al., 2012b), which are often present in tasks with long RSIs; or 

they used PESrobust but did not control for differences in trial type (e.g., congruent vs 

incongruent) between pre- and post-error trials—a plausible source of confound 

(Steinhauser and Yeung, 2012). Therefore, it is uncertain if PES truly occurred in 

these studies. Nonetheless, taken together, the literature suggests that in contrast to 

the intermediate RSI effects discussed in the previous paragraph, at longer RSIs PES 

is mainly determined by a time-consuming strategic change in speed-accuracy trade-

off. This notion is corroborated by the finding that post-error accuracy is increased 

following errors only at longer RSIs (Jentzsch and Dudschig, 2009).  

An important question is what neural mechanism orchestrates the alignment of 

neuronal oscillations to environmental rhythmicity. The widespread cortical 

topography and slow temporal dynamics of the entrained oscillations observed here 

suggest a possible neuromodulatory involvement. Accordingly, the norepinephrine-

producing neurons of the locus coeruleus (LC) are phase-locked in firing to ongoing 

cortical slow-wave oscillations during sleep (Eschenko et al., 2012; Sara and Bouret, 

2012). Specifically, neurons of the prefrontal cortex and the LC fire in phasic 

opposition, suggesting a mutual excitatory drive. Additionally, one concurrent EEG-

fMRI study has provided tentative evidence of temporal alignment of human LC 

activity with slow-wave oscillations (Dang-Vu et al., 2008). These findings have led to 

the suggestion that the LC facilitates transitions from the down- to the up-state of slow 

cortical oscillations (Eschenko et al., 2012; Sara and Bouret, 2012), which would 

provide a plausible mechanism for temporal alignment of slow oscillations with 

environmental rhythmicity. In line with the concept of an orienting response, phasic 

norepinephrine release has also been proposed to act as a neural interrupt signal, 

whereby unexpected events (e.g., errors) lead to a reset and reorganization in target 

neuronal networks, and subsequent behavioral adaptation (Bouret and Sara, 2005; 

Dayan and Yu, 2006). Interestingly, several proposals have linked PES to 

noradrenergic activity (Cohen et al., 2000; Nunez Castellar et al., 2010), and 

preliminary evidence suggests that PES is partly determined by a genetic marker of 

norepinephrine synthesis (Colzato et al., 2013). Thus, it is possible that the 

noradrenergic system is involved in the entrainment of cortical oscillations, and that 

this entrainment and consequent mode of behavioral responding are disrupted by an 
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error-evoked orienting response (or interrupt signal) in the noradrenergic system 

(Nieuwenhuis et al., 2010; Nunez Castellar et al., 2010; Ullsperger et al., 2010).  

A remaining question is whether our findings will generalize to other task designs. 

Here, phase entrainment followed the low-frequency stimulus-presentation rhythm. 

However, phase entrainment does not always occur in the lower frequency range 

(e.g. Maltseva et al., 2000), raising the question whether an error-induced disturbance 

might also occur in higher frequencies. Indeed, because we used only one stimulus-

presentation frequency, it is conceivable that the error-induced disturbance in phase 

angle occurred independent of endogenous entrainment. This possibility seems 

unlikely given that the choice of stimulus-presentation rhythm was motivated by 

earlier work on entrainment (Stefanics et al., 2010a; Lakatos et al., 2013) rather than 

a specific hypothesis about the involvement of 0.76-Hz oscillations in error 

processing. Furthermore, others have shown attention-related phase shifts of 

entrained oscillations in substantially higher frequencies (Lakatos et al., 2008; Besle 

et al., 2011b). Nevertheless, the specificity of the error-related disturbance in phase 

angle to the task frequency warrants further investigation using multiple stimulus-

presentation rhythms.  

Furthermore, in our experiment the task rhythm was determined mainly by the 

highly predictable SOA, whereas in many other studies of PES the RSI instead of 

SOA is the predictable time interval. So an interesting question is whether in these 

studies PES is also related to a disturbance of phase entrainment. Previous studies 

have shown that participants can use various temporal cues to facilitate entrainment 

(Stefanics et al., 2010a). However, it remains to be investigated whether response 

time can function as a temporal cue to entrain oscillations to subsequent stimulus 

onset. Alternatively, to the extent that variability in RTs is modest and the RSI and 

other intervals are fixed, the SOA will be relatively constant across trials. The 

entrainment in the current study was robust to a certain amount of temporal variability 

(SOA 1200-1500 ms), suggesting that even in tasks in which RSI is the predictable 

factor, neuronal oscillations may entrain to the SOA.  

In conclusion, our brain exploits the innate periodicity in the environment by 

means of oscillatory entrainment. We have shown that when an error is made, a 

temporary perturbation occurs such that the entrained oscillations are ‘out of sync’ 

with the current task, the degree of which predicts the magnitude of slowing of the 

subsequent behavioral response.  
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3. Catecholaminergic Neuromodulation Shapes Intrinsic MRI Functional 
Connectivity in the Human Brain  
 
 
 
 
 
 

Abstract 

 

The brain commonly exhibits spontaneous (i.e., in the absence of a task) fluctuations 

in neural activity that are correlated across brain regions. It has been established that 

the spatial structure, or topography, of these intrinsic correlations is in part determined 

by the fixed anatomical connectivity between regions. However, it remains unclear 

which factors dynamically sculpt this topography as a function of brain state. Potential 

candidate factors are subcortical catecholaminergic neuromodulatory systems, such 

as the locus coeruleus-norepinephrine (LC-NE) system, which send diffuse 

projections to most parts of the forebrain. Here, we systematically characterized the 

effects of endogenous central neuromodulation on correlated fluctuations during rest 

in the human brain. Using a double-blind placebo-controlled cross-over design, we 

pharmacologically increased synaptic catecholamine levels by administering 

atomoxetine, an NE transporter blocker, and examined the effects on the strength 

and spatial structure of resting-state MRI functional connectivity. First, atomoxetine 

reduced the strength of inter-regional correlations across three levels of spatial 

organization, indicating that catecholamines reduce the strength of functional 

interactions during rest. Second, this modulatory effect on intrinsic correlations 

exhibited a substantial degree of spatial specificity: the decrease in functional 

connectivity showed an anterior-posterior gradient in the cortex, depended on the 

strength of baseline functional connectivity, and was strongest for connections 

between regions belonging to distinct resting-state networks. Thus, catecholamines 

reduce intrinsic correlations in a spatially heterogeneous fashion. We conclude that 

neuromodulation is an important factor shaping the topography of intrinsic functional 

connectivity. 

 
 
 
 
 
 
 
This chapter is based on: 
van den Brink RL, Pfeffer T, Warren CM, Murphy PR, Tona KD, van der Wee NJ, 
Giltay E, van Noorden MS, Rombouts SA, Donner TH, and Nieuwenhuis, S (2016). 
Catecholaminergic Neuromodulation Shapes Intrinsic MRI Functional Connectivity 
in the Human Brain. The Journal of Neuroscience, 36(30): 7865-7876. 
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3.1 Introduction 

 

The resting-state – here defined as periods during which a participant is not 

engaged in a complex explicit task – is characterized by fluctuations in neural activity 

that are correlated across brain regions (Biswal et al., 1995; Leopold et al., 2003; Fox 

and Raichle, 2007; Hiltunen et al., 2014). Such spontaneous, correlated fluctuations 

exhibit a rich spatial (Yeo et al., 2011) and temporal (Allen et al., 2014; Zalesky et al., 

2014) structure that is reflective of the brain’s functional organization (Tavor et al., 

2016). The strength and spatial distribution of these correlated fluctuations are 

predictive of behavior and pathological conditions (Greicius et al., 2004; De Luca et 

al., 2005). Moreover, the global structure, or topography, of correlated activity changes 

dynamically with alterations in conscious state (Barttfeld et al., 2015) and task 

conditions (Nir et al., 2006; Sepulcre et al., 2010). While the existence and overall 

spatio-temporal structure of the spontaneous inter-regional correlations are well-

established (Fox and Raichle, 2007), uncertainty remains regarding the underlying 

physiological mechanisms. It has been proposed that correlations across distant brain 

regions could be induced by brainstem neuromodulatory systems – and in particular 

the locus coeruleus-norepinephrine (LC-NE) system, which sends diffuse, ascending 

projections to the forebrain (Leopold et al., 2003; Drew et al., 2008; Schölvinck et al., 

2010), where noradrenergic terminals co-release dopamine (DA; Devoto and Flore, 

2006). Here, we examined if and how the catecholaminergic neuromodulators NE and 

DA shape correlated fluctuations during rest in the human brain.  

A number of observations suggest that catecholamines should generally increase 

the strength of functional connectivity. Both iontophoretic NE application and DA 

agonism enhance neuronal responses to excitatory synaptic input (Rogawksi and 

Aghajanian, 1980; Seamans et al., 2001b; Wang and O'Donnell, 2001). Furthermore, 

NE and DA can amplify synaptic GABAergic inhibition (Moises et al., 1979; Seamans 

et al., 2001a). These and other findings have led to the view that catecholamines boost 

the efficacy of synaptic interactions between neurons (Berridge and Waterhouse, 

2003; Winterer and Weinberger, 2004), resulting in an increased difference in firing 

rates between strongly and weakly active neurons. Such signal amplification yields a 

system-wide facilitation of signal transmission (Waterhouse et al., 1998). Recent 

computational work suggests that this effect of catecholamines should boost both 

positive and negative temporal correlations between the activities of local groups of 

neurons, resulting in stronger and increasingly clustered network connectivity (Donner 

and Nieuwenhuis, 2013; Eldar et al., 2013). Putative behavioral and pupillary indices 

of heightened NE activity have accordingly been shown to co-occur with stronger 

functional coupling throughout the brain (Eldar et al., 2013). A first consideration of 

the anatomy of the LC-NE system suggests that these changes in functional 

connectivity might show little spatial specificity. LC neurons exhibit tightly synchronous 

firing and collateralize broadly, resulting in largely homogeneous catecholaminergic 
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innervation throughout the brain (Swanson and Hartman, 1975; Aston-Jones et al., 

1984; Ishimatsu and Williams, 1996; Berridge and Waterhouse, 2003). 

In the present study we systematically characterized catecholamine effects on the 

strength and spatial structure of resting-state inter-regional correlations, measured 

with functional magnetic resonance imaging (fMRI). Using a double-blind placebo-

controlled cross-over design, we manipulated catecholamine activity by administering 

a single dose of atomoxetine, a selective NE transporter (NET) blocker. Within the 

cortex NET is also responsible for DA reuptake, due to the cortical paucity of DA 

transporters (Devoto and Flore, 2006). Thus, NET blockers increase both central NE 

and cortical DA availability (Bymaster et al., 2002; Devoto et al., 2004; Swanson et al., 

2006; Koda et al., 2010). We systematically quantified catecholamine effects on 

functional connectivity—globally, between brain networks, and at the level of individual 

connections between brain regions. In contrast to the notion of a catecholamine-

induced homogeneous increase in functional connectivity, we found that atomoxetine 

reduced correlations across most pairs of brain regions. Most remarkably, 

atomoxetine altered the strength of inter-regional correlations in a highly spatially 

specific manner. These results have important ramifications for our understanding of 

resting-state activity and central catecholaminergic function. 

 

 

3.2 Materials and Methods 

 

Participants. Neurologically healthy right-handed individuals (N=24, age 19-26, 5 

male) were recruited and medically screened by a physician for physical health and 

drug contraindications. Exclusion criteria included: standard contraindications for MRI; 

current use of psychoactive or cardiovascular medication; a history of psychiatric 

illness or head trauma; cardiovascular disease; renal failure; hepatic insufficiency; 

glaucoma; hypertension; drug or alcohol abuse; learning disabilities; poor eyesight 

(myopia ≤ -6 diopters); smoking more than 5 cigarettes a day; and pregnancy. All 

participants gave written informed consent prior to the experiment and screening, and 

were compensated with €135 or course credit.   

Design and functional MRI data. We used a double-blind placebo-controlled 

cross-over design. In each of two sessions, scheduled one week apart at the same 

time of day, participants received either a single oral dose of atomoxetine (40 mg) or 

placebo (125 mg of lactose monohydrate with 1% magnesium stearate, visually 

identical to the drug). Elsewhere we report data showing that the atomoxetine 

treatment significantly increased salivary levels of cortisol and alpha amylase, reliable 

markers of sympathetic nervous system and hypothalamus-pituitary-adrenal axis 

activation, respectively (Warren et al., in preparation), thus confirming drug uptake. In 

both sessions participants were scanned once before pill ingestion (t = -20 min) and 

once at t = 90 min, when approximate peak-plasma levels are reached. The interaction 

contrast (post atomoxetine – pre atomoxetine) minus (post placebo – pre placebo) 
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allowed us to examine the effects of atomoxetine while controlling for other session-

related differences. Each scan comprised 8 minutes of eyes-open resting-state fMRI. 

During scanning the room was dark, and participants fixated on a black fixation cross 

presented on a gray background.  

MRI data collection and preprocessing. All MRI data were collected with a Philips 

3T MRI scanner. In each of the scanning sessions we collected a T2*-weighted echo 

planar imaging (EPI) resting-state image (echo time 30 ms, repetition time 2.2 s, flip 

angle 80º, field of view 80 x 80 x 38 voxels of size 2.75 mm isotropic, and 216 

volumes). To allow magnetic equilibrium to be reached, the first 5 volumes were 

automatically discarded.  

In addition, each time the participant entered the scanner we collected a B0 field 

inhomogeneity scan (echo time 3.2 ms, repetition time 200 ms, flip angle 30º, and field 

of view 256 x 256 x 80 voxels with a reconstructed size of 0.86 x 0.86 mm with 3 mm 

thick slices). Finally, at the start of the first session we collected a high-resolution 

anatomical T1 image (echo time 4.6 ms, repetition time 9.77 ms, flip angle 8º, and 

field of view 256 x 256 x 140 voxels with size 0.88 x 0.88 mm with 1.2 mm thick slices). 

We used tools from the FMRIB Software Library (FSL) for preprocessing of the 

MRI data (Smith et al., 2004; Jenkinson et al., 2012). EPI scans were first realigned 

using MCFLIRT motion correction and skull-stripped using BET brain extraction. We 

used B0 unwarping to control for potential differences in head position each time the 

participant entered the scanner and resulting differences in geometric distortions in 

the magnetic field. The B0 scans were first reconstructed into an unwrapped phase 

angle and magnitude image. The phase image was then converted to units radians 

per second and median-filtered, and the magnitude image was skull-stripped. We then 

used FEAT to unwarp the EPI images in the y-direction with a 10% signal loss 

threshold and an effective echo spacing of 0.332656505.  

The unwarped EPI images were then high-pass filtered at 100 s, prewhitened, 

smoothed at 5 mm FWHM, and co-registered with the anatomical T1 to 2 mm isotropic 

MNI space (degrees of freedom: EPI to T1, 3; T1/EPI to MNI, 12). Any remaining 

artifacts (e.g., motion residual, susceptibility-motion interaction, cardiac and sinus 

artifacts) were removed using FMRIB's ICA-based X-noiseifier (Griffanti et al., 2014; 

Salimi-Khorshidi et al., 2014) with pre-trained weights (Standard.RData). Noise 

classification performance was checked afterwards, by manually classifying 

components as either ‘signal’, ‘noise’, or ‘unknown’. Then, the accuracy of the 

automated artifact detection algorithm was quantified as the percentage of 

components that had the label ‘noise’ in both classifications. The accuracy was found 

to be 96.4% correct. All subsequent analyses were conducted in MATLAB 2012a. 

Physiological recordings and correction. We recorded heart rate using a pulse 

oximeter and breath rate using a pneumatic belt at 500 Hz during acquisition of each 

EPI scan. We used these time series for retrospective image correction 

[RETROICOR; (Glover et al., 2000)]. This method assigns cardiac and respiratory 

phases to each volume in each individual EPI time series which can then be removed 
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from the data. The physiological time series were first down-sampled to 100 Hz. Next, 

the pulse oximetry data were band-pass filtered between 0.6 and 2 Hz, and the 

respiration data were low-pass filtered at 1 Hz, using a two-way FIR filter. We then 

extracted peaks in each time series corresponding to maximum blood oxygenation 

and maximum diaphragm expansion. The inter-peak intervals were then converted to 

phase-time by linearly interpolating across the intervals to between 0 and 2π. Next, 

we used these phase-time series to extract the sine- and co-sine components of the 

dominant and first harmonic Fourier series of each signal. After down-sampling to the 

EPI sample rate this yielded 8 regressors (4 cardiac and 4 respiratory) that could then 

be used to remove cardiac and respiratory effects from the blood-oxygen-dependent 

(BOLD) time series using multiple linear regression. The findings reported here were 

based on non-corrected data, but we replicated all of our results using the 

RETROICOR-corrected data (see Results). 

Pupillometry. Pupil size was measured from the right eye at 500 Hz with an MRI-

compatible Eyelink 1000 eye tracker. Blinks and other artifacts were interpolated 

offline using shape-preserving piecewise cubic interpolation. Pupil data were low-pass 

filtered at 5 Hz to remove high-frequency noise and Z-scored across conditions. Five 

participants were excluded from pupil-related analyses due to poor signal quality 

(>50% of continuous time series interpolated) or missing data. Of the remaining 

participants, on average 20% (SD 9%) of the data were interpolated. 

Brain parcellation and connectivity. Time series of brain regions were extracted 

for the 90 regions of the Automated Anatomical Labeling [AAL, (Tzourio-Mazoyer et 

al., 2002)] atlas (Fig. 1a). We did not include the cerebellum because it was not fully 

inside the field of view for all participants. Following averaging across voxels within 

each brain region, time series (M) for each run i were Z-scored and correlation 

matrices (R) were computed between them via: 

'

1

i i
i

M M
R

nTR

⋅
=

−
  

where '  denotes transposition and nTR is the number of volumes (211). Because 

positive and negative correlations jointly determine a network’s functional organization 

(Fox et al., 2005), many prior studies have used the absolute value of the correlation 

coefficient to describe functional interactions (Achard and Bullmore, 2007; Eldar et al., 

2013; Li et al., 2013). Moreover, computational work suggests that catecholamines 

should boost temporal correlations regardless of their sign (Donner and Nieuwenhuis, 

2013; Eldar et al., 2013). We therefore used the absolute correlation coefficient as our 

measure of connectivity strength. The signed and absolute matrices were very similar, 

because anti-correlations were rare (mean 3.4% of all connections, SD 3.5%), as is 

common when no global signal regression has been performed. In the group- and 

condition-averaged correlation matrix, 0.28% were anti-correlations (11 out of 4005 

unique connections, Fig. 1b). To facilitate comparisons of values across participants, 

we range-normalized each participant’s absolute correlation matrices between 0 and 
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1 across the 4 conditions. This procedure discarded the between-participant variance 

while leaving the spatial structure and between-condition variance intact. 

In addition, for the post atomoxetine condition time-resolved connectivity (Allen et 

al., 2014) was computed for 189 tapered windows w of length nw (22 volumes) via: 

'

1

wi wi
wi

M M
R

nw

⋅
=

−
  

The taper was created by convolving a Gaussian (SD 3 TRs) with a rectangle. Rwi was 

Fisher-transformed to stabilize variance across windows. We then again used the 

absolute value as our measure of connectivity strength. An identical sliding window 

was applied to the pupil diameter data in the post atomoxetine condition such that for 

each window in Rwi there was a corresponding value of pupil size during that window. 

Then, we divided up pupil size into 3 equal-sized bins, and averaged the 

corresponding values in Rwi  for each pupil bin separately. To rule out the possibility 

that the results depended on the choice of bin size, we also tried alternate bin sizes 

(2, 5, and 7 bins) and found similar effects.  

Graph-theoretical analysis of global correlation structure. For each condition, we 

constructed a binary undirected (adjacency) matrix A. We did this by first 

concatenating the correlation matrices across participants such that for each condition 

we had a brain region by brain region by N (90 by 90 by 24) matrix of connectivity. We 

then assessed with a t-test across the participant dimension for each element y,x in 

the connectivity matrix whether its value differed significantly from the average of its 

row y or column x (Hipp et al., 2012). In other words, for each connection we obtained 

a distribution across participants of weighted values, and two distributions 

corresponding to the mean weighted values of each brain region that was linked by 

that particular connection. The connection distribution was then compared to each of 

the brain region distributions with a t-test. If either of the two comparisons was 

significant, the connection was scored as 1, and otherwise it was scored as 0. The 

alpha level was set to 0.01, Bonferroni-corrected for two comparisons to 0.005 (Hipp 

et al., 2012).  

Note that this procedure – as opposed to simply applying a fixed-percentage 

threshold – results in adjacency matrices that can differ in the number of connections 

between conditions, and therefore allows the assessment of correlation structure, or 

degree. We thus quantified the global degree k in each condition as the average 

across the adjacency matrix (Hipp et al., 2012) via: 

1 1

1 1

( , )
n n

x y

k n n A x y− −

= =

= ∑ ∑   

where n is the number of brain regions in the AAL atlas.  

To test the prediction that increased catecholamine levels should result in stronger 

functional connectivity, we used k as our measure of connectivity strength rather than 

relying on the mean weighted values (i.e. the average of Ri). The binarization of 

weighted graphs is common in functional network analysis (Achard and Bullmore, 
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2007; Rubinov and Sporns, 2010; Hipp et al., 2012; Li et al., 2013) and is intended to 

preserve only the strongest (most probable) connections. This ensures that weak 

edges, which are more likely to be spurious (Rubinov and Sporns, 2010), do not 

convolute the global mean. Given that these edges are less likely to reflect true 

neurophysiological interactions, they are less likely to be sensitive to any experimental 

manipulation that is specifically intended to alter neurophysiology (in our case, drug 

intake). Thus, excluding these connections decreases the likelihood of false negatives 

in between-condition comparisons of the global mean. In addition, by treating each 

connection equally (either present or absent) the global mean is not disproportionally 

influenced by extremely strong connections that are more likely to decrease in 

strength after an experimental manipulation by virtue of regression towards the mean.  

Furthermore, by defining adjacency matrices using a statistical test across 

participants, each connection that is present in the adjacency matrix is ensured to be 

reliably expressed across the group of participants for a given condition. Thus, the 

adjacency matrices are representative of the group-level topography of connectivity. 

We used two measures of clustering, defined using these group-level adjacency 

matrices, to test the prediction that an increase in central catecholamine levels should 

be accompanied by more strongly clustered network connectivity. The clustering 

coefficient C was quantified as the average fraction of triangles τ  around a node, the 

latter given by:   

12 ( , ) ( , ) ( , )x A x y A x z A y z−τ = ∑  ,  where ,y z N∈   

and N represents the total set of nodes. C was then given by: 

1 1

1 1

2

( 1)

n n
x

y x x x

C n n
k k

− −

= =

τ
=

−∑ ∑   

The clustering coefficient here is equivalent to the average proportion of the node’s 

neighbors that are in turn neighbors to each other (Watts and Strogatz, 1998; Rubinov 

and Sporns, 2010). Thus, the clustering coefficient represents the mean fraction of 

clustering around each node.  

Because C is normalized by degree (k) individually per node, it may be biased by 

nodes with a relatively low k. We therefore also included a measure of clustering that 

is normalized by k collectively and hence does not suffer from the same potential bias. 

This measure is known as transitivity (T), and is given by: 

1

1
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Note that this is equivalent to the ratio of triangles to triplets in the network. Both 

clustering coefficient and transitivity capture the extent to which the network is 

segregated in terms of processing, because a large number of triangles implies 
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functional clustering. These two measures were computed using the Brain 

Connectivity Toolbox (Rubinov and Sporns, 2010). Note that both clustering and 

transitivity are (partially) dependent on global degree (van Wijk et al., 2010). 

To test statistically whether degree, clustering coefficient and transitivity differed 

between conditions, we used non-parametric permutation testing. We shuffled the 

condition labels for each participant prior to computing the adjacency matrices and 

then computed the graph-theoretical measures. This was done for 10,000 iterations 

to produce a null distribution. We then derived a p value for each contrast by dividing 

the number of null observations more extreme than the observed contrast by the total 

number of null observations, and subtracting this value from 1.  

Network identification via community detection. We used the Louvain method for 

community detection optimized for stability (Blondel et al., 2008; Le Martelot and 

Hankin, 2013) to classify each brain region as belonging to a particular network, or 

module. This method works by maximizing the number of within-group connections 

(edges) while minimizing the number of between-group connections via greedy 

optimization. We first defined an adjacency matrix As by concatenating the condition-

averaged correlation matrices across participants, and then statistically comparing 

each element y,x to the average of its row y or column x, similar as described above. 

However, to accurately classify networks we needed to retain only those connections 

that were most informative about community structure. We therefore promoted 

sparsity in the condition-averaged adjacency matrix by defining it using a one-tailed t-

test with a conventional alpha level (0.05) and a correction for multiple comparisons 

using the false discovery rate (FDR). This preserved only those connections that were 

consistently the strongest across participants (16.9% of all possible connections). We 

then submitted this sparse condition-averaged adjacency matrix to the Louvain 

community detection algorithm. The optimization procedure (Le Martelot and Hankin, 

2013) ensured a stable solution across multiple runs of the algorithm. In the 

optimization procedure, the Markov time acts as a resolution parameter that 

determines the community scale, and thus the number of modules that the algorithm 

will return. This parameter was set to 0.9, resulting in 6 separate modules. We set the 

number of modules to be detected to 6 because, given the relatively coarse anatomical 

layout of the AAL atlas, this number yielded a relatively reliable modular organization. 

The community detection and optimization resulted in a ‘module number’ for each AAL 

brain region indicating to which module it belonged, and a single Q-value indicating 

the strength of modularity.  

We first verified whether the Q-value was significantly higher than chance. To do 

so, we generated 10,000 randomized null networks with an identical size, density and 

degree distribution as As  (Maslov and Sneppen, 2002), and submitted them to 

Louvain community detection and optimization to produce a null-distribution of Q-

values. We then derived a p-value for the observed modularity by dividing the number 

of null Q-values more extreme than the empirical Q-value by the total number of null 

Q-values, and subtracting it from 1.  
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The observed Q-value of 0.46 was significantly higher than chance (p < 0.001), 

showing that group-average connectivity was strongly modular. We then visualized 

the modular structure by re-arranging the condition-averaged correlation matrix by 

module. The assignment of brain regions to modules corresponded closely to a 

number of well-characterized intrinsic connectivity networks, indicating that the 

modular structure reflected a functionally meaningful grouping of brain regions.  

Graph-theoretical analysis of network structure. The procedure described above 

allowed us to group brain regions into modules of intrinsically coupled AAL brain 

regions. We could then use these modules to assess changes in the structure of 

intrinsic correlations at the within- and between-network level, rather than as a function 

of the system in its entirety. To do this, we first re-arranged the condition-specific 

adjacency matrices by their module number, and computed average degree of 

elements within and between modules via: 

1 1

1 1

( , )
a b

a b

n n

m a b s a b

x y

k n n A x y
− −

= =

= ∑ ∑   

where na is the number of brain regions belonging to module a and nb is the number 

of brain regions in module b. This yielded, for each condition, a symmetric and module-

by-module matrix of continuous average degree values, in which values on the 

diagonal indicated the average number of connections within each module, and each 

value around the diagonal indicated the average number of connections between a 

combination of modules.  

We could then use these ‘module matrices’ to test for atomoxetine-related 

changes in degree of the connections within modules, and the connections linking 

different modules. This allowed us to characterize changes in connectivity in a 

spatially more specific way than for global degree. We again used non-parametric 

permutation testing, similar as described for global degree, except that it was done for 

individual elements within the module matrices. 

Control analyses using an alternate atlas and multiple thresholds. To rule out the 

possibility that our results were specific to the use of the AAL atlas, we repeated all of 

our key analyses using the atlas made available by Craddock et al. (2012), which 

comprised 87 distinct regions after excluding the cerebellum, and found similar effects 

in terms of both direction and significance. Moreover, to verify that our results were 

independent of the statistical threshold used to define the adjacency matrices, we 

conducted a control analysis in which a range of adjacency matrices was created per 

condition with varying condition-averaged connection densities (40-75%). This was 

done by progressively raising / lowering the alpha level of the t-test that was used to 

determine whether a connection is present or absent (see above). Then, for each 

threshold we computed the graph-theoretical measures, and for each condition and 

measure separately calculated the area under the curve (AUC) across thresholds. 

This allowed us to compare the AUC between conditions with permutation testing 
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(10,000 iterations). For all measures the critical interaction contrast was significant 

and in the same direction as our original findings (see Results).  

Controlling for regression towards the mean. The correlation between baseline 

coupling strength and the atomoxetine-related change in coupling strength (Fig. 3e, 

see Results) is confounded by regression towards the mean. That is, if two particular 

brain regions show strong baseline coupling, then simply by chance they are more 

likely to show a reduction under atomoxetine, and so a negative correlation is likely to 

occur. We therefore controlled for regression towards the mean using permutation 

testing. For 10,000 permutations we shuffled the condition labels across participants 

prior to computing the atomoxetine-related change in coupling strength. We then 

computed the correlation between baseline coupling and atomoxetine-related change 

in coupling to produce a distribution of correlation coefficients under the null 

hypothesis of regression towards the mean. Finally, we derived a p value for the 

empirical correlation coefficient by dividing the number of null observations more 

extreme than the correlation coefficient by the total number of null observations, and 

subtracting this value from 1. This p value indicated the significance of the observed 

correlation coefficient beyond regression towards the mean. 

Analysis of BOLD signal variance. We calculated for each participant and each 

AAL brain region the fractional amplitude (i.e., variance) of low-frequency fluctuations 

in the non-Z-scored BOLD time series [fALFF (Zou et al., 2008)]. This measure 

indexes the relative contribution of low-frequency (0.01-0.08 Hz) fluctuations to the 

total amplitude spectrum. We compared fALFF between conditions using repeated 

measures analysis of variance. Additionally, for each participant we correlated the 

atomoxetine-related change in fALFF with the atomoxetine-related change in inter-

regional correlation strength across AAL brain regions. We then compared the 

distribution of Fisher-transformed correlation coefficients to zero using a two-tailed t-

test. Very similar results were obtained using alternative measures of variance (e.g., 

average 0.01-0.08 Hz amplitude or the signal standard deviation rather than fractional 

amplitude). 

 

 

3.3 Results 

 

Atomoxetine reduces global degree and clustering. In a first set of analyses, we 

examined the effect of atomoxetine on graph-theoretical summary measures of 

functional connectivity strength. We parcellated each participant’s brain into 90 

separate regions according to the Automated Anatomical Labeling (AAL) atlas 

[(Tzourio-Mazoyer et al., 2002), Fig. 1a] and computed the correlation between the Z-

scored time series of all pairs of regions (Fig. 1b). We then took the absolute 

correlation coefficient as our measure of functional connectivity strength (see 

Materials and Methods). In general, functional connectivity was strongest between  
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Figure 1. Inter-regional correlation and global graph-theoretical results. a) Topography of the 

AAL atlas. Each brain region within hemispheres has a unique color. b) Condition-averaged 

inter-regional correlation. Both the signed and absolute values are shown. Color labels on the 

left and bottom axes correspond to brain regions in a). c) Atomoxetine effects on global 

graph-theoretical measures. Error bars represent the SD of the bootstrapped null-distribution. 

n.s.: non-significant; *: p < 0.05; **: p < 0.01, ***: p < 0.001.  

 

 

visual cortical areas and between homologue areas in both hemispheres (Fig. 1b), 

consistent with a host of previous work (Fox and Raichle, 2007).   

For each condition (pre placebo, post placebo, pre atomoxetine, post 

atomoxetine), we constructed a binary matrix of connections (edges) between pairs of 

brain regions that consistently differed in strength across participants from the average 

of other connections involving either of the two brain regions [c.f. (Hipp et al., 2012)]. 

Graph theory allowed us to capture different properties of these matrices of intrinsic 

correlations in a small number of diagnostic scalar quantities (Bullmore and Sporns, 

2009; Rubinov and Sporns, 2010). Specifically, we assessed three such measures: 

the global degree, which indexes the number of strongly correlated regions (above a 

certain threshold; see Materials and Methods) in the network, and two descriptors of 

the extent to which network connectivity is clustered in segregated local groups of 

brain regions: clustering coefficient and transitivity, both of which are (partially) 

dependent on the strength of connectivity (van Wijk et al., 2010; Eldar et al., 2013). If 

catecholamines increase global functional connectivity, then atomoxetine should 

increase all three measures. 
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Figure 1c shows that atomoxetine significantly reduced the number of strong 

correlations present in the network, as indicated by lower global degree. This was 

reflected in a significant interaction between treatment and time (p = 0.039). A similar 

pattern of results was found for the two measures of clustering, both of which 

decreased in magnitude (Fig. 1c): clustering coefficient (p = 0.043) and transitivity (p 

= 0.048). Thus, atomoxetine reduced the number of strongly correlated brain regions, 

as well as the extent to which correlated brain regions formed local functional 

ensembles. Together, these result show that atomoxetine decreases, rather than 

increases, overall inter-regional correlations in the brain at rest.   

Atomoxetine reduces inter-network degree. Many studies of resting-state activity 

in humans have revealed a consistent set of groups or modules of brain regions that 

are characterized by strong coupling between brain regions belonging to the same 

module, and weaker coupling between brain regions belonging to different modules 

(Bullmore and Sporns, 2009). These modules are often referred to as “intrinsic 

functional connectivity networks” (Fox and Raichle, 2007). In a next set of analyses, 

we investigated atomoxetine-related changes in the strength of functional connectivity 

within and between these networks. 

To do this we arranged the connectivity matrix by network [Fig. 2a; see (Blondel 

et al., 2008)]. This resulted in 6 functional networks that correspond closely to 

previously reported resting-state networks (Yeo et al., 2011; Zalesky et al., 2014). 

Based on their topography (Fig. 2b) we termed them: default; somato-motor; visual; 

sub-cortical; inferior-frontal; and fronto-parietal networks. We then calculated the 

average number of connections within and between these networks, resulting in a 6 

by 6 network degree matrix for each condition (Fig. 2c,d). Finally, we examined 

atomoxetine-related changes in within- and between-network degree using 

permutation testing. This allowed us to explore if changes in functional connectivity 

occurred in intra- or inter-network connections. Note that the atomoxetine-related 

reduction in global degree (Fig. 1c) is visible in the network degree matrices as an 

overall increase in ‘brightness’ in the right panel of Fig. 2d. Consistent with the 

decrease in global degree reported above, we observed only atomoxetine-related 

reductions in network degree (Fig. 2e). The interaction between treatment and time 

was significant for the connections between the visual and somato-motor networks (p 

< 0.001); between the visual and fronto-parietal networks (p = 0.044); and between 

the fronto-parietal and default networks (p < 0.001). After using the FDR (q = 0.05) to 

correct for multiple comparisons, all connections except the connection between the 

visual and fronto-parietal networks remained significant. However, when comparing 

the area under the curve across a range of thresholds (see Materials and Methods), 

all connections remained significant after FDR correction.  

Interestingly, all significant reductions in network degree were in connections 

between (as opposed to within) functional networks. Thus, the most robust decreases 

in functional coupling occurred for connections linking functionally dissociable groups 

of brain regions. These results corroborate the conclusion drawn above, that  



 

45 
 

 

C
h
a
p
te

r 3
 

 
 

Figure 2. Intrinsic connectivity networks and changes in graph-theoretical measures of 

network structure. a) Condition-averaged inter-regional correlation arranged by network. The 

networks are outlined in blue. b) Topography of functional networks. Colors correspond to the 

labels in a). c) Condition-specific adjacency matrices arranged by network. Black elements 

indicate that a connection is present. d) Average degree for within- and between-network 

connections. To facilitate visual comparison, the size of each network is the same as in c). 

Note, however, that all statistical comparisons were conducted on symmetrically sized 

matrices in which each network contributed equally to the global mean. e) Atomoxetine-

induced changes in degree for connections within and between networks. Shades of grey 

reflect the value of the interaction contrast (post atomoxetine - pre atomoxetine) minus (post 

placebo - pre placebo). Significant (p < 0.05) changes in degree are outlined in red. 

 

 

atomoxetine decreased inter-regional correlations in the brain at rest. More 

importantly, these results provide a first indication that this reduction in inter-regional 

correlations is not spatially homogeneous across the brain. In the following, we further 

characterize the spatial heterogeneity of the atomoxetine-induced reductions in inter-

regional correlations. 

Regionally-specific reductions and baseline-dependent changes in connectivity 

with atomoxetine. Having assessed the topographical changes induced by 

atomoxetine at the global level and the level of functional networks, we next assessed 

differences in the strength of inter-regional correlations at the level of individual 

connections between brain regions, using the absolute correlation coefficient. We  
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Figure 3. Atomoxetine-related effects on inter-regional correlation. a) Region-by-region matrix 

of atomoxetine-related changes in inter-regional correlation strength. Colors represent the 

value of the interaction contrast (post atomoxetine - pre atomoxetine) minus (post placebo - 

pre placebo). Blue colors indicate reduced correlation following atomoxetine. The matrices are 

organized following Figure 1b. b) Atomoxetine-related effect on the absolute inter-regional 

correlation coefficient, rendered in 3D with an arbitrary threshold applied. The threshold is 

indicated by the white dashes in the color bar. Spheres are placed in the center of mass of 

their respective AAL atlas regions. Both the size and color indicate the average atomoxetine-

related effect on coupling [i.e the average across rows or columns in a)]. c) Transverse (top is 

anterior) and sagittal (right is anterior) view on 3D rendering of significant correlation changes, 

resulting from the whole-brain two-step analysis. Individual connections that changed 

significantly with atomoxetine are plotted as cylinders between the corresponding regions. d) 

Inter-regional correlation in each condition, averaged across the significant connections 

shown in c). Error bars represent the SEM. e) Correlation between baseline inter-regional 

correlation strength (collapsed across pre placebo and pre atomoxetine) and change with 

atomoxetine. Each dot represents a unique region-by-region connection. Self-connections 

were excluded.  

 

 

found that atomoxetine altered correlation strength in a strikingly structured fashion 

(Fig. 3a): In general, connectivity was reduced by atomoxetine, especially in posterior 

brain regions (Fig. 3b). These observations align with our findings of reductions in 

inter-network degree involving the visual system. To quantify these effects, we used 

a two-step procedure. Specifically, we first derived a set of data-driven hypotheses by 

identifying, in the first half of the fMRI volumes, the limited number of individual 

connections that exhibited an atomoxetine-related change in connectivity that was 

reliable across participants (p < 0.05, using a two-tailed t-test), thereby reducing the 

number of comparisons for the subsequent step. We then re-tested those connections 
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using the (independent) second half of the volumes, and selected those that again 

showed a systematic atomoxetine-related change in correlation strength (p < 0.005, 

two-tailed). Atomoxetine significantly lowered correlation strength in a cluster of 

occipital brain regions (Fig. 3c,d), specifically correlations between left calcarine 

cortex and right calcarine cortex / bilateral lingual gyrus; between left cuneus and right 

calcarine cortex / lingual gyrus; between left lingual gyrus and right calcarine cortex / 

lingual gyrus; and between right lingual gyrus and right calcarine cortex / right fusiform 

gyrus. These contiguous connections remained significant after applying a highly 

conservative cluster size threshold (p < 0.0001), obtained by generating a distribution 

of maximum cluster sizes under the null hypothesis with permutation testing (Nichols 

and Holmes, 2001). Thus, the cluster involved significantly more connections than 

would be expected by chance. 

Note that we did not find significant changes in connectivity between structures of 

the basal ganglia, which have been widely studied in relation to catecholaminergic 

drug effects (Sulzer et al., 2016). This lack of an atomoxetine-related effect in the 

human basal ganglia is consistent with the observation that the basal ganglia receive 

relatively sparse noradrenergic innervation (Aston-Jones et al., 1984), and with 

findings that atomoxetine has little effect on DA levels within the basal ganglia of 

rodents (Bymaster et al., 2002). Indeed, unlike in the cortex, in the basal ganglia there 

is an abundance of DA transporter (Sulzer et al., 2016), so DA reuptake is not 

dependent on the NE transporter. Thus, our finding that atomoxetine reduced the 

strength of inter-regional correlations in (predominantly visual) cortical areas is 

consistent with the specific effect of atomoxetine on synaptic catecholamine levels 

within the cortex.  

In sum, atomoxetine lowered the strength of correlations between visual cortical 

brain regions (Fig. 3c), regions that on average showed strong connectivity (Fig. 1b, 

2a). This raises the question whether the atomoxetine-induced change in connectivity 

was dependent on the baseline level of connectivity between any pair of brain regions. 

To address this question we correlated weighted coupling strength collapsed across 

the pre placebo and pre atomoxetine conditions (i.e., baseline connectivity) with the 

coupling change following atomoxetine (controlling for regression towards the mean 

with permutation testing). The observed correlation between baseline connectivity 

strength and the change with atomoxetine was significant (r = -0.22, p = 0.029, Fig. 

3e). This indicates that the strongest functional connections tended to show the largest 

connectivity reductions after atomoxetine, and vice versa.  

Atomoxetine induces de-coupling of early visual cortex from the rest of the brain. 

As noted above, atomoxetine reduced correlations between occipital brain regions. To 

establish whether these occipital regions also showed reduced coupling to the rest of 

the brain, as suggested by visual inspection (Fig. 3b), we computed a summary 

statistic (median) of correlation strength between early visual (pericalcarine) cortex 

and all other AAL atlas regions. There were no differences between left and right early 

visual cortex, so we collapsed the data across hemispheres.  
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Figure 4. Atomoxetine reduces correlation strength between early visual (pericalcarine) cortex 

and the rest of the brain. a) Topography of condition-averaged correlation seeded from left 

and right early visual cortex. b) Topography of atomoxetine-related effects on correlation 

seeded from left and right early visual cortex. Colors represent the value of the interaction 

(post atomoxetine - pre atomoxetine) minus (post placebo - pre placebo). c) Median 

correlation values across the brain seeded from left and right early visual cortex. Error bars 

represent the SEM.  

 

 

Average connectivity seeded from early visual cortex is shown in Figure 4a. 

Atomoxetine reduced connectivity between early visual cortex and the rest of the brain 

as reflected by a significant interaction between treatment and time (F(1,23) = 5.31, p 

= 0.031, Fig. 4b,c). The only significant pairwise comparison was post atomoxetine 

versus pre atomoxetine (t(23) = 2.34, p = 0.028). Together these results suggest that 

the early visual cortical areas not only de-coupled from each other following 

atomoxetine (Fig. 3c) but also from the rest of the brain.   

The results of our analyses at the level of individual connections between brain 

regions converge with those at the global level and at the level of networks of brain 

regions, showing that atomoxetine decreased functional connectivity. In addition, the 

results show that atomoxetine modulated functional connectivity in a highly regionally 

specific fashion, with more robust changes in visual cortex than in other brain areas. 

Excluding alternative explanations. In five sets of control analyses, we ruled out the 

possibility that the atomoxetine-related changes in inter-regional correlations were 

driven either by local changes in BOLD variance, by retinal effects due to pupil dilation 

associated with atomoxetine, by head motion, by saccade-related retinal transients, 

or by atomoxetine-induced changes in physiology (heart rate and breath rate). First, 

the correlation coefficient between two signals is their covariance normalized by the 

signals’ variances. Thus, it is possible that the observed changes in inter-regional 

correlations are caused by local changes in variance alone (Haynes et al., 2005; 

Freeman et al., 2011), rather than by changes in covariance (i.e., the degree to which 

the BOLD signals in two regions fluctuated together). If this is the case, then the 

atomoxetine-related change in average inter-regional correlation and the 

atomoxetine-related change in BOLD signal variance should be negatively correlated 

across brain regions. 
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Figure 5. Spectral BOLD 

characteristics and the relation 

with inter-regional correlations. 

(Left) atomoxetine-induced 

changes in spectral amplitude 

for AAL brain regions that 

showed an atomoxetine-

induced increase (red) and 

decrease (blue) in inter-

regional correlation strength. 

Brain-region and condition-

averaged amplitude is shown in black. (Right) Mean correlation between the region-averaged 

atomoxetine-induced change in coupling strength and fractional amplitude of low-frequency 

BOLD fluctuations. Error bars show the SEM. **: p < 0.01. 

 

 

Instead, we found a positive relationship between changes in inter-regional correlation 

and changes in BOLD variance, which was consistent across participants (t(23) = 

3.36, p = 0.003, Fig. 5), ruling out variance as a confound. Moreover, there was no 

interaction between treatment and time in overall BOLD variance (F(1,23) = 0.71, p = 

0.40), or in variance for only the occipital brain regions that showed reduced 

atomoxetine-related inter-regional correlation (F(1,23) = 0.41, p = 0.53).      

Second, because atomoxetine increased the size of the pupil (Fig. 6a), it is 

conceivable that this peripheral effect, rather than the effect of atomoxetine on central 

catecholamine levels, was driving the changes in inter-regional correlation in visual 

cortex (Haynes et al., 2004). To examine this potential confound, we binned inter-

regional correlation by pupil size in the post atomoxetine condition, focusing on those 

correlations that showed a significant reduction under atomoxetine. If larger pupil size 

is responsible for the reduction in correlations, then time  

 

 

Figure 6. a) 

Atomoxetine effect 

on pupil diameter. 

b,c) Correlation 

strength in the 

post atomoxetine 

condition binned 

by pupil size, only 

for connections 

that showed an 

atomoxetine-

related reduction 

in inter-regional correlation. Error bars represent the SEM. n.s.: non-significant; *: p < 0.05. 
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periods during which the pupil is large should be associated with weaker correlations 

than time periods during which the pupil is small. Interestingly, we found the opposite 

pattern (Fig. 6b, c): stronger correlations for large pupil (t(18) = 2,84, p = 0.010), ruling 

out an interpretation in terms of pupil size.  

Third, head motion can have a strong influence on the strength of inter-regional 

correlations (Van Dijk et al., 2012). To rule out the possibility that our key finding of 

atomoxetine-related changes in inter-regional correlation was driven by head motion, 

we first compared head motion between conditions. Neither mean head motion nor 

mean absolute head motion differed between conditions (all ps > 0.05). No 

participant’s head motion exceeded 2 mm, indicating that overall there was little head 

motion. However, general mild head motion tends to increase correlations between 

proximate areas and decrease connectivity between distant areas (Van Dijk et al., 

2012). Thus head motion can potentially lead to spatially heterogeneous effects on 

connectivity in a manner that is related to the distance between brain areas. To rule 

out the possibility that the spatial structure of atomoxetine-related changes in 

connectivity was driven by subtle (non-significant) differences in head motion between 

conditions, we correlated Euclidean distance between the center of mass of each pair 

of AAL brain areas and the strength of functional connectivity between those areas, 

for each participant and each condition. We then compared the distribution of Fisher-

transformed correlation coefficients between conditions. If head motion is responsible 

for the observed change in connectivity between conditions, then the correlation 

between Euclidean distance and strength of connectivity should also differ between 

conditions. However, we did not find any differences between conditions (all ps > 

0.05), ruling out head motion as a confound.   

Fourth, it is possible that that the atomoxetine-related reduction in the strength of 

correlation between visual cortical areas occurred due to differences between 

conditions in saccade-related retinal transients. In order to rule out this possibility, we 

extracted several eye movement metrics from the eye tracker gaze position data using 

the EYE-EEG toolbox (Dimigen et al., 2011). There was no interaction between 

treatment and time for any of the metrics: the number of saccades (F(1,18) = 0.47, p 

= 0.50), median saccade amplitude (F(1,18) = 0.45, p = 0.51), median saccade 

duration (F(1,18) = 0.11 , p = 0.74), or median saccade peak velocity (F(1,18) = 3.32 

, p =  0.085). This latter trend was driven by a numeric difference between the pre 

placebo and post placebo conditions. Pre and post atomoxetine did not differ 

significantly in saccade peak velocity (t(18) = -0.43, p = 0.67). Together, these results 

show that our key result of an atomoxetine-related reduction in the strength of 

correlation between visual cortical regions was unlikely to be driven by saccade-

related retinal transients.    

Finally, atomoxetine significantly increased breath rate (F(1,23) = 8.96, p = 0.007) 

and heart rate (F(1,23) = 4.66, p = 0.041), as reflected by a significant interactions 

between treatment and time. We therefore corrected the BOLD time series using the 

RETROICOR method [see Materials and Methods; (Glover et al., 2000)]. The average 
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R2 of the physiology regressors was relatively low (0.034), indicating that physiology 

accounted for a small proportion of the total BOLD variance [which was likely the result 

of artifact removal by FMRIB's ICA-based X-noiseifier (Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014)]. Nevertheless, to conclusively rule out atomoxetine-related 

changes in physiology as confounds, we repeated the key analyses on the physiology-

corrected data. All three global graph-theoretical measures remained significant and 

in the same direction as reported above (all p’s < 0.05). We also found significant 

reductions in network degree in the same inter-network connections (all p’s < 0.05). 

Lastly, we observed a similar contiguous cluster of significantly reduced inter-regional 

correlations within visual cortex (all p’s < 0.005, and cluster-corrected at p < 0.0001). 

Thus, our key results were unlikely to be driven by atomoxetine-related changes in 

physiology.  

 

  

3.4 Discussion 

 

Using a pharmacological manipulation, we examined the effects of increased 

extracellular levels of the catecholamines NE and DA on resting-state fMRI 

connectivity in the human brain. First, we found that our manipulation reduced the 

strength of inter-regional correlations across three levels of spatial organization, 

indicating that catecholamines reduce the strength of functional interactions during 

rest. Second, this modulatory effect on the structure of resting-state correlations 

exhibited a substantial degree of spatial specificity, indicating that catecholamines 

differentially reduce spontaneous correlations between select brain regions. These 

two key findings are surprising in light of the common understanding of the 

neurophysiology and computational function of catecholaminergic systems. They also 

identify catecholaminergic neuromodulation as an important factor shaping the spatial 

structure and strength of intrinsic functional connectivity in the human brain.  

Our first key finding is that atomoxetine, a selective NET blocker that increases 

synaptic NE and DA levels (Bymaster et al., 2002; Devoto et al., 2004; Invernizzi and 

Garattini, 2004; Swanson et al., 2006; Koda et al., 2010), reduced the strength of inter-

regional correlations. Specifically, atomoxetine reduced the strength of connectivity 

globally (Fig. 1c), between nodes belonging to distinct intrinsic connectivity networks 

(Fig. 2e), and between individual brain regions within the visual system (Fig. 3c). This 

consistent pattern of results seems to be at odds with the notion of a facilitative effect 

of catecholamines on brain-wide signal transmission (Aston-Jones and Cohen, 2005; 

Eldar et al., 2013). One possible explanation for this discrepancy lies in the fact that 

in our experiment participants did not actively respond to incoming sensory 

information. According to a recent theory, the effects of NE on neural activity strongly 

depend on interactions with local glutamate release (Mather et al., 2015). Accordingly, 

enhanced NE may have qualitatively different effects during task processing, 

associated with relatively high glutamate activity, than during states of relative cortical 
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quintessence (i.e., at rest), associated with relatively low glutamate activity. In line with 

this possibility, Coull et al showed dissociable effects of the α2 adrenergic agonist 

clonidine on positron emission tomography effective connectivity obtained during task 

performance and during rest (Coull et al., 1999). Whereas during task performance 

clonidine increased connectivity between frontal and parietal cortical regions, during 

rest clonidine reduced connectivity from frontal cortex to thalamus, and in connections 

to and from visual cortex. Two other studies that employed NE drugs also provided 

evidence for regional reductions in connectivity strength during rest (McCabe and 

Mishor, 2011; Metzger et al., 2015). These studies, however, only used a small 

number of seed regions to assess connectivity, and hence did not examine large-scale 

topographical changes.  

Our second key finding is that atomoxetine resulted in spatially heterogeneous 

changes in inter-regional correlations. For example, atomoxetine caused a reduction 

in the number of strongly correlated brain regions between (but not within) distinct 

resting-state networks (Fig. 2e). Furthermore, the effect of atomoxetine on inter-

regional correlations was dependent on the baseline level of coupling: the strongest 

functional connections tended to show the largest connectivity reductions after 

atomoxetine (Fig. 3d). How can such spatially structured effects of catecholamines 

come about? First, recent anatomical tracing work has suggested that the projection 

profile of the LC is more heterogeneous than once thought (Schwarz and Luo, 2015). 

For example, even though on the whole there is broad collateralization within the LC-

NE system, sub-populations of LC neurons selectively innervate distinct brain regions 

(Chandler et al., 2014; Schwarz et al., 2015). Moreover, sub-populations of LC 

neurons that differ in their afferent projection profile also show marked differences in 

their firing characteristics (Chandler et al., 2014). The firing modes of LC neurons in 

turn have differentiable effects on neuronal synchronization within the cortex (Safaai 

et al., 2015). Importantly, LC neurons have been reported to co-release DA (Devoto 

and Flore, 2006). Thus, spatially selective effects of catecholamines on correlated 

fluctuations in the brain can be achieved via a heterogeneous cortical innervation by 

the LC.  

Second, heterogeneity in the effect of catecholamines on inter-regional 

correlations could be achieved by regional differences in the expression of different 

receptor types. For example, expression of the α2 receptor roughly follows an anterior 

to posterior gradient (Nahimi et al., 2015), with particularly strong expression in 

primary visual cortex (Zilles and Amunts, 2009). Interestingly, we observed  an 

anterior to posterior gradient in the effect of atomoxetine on the strength of correlations 

(Fig. 3b). Moreover, we found a pronounced reduction in the strength of correlations 

between regions within visual cortex, and between early visual cortex and the rest of 

the brain (Fig. 4). The similarity between the spatial distributions of α2 receptors and 

the effects of atomoxetine thus warrants further investigation into the relationship 

between specific NE receptor types and their influence on correlated activity across 

the brain.  
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A number of limitations of the present study should be acknowledged. First, we 

examined the effects of only one dose (40 mg) of atomoxetine. Dose-dependent 

pharmacological effects of catecholaminergic drugs on neural function are not 

uncommon (Berridge and Waterhouse, 2003). Future work on the neurochemical 

basis of functional connectivity will need to examine dose-dependent effects of 

atomoxetine, and other catecholaminergic drugs, with different pharmacokinetic 

profiles. Second, we do not know whether atomoxetine would have similar effects on 

functional connectivity in clinical populations characterized by disturbed 

catecholaminergic function (e.g., attention deficit hyperactivity disorder and 

depression). Third, although we used BOLD activity as a proxy for neural activity, the 

link between neuronal interactions and BOLD activity is not entirely clear (Logothetis, 

2008). Models of catecholamine function make predictions about how NE and DA 

should affect neural communication. However, the translation of these predictions to 

BOLD correlations is not straightforward. Lastly, we used an atlas-based brain 

parcellation to investigate inter-regional correlations. Thus, the spatial resolution of 

our analyses was restricted by the resolution of the atlas. Future work, using voxel-

level approaches, is needed to investigate more fine-grained spatial effects of 

catecholamine levels on functional connectivity.    

The synaptic effects of catecholamines have been relatively well charted (Berridge 

and Waterhouse, 2003; Winterer and Weinberger, 2004). However, there is 

considerable uncertainty about how these low-level effects translate to system-wide 

functional interactions. Recently, a study by Safaai et al provided an important first 

glimpse into how the LC-NE system modulates spontaneous cortical activity and how 

this modulation in turn affects sensory processing in anesthetized rats (Safaai et al., 

2015). Specifically, they showed that LC bursts can both attenuate and enhance 

processing of sensory stimuli depending on their timing relative to the stimulus and 

the cortical activity state. However, the effects of catecholamines on the large-scale 

communication between distant brain areas and their neurophysiological 

underpinnings remain exceedingly unexplored. Our finding that atomoxetine reduced 

inter-regional correlations in a spatially structured manner thus calls for novel work on 

the neural mechanisms that produce such effects.    

Theory and evidence indicate that the topography of intrinsic fMRI correlations is 

dictated to an important extent by the fixed anatomical connectivity of each brain 

region (Deco et al., 2011; Deco et al., 2013). That is, brain regions that are 

anatomically strongly connected are more likely to show strong functional coupling 

than those that are connected weakly or only indirectly. However, within the 

constraints of physical connectivity there is substantial room for state-dependent 

movement in functional topological space (Allen et al., 2014; Zalesky et al., 2014; 

Barttfeld et al., 2015). Our results identify NE and DA as important factors driving these 

movements, and thus suggest that spontaneous fluctuations of catecholamine levels 

can serve to flexibly alter the structure of spontaneous correlations both globally and 

in specific brain regions, around the anatomical backbone.   
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4. Catecholamines Modulate Intrinsic Long-Range Correlations in the Human 

Brain 

 

 

 

 

 

Abstract 

 

Brain activity fluctuates intrinsically, even in the absence of changes in sensory input 

and motor output. These fluctuations are correlated across large-scale networks of 

brain regions, and their strength and topography changes dynamically. Such dynamic 

changes in functional connectivity may be induced by brainstem neuromodulatory 

systems: in particular the locus coeruleus, which projects widely to the forebrain where 

it co-releases the catecholamines norepinephrine and dopamine. In the current study 

we examined whether catecholamines change the strength or the spatial structure 

(topology) of intrinsic long-range correlations, or both. Using a double-blind placebo-

controlled crossover design, we pharmacologically increased central catecholamine 

levels in healthy human participants by administering atomoxetine. We used two 

complementary analysis approaches to examine the effect of catecholamines on fine-

grained strength and topology of intrinsic functional connectivity patterns: ‘dual 

regression’ and ‘spatial mode decomposition’. Both approaches provided converging 

evidence for an atomoxetine-related reduction in correlation strength between 

distributed brain regions. Importantly, the pre-dominant effects of the drug were 

quantitative changes of correlations within existing functional networks that left the 

spatial structure of these networks intact, rather than reconfigurations of the topology 

of these networks. We conclude that catecholamines modulate dynamic changes in 

the strength of intrinsic inter-regional correlations. 
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van den Brink RL, Rombouts SARB, Donner TH, and Nieuwenhuis S (under review). 
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4.1 Introduction 

 

In the absence of changes in sensory input and motor output, brain activity 

fluctuates in intrinsically organized correlated networks (Biswal et al., 1995; Fox and 

Raichle, 2007). The strength and spatial structure of these intrinsic correlations predict 

task-based brain activation (Cole et al., 2016; Tavor et al., 2016), behavior (De Luca 

et al., 2005; Seeley et al., 2007), and are useful to study neural dysfunction in clinical 

populations (Greicius et al., 2004; De Luca et al., 2005; Rombouts et al., 2005; Di 

Perri et al., 2016). The topology of this ‘functional connectivity’ is constrained by the 

(largely) fixed structural connectivity between brain regions (Deco et al., 2011; Deco 

et al., 2013), which determines the anatomical backbone along which functional 

connectivity patterns can change dynamically (Allen et al., 2014; Zalesky et al., 2014; 

Barttfeld et al., 2015). It has been proposed that such changes in functional 

connectivity patterns may be induced by brainstem neuromodulatory systems 

(Leopold et al., 2003; Drew et al., 2008; Schölvinck et al., 2010). An important example 

is the locus coeruleus, which sends diffuse, ascending projections to the forebrain, 

where noradrenergic terminals release the catecholamines norepinephrine (NE) and 

dopamine (DA) (Devoto and Flore, 2006). 

Several lines of evidence suggest that catecholamines might shape intrinsic 

correlations in activity between brain regions, possibly in diverse ways, changing 

either the strength or the topology of these correlation patterns, or both. First, at the 

single-cell level, catecholamines enhance neuronal responses to excitatory synaptic 

input (Rogawksi and Aghajanian, 1980; Seamans et al., 2001b; Wang and O'Donnell, 

2001) and can amplify GABAergic inhibition (Moises et al., 1979; Seamans et al., 

2001a). Such enhanced synaptic efficacy results in system-level signal amplification 

(Berridge and Waterhouse, 2003). Second, direct pharmacological manipulations of 

synaptic catecholamine levels have been shown to alter the global strength of inter-

regional cofluctuations (Guedj et al., 2016; van den Brink et al., 2016; Warren et al., 

2016). Third, evidence from small-scale circuits in crustaceans suggests that 

(catecholaminergic) neuromodulation can dynamically reconfigure functional 

networks, despite a constant structural connectome (Marder, 2012; Bargmann and 

Marder, 2013; Marder et al., 2014). Analogous effects have been suggested to 

underlie fast “resets” of brain network dynamics in the mammalian brain (Bouret and 

Sara, 2005), but direct evidence for catecholaminergic reconfiguration of cortical 

networks in humans has been lacking so far. 

Here, we investigated catecholaminergic modulations of large-scale patterns of 

intrinsic fMRI signal correlations in the human brain at ‘rest’. To this end, we re-

analyzed data from a double-blind placebo-controlled crossover study (van den Brink 

et al., 2016) of central catecholamine effects using atomoxetine, a selective NE 

transporter blocker. Our previous study quantified atomoxetine-induced modulations 

of the global strength of intrinsic correlations (van den Brink et al., 2016). Here, by 

contrast, we examined finer-grained patterns of intrinsic correlations, in order to test 
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for possible atomoxetine-induced quantitative changes in existing correlation patterns 

versus reconfiguration of correlation patterns.  

We used two complementary analysis approaches. The first approach, known as 

‘dual regression’, has been widely used to study the effects of pharmacological 

manipulations on fMRI signal correlations during the resting state (Beckmann, 2009; 

Filippini et al., 2009). The dual regression approach first delineates patterns of 

intrinsically correlated brain regions, so-called functional networks, and then 

compares voxel-level cofluctuation strength with those networks between conditions 

or groups. This method has proven useful for elucidating pharmacological effects on 

fMRI functional connectivity (Chamberlain et al., 2007; Klumpers et al., 2012; Cole et 

al., 2013; Klaassens et al., 2015; Guedj et al., 2016; Schrantee et al., 2016; Klaassens 

et al., 2017). The second approach was linear decomposition of intrinsic signal 

correlation matrices into so-called ‘spatial modes’, again constituting patterns (or 

‘networks’) of cofluctuations in brain activity (Mitra and Pesaran, 1999; Friston and 

Büchel, 2004; Donner et al., 2013). We used a generalization of the spatial mode 

decomposition that, different from dual regression, directly delineated networks 

showing the strongest drug-related changes in correlations, without prior selection of 

certain candidate networks (Friston & Büchel, 2004; Donner et al, 2013).  

Both approaches provided converging evidence for the notion that 

catecholamines reduce the strength of fine-grained cofluctuation between diverse 

brain regions (including sensory- and motor-related networks). In addition, spatial 

mode decomposition revealed an atomoxetine-related shift from left to right-lateralized 

frontoparietal dominance in cofluctuation strength. Importantly, the predominant 

changes of correlation patterns we detected, all reflected quantitative changes in 

existing correlations, rather than a qualitative reconfiguration of network topology. 

 

 

4.2 Materials and Methods 

 

Design and MRI preprocessing. We reanalyzed data from van den Brink et al. 

(2016). This dataset comprised eyes open ‘resting-state’ (blank fixation) fMRI scans 

of 28 participants who received either placebo or atomoxetine (40 mg) on two separate 

sessions, scheduled one week apart. Atomoxetine is a selective NE transporter 

blocker that increases synaptic catecholamine levels (Bymaster et al., 2002; Devoto 

et al., 2004; Swanson et al., 2006; Koda et al., 2010). The study had a double-blind 

placebo-controlled crossover design, and was approved by the Leiden University 

Medical Ethics Committee. All participants gave written informed consent before the 

experiment, in accordance with the declaration of Helsinki.  

Salivary markers of central catecholamine levels confirmed drug uptake (Warren 

et al., 2017). A full description of scan parameters and preprocessing details can be 

found in van den Brink et al. (2016). In brief, we applied the following preprocessing 

steps to the fMRI data (TR = 2.2 s; voxel size = 2.75 mm isotropic): realignment and 
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motion correction; B0 unwarping; high-pass filtering at 100 s; prewhitening; smoothing 

at 5 mm FWHM; coregistration of the functional scans with an anatomical T1 scan to 

2 mm isotropic MNI space; artifact removal using FMRIB’s ICA-based X-noiseifier 

(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014); and retrospective image 

correction to account for differences in heart and breath rate between the atomoxetine 

and placebo conditions (Glover et al., 2000). In the current article, we focus on the 

runs following atomoxetine / placebo ingestion.  

Dual regression analysis. We estimated a set of independent components (ICs) 

that were representative of the combined set of resting-state runs (i.e., runs from all 

participants and both the atomoxetine and placebo conditions) by applying a spatial 

independent component analysis (ICA) to all temporally concatenated data using 

FSL’s MELODIC. The number of ICs to be detected (51) was automatically estimated 

from the data. Each IC represented a statistical parametric map and corresponding 

time series of consistent spatio-temporal dynamics. Next, we spatially correlated each 

IC spatial map with the 10 intrinsic connectivity networks reported by Smith et al. 

(2009) and selected the ICs that showed the highest correlation coefficient. The 

selected components showed an average correlation coefficient of 0.48 (range: 0.28 

- 0.70), which indicated that the ICs as expressed in our data corresponded relatively 

well to previously reported intrinsic connectivity networks (Smith et al., 2009). 

The 10 selected ICs represented spatial maps of ICs that were reliably expressed 

across the combined set of resting-state runs. They were thus representative of group-

level spatiotemporal dynamics, but did not necessarily represent spatiotemporal 

dynamics within individual runs. To produce a time series and a spatial map for the 

individual resting-state runs and for each IC, we used dual regression (Beckmann, 

2009; Filippini et al., 2009). Figure 1 shows a schematic overview of this analysis  

 

 

 
Figure 1. Schematic overview of the dual regression method. First, a group-level independent 

component analysis is run to produce spatial maps. A selection of these maps is subsequently 

regressed onto the individual runs to produce participant- and component-specific time series. 

Finally, these time series are used in temporal regression to produce participant- and 

component-specific spatial maps, which can then be compared between conditions. P: 

placebo; A: atomoxetine; EPI: echo planar imaging; IC: independent component 
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approach. In a first step, we used the group-level IC spatial maps in multiple spatial 

regression onto the individual runs. This produced a time series for each IC as 

expressed within the individual runs. Then, in a second step, we used the participant-

level IC time series as temporal regressors to produce spatial maps of regression 

coefficients for each IC and each run. Thus, this two-stage regression approach 

resulted in a spatial map for each participant, condition, and IC, that indicated the 

degree of covariation between individual voxels and the IC time series.  

Finally, we collected the IC spatial maps of the individual runs into single 4D files 

(one per condition, per IC). This allowed us to compare these spatial maps to zero 

across participants to examine which brain regions cofluctuated with the IC time 

series, and compare them between conditions to assess which voxels displayed 

changes in cofluctuation strength with the IC, using non-parametric permutation 

testing (10,000 iterations) as implemented in FSL’s Randomise. The α level was set 

at 0.05, family-wise error (FWE) corrected for multiple comparisons using threshold-

free cluster enhancement.      

Brain parcellation and inter-regional covariance analysis. We extracted the fMRI 

time series of individual brain regions using the Automated Anatomical Labeling (AAL; 

Tzourio-Mazoyer et al., 2002) atlas, which contained 90 regions (cf. van den Brink et 

al., 2016). In addition, we used an alternate atlas that was based on a functional 

parcellation (Craddock et al., 2012). This atlas contained 140 individual brain regions. 

After averaging across voxels within each brain region (for each atlas separately), we 

Z-scored the multivariate time series (M, with dimensionality imaging volumes by brain 

regions) for each run i and then computed the group-averaged covariance matrices 

(C) for the placebo and atomoxetine conditions (subscript P and A, respectively) via 

the following:  

(1) 

T TN N
1 1P P A A

P A

P 1 A 1

C N    ,  C  N  
1 1

i i i i

i i

M M M M

nTR nTR

− −

= =

⋅ ⋅
= =

− −∑ ∑   

where nTR is the number of volumes (211), N is the number of participants (24), and 
T denotes a matrix transposition. The matrices CP and CA represented the covariance 

between the BOLD time series of all brain regions, averaged across participants. Note 

that by variance normalizing (Z-scoring) the time series, the units of C (covariance) 

are equivalent to the Pearson correlation coefficient. 

Singular value decomposition of covariance matrices. The dual regression 

analysis described at the beginning of this section relies on a linear decomposition of 

the data (ICA). An alternative linear decomposition, eigenvalue decomposition (SVD) 

as used in principal component analysis, can be extended to comparisons of 

correlation patterns between two conditions. Singular value decomposition (SVD) is a 

multivariate linear decomposition that identifies spatial modes of signal cofluctuations; 

each of these spatial modes can be conceptualized as a ‘network’ of correlated (or 

anti-correlated) brain regions (Mitra and Pesaran, 1999; Friston and Büchel, 2004; 

Donner et al., 2013). The decomposition can be generalized to extract spatial modes 
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that are more strongly expressed in one experimental condition than in the other, in 

other words: maximize the ratios of explained variance between conditions (Friston 

and Büchel, 2004; Donner and Nieuwenhuis, 2013).  

Our first objective was to determine if SVD (specifically: principal component 

analysis) identified similar correlation patterns as ICA. We thus submitted the 

covariance matrices (C) of the placebo and atomoxetine conditions to SVD:  

(2) 
TC V V= ⋅ λ ⋅   

where T denotes transposition, λ is an n-by-n matrix with eigenvalues on its diagonal, 

and V is an n-by-n matrix of corresponding eigenvectors in which rows are brain 

regions (n = 90) and columns define individual modes (p).  

 

 

 
Figure 2. Schematic overview of the spatial mode decomposition method. The covariance 

matrices CA and CP are submitted to generalized eigenvalue decomposition to produce a 

matrix of eigenvalues (λ) and eigenvectors (V). The decomposition equation as given here 

delineated modes that were more strongly expressed in the placebo condition than in the 

atomoxetine condition. To identify modes that were more strongly expressed in the 

atomoxetine condition, the covariance matrices CA and CP were swapped. After 

decomposition, the participant-level time series (t) corresponding to each individual spatial 

mode (p) can be computed for each run i by projecting the mode onto the data (M). The 

number of brain regions in the parcellation scheme is denoted by n. A spatial map of brain 

regions that consistently covaried with the mode time series is computed by regressing the 

spatial mode time series for the atomoxetine (A) and placebo (P) conditions onto the voxel-

level fMRI time series, and comparing the regression coefficients to zero across participants.  
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The overall sign of the elements in p is arbitrary but the sign of one element with 

respect to another indicates their relative co-variation, with equal signs indicating 

positive correlation and unequal signs indicating negative correlation.  

For each run i, separately for the atomoxetine and placebo condition, we 

calculated participant-level time series t corresponding to each mode by projecting the 

mode onto the participant-level multivariate time series M via:  

(3) i it M p= ⋅   

The so-computed t described the time-varying strength of the expression of the spatial 

mode (functional network) in each individual participant’s data. Next, we obtained 

voxel-level spatial maps for each mode and each run by regressing the vectors ti onto 

the corresponding voxel-level BOLD data using multiple linear regresson. We then 

selected modes based on maximal spatial correlation with the 10 intrinsic connectivity 

networks reported by Smith et al. (2009), similar to the selection of ICA components 

described above. For the placebo condition, the average correlation coefficient was 

0.41 (SD 0.12, min 0.16, max 0.56), and for the atomoxetine condition the average 

correlation coefficient was 0.40 (SD 0.12, min 0.15, max 0.53), indicating that SVD 

was able to identify networks of intrinsically cofluctuating activity reasonably well 

(Figure S1 and S2). Similar results were obtained with the Craddock atlas. Next, we 

describe the generalization of SVD to extract modes that are more strongly expressed 

in one condition relative to the other. 

Generalized eigenvalue decomposition of covariance matrices. We used 

generalized eigenvalue decomposition to decompose the covariance matrices into 

spatial modes that maximized the ratio of explained variance in the placebo condition 

relative to the atomoxetine condition (Mitra and Pesaran, 1999; Friston and Büchel, 

2004; Donner et al., 2013). Figure 2 shows a schematic overview of this analysis 

approach. We refer to previous work for experimental validation of generalized 

eigenvalue decomposition for use on fMRI data (Donner et al, 2013). For simplicity, 

we here refer to this method as ‘spatial mode decomposition’. Using the ‘eig’ function 

in MATLAB 2012a, we decomposed the participant-averaged atomoxetine covariance 

matrix CA and placebo covariance matrix CP by solving the equation: 

(4) P AC V C V⋅ = ⋅ ⋅λ   

where λ is an n-by-n matrix with generalized eigenvalues on its diagonal, and V is an 

n-by-n matrix of corresponding eigenvectors in which rows are brain regions (n = 90 

for the AAL atlas, and n = 140 for the Craddock atlas) and columns define individual 

modes (p). Here, p were spatial patterns that maximized the variance accounted for 

in one condition relative to the other (as measured by the corresponding λp). The 

above equation identified spatial modes that were more strongly expressed in the 

placebo condition than in the atomoxetine condition. To identify spatial modes that 

were more strongly expressed in the atomoxetine condition, the covariance matrices 

CA and CP were swapped. We arranged V and λ such that their first entries 
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corresponded to the modes that explained most variance. In other words, we sorted λ 

in descending order and then sorted V by λ. 

We next calculated participant-level time series t corresponding to p for each 

individual run i via: 

 (5) i it M p= ⋅   

Here, ti was a vector with length 211 (the number of volumes), and Mi was a matrix of 

Z-scored fMRI time series from the run, with size 211 by n (volumes by brain regions). 

To examine the spatial distribution of each mode, we used the corresponding time 

series in multiple temporal regression. Specifically, for each participant and condition 

separately, we regressed the mode time series onto the single-voxel time series from 

the corresponding run. This yielded one spatial map of regression coefficients per 

participant, condition, and mode. For each mode and for each condition, we could 

then compare the regression coefficients to zero using non-parametric permutation 

testing (10,000 iterations). The α level was set at 0.05, FWE-corrected for multiple 

comparisons using threshold-free cluster enhancement. The resulting statistical 

parametric maps indicated which voxels (if any) covaried with the mode time series 

consistently across participants, and were thus indicative of the spatial distribution of 

the modes.  

Quantifying the across-subject consistency and reliability of spatial modes. The 

spatial modes were computed such they explained more variance in the group-

average data, in the atomoxetine condition than in the placebo condition (or the 

converse). We aimed to quantify, in a cross-validated fashion, how consistently the 

fluctuation strength of these group-average spatial modes distinguished between 

conditions within individual subjects. The fluctuation amplitude si corresponding to 

each mode’s time series in each individual run from each participant quantified the 

amount of variance that the mode explained in the data, and was calculated via: 

(6) 
T

i i is t t= ⋅   

Note that this is equivalent to: 

(7) 
T T T Ci i i ip M M p p p s⋅ ⋅ ⋅ = ⋅ ⋅ =   

We then divided si by the sum of eigenvalues (λ) to convert it to units of percentage 

variance explained. In contrast to the eigenvalues, which capture the group-level 

mode’s ratio of explained variance between conditions,  si captured the amount of 

variance that the mode captured in the condition-specific runs at the individual 

participant-level. For cross-validation, we defined modes (using eq. 4) based on the 

group-average covariance matrices CA and CP that were generated from the first half 

of volumes in Mi  (using eq. 1). Then, each mode was projected onto the (independent) 

remaining half of volumes in Mi as described above (eq. 5) and their corresponding 

fluctuation amplitudes were calculated (via eq. 6). We then used the second half of 

volumes to define the modes and projected them onto the first half, and averaged the 

two values of si. The percentage variance explained by each mode could then be 
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compared between conditions with non-parametric permutation testing (10,000 

iterations). 

We used receiver operating characteristic (ROC) analysis to quantify the reliability 

of the spatial modes in discriminating between experimental conditions, at the level of 

short segments (25% of volumes, ~114 s) of individual fMRI runs. ROC analysis 

performs more accurately with densely populated distributions of measurements. 

Thus, we defined spatial modes based on the group average covariance matrices 

calculated from a smaller subset of volumes (25%), as described above (using eq. 1 

and eq. 4). We subdivided the remainder of volumes into 20 equal-sized bins, and 

computed si for each of them. We cross-validated the fluctuation amplitude calculation 

by computing modes and projecting them onto the remaining data four times such that 

eventually all data were used to define the modes. This yielded four distributions of si 

per condition and participant that were submitted to ROC analysis, resulting in four 

ROC-curves per participant.  We calculated the area under the ROC-curve (AUC) and 

averaged the resulting AUC values across the four ROC-curves of each participant. 

This AUC value could then be interpreted as the probability with which we could 

predict the condition from the mode’s fluctuation strength in a given data segment. 

The AUC values were tested for significance by comparing them to chance level (0.5) 

using non-parametric permutation testing (10,000 iterations). In order to exclude the 

possibility that the significance of the ROC results depended on the number (25%) of 

volumes on which the mode was defined, we repeated the ROC analyses for modes 

defined on ~14%, 20%, and ~33% of the data, and found identical results in terms of 

direction and significance.  

Correlation between mode spatial maps and independent components. To 

determine if the mode spatial maps depended on the parcellation scheme, we used 

spatial correlation. Specifically, for each individual participant and condition, we 

correlated the (unthresholded) spatial maps of regression coefficients of the modes 

that were generated with the AAL atlas, and those that were generated with the 

Craddock atlas. We then compared the distribution of Fisher-transformed correlation 

coefficients to zero using a two-tailed t-test. Similarly, we characterized the 

correspondence in mode spatial maps between the individual conditions by correlating 

the unthresholded spatial maps at the individual participant level, and comparing the 

resulting distribution of Fisher-transformed correlation coefficients to zero using a two-

tailed t-test. 

To characterize correspondence between the mode spatial maps and well-

characterized intrinsic connectivity networks, we first created a mode spatial map by 

temporally concatenating the mode time-series of the atomoxetine and placebo 

conditions, and regressing this concatenated time series onto the temporally 

concatenated BOLD time-series data for each participant. The purpose of this 

concatenation procedure was to create spatial maps that were independent of drug 

condition, similar to ICA components that were identified in temporally concatenated 

EPI data. We could then correlate these condition-invariant unthresholded participant-
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level mode spatial maps with the IC spatial maps that were selected for dual 

regression analysis, and compare the distribution of Fisher-transformed regression 

coefficients to zero using a two-tailed t-test. In all cases where we report average 

correlation coefficients, we applied Fisher’s r-to-Z transform prior to averaging, and 

subsequently applied the Z-to-r transform.  

 

 

4.3 Results 

 

Our first aim was to characterize atomoxetine-induced changes in fine-grained 

(voxel-level) cofluctuation strength with a set of 10 well-characterized intrinsic 

connectivity networks (Smith et al., 2009) using conventional methods for the analysis 

of pharmacological resting-state fMRI: dual regression (Figure 1) (Beckmann, 2009; 

Filippini et al., 2009). Second, we report the results of an alternative analysis approach 

that is targeted at finding spatial patterns (“modes”) of correlated activity that maximize 

the ratio of explained variance between conditions in a fully data-driven manner 

(Figure 2). Thus, instead of testing if any of an a priori selection of networks showed  

 

 

 

 
Figure 3. Spatial maps of the independent components that were selected for dual regression 

analysis. Components were selected based on spatial correlation with the 10 canonical resting-

state networks presented by Smith et al. (2009). 
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drug-induced changes in the cofluctuation strength (as with dual regression), spatial 

mode decomposition directly yielded the networks that exhibited drug-induced 

changes incofluctuations, in terms of cofluctuation strength or spatial pattern, or both. 

In contrast to singular value decomposition of condition-level data (see Materials and 

Methods) or linear decomposition of the data using ICA, spatial mode decomposition 

directly reveals those patterns that cofluctuate more/less in one condition than in the 

other. Moreover, this analysis allows us to characterize to what extent atomoxetine- 

 

 

 
Figure 4. Results of the dual regression analysis. a) Brain areas that significantly (p < 0.05, 

FWE-corrected) cofluctuated with the sensorimotor network. b) Atomoxetine-induced changes 

in cofluctuation strength with the sensorimotor network. c) Brain areas that significantly 

cofluctuated with the visual 1 network. d) Atomoxetine-induced changes in cofluctuation 

strength with the visual 1 network. Blue colors indicate reduced cofluctuation strength 

following atomoxetine compared to placebo. e) Cofluctuation strength (range-normalized 

across participants to between -1 and 1 for illustrative purposes only) for each condition and 

each significant (p < 0.05, FWE-corrected) cluster of atomoxetine-induced changes in 

cofluctuation strenth. Error bars show the SEM. Abbreviations: PC: precuneous cortex; Th: 

thalamus; SMG: supramarginal gyrus; PCG: precentral gyrus; LOC: lateral occipital cortex; 

SPL: superior parietal lobule. 
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related modulations of covariance reflect reconfigurations in the topological structure 

of cofluctuations by directly comparing the mode’s spatial structure between the 

atomoxetine and placebo conditions.  

Results dual regression analysis. We first computed group-level ICA spatial maps 

and then submitted a selection to dual regression analysis (Figure 1). The spatial 

maps of the included components are shown in Figure 3.  

The sensorimotor network and first visual network both showed significant (p < 

0.05, FWE-corrected) atomoxetine-induced changes in cofluctuation strength (Figure 

4a-d). In all significant clusters, atomoxetine reduced the strength of cofluctuation, 

consistent with our earlier findings obtained at coarser levels of spatial granularity (van 

den Brink et al., 2016). All clusters that showed a significant atomoxetine-related 

reduction in cofluctuation strength also covaried positively with the component time 

series in the placebo condition (Figure S3), and were thus functionally linked to the 

networks. In most cases, atomoxetine moved cofluctuations from positive towards 

zero, and in some cases cofluctuations reversed polarity, at least numerically (Figure 

4e; Figure S3). Cofluctuations with the component time series in the clusters that 

numerically reversed polarity, however, were not significantly negative in the 

atomoxetine condition (Figure S4). Thus, the primary effect of atomoxetine on 

cofluctuation strength was to move positive cofluctuations towards zero. The MNI 

coordinates and peak T-statistics of all significant clusters are summarized in Table 1. 

Together, these results suggest that atomoxetine attenuated voxel-level cofluctuation 

strength between brain regions that cofluctuated positively with sensory- and motor-

related networks, and the fluctuations of those networks. 

 

Table 1. Clusters that showed an atomoxetine-induced change in cofluctuation strength 

with resting-state networks. 

Cluster locations were assessed using the Harvard-Oxford structural atlas. Peak MNI 

coordinates are indicated in mm. Abbreviations: PC: precuneous cortex; Th: thalamus; SMG: 

supramarginal gyrus; PCG: precentral gyrus; LOC: lateral occipital cortex; SPL: superior 

parietal lobule. 

Component Location           MNI     

Coordinates (x y z) 

Peak T-statistic 

Visual 1 Left PC -4 -56 12 -4.91 

 Left Th 0 -22 12 -4.21 

Sensorimotor Vermis 0 -72 -14 -6.04 

 Left insula -40 -12 8 -4.65 

 Left SMG -66 -34 34 -5.71 

 Right SMG 58 -44 28 -4.57 

 Left PCG -50 -10 56 -4.85 

 Left LOC -34 -82 26 -4.36 

 Right LOC 18 -66 72 -4.73 

 Right SPL 38 -54 68 -3.30 

 Left SPL -34 -42 70 -3.43 
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Spatial modes that are less strongly expressed in the atomoxetine condition 

relative to placebo. The above reported atomoxetine-related reductions in 

cofluctuation strength with sensory- and motor-related networks resulted from dual 

regression analysis. In the following, we report the results of an alternative analysis 

approach that directly reveals those patterns that cofluctuate more/less in one 

condition than in the other, and that allows us to characterize to what extent 

atomoxetine-related modulations of covariance reflect reconfigurations in the 

topological structure of cofluctuations. Given that dual regression analysis identified 

only atomoxetine-reductions in the strength of cofluctuations, we first focus on spatial 

modes that reflected an atomoxetine-related reduction in cofluctuations. 

The eigenvalues of the modes that were less strongly expressed in the 

atomoxetine condition are shown in Figure 5a. We focused on mode number 1 

because it had the largest eigenvalue and thus accounted for most variance in the 

data, and because mode orthogonality can obscure the interpretation of modes with 

higher ranks (c.f. Donner et al., 2013).  

This first spatial mode robustly differed in its fluctuation strength (i.e., variance 

explained) between the atomoxetine and placebo conditions. We first tested, using 

cross-validation, if the first spatial mode consistently explained less variance in the 

atomoxetine condition than in the placebo condition across subjects: we computed the 

mode based on covariance in each half of the volumes in each participant’s runs, 

projected the mode onto the remaining half of the volumes, and calculated the mode’s 

proportion of explained variance in each condition (see Materials and Methods). 

Indeed, the first spatial mode accounted for significantly less variance in the 

atomoxetine condition than in the placebo condition, for both parcellation schemes 

(AAL: p = 0.003; Craddock: p < 0.001; Figure 5b). Further, ROC analysis showed that 

even at the level of short individual data segments (~114 s), the first spatial mode’s 

fluctuation strength reliably discriminated between drug and placebo conditions, with 

AUC-values larger than 0.6 for both parcellation schemes (Figure 5c).  This indicates 

that the spatial mode identified by our analysis reflected a robust effect of the 

pharmacological intervention on brain-wide intrinsic correlations. 

We next compared the spatial distributions of the expressions of the first spatial 

mode, between different parcellation schemes and with the spatial maps obtained 

from the dual regression analysis. The unthresholded spatial map of mode 1 

(reflecting voxel-level covariation with the mode’s time series) is shown in Figure 5d, 

separately per condition and for modes that were generated using the AAL atlas, and 

for modes that were generated using the Craddock atlas. Figure S5 shows 

thresholded (p < 0.05, FWE-corrected) mode spatial maps. Despite using parcellation 

schemes that differed both in the number of brain regions and in the way the brain 

regions were defined (anatomical parcellation and functional clustering, respectively), 

the mode spatial maps generated with the two atlases corresponded robustly across  
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Figure 5. Spatial modes that are less strongly expressed in the atomoxetine condition. a) 

Eigenvalues of all modes. b) A comparison between conditions of the percentage of variance 

explained by the first mode. c) ROC curves to distinguish conditions based on the fluctuation 

amplitude of the first mode. d) Spatial map of the first mode. Colored regions show covariation 

with the mode time series. Error bars show the SEM. **: p < 0.01; ***: p < 0.001. The r values 

indicate the average correlation coefficient across participants. 

 

 

participants (placebo: t(23) = 10.43, p < 0.001; atomoxetine: t(23) = 9.54, p < 0.001; 

Figure 5d).  

To determine if the mode corresponded to any of the intrinsic connectivity 

networks that were used for dual regression analysis, we correlated the mode spatial 

map with the ICA component spatial maps at the individual participant level. The 

spatial map of mode 1 that was generated with the AAL atlas correlated most strongly 

with the left-lateralized frontoparietal ICA component (mean r = -0.15, SD 0.05; t(23) 

= -16.33, p < 0.001). The spatial map of mode 1 that was generated with the Craddock 

atlas also correlated significantly across participants with the left-lateralized 
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frontoparietal component (mean r = -0.07, SD 0.04; t(23) = -8.68, p < 0.001). 

Moreover, for both atlases the spatial map of mode 1 correlated significantly with the 

sensorimotor component (AAL: mean r = 0.13, SD 0.04; t(23) = 17.41, p < 0.001; 

Craddock: mean r = 0.07, SD 0.03; t(23) = 14.36, p < 0.001), suggesting that 

atomoxetine reduced the strength of cofluctuations in a network that resembled the 

ICA-identified sensorimotor network (Figure S6). If this is indeed the case, then the 

regions that showed an atomoxetine-related reduction in cofluctuations in the dual 

regression analysis (Figure 4) should show a similar sign in the mode spatial map (i.e. 

be part of the same cofluctuating network). We therefore masked the thresholded 

spatial map of mode 1 in the placebo condition (Figure S5) with the significant clusters 

in Figure 4. All clusters showed the same sign (Figure S7), indicating that the spatial 

mode reflected a reduction in cofluctuation strength across brain regions that showed 

similar reductions in the dual regression analyses.  

Spatial correlation also enabled us to examine if the mode reflected a 

reconfiguration of the spatial structure of cofluctuations or if it reflected a quantitative 

change in strength that left the structure of cofluctuations intact. To this end, we 

operationally defined reconfiguration as a change in mode topology, implying a spatial 

mode that was only expressed in one condition, but not in the other. By contrast, 

quantitative changes would entail the spatial mode to be expressed in both conditions, 

only to a different degree. Note that both scenarios might lead to a robust spatial mode 

maximizing the ratio between variance accounted for in both conditions.  

We correlated the mode spatial map of the placebo condition with that in the 

atomoxetine condition (Figure 5d). Inconsistent with the notion of an atomoxetine-

related reconfiguration of cofluctuation structure, the mode spatial map correlated 

between conditions for both atlases (AAL: t(23) = 15.57, p < 0.001; Craddock: t(23) = 

14.89, p < 0.001). In other words, the spatial distribution of the expression of the first 

spatial mode that most discriminated between conditions, was in fact similar between 

conditions. This indicates that the predominant effect of atomoxetine was a 

quantitative reduction of the strength of cofluctuations rather than a topological 

reconfiguration of intrinsic functional connectivity networks (see Discussion). 

Spatial modes that are more strongly expressed in the atomoxetine condition 

relative to placebo. Thus far we have shown, using dual regression analysis, that 

atomoxetine reduced cofluctuation strength between distributed brain regions 

(including sensory- and motor-related networks). Spatial mode decomposition 

revealed similar reductions in cofluctuation strength, and further indicated that these 

changes in cofluctuation strength left the spatial structure of cofluctuations intact. We 

now turn to spatial modes that reflected an atomoxetine-related increase in 

cofluctuations (see Materials and Methods), which may have not been identified by 

dual regression analysis.  

The eigenvalues of the modes that were more strongly expressed in the 

atomoxetine condition are shown in Figure 6a. Again, we selected mode 1 because it 

accounted for most variance in the data. Similar to the above reported analysis of  
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Figure 6. Spatial modes that are more strongly expressed in the atomoxetine condition. a) 

Eigenvalues of all modes. b) A comparison between conditions of the percentage of variance 

explained by the first mode. c) ROC curves to distinguish conditions based on the fluctuation 

amplitude of the first mode. d) Spatial map of the first mode. Colored regions show covariation 

with the mode time series. Error bars show the SEM. **: p < 0.01; ***: p < 0.001. The r values 

indicate the average correlation coefficient across participants. 

 

 

mode variance, we computed the mode based on covariance in each half of the 

volumes, and projected it onto the remaining half. For both atlases, the mode  

explained significantly more variance in the atomoxetine condition than in the placebo 

condition (AAL: p = 0.002; Craddock: p < 0.001; Figure 6b), and consistently 

throughout the resting-state runs (ROC values >0.6; p < 0.001; Figure 6c). Thus, the 

mode reflected a pattern of brain regions in which activity cofluctuated more strongly 

following atomoxetine than following placebo.  

Figure 6d shows the (unthresholded) spatial map of mode 1, separately per 

condition, for modes that were generated using the AAL atlas, and for modes that 
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were generated using the Craddock atlas. Figure S8 shows thresholded (p < 0.05, 

FWE-corrected) mode spatial maps. Again, the spatial map of the modes generated 

with the two atlases corresponded robustly across participants (placebo: t(23) = 3.96,  

p < 0.001; atomoxetine: t(23) = 3.98,  p < 0.001).  

The spatial map of mode 1 correlated most strongly with the right-lateralized 

frontoparietal component (AAL atlas: mean r = -0.05, SD 0.03; t(23) = -7.98, p < 0.001; 

Craddock atlas: mean r = -0.09, SD 0.03; t(23) = -14.44, p < 0.001). Together, these 

results suggest that atomoxetine increased the strength of cofluctuations in a 

distributed network that resembled the right-lateralized frontoparietal network. 

Next, we again examined if the mode reflected a change in cofluctuation network 

structure, or if it reflected a modulation of cofluctuation strength alone. We thus 

correlated the mode spatial map in the atomoxetine condition and in the placebo 

condition, and found robust correlations (AAL atlas: t(23) = 6.93, p < 0.001; Craddock 

atlas: t(23) = 14.89, p < 0.001). Thus, the spatial structure of the first mode was similar 

between conditions, and therefore the most prominent atomoxetine-related increases 

in cofluctuations can be interpreted as a quantitative increase in the strength of those 

cofluctuations rather than a more profound reconfiguration of network topology. 

In sum, dual regression analysis and spatial mode decomposition converge on 

the conclusion that atomoxetine weakens cofluctuation strength between distributed 

brain regions, including sensory- and motor-related networks. In addition, spatial 

mode decomposition revealed a shift from left- to right-lateralized frontoparietal 

network dominance, as confirmed by a significant interaction in the strength of 

correlation between mode polarity (atomoxetine-induced increase versus decrease) 

and component (frontoparietal left versus right) (repeated-measures ANOVA; AAL: 

F(1,23) = 163.14, p < 0.001; Craddock: F(1,23) = 56.15, p < 0.001). Lastly, spatial 

mode analysis revealed that the predominant effect of atomoxetine was the 

quantitative scaling of preexisting cofluctuation patterns whereby the overall spatial 

structure of these cofluctuating networks was left intact.  

 

 

4.4 Discussion 

  

In the present study, we examined the effect of the selective NE transporter 

blocker atomoxetine on the fine-grained spatial structure of resting-state fMRI 

cofluctuations using dual regression and spatial mode decomposition. First, dual 

regression analysis revealed that atomoxetine reduced cofluctuation strength 

between a distributed set of brain regions that included sensory- and motor-related 

networks. Second, spatial mode decomposition provided converging evidence for 

such a reduction in sensory- and motor related coupling. Third, spatial mode 

decomposition revealed an atomoxetine-related shift in the dominance from left-

lateralized to right-lateralized frontoparietal network activity. Importantly, spatial mode 

decomposition indicated that the most prominent atomoxetine-related changes in 
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cofluctuations did not alter the topology of the networks in which these changes 

occurred, but instead reflected quantitative modulations within these networks that left 

the overall cofluctuation structure intact.   

The study of small neural circuits has revealed dynamical reconfigurations of 

functional networks through neuromodulators, including catecholamines (Marder, 

2012; Bargmann and Marder, 2013; Marder et al., 2014). Yet, our results show that 

the total landscape of cofluctuation changes is dominated to a greater extent by 

quantitative catecholamine-related changes (i.e. mode 1 accounted for most variance 

relative to other modes, and it reflected quantitative changes). It is worth noting that 

more subtle catecholamine-related reconfigurations may have occurred, but were not 

detected by our current analyses (e.g. may have been captured by modes that 

accounted for less variance, which we did not examine). Additionally, our findings 

leave open the possibility that the rapid and transient (i.e. phasic) release of 

catecholamines has a more profound influence on the topological organization of 

intrinsic cofluctuations, given that such phasic catecholamine release can have 

qualitatively different effects on neural conductance properties (Rodgers et al., 2011b; 

Rodgers et al., 2011a) and behavioral performance (de Gee et al., 2017) than changes 

in tonic levels. Moreover, the dynamical structure of time-varying changes in network 

topology may be more susceptible to influence by neuromodulatory tone than the 

stationary network topology, given that such time-varying topological changes have 

been reported to covary with behavioral performance and pupillary indices of 

neuromodulation (Shine et al., 2016).  

Our findings are broadly consistent with an earlier study (Guedj et al., 2016) that 

examined the effect of atomoxetine on resting-state cofluctuations in rhesus 

macaques using dual regression, and found widespread atomoxetine-related 

cofluctuation reductions within and between networks, including the somatomotor, 

somatosensory, (peripheral) visual, and a bilateral frontoparietal network. 

Interestingly, the authors report an atomoxetine-related reduction in cofluctuations 

between the somatomotor network and bilateral clusters that strongly resemble the 

bilateral clusters in the supramarginal gyrus reported here (Figure 4, Table 1), 

suggesting that the supramarginal gyrus is a particularly prominent target region of 

catecholaminergic neuromodulation. Moreover, the general correspondence between 

the findings reported by Guedj et al. (2016) and those reported here suggests that the 

modulation of cofluctuating networks, mediated by catecholamines, is a mechanism 

that occurs consistently across species. However, in contrast to the interpretation by 

Guedj et al. (2016) our findings suggest that these altered cofluctuation dynamics may 

reflect quantitative changes rather than broad network reconfigurations. 

The finding that atomoxetine reduced cofluctuation strength with the sensorimotor 

network is noteworthy in light of the therapeutic profile of atomoxetine. Atomoxetine 

has been shown to improve inhibitory motor control in rats (Robinson et al., 2008), 

patients with ADHD (Chamberlain et al., 2007), and healthy humans (Chamberlain et 

al., 2006b). Our findings suggest that these response inhibition-enhancing effects of 
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atomoxetine may be the result of catecholaminergic action within the sensorimotor 

system. Nevertheless, the potential link between the here reported reduction in 

cofluctuation strength with the sensorimotor network and the response inhibition-

enhancing effects of atomoxetine awaits further investigation. 

Furthermore, we found that atomoxetine caused a shift in the dominance from left- 

to right-lateralized frontoparietal network dominance. Frontoparietal regions in the 

right hemisphere have been implicated in attentional reorientation and the regulation 

of goal-directed stimulus selection (Corbetta and Shulman, 2002; Corbetta et al., 

2008; Thiebaut de Schotten et al., 2011). Interestingly, right-lateralized frontoparietal 

regions have also been suggested to be particularly susceptible to noradrenergic 

influences (Corbetta and Shulman, 2002; Corbetta et al., 2008), and atomoxetine has 

been reported to improve the precision of neural representations of stimuli (Warren et 

al., 2016). It is tempting to speculate that the here observed atomoxetine-related shift 

from left- to right-lateralized frontoparietal network dominance may indicate a shift 

towards goal-oriented stimulus processing. While our participants were not engaged 

in a task (other than active fixation), this speculation provides an interesting avenue 

for future research.  

Our findings show the utility of spatial mode decomposition for the analysis of 

pharmacological resting-state fMRI data. One of its primary advantages over dual 

regression analysis is that it does not require an a priori selection of functional 

networks, but instead automatically yields the networks (spatial modes) that show the 

strongest drug-related effects. Thus, it reduces the chances of overlooking prominent 

drug-related changes in inter-regional cofluctuations, as evidenced by the 

atomoxetine-related increases in covariance that were identified by spatial mode 

decomposition, but not by dual regression. Moreover, spatial mode decomposition is 

computationally inexpensive when used in combination with an anatomical atlas, as 

we have done here. We should note, however, that even though our results 

demonstrate some robustness of the method to the particular parcellation scheme, it 

is not a certainty that the resulting networks will generalize to other parcellation 

schemes, in particular those of radically different densities. In addition, we only 

examined the first modes because they explained the largest amount of variance in 

the data, but modes with higher rank numbers may contain information regarding 

relevant changes in connectivity as well. Examining these, however, would require 

additional statistical corrections that could increase the false negative rate. Moreover, 

the interpretability of modes with higher ranks may be hindered by mode orthogonality. 

Lastly, the decomposition can only be used to compare two separate conditions (or 

groups), which limits its applicability in complex (e.g., longitudinal) study designs. 

Nevertheless, spatial mode decomposition offers a thorough characterization of drug-

related changes in the structure of cofluctuating activity.  

In sum, we have shown that dual regression and spatial mode decomposition 

converge on the conclusion that catecholamines reduce cofluctuation strength within 

and between distributed systems, including sensory- and motor-related networks. In 
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addition, spatial mode decomposition revealed an atomoxetine-related shift from left 

to right-lateralized frontoparietal network dominance. Importantly, however, these 

quantitative changes left the overall spatial structure of cofluctuations intact, 

suggesting that the predominant effect of increased synaptic catecholamine levels 

was to quantitatively scale cofluctuations in preexisting networks. Lastly, our findings 

lend support to the notion that catecholamines modulate dynamic changes in the 

strength of intrinsic inter-regional coupling, possibly to coordinate flexible modulations 

of network interactions to facilitate goal-directed behavior. 

 

 

4.5 Supplementary Materials 

 

Ruling out confounding artifacts in the global signal. Recent findings have 

suggested that the global MRI signal may contain artifacts that are related to various 

non-neural sources, and these artifacts are not effectively removed by standard 

preprocessing techniques (Power et al., 2017). While the independent components 

that were used for dual regression analysis by definition do not contain such global 

artifacts (due to the spatial independence of components), these artifacts may have 

caused spurious differences between conditions in the structure of inter-regional 

covariance. We therefore applied global signal (the mean of all regional time series) 

regression to the regional BOLD time series prior to computing covariance matrices, 

and repeated our key spatial mode decomposition analyses. 

For the decomposition placebo < atomoxetine, the percentage variance explained 

of mode 1 differed between conditions and in the expected direction (AAL: t(23) = 

4.45, p < 0.001, area under ROC curve = 0.64, t(23) = 6.88, p < 0.001; Craddock: t(23) 

= 4.55, p < 0.001, area under ROC curve = 0.69, t(23) = 7.54, p < 0.001). Similarly, 

for the decomposition placebo > atomoxetine the percentage variance explained of 

mode 1 also differed between conditions and in the expected direction (AAL: t(23) = -

5.15, p < 0.001, area under ROC curve = 0.63, t(23) = 8.97, p < 0.001;  Craddock: 

t(23) = -6.23, p < 0.001, area under ROC curve = 0.63 t(23) = 7.06, p < 0.001). 

Moreover, the spatial distribution of mode 1 computed without global signal regression 

correlated significantly with the spatial distribution of mode 1 computed on global 

signal-removed time series, for both atlases and for the decomposition in both 

directions (all p values < 0.001). Thus, the findings as presented in the main text were 

unlikely to be driven by spurious differences between conditions relating to artifacts in 

the global signal.   
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4.6 Supplementary Figures 

 

 

 
 

Figure S1. Modes resulting from singular value decomposition of AAL atlas 

covariance in the placebo condition. The modes were selected based on maximal 

spatial correlation with the independent component topographies presented by 

Smith et al. (2009). The rank number indicates the relative proportion of explained 

variance of each mode, where lower rank numbers account for relatively more 

variance in the data than high rank numbers.  
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Figure S2. Modes resulting from singular value decomposition of AAL atlas 

covariance in the atomoxetine condition. The modes were selected based on 

maximal spatial correlation with the independent component topographies presented 

by Smith et al. (2009). The rank number indicates the relative proportion of 

explained variance of each mode, where lower rank numbers account for relatively 

more variance in the data than high rank numbers.   
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Figure S3. Covariation with component time-series in the individual conditions, only 

for clusters that showed a significant (p < 0.05, FWE-corrected) atomoxetine-

induced reduction in coupling.  
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Figure S4. Covariation with component time-series in the individual conditions, only 

for clusters that both showed a significant (p < 0.05, FWE-corrected) atomoxetine-

induced reduction in coupling, and significant (p < 0.05, FWE-corrected) covariation 

with the component time series. Note that brain regions that showed (numerically) 

an atomoxetine-induced polarity reversal are not significant.   
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Figure S5. Spatial mode 1 for the decomposition placebo > atomoxetine, with FWE-

corrected threshold of p < 0.05. 
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Figure S6. Unthresholded spatial maps of average regression coefficients of the 

ICA-identified sensorimotor component, and spatial maps of mode 1 generated 

using the AAL atlas, and for the decomposition placebo > atomoxetine.  
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Figure S7. Spatial mode 1 in the placebo condition generated with the AAL atlas (top 

left panel of Figure S5), masked with the regions that showed a significant reduction 

in connectivity with the sensorimotor network in the dual regression analysis.  
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Figure S8. Spatial mode 1 for the decomposition placebo > atomoxetine, with FWE-

corrected threshold of p < 0.05. 

 



 

83 
 

 

C
h
a
p
te

r 5
 

5. Pupil Diameter Tracks Lapses of Attention 

 

 

 

 

 

Abstract 

 

Our ability to sustain attention for prolonged periods of time is limited. Studies on the 

relationship between lapses of attention and psychophysiological markers of 

attentional state, such as pupil diameter, have yielded contradicting results. Here, we 

investigated the relationship between tonic fluctuations in pupil diameter and 

performance on a demanding sustained attention task. We found robust linear 

relationships between baseline pupil diameter and several measures of task 

performance, suggesting that attentional lapses tended to occur when pupil diameter 

was small. However, these observations were primarily driven by the joint effects of 

time-on-task on baseline pupil diameter and task performance. The linear 

relationships disappeared when we statistically controlled for time-on-task effects and 

were replaced by consistent inverted U-shaped relationships between baseline pupil 

diameter and each of the task performance measures, such that most false alarms 

and the longest and most variable response times occurred when pupil diameter was 

both relatively small and large. Finally, we observed strong linear relationships 

between the temporal derivative of pupil diameter and task performance measures, 

which were largely independent of time-on-task. Our results help to reconcile 

contradicting findings in the literature on pupil-linked changes in attentional state, and 

are consistent with the adaptive gain theory of locus coeruleus-norepinephrine 

function. Moreover, they suggest that the derivative of baseline pupil diameter is a 

potentially useful psychophysiological marker that could be used in the on-line 

prediction and prevention of attentional lapses.  

 

 

 

 

 

 

 

 

 

This chapter is based on: 

van den Brink RL, Murphy PR, and Nieuwenhuis S. (2016). Pupil Diameter Tracks 

Lapses of Attention. PLoS ONE, 11: e0165274
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5.1 Introduction 

 

The ability to sustain attention for prolonged periods of time is essential for normal 

functioning in everyday life. Lapses of attention can have dramatic consequences, 

such as when a car driver is absent-minded and brakes too late in response to an 

unexpected traffic backup, or when an air traffic controller fails to spot that two aircraft 

are about to cross paths. Physiological markers that indicate when such lapses of 

attention are more likely to occur could yield insight into the cognitive mechanisms 

that underlie attentional lapses, as well as provide preventative measures. A 

potentially useful physiological marker for detecting lapses of attention might be pupil 

diameter. The diameter of the pupil has long been known as a marker of cognitive 

load and attentional performance (Kahneman and Beatty, 1966, 1967). More recently, 

some researchers have considered endogenous (‘baseline’) variability in pupil 

diameter as an indicator of fluctuations in attentional control state (e.g., (Aston-Jones 

and Cohen, 2005; Gilzenrat et al., 2010; Jepma and Nieuwenhuis, 2011)).  

 Despite the potential utility of pupil diameter as a marker of attentional 

engagement, the available studies in which the relationship between baseline pupil 

diameter and sustained attentional performance has been investigated display a 

remarkable lack of consistency. Some researchers have reported that moments of 

poor task performance or off-task thought are associated with larger baseline diameter 

(Smallwood et al., 2011; Smallwood et al., 2012; Franklin et al., 2013; Unsworth and 

Robison, 2016). Others have reported that poor task performance is associated with 

smaller baseline diameter (Van Orden et al., 2000; Kristjansson et al., 2009; 

Grandchamp et al., 2014; Mittner et al., 2014; Hopstaken et al., 2015b), or is preceded 

by a progressive decline in pupil diameter (Murphy et al., 2011; Grandchamp et al., 

2014). Finally, some studies have found that poor task performance can be 

accompanied by both relatively small and relatively large baseline diameter (Murphy 

et al., 2011; Smallwood et al., 2012; McGinley et al., 2015a; Unsworth and Robison, 

2016). Several theoretical and methodological factors may be responsible for this 

discrepancy. For instance, the studies reviewed here differed considerably with regard 

to the measures they used to assess attentional performance: response time (RT; 

(Smallwood et al., 2011; Smallwood et al., 2012)); a proportion of slowest responses 

(Kristjansson et al., 2009; Unsworth and Robison, 2016); variability in RTs (Murphy et 

al., 2011); perceptual sensitivity (Beatty, 1982; Hopstaken et al., 2015b, a); and self-

reported off-task thought (Franklin et al., 2013; Grandchamp et al., 2014; Mittner et 

al., 2014).  

Another factor that may contribute to the lack of consistency in this literature 

concerns time-on-task effects. Prolonged task performance often results in 

decrements in attentional performance due to reduced vigilance (Mackworth, 1948, 

1968), and concurrent changes in pupil diameter (Van Orden et al., 2000; Hopstaken 

et al., 2015b; Unsworth and Robison, 2016). For instance, Hopstaken and colleagues 

found a progressive decrease in both baseline diameter and perceptual sensitivity with 



 

85 
 

 

C
h
a
p
te

r 5
 

prolonged performance of an N-back task (Hopstaken et al., 2015b). A similar decline 

in both pupil diameter and performance was reported by Van Orden and colleagues, 

using a sustained attention task (Van Orden et al., 2000). However, in other studies 

time-on-task has been reported to lead to contrasting effects on pupil diameter and 

task performance. For instance, Murphy and colleagues found a progressive increase 

over time in baseline diameter during an oddball task and a trend towards poorer 

performance over time (Murphy et al., 2011). Beatty reported a decrement over time 

in perceptual sensitivity during an oddball task, but no change in baseline diameter 

(Beatty, 1982). These time-on-task effects are often not taken into account when 

assessing the relationship between pupil diameter and performance (but see 

Kristjansson et al. (2009) and Mathôt et al. (Mathôt et al., 2015) for notable 

exceptions). Thus, depending on the behavioral task and context, shared effects of 

time-on-task could in principle impose a relationship between diameter and task 

performance, or obscure a more nuanced relationship. 

An example of such a nuanced relationship is the Yerkes-Dodson law, the 

phenomenon that performance often varies as an inverted-U function of arousal, such 

that both under- and over-arousal are associated with poor performance (Yerkes and 

Dodson, 1908). Aston-Jones and Cohen (2005), in their adaptive gain theory, 

proposed that this relationship reflects the effects of neuromodulation originating from 

the locus coeruleus-norepinephrine (LC-NE) system. The LC is a small nucleus in the 

pontine tegmentum that collateralizes broadly and supplies NE to almost the entire 

brain (Berridge and Waterhouse, 2003; Aston-Jones and Cohen, 2005). Over longer 

time periods, the level of baseline activity of LC neurons fluctuates with task 

performance. Intermediate levels of baseline LC activity are associated with (near-

)optimal performance, whereas shifts toward either end of the baseline activity 

continuum are associated with declining performance (Coull et al., 1995; Aston-Jones 

and Cohen, 2005; Chamberlain et al., 2006a; Brown et al., 2015). Notably, activity in 

the LC has been reported to correlate with the size of the pupil (Aston-Jones and 

Cohen, 2005; Murphy et al., 2014b; Varazzani et al., 2015; Joshi et al., 2016). Thus, 

taken together, this framework predicts that both periods of small baseline diameter 

and periods of large baseline diameter should be associated with impaired attentional 

performance. Unfortunately, most studies so far have been confined to categorical 

comparisons of pupil diameter between on-task and off-task thought, or fast and slow 

response times, without taking nonlinear relationships into consideration.  

Thus, in the present study we carried out a detailed investigation of the 

interrelationships between performance on a sustained attention task, slow baseline 

fluctuations in the diameter of the pupil, and the effects of time-on-task on both these 

variables. In contrast to some previous studies, we assessed these relationships at a 

within-participant, moment-by-moment level, using multiple measures of attentional 

state. This approach requires large numbers of trials, which in many studies is made 

difficult by the fact that short intertrial intervals can lead to contamination of pre-trial 

baseline pupil measurements by task-related pupil dilations on the previous trial. Here, 
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we overcame this challenge by using a fast-paced, isoluminant, gradual-onset 

continuous performance task (Esterman et al., 2013) to minimize stimulus-evoked 

pupil dilations, and by regressing out the remaining task-related transient pupil 

dilations.  

Our results show that attentional performance and baseline diameter 

progressively declined over time, resulting in strong linear relationships between these 

variables. However, when we controlled for time-on-task, the relationships between 

task performance and pupil diameter became U-shaped, consistent with the Yerkes-

Dodson law and the adaptive gain theory of LC function (Aston-Jones and Cohen, 

2005). Moreover, we explored the relationship between performance and changes in 

pupil size quantified as the temporal derivative of baseline diameter. This measure 

was inspired by prior work in rodents, showing that the derivative of pupil diameter 

tracks changes in cortical state and signal detection performance (Reimer et al., 2014; 

McGinley et al., 2015a). As opposed to baseline diameter, its derivative showed a 

linear relationship with behavioral performance that was robust to the effect of time-

on-task. 

 

 

5.2 Materials and Methods 

 

Participants. A total of 30 right-handed individuals took part in the study. Two 

participants were excluded due to technical difficulties with the eye tracker, resulting 

in a final N of 28 (mean age: 20.9; SD 2.5; min/max 18-26; 6 male). Exclusion criteria 

included a history of psychiatric disorders or wearing glasses. All participants gave 

written informed consent prior to the experiment and were compensated with €7,50 or 

course credit. The study was approved by the Leiden University Institutional Review 

Board (IRB). 

Task. We used a modified version of the gradual continuous performance task 

(gradCPT) described by Esterman et al. (Esterman et al., 2013). Participants were 

asked to respond to images of cities by pressing the space bar and withhold a 

response when presented with an image of a mountain (Figure 1a). City trials were 

more frequent (90% of trials) than mountain trials (10%). The images subtended 

approximately 6 degrees of visual angle, were isoluminant, grayscale, and were 

presented on a black background. The images linearly and continuously morphed 

from one into the next, with an 800-ms interval between 100% coherence levels 

(stimulus onset asynchrony, SOA). This was done to provide a task context in which 

the participant had to continuously monitor the stimulus stream, and thus could not 

take ‘mini breaks’ in between trials. To allow the pupil to normalize, the first and last 

seven images in each block were scrambled. On these trials the participant did not 

respond and these trials were not included in any of the analyses. Participants were 

first familiarized with the environment and task by passively viewing all images, 

without continuous transitions. Then, they practiced the task for 34 trials at ~45% of 
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the normal speed, and then for another 75 trials at the regular speed. Each participant 

performed a total of 3 blocks of 600 trials (~8 minutes each) per block. Participants 

took a forced break of at least 5 minutes between blocks and were offered a small 

snack (chocolate chip cookie) during this interval. The total duration of the experiment 

was approximately 40 minutes.   

Measures of task performance. Hits (responses to cities) and correct rejections 

(withheld responses to mountains) were considered as correct trials. Misses 

constituted withheld responses to cities. Within the context of continuous performance 

tasks, lapses of attention are usually defined as false alarms (Robertson et al., 1997; 

Esterman et al., 2013). In our study false alarms corresponded to responses to 

mountains. However, as noted in the introduction, a variety of other measures have 

been used to infer attentional state. Therefore, besides false alarm rate, we included 

three additional performance metrics: 1) the proportion of trials that fell within the 

slowest quintile of RTs within the block; 2) average RT; and 3) the RT coefficient of 

variation (RTCV)—that is, the standard deviation of RT divided by the block mean RT. 

RTs were measured relative to the onset of each stimulus. For example, an RT of 

640 ms (i.e., 80% of the SOA) indicated that the participant responded when the 

displayed image consisted of 80% trial n, and 20% trial n-1. An iterative algorithm 

assigned responses to trials in the case of multiple responses, or unusually fast 

responses (before 70% coherence of trial n) and unusually slow responses (after 40% 

coherence of trial n+1). First, the number of correct responses was optimized. Then, 

ambiguous responses were assigned to a neighboring trial if either of them had no 

response. If both had a response, it was assigned to the closest city (go) trial. Lastly, 

if a trial was assigned multiple responses, the fastest response was selected. This 

procedure was identical to the one described by Esterman et al. (Esterman et al., 

2013), and is unlikely to have substantially influenced the results, given that 

ambiguous responses were relatively rare (<4% of the trials).  

Pupillometry. Participants were seated in a dimly lit room with their head stabilized 

by a chin rest. During the task participants were asked to keep their eyes focused on 

a small white fixation dot in the center of the image. We measured the diameter of the 

right pupil at a sampling rate of 1 kHz with an EyeLink 1000 eye tracker. Prior to the 

start of each block the eye tracker was calibrated and validated with a 9-point fixation 

routine.  

Moments when the eye tracker received no pupil signal (e.g., during blinks) were 

marked automatically during data acquisition by the manufacturer’s blink detection 

algorithm. Afterwards, an iterative algorithm detected additional moments of poor 

signal quality (e.g., due to partial occlusion of the pupil by the eyelashes). For 200 

iterations over the entire signal time series for a given participant and block, any 

sample for which the difference in pupil diameter compared to the previous sample 

exceeded a threshold was marked as 0. The default threshold was set to 25 pixels, 

but the threshold was individually-tailored for participants for whom the algorithm failed 

to identify sharp spikes in the data or inappropriately marked clean sections of data.  



  

 

C
h
a
p
te

r 
5
 

 
Figure 1. Task and behavioral results. a) Gradual continuous performance task. Each block 

started and ended with 7 scrambled images. The participant was asked to respond to city 

scenes but not to mountain scenes. Each image continuously morphed into the next, with an 

800-ms interval between 100% coherence levels. b) Behavioral results. Data are smoothed 

for display only. All measures showed a significant linear increase with time-on-task, p-values 

are listed in the lower right corner of each panel. Error bars represent the SEM. 
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All marked data sections were then interpolated across using shape-preserving 

piecewise cubic interpolation. On average 6.8% (SD 4.6, min/max 0.2/18.7) of the data 

points were interpolated. After interpolation each pupil time series was low-pass 

filtered at 6 Hz to remove any residual high-frequency noise.  

We were primarily interested in the relationship between tonic (endogenous) 

variations in pupil diameter and behavioral performance. Due to the short SOA of the 

gradCPT (800 ms), it is possible that stimulus-related pupil dilations precluded a 

reliable estimation of tonic pupil fluctuations. However, we first note that stimulus-

related pupil responses accounted on average for only ~8% (SD 4%) of total pupil 

fluctuations, indicating that tonic fluctuations were a far more dominant source of 

variance in the observed pupil time series. Moreover, we reduced this already small 

contribution of trial-related pupil responses by employing linear regression to calculate 

residualized pupil time series for each participant and block that represented 

fluctuations in pupil diameter that were independent of the phasic pupil dilations 

evoked by task stimuli and their associated behavioral responses. The measured pupil 

time series were segmented around the onset of each stimulus, distinguishing 

between the four trial types (hits, misses, correct rejections, and false alarms), and 

around response onset. For each participant, we then computed average stimulus-

locked and response-locked pupil waveforms, and extracted the peak amplitude in a 

0 to 5 s post-event window, relative to a 200-ms pre-event baseline. This resulted in 

an estimate of the amplitude of phasic pupil dilations for each participant and type of 

event. Next, for each participant we created separate stick functions for each type of 

event in which the latency of the sticks corresponded to stimulus onsets and the 

participant’s RTs, and the amplitude corresponded to the estimated amplitude of the 

phasic pupil dilation for that participant and type of event. We then convolved the stick 

functions with the canonical pupillary response function (h) presented by Hoeks and 

Levelt (Hoeks and Levelt, 1993): 

max( )

n t

tnh s t e

 − ⋅
 
 = ⋅ ⋅   

where t is time,  n is the number of layers (10.1), tmax corresponds to the latency of 

maximum dilatory response per participant and type of event, and s was a constant 

(2.7569�10-29) to scale the response function to unit height. 

 Finally, we used multiple linear regression to remove the stimulus- and response-

related phasic dilations (Figure 2) from the unsegmented pupil time series. This 

procedure minimized the extent to which phasic pupil dilations convoluted the 

estimates of tonic variations in the diameter of the pupil. Note that this approach is 

highly similar to analysis of the first-stage general linear model of functional magnetic 

resonance imaging data, to correct for signal variance associated with trial-type-

specific evoked responses (as implemented by e.g. (Esterman et al., 2013)).  
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Figure 2. Phasic pupillary 

responses. Trial-averaged 

modeled (red) and 

empirical (black) stimulus-

related pupil dilations. The 

vertical dashed line 

represents event (stimulus 

or response) onset. Error 

bars represent the SEM. 

 

 

5.3 Results 

 

Performance decrements with time-on-task. We first verified whether behavioral 

performance degraded over the course of a block, as is expected in demanding tasks 

like the gradCPT that require continually sustained attention (Robertson et al., 1997; 

Esterman et al., 2013). To do so, we calculated temporally resolved metrics of trial-

averaged behavior by applying a sliding window to the behavioral data of each block 

of each participant. The window had a width of 50 trials (40 seconds duration) and 

was slid across the data in steps of 15 trials. For each of these windows we calculated 

several measures of task performance: 1) the proportion of false alarms; 2) the 

proportion of trials that fell within the slowest quintile of RTs within the block; 3) 

average RT; and 4) the RTCV (see Materials & Methods). For each of these measures 

this approach resulted in a continuous time series for each block. We then Z-scored 

the time series and fitted a straight line to them. The slopes of the fitted lines indicated 

whether the time series were on average increasing or decreasing (or not changing) 

over time. We averaged the slopes across blocks for each participant and tested if the 

distribution of slopes was larger than 0 using a one-tailed t-test. As expected, we found 

significant performance decrements for all behavioral measures. Over the course of a 

block, progressively more false alarms occurred (t(27) = 1.74, p = 0.047), and RTs 
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became longer (RT: t(27) = 2.47, p = 0.010; quintile: t(27) = 3.31, p = 0.001) and more 

variable (t(27) = 3.06, p = 0.003; Figure 1b). The proportion of misses also increased 

with time (t(27) = 3.31, p = 0.001), but misses were rare (0.2% of all trials) and will 

thus not be considered in any further analyses. In sum, over the course of a block 

performance deteriorated. For the sake of simplicity, we hereafter refer to the effect of 

time within blocks as ‘time-on-task’ effects.  

The effects of time-on-task on tonic pupil fluctuations. Having established that 

behavioral performance on the task degraded over time, we next turned to the pupil 

data. We applied a sliding window to the unsegmented pupil data that was identical to 

the one applied to the behavioral data (a width of 50 trials and a step size of 15 trials). 

We extracted two measures: 1) the average pupil diameter in each window, hereafter 

referred to as ‘baseline diameter’; and 2) the average temporal derivative of baseline 

diameter, which quantifies the extent to which the pupil tended to dilate or constrict 

within each window. The derivative measure was calculated as the average difference 

between each two consecutive samples within the window (using MATLAB’s ‘diff’ 

function). This is equivalent to the difference in baseline diameter between the first 

and last sample of the window. For each of the pupillary measures this resulted in a 

time series that was identical in length to the time series of the behavioral measures.  

As a direct follow-up on the behavioral analyses, we first examined whether the 

pupillary measures also showed time-on-task effects. To do so, we fitted a straight 

line to each pupil time series. The slope of the fitted line was informative of linear 

trends over time. We averaged the slopes across blocks for each participant and 

compared the distribution of slopes to 0 using a two-tailed t-test. We had no clear 

hypothesis regarding the direction of the time-on-task effect for the derivative of pupil 

diameter, so for this test we also used a two-tailed t-test. Both pupil measures showed  

 

 
 

Figure 3. Baseline diameter and derivative. a) Time-on-task effect for baseline diameter, and 

b) for diameter derivative. p-values are listed in the top left corner of each panel. The 

derivative is shown as variance-normalized but without the mean removed. Values below the 

horizontal dotted line indicate that on average the pupil is constricting, whereas values above 

the line indicate that the pupil is dilating. c) The relationship between pupil diameter and its 

derivative. Baseline pupil diameter plotted as a function of the derivative. Diameter is smallest 

when the pupil is dilating the fastest. USD: Units standard deviation.  
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significant linear time-on-task effects. Over the course of a block baseline diameter 

became smaller (t(27) = 8.10, p < 0.001; Figure 3a). On average, its derivative was 

initially negative and became less negative over time (t(27) = 4.40, p < 0.001; Figure 

3b), reflecting the fact that the pupil progressively decreased in diameter during the 

early-to-mid portions of a block and reached a relatively stable diameter thereafter.  

Before examining the relationship between baseline diameter and its derivative 

vis-à-vis the behavioral performance measures, we wanted to make sure that the two 

pupil measures were not highly correlated with each other, so that they might be 

expected to explain unique variance in the behavioral measures. In order to clarify the 

relationship between baseline diameter and its derivative, we correlated their 

respective time series derived from the sliding-window approach, for each participant 

and each block, and compared the distribution of Fisher-transformed correlation 

coefficients averaged across blocks to zero using a t-test. Although the correlation 

was consistently negative across participants (t(27) = -2.48,  p = 0.020; Figure 3c), the 

average correlation coefficient was rather small: -0.12. Thus, the two pupil measures 

only weakly co-varied (R2 < 1.5%) and their capacities to explain unique portions of 

the variance in behavior were high.  

The relationship between tonic pupil fluctuations and behavior. We next used 

multiple regression to examine linear relationships between the time series of each of 

the Z-scored pupillary measures and each of the Z-scored behavioral measures, 

within participants and within blocks. A separate model was constructed for each of 

the pupillary/behavioral measure pairings. We also included quadratic regressors in 

these models, but only report the quadratic relationships between baseline diameter 

and the behavioral measures. The inclusion of quadratic regressors in the regression 

 

 

 
Figure 4. The relationship between pupil diameter and behavior. Regression coefficients are 

shown per pupil measure and behavioral measure. USD: Units standard deviation. Error bars 

represent the SEM. *: p < 0.05; **: p < 0.01; ***: p < 0.001. 



 

93 
 

 

C
h
a
p
te

r 5
 

 

models for the derivative did not affect the direction and significance of the linear 

regression coefficients. We averaged the resulting regression coefficients across 

blocks for each participant and compared the distribution of regression coefficients to 

0 using t-tests. We expected the typical Yerkes-Dodson relationship between baseline 

diameter and behavior (but see below), and therefore used one-tailed t-tests to 

compare the quadratic regression coefficients to zero. Furthermore, because all 

analyses concerning the derivative of baseline diameter were exploratory, we used 

two-tailed t-tests in these analyses. The linear and quadratic relationships between 

the pupil measures and the behavioral measures are summarized in Figure 4.  

We found a significant positive quadratic relationship between baseline diameter 

and false alarm rate (t(27) = 1.99, p = 0.029), indicating that false alarm rate tended 

to increase at both the upper and lower extremes of baseline pupil diameter. This 

finding is consistent with the long-recognized inverted U-shaped relationship between 

arousal and task performance (Yerkes and Dodson, 1908). However, we found no 

such quadratic relationship for the other behavioral measures (all ps > 0.05).  

Given the linear time-on-task effects on baseline diameter and each of the 

behavioral measures, it may be expected that baseline diameter be linearly related to 

false alarm rate, RT, RTCV, and the proportion of trials that fell within the slowest RT 

quintile. We thus used one-tailed t-tests to test this hypothesis. In line with this notion, 

all behavioral measures were negatively related to baseline diameter (false alarm rate: 

t(27) = 2.28, p = 0.02; quintile: t(27) = -2.60, p = 0.008; RT: t(27) = -2.38, p = 0.012; 

RTCV t(27) = -2.27, p = 0.016). Thus, more false alarms and longer and more variable 

RTs tended to occur when baseline diameter was smallest which, as shown earlier, 

also tended to coincide with the end of task blocks. The linear relationships between 

baseline diameter and each of the behavioral measures are shown in Figure 5a. 

Interestingly, the derivative of pupil diameter showed a significant positive linear 

relationship with all behavioral measures (false alarm rate: t(27) = 3.71, p = 0.001; 

quintile: t(27) = 3.10, p = 0.005; RT: t(27) = 2.10, p = 0.046; RTCV: t(27) = 3.11, p = 

0.005). The positive relationship indicated that periods during which the pupil was 

relatively stable or dilating (i.e., the value of the derivative was positive/least negative) 

were characterized by the most false alarms and the slowest and most variable RTs 

(Figure 5b). In other words, periods in which the pupil showed little change in size over 

time or tended to dilate slowly, were marked by the poorest behavioral performance. 

In order to rule out the possibility that these results were dependent on the choice 

of window size, we repeated the regression analysis for a range of sliding window 

sizes (40 s to 4 min, and an 8-s difference in width between each consecutive window 

size).  For each window size, we then computed the regression coefficients indicating 

linear and quadratic relationships between the time series of each of the Z-scored 

pupillary measures and each of the Z-scored behavioral measures. We then averaged  
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Figure 5. Relationship between pupillary measures and behavior, before (a,b) and after (c,d) 

regressing out time-on-task. Pupil data were z-scored within participants and blocks, 

aggregated across participants, and then divided up into 30 bins, and the behavioral data were 

sorted according to pupil diameter. Large positive values on the Y-axis indicate relatively poor 

behavioral performance. The initially linear relationship between baseline diameter and 

behavior becomes U-shaped after controlling for time-on-task, whereas the relationship 

between the derivative of baseline diameter and behavior remains linear after controlling for 

time-on-task. Straight lines are least squares regression lines, curved lines are fitted 2nd-order 

polynomials. 

 

 

the resulting regression coefficients across blocks, and across the behavioral 

measures, and computed their area under the curve (AUC) across window sizes. This 

AUC summary statistic indicated whether on average the behavioral measures 
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showed a relationship (linear or quadratic) with the two pupil measures. Finally, we 

tested if the group-level distribution of AUCs differed from 0 using one-tailed t-tests. If 

the linear pupil-behavior relationships were not dependent on the choice of a single 

(arbitrary) window size, we expected the AUC of the linear regression coefficients to 

go in the same direction as the initial regression coefficients. That is, we would expect 

the AUC to be negative for diameter, and positive for the derivative. As expected, the 

linear AUCs were significantly different from 0 and in the predicted direction for both 

pupil measures (diameter: t(27) = -2.62, p = 0.007; derivative: t(27) = 4.05, p < 0.001). 

Also in line with our expectations, the quadratic AUC for baseline diameter did not 

differ from zero (t(27) = 0.09, p = 0.47). Altogether, these results show that periods 

during which the pupil was smallest and remained relatively stable or dilated again 

were marked by the poorest behavioral performance on the task. These effects were 

consistent across a range of time scales.   

The relationship between tonic pupil fluctuations and behavior, controlled for time-

on-task. It is possible that the relationships between baseline diameter and behavior 

reported above simply reflect the strong effects of time-on-task on these two types of 

variables, rather than a more intrinsic, time-invariant relationship. We therefore 

wondered whether shared effects of time-on-task on baseline diameter and behavior 

might be obscuring more subtle relationships between the associated measures. To 

address this possibility, we explored whether the relationship between the pupillary 

measures and behavior remained after statistically controlling for time-on-task. To do 

so, we performed similar regression analyses as before, except that we included a 

linearly increasing predictor that tracked time-on-task (i.e., the time elapsed within 

each block). As a result, the regression coefficients represented the relationship 

between the pupillary measures and behavior, independent of a linear time-on-task 

effect. 

As can be seen in Figure 6, the initial linear relationships between baseline 

diameter and the RT measures became quadratic when time-on-task was taken into 

account. Both relatively small and large diameters were associated with an increased 

false alarm rate, and slower and more variable RTs (false alarm rate: t(27) = 1.99, p 

= 0.028; quintile: t(27) = 1.45, p = 0.08; RT: t(27) = 2.06, p = 0.025; RTCV: t(27) = 

2.79, p = 0.005), whereas linear relationships between pupil size and these behavioral 

measures were no longer present (all p > 0.2). This suggests that a U-shaped 

relationship between baseline diameter and RT measures was indeed initially 

obscured by strong time-on-task effects (Figure 5c). In contrast, the linear 

relationships between the derivative and the behavioral measures that were evident 

in the original regression models were largely preserved in the model that statistically 

controlled for time-on-task (false alarm rate: t(27) = 3.09, p = 0.005; quintile: t(27) = 

2.13, p = 0.041; RT: t(27) = 0.93, p = 0.360; RTCV: t(27) = 3.07, p = 0.005; Figure 5d). 

These effects indicate that periods in which linearly detrended pupil diameter was 

generally increasing were associated with relatively impaired performance.  
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Figure 6. The relationship between pupil diameter and behavior, after statistically controlling for 

time-on-task. Regression coefficients per pupil measure and behavioral measure with time-on-

task included as a variable of non-interest. Error bars represent the SEM. *: p < 0.05; **: p < 

0.01. 

 

 

Again, these results were not dependent on the choice of window size, because 

the AUC summary statistics across window sizes and behavioral measures showed a 

similar shift from linear to quadratic for baseline diameter after statistically controlling 

for time-on-task (linear AUC: t(27) = 0.29, p = 0.39; quadratic AUC: t(27) = 3.08, p = 

0.002). The linear relationship between the derivative and behavior was also 

preserved in the AUC across window sizes (linear AUC: t(27) = 3.08, p = 0.002).   

Together, these results suggest that time-on-task was driving the initially observed 

linear relationships between mean baseline diameter and task performance, and to 

some extent obscured latent quadratic relationships between these variables. In 

contrast, the linear relationship between task performance and the derivative of pupil 

diameter was mostly robust to controlling for time-on-task. As we discuss below, this 

relationship likely reflects the quadratic relationship between diameter and behavior 

that occurred independent of time-on-task.  

 

 

5.4 Discussion 

 

Using a fast-paced sustained attention task, we found robust linear relationships 

between baseline pupil diameter and several behavioral manifestations of attentional 

lapses. However, these linear relationships primarily reflected the joint effect of time-

on-task on baseline pupil and behavior: as performance deteriorated over the course 

of a block (as indexed by increased false alarm rate and slower and more variable 

RTs), the pupil became progressively smaller. Importantly, when this effect of time-
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on-task was statistically partialled out, the relationship between baseline diameter and 

behavior became U-shaped: more false alarms, and longer and more variable RTs 

occurred during periods of both relatively small and relatively large baseline diameter, 

a pattern that is consistent with the Yerkes-Dodson law of mental task performance 

(Yerkes and Dodson, 1908) and the adaptive gain theory of LC-NE function (Aston-

Jones and Cohen, 2005).  

Previous studies on the relationship between pupil diameter and attentional state 

have yielded contradicting results. Some studies have reported that moments of poor 

task performance or off-task thought are associated with larger baseline diameter 

(Smallwood et al., 2011; Smallwood et al., 2012; Franklin et al., 2013; Unsworth and 

Robison, 2016). Conversely, others have reported that poor task performance is 

associated with smaller baseline diameter (Van Orden et al., 2000; Kristjansson et al., 

2009; Grandchamp et al., 2014; Mittner et al., 2014; Hopstaken et al., 2015b). Our 

research suggests three methodological reasons for these mixed results. First, a 

multitude of measures have been used to assess attentional state. Although the 

performance measures used in the current study generally showed similar 

relationships with pupil diameter, there were some differences between the measures. 

For example, as opposed to the RT measures, false alarm rate already displayed a 

U-shaped relationship with diameter before the effect of time-on-task was partialled 

out. This discrepancy may be explained by the possibility that slow and variable RTs 

primarily reflect a decrease in attentional focus (Weissman et al., 2006)—equivalent 

to a lower (e.g. (Nunez et al., 2015)) and/or more variable (Murphy et al., 2014a) rate 

of decision formation— whereas false alarms may reflect either a decrease in 

attentional focus or an inadvertent lowering of the response threshold (Forstmann et 

al., 2016). Thus these signatures of attentional lapses may have partially dissociable 

mechanistic bases. To make sure that key conclusions do not depend on the specific 

choice of measure, future studies should ideally use a range of performance 

measures, as we have done here. Second, the majority of previous studies have 

reported only categorical comparisons (e.g., on-task versus off-task thought (Franklin 

et al., 2013; Grandchamp et al., 2014; Kang et al., 2014); or normal versus slow RTs 

(Kristjansson et al., 2009; Unsworth and Robison, 2016)) to assess the relationship 

between pupil diameter and attentional state. However, such comparisons cannot 

reveal potential non-linear relationships between pupil and behavior. Thus, the 

manner in which the relationship between baseline diameter and attentional state is 

assessed restricts the conclusions that can be drawn from the data.   

Finally, our results suggest that contradictory findings in the literature may also be 

due to differences between studies in the presence and nature of parallel effects of 

time-on-task on pupil diameter and behavior. In tasks that are demanding, such as 

our task, the dominant finding is that attentional lapses and mind wandering are 

associated with a smaller baseline pupil diameter than non-lapses or on-task thought 

(e.g. (Kristjansson et al., 2009; Mittner et al., 2014; Hopstaken et al., 2015b)). This 

pattern may simply be due to a progressive decrement in behavioral performance 
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along with a monotonic decline in pupil diameter over time, perhaps reflecting a shift 

from center to left on the Yerkes-Dodson curve and a corresponding abandonment of 

exploitative behavior (Aston-Jones and Cohen, 2005), or reduced top-down control of 

behavior (Mathôt et al., 2015). Such time-dependent shifts on the Yerkes-Dodson 

curve could be the consequence of depleted cognitive resources. As noted by 

Hopstaken et al. (2015b), there is substantial overlap between the behavioral 

consequences of mental fatigue and the characteristics of low-arousal states. 

Nevertheless, the mechanistic origin of simultaneous effects of time-on-task on pupil 

diameter and performance remains an interesting open question for future research. 

In less demanding tasks, by contrast, time-related performance decrements are often 

less severe, and pupil diameter has even been reported to increase over time in such 

settings (Murphy et al., 2011).  Such an absence of shared time-on-task effects might 

in turn afford greater scope for revealing more nuanced relationships between pupil 

diameter and task performance in the observed data. We suggest that future studies 

should carefully distinguish between pupil-behavior relationships due to time-on-task 

and potentially more subtle relationships that operate on a faster time scale. As we 

have shown, this dissociation can be easily achieved via the implementation of 

appropriate statistical control. 

Aside from yielding insight into the mechanisms underlying attentional lapses, an 

important long-term goal of studies such as ours is to establish psychophysiological 

markers that can be used in on-line biofeedback systems, aimed at predicting and 

preventing lapses of attention. Recently, deBettencourt et al. (deBettencourt et al., 

2015) made an important step towards the realization of such a system. By providing 

participants with well-timed performance feedback based on the on-line analysis of 

brain imaging data, they could improve participants’ performance on a sustained 

attention task. However, the involvement of brain imaging equipment imposes obvious 

restrictions on the real-world applicability of this technique. Our results, however, 

indicate that the pupil could potentially be used to predict when lapses of attention are 

likely to occur. Given the relatively non-invasive and cost-effective nature of eye-

tracking, such a system would offer substantial advantages over neuroimaging-based 

systems. However, it should be noted that the average regression coefficients that 

captured the relationship between the dynamics of the pupil and the dynamics of 

behavior, although consistent across participants, were modest in size (between 0.1 

and 0.2). Thus, future work is needed to establish the practical feasibility of using pupil 

diameter and its derivative as on-line markers of attentional lapses.   

Our findings that the average derivative of the pupil diameter time series was 

linearly related to behavioral performance, and that this relationship was independent 

of time-on-task, indicate that the derivative of pupil diameter offers a potential marker 

of attentional performance. The robustness of the derivative to time-on-task compared 

to baseline diameter may be explained by the way we computed this measure. 

Specifically, the derivative reflected the difference in baseline diameter between the 

first and last time point in the sliding window. Thus, this measure was less affected by 
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block-wide trends in pupil diameter but instead captured changes at the temporal 

scale of the applied sliding window. Moreover, the derivative of a U-shaped signal is 

monotonically increasing (f(x) = ax2 + c � f ’(x) = 2ax). Any quadratic relationship 

between a variable (e.g., baseline diameter) and another variable (e.g., behavior) will 

therefore be measurable as a linear relationship between the derivative of the first 

variable (baseline diameter derivative) and the second variable (behavior). This holds 

true even in the presence of a superimposed linear relationship between diameter and 

behavior (e.g., due to time-on-task effects), because the linear part of the function will 

simply reduce to a constant in the derivative (f(x) = ax2 + bx + c � f ’(x) = 2ax + b). 

Thus, the linear relationship between the baseline diameter derivative and behavior 

likely reflected the quadratic relationship between baseline diameter and behavior that 

occurred independent of time-on-task.  

A bio-feedback system could thus incorporate the derivative of pupil diameter and 

a receiver operating characteristic analysis could be performed to examine how 

reliably the signal preceding a behavioral response discriminates between lapse and 

non-lapse trials. Future studies could also incorporate purely momentary fluctuations 

in the derivative of the pupil (cf. (Reimer et al., 2014; McGinley et al., 2015a)) as 

opposed to changes during a longer window. These instantaneous fluctuations are, 

however, beyond the scope of the current study, as we were primarily interested in 

tonic fluctuations that evolve over longer time periods and how they relate to global 

fluctuations in attentional performance. Such global fluctuations are more akin to real-

world fluctuations in behavior in settings that require prolonged sustained attention, 

as when an air-traffic controller must monitor a display for long periods of time.   

In conclusion, our results demonstrate that time-on-task, a factor that is often 

ignored in studies on the relationship between pupil diameter and attentional state, 

can obscure non-linear pupil-behavior relationships. The non-linear (inverted U-

shaped) relationship between baseline pupil diameter and attentional performance 

that we observed after partialling out time-on-task effects is consistent with the 

adaptive gain theory of LC-NE function (Aston-Jones and Cohen, 2005). Finally, our 

results indicate that the derivative of pupil diameter is a potential marker of attentional 

performance that could be used for the on-line prediction and prevention of attentional 

lapses. 
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6. Task-Free Spectral EEG Dynamics Track and Predict Patient Recovery From 

Severe Acquired Brain Injury 

 

 

Abstract 

 

For some patients, coma is followed by a state of unresponsiveness, while other 

patients develop signs of awareness. In practice, detecting signs of awareness may 

be hindered by possible impairments in the patient’s motoric, sensory, or cognitive 

abilities, resulting in a substantial proportion of misdiagnosed disorders of 

consciousness. Task-free paradigms that are independent of the patient’s 

sensorimotor and neurocognitive abilities may offer a solution to this challenge. A 

limitation of previous research is that the large majority of studies on the 

pathophysiological processes underlying disorders of consciousness have been 

conducted using cross-sectional designs. Here, we present a study in which we 

acquired a total of 74 longitudinal task-free EEG measurements from 16 patients 

(aged 6-22 years, 12 male) suffering from severe acquired brain injury, and an 

additional 16 age- and education-matched control participants. We examined changes 

in amplitude and connectivity metrics of oscillatory brain activity within patients across 

their recovery. Moreover, we applied multi-class linear discriminant analysis to assess 

the potential diagnostic and prognostic utility of amplitude and connectivity metrics at 

the individual-patient level. We found that over the course of their recovery, patients 

exhibited nonlinear frequency band-specific changes in spectral amplitude and 

connectivity metrics, changes that aligned well with the metrics’ frequency band-

specific diagnostic value. Strikingly, connectivity during a single task-free EEG 

measurement predicted the level of patient recovery approximately 3 months later with 

75% accuracy. Our findings show that spectral amplitude and connectivity track 

patient recovery in a longitudinal fashion, and these metrics are robust 

pathophysiological markers that can be used for the automated diagnosis and 

prognosis of disorders of consciousness. These metrics can be acquired 

inexpensively at bedside, and are fully independent of the patient’s neurocognitive 

abilities. Lastly, our findings tentatively suggest that the relative preservation of 

thalamo-cortico-thalamic interactions may predict the later reemergence of 

awareness, and could thus shed new light on the pathophysiological processes that 

underlie disorders of consciousness. 

 

 

 

This chapter is based on: 

van den Brink RL, Nieuwenhuis S, van Boxtel GJM, van Luijtelaar G, Eilander HJ, and 

Wijnen VJM (under review). Task-Free Spectral EEG Dynamics Track and Predict 

Patient Recovery From Severe Acquired Brain Injury 
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6.1 Introduction 

 

After awakening from coma, some patients remain unresponsive while others 

show behavioral features that are taken as signs of awareness (Jennett and Plum, 

1972; Laureys et al., 2004). The reliance on behavioral criteria for the diagnosis of 

such disorders of consciousness (DOC) may be suboptimal, because impairments in 

the patients’ motor system can obscure signs of consciousness (Giacino et al., 2014). 

These considerations have sparked the development of ‘active paradigms’ that rely 

on electroencephalography (EEG) or neuroimaging tools to detect signs of patient 

awareness during mental tasks (Kotchoubey et al., 2005; Owen et al., 2006; Wijnen 

et al., 2007; Fischer et al., 2010; Monti et al., 2010; Boly et al., 2011; Höller et al., 

2011; Sitt et al., 2014). Though promising, some active paradigms rely on higher-order 

cognitive abilities such as language comprehension or attention. In addition, putative 

electrophysiological markers of awareness such as the mismatch negativity may be 

absent in patients that do show behavioral signs of consciousness (Kotchoubey et al., 

2005; Wijnen et al., 2007; Fischer et al., 2010; Höller et al., 2011). Moreover, a 

necessity for active paradigms is that the patients’ sensory pathways are intact, which 

may not always be the case. Thus, diagnostic tools that are independent of the 

patients’ neurocognitive abilities and integrity of sensorimotor pathways may offer a 

substantial improvement on existing tools. 

Accordingly, task-free paradigms, in which the patient is not required to follow 

instructions or process stimuli, have recently gained traction (Rosanova et al., 2012; 

Casali et al., 2013; Demertzi et al., 2015; Schurger et al., 2015; Estraneo et al., 2016; 

Schorr et al., 2016; Stender et al., 2016). For instance, using positron emission 

tomography, Stender et al. (2016) were able to predict the presence and later 

emergence of consciousness in patients with DOC. Similarly, the cortical spread of 

EEG activity following transcranial magnetic stimulation dissociates patients with 

unresponsive wakefulness syndrome (UWS) from those in the minimally conscious 

state (MCS) (Rosanova et al., 2012). However, these paradigms necessitate the use 

of costly or impractical equipment, and may therefore not offer the most convenient 

diagnostic procedures. Task-free EEG spectral amplitude and variance metrics have 

shown promise as diagnostic and prognostic markers (Schurger et al., 2015; Schorr 

et al., 2016), but thus far have been limited in their ability to dissociate UWS from MCS 

patients (Schurger et al., 2015), and provide only dichotomous prognoses without 

specifying the expected level of recovery (Schorr et al., 2016). In contrast to amplitude 

and variance metrics, the potential diagnostic and prognostic value of spectral EEG 

connectivity metrics during task-free measurements have yet to be explored.  

Several findings suggest that spectral EEG characteristics may be indicative of 

the level of consciousness (LoC) in patients with DOC. Compared to fully conscious 

control participants, patients with DOC consistently show a reduction in the amplitude 

of oscillations in the α and β bands, and often show a concurrent increase in θ and δ 

amplitude (Lehembre et al., 2012; Lechinger et al., 2013; Chennu et al., 2014; Varotto 
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et al., 2014). Furthermore, during auditory processing, entropy metrics of cortical 

information exchange vary monotonically across LoC (King et al., 2013; Sitt et al., 

2014). These and other (Laureys et al., 2000; Schiff et al., 2007; Giacino et al., 2014) 

findings have been proposed to reflect discontinuities in the thalamo-cortico-thalamic 

circuit that disrupt large-scale functional interactions, and thereby enable local cortical 

properties to shape the spectral dynamics (Schiff, 2010; Giacino et al., 2014; Schiff et 

al., 2014). However, it is unclear to what extent such accounts capture longitudinal 

spectral changes across patients’ recovery, because comparisons between LoC have 

almost exclusively been conducted using cross-sectional (between-group) designs.  

Here, we report a longitudinal study in which we acquired a total of 74 task-free 

EEG measurements over the course of patient recovery from severe acquired brain 

injury. We assessed the feasibility of diagnosis and prognosis of DOC within individual 

patients based on the amplitude and connectivity of neural oscillations, using state-of-

the-art analysis methods. We found that nonlinear frequency band-specific changes 

in these metrics occur over the course of patients’ recovery, and that these changes 

align well with the metrics’ frequency band-specific diagnostic value. Strikingly, we 

found that connectivity during a single task-free EEG measurement predicted the level 

of patient recovery approximately 3 months later with a high level of accuracy. These 

results identify task-free EEG amplitude and connectivity as reliable diagnostic and 

prognostic markers of DOC, which can be inexpensively acquired at bedside and are 

completely independent of the patients’ neurocognitive abilities. Furthermore, our 

results suggest that the preservation of reverberant thalamo-cortical interactions 

predicts later reemergence of consciousness, and thus yield new insights into the 

neural mechanisms underlying recovery following brain injury. 

 

 

6.2 Materials and Methods 

 

Participants. Sixteen patients (12 male) with severe brain injury, who participated 

in an ‘Early Intensive Neurorehabilitation Programme’ (Eilander et al., 2005) between 

November 2002 and January 2004, were included in the study. Age at the time of 

injury ranged from 5.5 to 25.2 years (M = 16.7 years; SD = 4.8). Time since injury at 

admission ranged from 44 to 136 days (M = 71.3 days; SD = 22.6). All but six patients 

suffered from traumatic brain injury caused by traffic accidents. Patients participated 

in the programme for 45 to 197 days (M = 103.8 days; SD = 37.6). See Table 1 for a 

detailed description of the patients’ characteristics. 

A healthy control group consisted of 16 individuals (8 male), aged from 5.8 to 25.2 

years (M = 16.9; SD = 5.8). Patients and controls did not differ in age (t(15) = 0.71, p 

= 0.5). All patients and the healthy control group participated in this study following 

informed consent given by one of the parents, a legal representative or partner 

(patients and controls younger than 16 years), or by themselves (controls of 16 years 

or older). The study was approved by a medical ethics committee (METTOP).  
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Observation scale. We categorized the patients’ LoC based on the definitions 

described by ‘the International Working Party on the Management of the Vegetative 

State’ (Andrews, 1996), and the Aspen Neurobehavioural Conference (Giacino, 1997; 

Giacino et al., 2002). The categorization describes a comatose state, three vegetative 

sub-states, three nonvegetative sub-states, and a conscious state (see 

Supplementary Table 1 for a detailed classification scheme). This classification scale, 

now named the Post-Acute Level of Consciousness scale (PALOC-s), has a high 

reliability and validity (Eilander et al., 2009). In a second step this classification was 

reduced to four levels: levels 1, 2, and 3 were defined as UWS, levels 4, 5, and 6 as 

MCS, levels 7 and 8 as exit from MCS (eMCS) or conscious state. 

Procedure. Nine days after a patient was admitted to the treatment programme 

the first measurements took place. Patients were examined while they were lying in a 

bed in a quiet room with a constant temperature (23 ± 1 °C). Every two weeks the 

EEG measurement of 3 minutes took place at the same time of the day (between 

10:30 a.m. and 11:30 a.m).  

Every two weeks the rehabilitation physician determined the LoC based on the 

categories described in Supplementary Table 1. These assessments were performed 

until the patient was discharged from the programme. The programme was completed 

when 1) a patient qualified for regular rehabilitation because of recovery of 

consciousness and cognitive abilities, or 2) a patient did not show any recovery for a 

period of at least six weeks. These different recovery courses led to a variation in time 

span of the patients’ participation in the study and in the number of measurements. 

EEG collection and preprocessing. Brain activity was recorded using actively 

shielded pin-electrodes, by means of the ActiveTwo System (BioSemi, The 

Netherlands) at a sampling rate of 2 kHz. The electrodes were placed by using a head 

cap and electrode gel (Parker Signa) according to the 10/20 system, at F3, Fz, F4, 

C3, Cz, C4, Pz, and Oz. Horizontal EOG was recorded from two electrodes placed at 

the outer canthi of both eyes. Vertical EOG was recorded from electrodes above and 

below the two eyes. 

We used functions from the EEGLAB toolbox (Delorme and Makeig, 2004b) and 

custom MATLAB code to preprocess the EEG data. First, EEG data were down-

sampled the data to 1 kHz to speed up computation and rereferenced off-line to the 

average of the mastoid electrodes. Next, we removed line noise by applying a notch 

filter (50 Hz), and removed any additional high-frequency noise (e.g., harmonics of 

line noise) by applying a low-pass filter at 100 Hz. Additionally, we removed slow drifts 

related to changes in galvanic skin properties using a high-pass filter with a 0.5-Hz 

cut-off. All filters were two-way, least-squares, finite impulse response filters, and 

designed using the ‘fir1’ function in MATLAB 2012a. This type of filter does not 

introduce spurious phase consistency of oscillatory activity (Cohen, 2014a; van den 

Brink et al., 2014), which can sometimes occur with infinite impulse response filters, 

and so will not bias connectivity estimates. After filtering, we rereferenced the pairs of 

vertical and horizontal EOG channels to each other, rereferenced all scalp electrodes 
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to the common average, and segmented the data into non-overlapping epochs of 2 s 

duration. 

Next, segments containing artifacts were automatically detected using three 

criteria: the joint probability (3.5 SD cut-off), electrode kurtosis (3.5 SD cut-off), and a 

voltage threshold (±100 µV). In addition, data segments containing transient muscular 

activity or eye-movement-related artifacts were manually selected. On average, 14% 

(SD 11) of the data of the patient group and 10% (SD 2) of the data of the control 

group was marked as artefactual. After the rejection of artefactual segments, on 

average 170 s (SD 30) of clean data remained for the patient group, and 163 s (SD 8) 

for the control group. The amount of clean data did not differ between the patients and 

controls (t(90) = 0.99, p = 0.33).  

Frequency band-specific amplitude. For all segments of clean EEG data we 

computed the fast Fourier transform (FFT). To enable the comparison of values across 

participants, we expressed the amplitude at each frequency as a percentage of the 

total spectrum, separately per electrode. We produced a metric of global frequency 

band-specific power by averaging FFT amplitude across electrodes and across 

frequencies within 4 canonical frequency bands: δ (1-3 Hz); θ (4-7 Hz); α (8-15 Hz); β 

(16-31 Hz). In addition, we computed the ratio in amplitude between the α and δ 

bands, as used in earlier studies (Fellinger et al., 2011; Cheadle et al., 2014). We did 

not include the γ band because of controversy over the ability of surface EEG to 

reliably detect it (Yuval-Greenberg et al., 2008).  

EEG connectivity. We used correlation of orthogonalized amplitude envelopes as 

our measure of EEG connectivity (Hipp et al., 2012; Siems et al., 2016). The 

continuous (unsegmented) data were passed through a series of band-pass filters to 

isolate activity within the 4 canonical frequency bands (δ, θ, α, and β, see above). We 

filtered the continuous data rather than segmented data to prevent the introduction of 

edge artifacts that would otherwise occur around the segments’ outer bounds. We 

again used two-way, least-squares, finite impulse response filters to ensure that no 

phase shifts would occur. For each EEG electrode and frequency band (f ), excluding 

the segments that were previously identified as containing artifacts, we computed the 

complex analytic signal (X) over time (t) using the Hilbert transform, using the following 

equation: 

1 ( , )
( , ) ( , ) P.V. d

s t f
X t f s t f i

t

+∞

−∞

 
= + τ 

π − τ 
∫   

where P.V. denotes the Cauchy principal value, and s denotes the band-limited EEG 

signal. The analytic signal was calculated using the ‘hilbert’ function in MATLAB 

2012a.  

Given their heterogeneity in aetiology, the patients most likely differed from each 

other as well as from the control group in terms of volume conduction. That is, the 

patients’ cerebral architecture is compromised, and in a way that varies across 

patients. Thus, the point spread of brain activity across the scalp most likely varies 
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across patients as well. To accurately estimate connectivity across scalp electrodes, 

we therefore needed to account for the influence of volume conduction and differences 

between groups / patients therein. To do so, we orthogonalized the complex analytic 

signal of each electrode to that of each other electrode (Hipp et al., 2012) using the 

following equation:  

( , )*
( , ) imag ( , ) ,  where  ,

| ( , ) |
X

X t f
Y t f Y t f X Y S

X t f
⊥

 
= ∈ 

 
  

and S denotes the set of analytic signals of all electrodes, and * denotes the complex 

conjugate. ( , )
X

Y t f⊥
 represents the signal Y orthogonalized to signal X, at time point t 

and frequency band f. For each frequency band and electrode pair we then computed 

the Pearson correlation coefficient between ( )ln | |XY⊥
 and ( )ln | |X . This can be 

interpreted as computing the correlation between the log-transformed orthogonalized 

amplitude envelopes. We performed the orthogonalization and correlation in both 

directions, from signal X to Y and from signal Y to X, yielding two correlation 

coefficients per electrode pair. These correlation coefficients were subsequently 

averaged. In all cases where correlation coefficients were averaged, we applied 

Fisher’s r-to-z transform prior to averaging, and subsequently applied the z-to-r 

transform.  

For each participant, this procedure resulted in a frequency band by electrode by 

electrode (4 by 8 by 8) matrix of correlation coefficients that indicated the strength of 

connectivity between pairs of electrodes, corrected for the effect of volume 

conduction. Next, we computed a frequency band-specific metric of global brain 

connectivity by averaging across the lower triangular part of the connectivity matrices 

(excluding the diagonal). This indicated, for each frequency band, the average 

connectivity across all unique electrode pairs. We focus on global connectivity for 

three reasons. First, the number of statistical tests is greatly reduced by collapsing 

across electrode pairs, which alleviates the need for a stringent correction for multiple 

comparisons. Second, as noted above, there was substantial heterogeneity across 

patients in aetiology. By considering only global dynamics, our results are less likely 

to be dominated by idiosyncratically located focal disturbances in brain processing. 

Instead, the metric putatively reflects (pathological) connectivity that is shared by the 

entire cortex and thus captures processes that are pervasive in nature. Third, such 

shared cortical dynamics arguably reflect processes that have more profound 

consequences for patient recovery than localized effects (Schiff et al., 2014). All t tests 

that involved connectivity were performed on Fisher’s r-to-z transformed correlation 

coefficients.  

To confirm that the orthogonalization procedure effectively reduced spurious 

correlations in the amplitude envelope across EEG electrodes, we compared the 

orthogonalized amplitude envelope correlation with the amplitude envelope 

correlation that was computed on non-orthogonalized signals, separately for each 

group and each frequency band, using paired sample t-tests. For both patients and 
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control participants, the orthogonalization reduced the strength of connectivity 

significantly for all frequency bands (all p’s < 0.0001). Thus, the orthogonalization was 

effective in reducing spurious correlations. 

Linear discriminant analysis. We used linear discriminant analysis (LDA) to 

explore whether frequency band-specific EEG amplitude and connectivity can be used 

to reliably dissociate patients with DOC from healthy control participants and from 

each other. That is, LDA was used to establish to what extent amplitude and 

connectivity metrics contain diagnostic information. In addition, we used receiver 

operated characteristic (ROC) analysis to examine to what extent the amplitude and 

connectivity of individual frequency bands contributed to the classifier. Second, we 

explored whether EEG amplitude and connectivity also contain prognostic information 

by using LDA to predict each patient’s chances of recovery.    

We implemented the LDA with a naïve Bayes classifier, using the ‘classify’ 

function in MATLAB 2012a. The classifier fitted a multivariate normal density to each 

group with diagonal covariance matrix estimates ('diaglinear' selected as ‘type’), and 

then used likelihood ratios to assign observations to groups. ‘Groups’ here refers to 

either patient / control, patient groups (UWS / MCS), or outcome measures (UWS / 

MCS / eMCS). ‘Observations’ refer to the features that the classifier relied on: FFT 

amplitude, connectivity, or a combination of both. For each classification, unless 

mentioned otherwise, we report the combination of features that presented the highest 

degree of classification accuracy, quantified as the percentage of participants that 

were correctly assigned to their respective group by the classifier. In all cases, 

classification was performed using a leave-one-out procedure. Specifically, we first 

trained the classifier on the whole group of participants minus one, and we then used 

this trained classifier to predict to which group the left-out participant belonged. We 

did this for each participant separately so that eventually we obtained a prediction for 

each participant based on the rest of the participants.  

The statistical significance of classification accuracy was assessed using non-

parametric permutation testing. For 10,000 iterations we shuffled the assignment of 

observations to groups, and repeated the leave-one-out procedure. In cases where 

we tested multiple combinations of features, we computed all possible combinations 

of features in each iteration of the permutation test. This resulted in an aggregate 

distribution of ‘accuracies’ under the null hypothesis, corrected for the selection of a 

subset of features from the total possible feature set. We then calculated a p value 

(corrected for multiple comparisons across features) for the observed classification 

accuracy as the proportion of (aggregated) null accuracies that were more extreme 

than the true accuracy. Similarly, we tested the significance of the ROC analyses by 

comparing the area under the ROC curves to null distributions generated with 

permutation testing.  

Longitudinal analyses. We used linear mixed models (McLean et al., 1991) with 

maximum likelihood estimation to assess changes in spectral amplitude and 

connectivity over the course of patient recovery. Mixed models are ideally suited for 
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repeated-measures designs with a varying number of samples per participant. We 

tested linear, exponential, and quadratic models with random slopes and intercepts 

across the 3 LoCs (UWS, MCS, and eMCS), with both the participants and LoC as 

random factors, and amplitude / connectivity as dependent variables. In each instance 

of the statistical test, we selected the covariance model that minimized the Akaike 

information criterion (Akaike, 1974) and Bayesian information criterion (Schwarz, 

1978), and therefore provided the best fit. All mixed-model analyses were conducted 

using SPSS Statistics 23.  

 

 

6.3 Results 

 

Global and broad-band EEG activity distinguishes patients with DOC from 

controls, and from each other. We collected a total of 74 task-free EEG measurements 

at bedside from 16 patients diagnosed with DOC, using the Post-Acute Level of 

Consciousness scale (PALOC-s) (Eilander et al., 2009), and an additional 16 

measurements from healthy age- and education-matched control participants. Our 

first objective was to characterize differences in spectral activity between patients and 

controls. To do so, we compared global spectral amplitude and connectivity during 

each patient’s first measurement after entering the study to healthy controls, using 

independent-sample t tests. The patients showed an increased amplitude of 

oscillations in the δ and θ bands, but reduced amplitude in the α and β bands (Figure 

1A; δ: t(30) = 2.83, p = 0.004; θ: t(30) = 2.20, p = 0.018; α: t(30) = -3.17, p = 0.002; β: 

t(30) = -6.14, p < 0.001). The full amplitude spectrum is shown in Supplementary  

 

 
 

Figure 1. Global spectral amplitude and connectivity. A) Amplitude per frequency band for 

each group. B) Connectivity per frequency band for each group. Error bars denote the SEM. 

*p < 0.05; **p < 0.01; ***p < 0.001; n.s. nonsignificant. 
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Figure  1. Similarly, the patients showed hypersynchronous activity in the δ and θ 

bands, and hyposynchronous activity in the α band (Figure 1B; δ: t(15) = 2.51, p = 

0.02; θ: t(15) = 2.95, p = 0.01; α: t(15) = -3.94, p = 0.001; β: t(15) = -0.38, p = 0.71). 

Thus, compared to controls, the patients showed pronounced differences in both 

amplitude and connectivity that spanned a wide spectral range. Such global spectral 

disturbances in patients with DOC are consistent with earlier reports (Lehembre et al., 

2012; Lechinger et al., 2013; Chennu et al., 2014; Varotto et al., 2014), and are 

indicative of widespread pathophysiological cortical activity.  

Our next objective was to determine to what extent spectral amplitude and 

connectivity can aid the diagnosis of DOC at the level of individual patients. To do this, 

we used a naïve Bayes classifier. The classifier relied on frequency band-specific 

amplitude, connectivity, or a combination thereof, to predict the group of each  

 

 

 
Figure 2. Classification of patients and controls. A) Top row, confusion matrix for classification 

distinguishing patients from controls, based on both amplitude (β band) and connectivity (δ, θ, 

α bands). Colors indicate the relative number of cases in each cell. Bottom row, associated 

classifier weights. Filled and open dots show correctly and incorrectly classified individuals, 

respectively. B) ROC curves and corresponding areas under the curve, indicating the extent 

to which each frequency band contributed to the classifier. Top row, for spectral amplitude. 

Bottom row, for amplitude envelope correlations. The area under the curve can be interpreted 

as the accuracy with which the individual participant/patient’s group can be predicted based 

on the metric in that frequency band. The horizontal dotted line indicates chance performance. 

Error bars denote the 95% confidence interval of the permuted null distribution. *p < 0.05; ***p 

< 0.001; n.s. non-significant. 
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individual (patient or control). The statistical significance of classifier accuracy was 

assessed with permutation testing. When using amplitude in all frequency bands to 

distinguish the patients from participants in the control group, the classifier performed 

with an accuracy of 81% (26 out of 32 individuals assigned to the correct group, p < 

0.001). Second, classification based on connectivity in the δ, θ, and α bands was also 

highly accurate (88%, 28 out of 32 participants correctly assigned, p < 0.0001). When 

the classifier relied on connectivity in the δ, θ, and α bands, and was additionally 

informed by amplitude in the β band, accuracy was highest (94%, 30 out of 32 

participants correctly assigned, p < 0.0001). Figure 2A shows the confusion matrix for 

classification based on both amplitude and connectivity features. These results 

indicate that both spectral amplitude and connectivity can readily be used as metrics 

to distinguish patients from controls, but the combination of the two types of metrics 

yields additional information that cannot be inferred from either type of metric in 

isolation. ROC analysis indicated that the amplitude of all individual frequency bands 

contributed to the classifier, with the β band showing the highest accuracy (Figure 2B, 

top row). Moreover, connectivity in all but the β band contributed to the classifier 

(Figure 2B, bottom row).  

A useful clinical diagnostic tool for the diagnosis of DOC does not only distinguish 

patients from controls, but also provides a reliable indication of the type of DOC within 

individual patients. Thus, we next set out to investigate to what extent a classifier could 

distinguish patients that were diagnosed with UWS from those that showed minimal 

signs of consciousness (MCS). These two types of DOC are most difficult to dissociate 

based on EEG metrics alone (Schurger et al., 2015), so classification of these two 

types of DOC provides a good benchmark to test the diagnostic value of amplitude 

and connectivity. Moreover, the longitudinal study design enabled us to sample an 

adequate number of measurements at these two LoC from within the patient group to 

be used for classification.  

A classifier that relied on connectivity in the δ, θ, and α bands and amplitude in 

the β band, similar as used above, showed modest but above-chance-level 

performance in distinguishing the two groups (75% accurate, p = 0.018). However, 

accuracy improved when the classifier only used connectivity in the δ, θ and β bands 

as features (85% accurate, p = 0.001, Figure 3A). Thus, connectivity alone was most 

informative when distinguishing UWS patients from those patients that displayed 

minimal signs of consciousness. In agreement with this notion, ROC analysis showed 

that only connectivity in the δ, θ and β bands contributed to the classifier (Figure 3B). 

Control analyses ruled out patient age as a confound (see Supplementary Results). 

As noted above, for distinguishing patients from fully conscious control participants, 

the combination of amplitude and connectivity proved to be most informative. 

Together, these findings raise the hypothesis that changes in amplitude occur when 

patients transitioned from unconsciousness to consciousness, but changes in 

connectivity occur at the transition from UWS to MCS. To address this hypothesis, in  



  

 

C
h
a
p
te

r 
6
 

 

 
Figure 3. Classification between patient groups. A) Top row, confusion matrix for 

classification distinguishing UWS  from MCS patients, based on connectivity (δ, θ, β bands). 

Colors indicate the relative number of cases in each cell. Bottom row, associated classifier 

weights. Filled and open dots show correctly and incorrectly classified patients, respectively. 

B) ROC curves and corresponding areas under the curve, indicating the extent to which each 

frequency band contributed to the classifier. Top row, for spectral amplitude. Bottom row, for 

amplitude envelope correlations. The area under the curve can be interpreted as the accuracy 

with which the individual participant/patient’s group can be predicted based on the metric in 

that frequency band. The horizontal dotted line indicates chance performance. Error bars 

denote the 95% confidence interval of the permuted null distribution. *p < 0.05; ***p < 0.001; 

n.s. non-significant.  

 

 

the next section we explore longitudinal changes in oscillatory amplitude and 

connectivity metrics across the patients’ course of recovery.  

Frequency band-specific amplitude and connectivity track longitudinal changes in 

patients’ level of consciousness. Having established that spectral amplitude and 

connectivity can be used as reliable markers for the diagnosis of DOC, we next set 

out to investigate whether spectral amplitude and connectivity track the LoC over the 

course of patients’ recovery. In the following set of analyses, we used linear mixed 

models to test if the individual metrics changed across the LoC. We explored linear, 

exponential, and quadratic changes in all frequency bands. Furthermore, we 

examined changes in the ratio between α and δ amplitude, as used in prior research 

(Fellinger et al., 2011; Cheadle et al., 2014). The amplitude and connectivity of all 
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frequency bands for each LoC are shown in Supplementary Figure 2 and 

Supplementary Figure 3. 

The ratio between α and δ amplitude increased significantly across LoC (F(2,23) 

= 4.63, p = 0.021). As shown in Figure 4A, however, the data suggested that this 

increase was not linear over time, but instead was relatively stable for lower LoC and 

then exponentially increased, resulting in an overshoot compared to the control group. 

Consistent with this notion, including an exponential predictor in the model resulted in 

a significant exponential effect of LoC on α/δ amplitude ratio (F(1,32) = 6.31, p = 

0.017), and rendered the linear effect nonsignificant (F(1,40) = 3.40, p = 0.073). Thus, 

the change in the α/δ amplitude ratio across LoC was best captured by an exponential 

increase instead of by a linear increase. Similarly, β amplitude increased linearly with 

LoC (F(2,21) = 3.75, p = 0.040), but an exponential model best explained the change 

across LoC (F(1,14) = 11.42, p = 0.005; Figure 4B). As opposed to a progressive 

increase across LoC, connectivity in the θ band showed a quadratic relationship with 

LoC (F(1,45) = 9.05, p = 0.024). Figure 4C shows that θ connectivity was low for UWS 

scores, increased for MCS scores, and recovered to normative levels for eMCS 

scores. In the following, we explore whether amplitude and connectivity also provide 

prognostic information.    

 

 

 
Figure 4. Longitudinal changes in EEG metrics. A) The ratio between α and θ amplitude 

increases with level of consciousness, and shows an overshoot for the patients with higher 

levels of consciousness. B) β amplitude increases with level of consciousness. C) θ 

connectivity shows an inverted-U relationship with level of consciousness. Controls are shown 

for visual comparison. Error bars denote the SEM. PALOC-s: Post-Acute Level of 

Consciousness scale. 

 

 

Brain-wide connectivity predicts patient recovery. Thus far we have shown that 

global amplitude and connectivity can be used as markers for the diagnosis of DOC. 

Furthermore, frequency band-specific changes in these metrics occur across the 

course of patient recovery. We next asked if amplitude and connectivity can also be 

used as reliable prognostic markers. That is, can amplitude and connectivity during a 

single task-free EEG measurement, conducted upon the patients’ admission to the 
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study, be used to predict the patients’ level of recovery? To do this, we used a 

classifier to predict each patient’s outcome diagnosis at the point of discharge from 

the rehabilitation center. The outcome diagnosis was either UWS, MCS, or eMCS, 

and thus chance-level classification accuracy was 33%.  

When amplitude was used as features, the α band alone yielded the highest 

classification accuracy (62% accurate, p = 0.014). In line with the observations made 

above, amplitude dissociated relatively well between MCS and eMCS, but performed 

poorly at dissociating the lower LoC outcome measures (Figure 5A). However, 

connectivity in the θ, α and β bands proved to be more reliable features, resulting in 

an accuracy of 75% (p < 0.001, Figure 5B). Connectivity in isolation also out-

performed a classifier that relied on both amplitude and connectivity (69% accurate, p 

= 0.003). Thus, based on connectivity during a single task-free EEG measurement, 

conducted upon the patents’ admission to the study, it was possible to make a 

prognosis for patient recovery ~3 months later with 75% accuracy. The possibility that 

variation across patients in LoC at the time of measurement was driving the classifier 

cannot account for our findings, because LoC during the first measurement and 

outcome score were not significantly correlated (r = 0.33, p = 0.21). Additional control 

analyses ruled out patient age as a confound (see Supplementary Results). These  

 

 

 
Figure 5. Classification of outcome measures. A) Confusion matrix for classification using α 

amplitude (left), and associated classifier weights (right). B) Confusion matrix for classification 

using θ, α and β connectivity (left), and associated classifier weights (right). Shades of grey 

and numbers in the confusion matrices indicate the relative number of cases in each cell. 
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results identify EEG connectivity as a reliable marker of recovery from DOC. As we 

discuss below, these results also tentatively point to neural mechanisms that may 

underlie recovery from DOC.      

 

 

6.4 Discussion 

 

In the present study, we examined if and how task-free spectral EEG amplitude 

and connectivity metrics change over the course of patient recovery, following severe 

brain injury. Moreover, we examined if these metrics can be used to predict the current 

(diagnosis) and future (prognosis) LoC of individual patients. Our first key finding is 

that amplitude and connectivity can reliably be used as diagnostic markers of DOC 

(Figures 2 and 3). Dissociating patients from healthy control participants worked best 

when relying on δ, θ, and α band connectivity, and amplitude in the β band. 

Dissociating UWS from MCS patients was most successful based on δ, θ and β band 

connectivity. Our second key finding is that task-free spectral amplitude and 

connectivity do not vary monotonically across LoC, but instead show nonlinear 

dynamics (Figure 4). Specifically, we found that amplitude in the β band, and α/δ 

amplitude ratio, increased exponentially across LoC, while θ band connectivity 

showed an inverted-U relationship with LoC. Finally, our findings show that 

connectivity metrics (θ, α and β bands) are highly robust markers of patient prognosis 

(Figure 5B).  

The exponential increase in amplitude (ratio) across LoC is broadly consistent 

with an account that posits that consciousness recovers only after neural function 

crosses a critical threshold level (Bagnato et al., 2013). Moreover, the inverted-U 

shaped relationship between LoC and θ connectivity may explain why amplitude and 

connectivity provide complementary diagnostic information when dissociating patients 

from controls, whereas connectivity alone is most informative when dissociating UWS 

from MCS patients. Whereas amplitude (ratio) is stable for UWS / MCS and then 

increases, θ connectivity deviates most strongly in MCS, but appears normative for 

UWS and eMCS. Accordingly, the three LoC are each marked by a unique spectral 

fingerprint (Siegel et al., 2012) that is apparent only when both amplitude and 

connectivity are considered. This suggests that a successful distinction between the 

three LoC requires multivariate classification, as we have used here.  

A recent account has highlighted the central role of the thalamus in the regulation 

of arousal through its excitatory connections to the cortex and striatum (Schiff, 2010; 

Schiff et al., 2014). According to this account, pathologically elevated slow-wave 

amplitude indicates damage in the thalamo-cortico-thalamic loop. Such damage in the 

thalamo-cortical system causes a loss of excitatory drive to the cortex and 

consequently results in a general ‘slowing down’ of cortical rhythms (Giacino et al., 

2014; Schiff et al., 2014), consistent with our findings (Figure 1a) and animal models 

of cortical deafferentation (Timofeev et al., 2000; Lemieux et al., 2014). Importantly, 
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combined with the finding of absent pathologically increased connectivity in UWS 

(Figure 4C), the pattern of results suggests that a lack of central thalamic coordination 

of oscillatory activity across the cortex in UWS, potentially due to the loss of excitatory 

drive from the thalamus to the cortex, or vice versa. Relatedly, the inverted-U shaped 

pattern of θ connectivity across LoC may explain why connectivity metrics in particular 

were most informative about later patient recovery. Elevated θ connectivity in UWS 

patients might be indicative of the relative sparing of projections within the thalamo-

cortico-thalamic circuit, and hence the potential for recovery of reverberant excitatory 

drive and associated high-frequency activity. This notion is consistent with findings 

that the recovery of consciousness is paralleled by a restoration in thalamo-cortical 

interactions (Laureys et al., 2000), the spread of cortical activity following transcranial 

magnetic stimulation dissociates UWS from MCS patients (Rosanova et al., 2012; 

Casali et al., 2013), and thalamic stimulation can facilitate behavioral responsiveness 

(Schiff et al., 2007).    

Notwithstanding the potential diagnostic and prognostic utility of amplitude and 

connectivity metrics, some limitations of the present study should be acknowledged. 

First, the classifier’s false negative rate for the purpose of diagnosis as well as for 

prognosis was higher than the false positive rate (Figure 2, Figure 3, Figure 5), 

indicating that the classifier was somewhat pessimistic. Ideally, the false positive and 

false negative rates would be balanced. False negatives in diagnosis based on 

behavioral criteria have been attributed in part to temporal fluctuations in the patient’s 

arousal state (Piarulli et al., 2016). This may also be the case for the neural markers 

employed here. This potential problem could be resolved by close monitoring of 

ultradian fluctuations in the patients’ arousal state (Piarulli et al., 2016). Second, the 

nonlinear variations in amplitude and connectivity observed here (Figure 4) appear to 

be at odds with earlier reports of monotonic changes across LoC in entropy metrics of 

cortical interactions (King et al., 2013; Sitt et al., 2014). This discrepancy may be 

explained by the fact that in these studies patients were presented with auditory 

stimuli, which could evoke synchronous cortical states. Alternatively, the here 

employed measure of connectivity (orthogonalized amplitude envelope correlations) 

may reflect qualitatively different network interactions than the metrics used in 

previous studies. Third, it should be noted that our findings may not generalize to DOC 

with different aetiology (e.g., due to neurodegenerative disease). Finally, our findings 

strongly call for independent replication, preferably with a larger sample size, to 

determine the specific combination of features that yields the most accurate diagnosis 

and prognosis. 

In conclusion, diagnosis and prognosis based on amplitude and connectivity from 

task-free EEG measurements is feasible. These measures can be acquired 

inexpensively, with low electrode density, at bedside, and are fully independent of the 

patients’ neurocognitive abilities. Our longitudinal findings in the amplitude domain are 

consistent with an existing account that proposes that neural function crosses a 

threshold level prior to the reemergence of consciousness following DOC (Bagnato et 
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al., 2013). Furthermore, our findings in the connectivity domain lend support to a 

recent account that posits that dysfunction in the thalamo-cortical system underlies 

DOC (Schiff, 2010; Schiff et al., 2014), and further suggest that neural signatures of 

thalamo-cortical interactions are predictive of patient recovery. A rigorous assessment 

of the pathophysiological mechanisms underlying DOC may open the door to 

diagnostic taxonomies that are independent of behavioral criteria, and facilitate early 

targeted interventions that are tailored to the individual patient’s needs.  

 

 

6.5 Supplementary Materials 

 

Ruling out participant age as a confound in classification analyses. Because of 

the heterogenous age distribution of our patient sample, and given that spectral 

activity has been reported to change across lifespan (van Albada et al., 2010), it is 

conceivable that patient age was driving the classification analyses. To rule out this 

possibility, we correlated participant age at the time of measurement with the 

classifier’s graded output (i.e. the weighted posterior probability that the classifier 

assigned to each patient, indicating the classifier’s estimated likelihood that the patient 

belonged to a particular group).  

If patient age was driving the classifier’s performance when distinguishing UWS 

from MCS participants (Figure 3A in the main text), then participant age should 

significantly correlate with the classifier’s graded output. However, age and classifier 

output did not correlate significantly across the full patient sample (r = 0.007, p = 0.98), 

across UWS patients alone (r = 0.22, p = 0.54), or across MCS patients (r = -0.12, p 

= 0.75). Thus, patient age did not drive the performance of the classifier that 

distinguished UWS from MCS patients.  

Similarly, to rule out that patient age was driving the classifier that most accurately 

predicted the patient outcome scores (Figure 5B in the main text), we correlated 

participant age with the classifier’s assigned likelihood of each group, and found no 

significant effects (UWS: r = -0.09, p = 0.74; MCS: r = -0.15, p = 0.58; eMCS: r = 0.30, 

p = 0.27), thus ruling out age as a confound in the classification analyses. 
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Supplementary Table 1. Post-Acute Level of Consciousness Scale (PALOC-s) 

 
  

Global Level PALOC 
Score 

Description of the levels 

Coma Eyes are closed all the time. No sleep-wake cycles present. 

1 All mayor body functions such as breathing, temperature control, or 
blood pressure can be disturbed. Generally, no reactions are noticed 
after stimulation. Sometimes reflexes (stretching or flexing) can be 
observed as a reaction when strong pain stimuli have been applied. No 
other reactions present. 

LOC 1 

Uresponsive 
wakefulness 
syndrome 
(UWS) / 
Vegetative 
state  

Patient has some sleep-wake cycles, but no proper day-night rhythm. Most of the 
body functions are normal. No further ventilation is required for respiration. 

2 

 

 

 

3 

 

 

Very little response (hyporesponsive) 

Generally no response after stimulation. Sometimes delayed 
presentation of reflexes is observed. 

 

Reflexive state 

Often stimuli result in massive stretching or startle reactions, without 
proper habituation. Sometimes these reactions evaluate into massive 
flexing responses. Roving eye movements can be seen, without 
tracking. Sometimes grimacing occurs after stimulation. 

 

LOC 2 

Minimally 
conscious 
state (MCS) 

4 

 

 

 

High active level and/or reactions in stimulated body parts 

Generally spontaneous undirected movements. Retracting of a limb 
following stimulation. Orienting towards a stimulus, without fixating. 
Following moving persons or objects, without fixating. 

 5 

 

 

 

 

6 

 

 

Transitional state 
Following and fixating of persons and objects. Generally more directed 
reactions to stimuli. Behaviour is automatic, i.e. opening of the mouth 
when food is presented, or reaching towards persons or objects. 
Sometimes emotional reactions are seen such as crying or smiling 
towards family or to specific (known) stimuli. 

Inconsistent reactions 

Sometimes, but not always, obeying simple commands. Totally 
dependent. Patient has profound cognitive limitations; 
neuropsychological testing is impossible. Level of alertness is 
fluctuating, but in general low. 

 

LOC 3 

Exit from MCS 
(eMCS) / 
Conscious 
state 

7 

 

 

Consistent reactions 

Patient obeys simple commands. The level of alertness is high and 
stable. Many cognitive disturbances remain. Patient is totally 
dependent. 

 8 Patient is alert and reacts to his/her environment spontaneously. 
Functional understandable mutual communication is possible, 
sometimes with technical support. As yet, cognitive and behavioural 
disturbances can be present. 
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Supplementary Fig. 1. Log-plot of the global spectral amplitude for patients and control 

participants. Shaded areas indicate the different frequency bands.  
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Supplementary Fig. 2. Amplitude per frequency band and level of consciousness. 

Error bars denote the SEM. PALOC-s: Post-Acute Level of Consciousness scale.  
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Supplementary Fig. 3. Connectivity per frequency band and level of consciousness. 

Error bars denote the SEM. PALOC-s: Post-Acute Level of Consciousness scale. 
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7. Dutch Summary  



  

 

7.     Nederlandse samenvatting 

 

In dit proefschrift zijn diverse thema’s aan bod gekomen, zoals ‘brain state’, 

neuromodulatie, en aandacht. Wat volgt is een beknopt overzicht van deze thema’s, 

gevolgd door een samenvatting van dit proefschrift in de context van deze thema’s.  

 

7.1   Het locus coeruleus-noradrenerge systeem 

 

De locus coeruleus (afgekort ‘LC’) is een kleine kern diep in de hersenstam, die 

zijn naam (letterlijk vertaald: ‘blauwe kern’) ontleent aan zijn kleur. In het volwassen 

brein bestaat de LC uit ongeveer 35.000 neuronen (hersencellen) in elke hersenhelft, 

en is ongeveer zo groot als een korrel rijst. Ondanks zijn grootte projecteert de LC 

naar vrijwel elk ander deel van het brein, waar het de stof noradrenaline (afgekort 

‘NE’, afgeleid van het Engelse norepinephrine) afgeeft. Als gevolg van zijn 

wijdverbreide projecties is de LC de primaire bron van NE in het centrale zenuwstelsel, 

en speelt het LC-NE systeem een fundamentele rol bij diverse cognitieve functies.  

Onderzoek met primaten heeft aangetoond dat de LC twee modi operandi heeft: 

in de ‘fasische’ modus vuren de neuronen van de LC gezamenlijk, kort, en op een 

manier die een sterke temporele correspondentie vertoont met gedragsmatige 

responsen. In de ‘tonische’ modus vuren de neuronen van de LC geleidelijk en 

langdurig, zonder directe temporele relatie met gedrag. Echter, over langere 

tijdsperiodes is er wel degelijk een relatie tussen tonische LC activiteit en gedrag: 

periodes van weinig tot geen tonische LC activiteit gaan samen met onoplettendheid 

of slaperigheid; periodes van gemiddelde tonische LC activiteit gaan samen met 

goede taakuitvoering; en periodes van hoge tonische LC activiteit gaan samen met 

afleidbaar gedrag of stress.  

In tegenstelling tot andere neurotransmitters heeft NE geen eenduidig effect op 

de neuronen die het beïnvloedt, maar verandert NE het effect van andere 

neurotransmitters op deze neuronen, een proces genaamd neuromodulatie. Een 

eigenschap van neuromodulatie door NE is dat de vuurkarakteristieken van neuronen 

veranderen op een manier die er toe leidt dat dominante vuurpatronen nog dominanter 

worden, en minder dominante vuurpatronen zwakker. Dit proces staat bekend als gain 

modulatie, en vormt een belangrijk ingrediënt voor de adaptive gain theorie van LC-

NE functie. 

Deze theorie stelt dat het LC-NE systeem, door zijn effect op gain, de balans kan 

reguleren tussen uitbuiting van beloning van de huidige taak en exploratie van andere, 

mogelijk meer belonende, taken. Omdat fasische LC activiteit alleen plaatsvindt na 

stimuli die relevant zijn voor het uitvoeren van de huidige taak, zorgt fasische LC 

activiteit er voor (door middel van het effect van NE op gain) dat deze stimuli beter 

verwerkt worden, en ten koste van doel-irrelevante stimuli. Omgekeerd zorgt 

verhoogde tonische LC activiteit voor een onspecifieke verwerking (in de tijd) van 

stimuli, resulterend in een minder strenge selectie van sensorische informatie, en 
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daarmee mogelijke exploratie van andere taken. Dus door de balans tussen fasische 

en tonische LC activiteit te reguleren, kan de LC veranderingen in gedrag 

teweegbrengen in reactie op veranderingen in de omgeving. 

Naast de modulatie van gain heeft onderzoek, voornamelijk in kreeftachtigen, 

aangetoond dat NE de totale ‘activiteitsstaat’ van een neuraal netwerk op diverse 

manieren kan hervormen. Afhankelijk van de concentratie van NE, de aanwezigheid 

van andere neuromodulatoren, en de huidige staat van het neurale netwerk, kan NE 

leiden tot het stilvallen of juist verhogen van de activiteit binnen het netwerk. Deze 

eigenschap vormt de basis van een andere belangrijke theorie over de functie van het 

LC-NE systeem: network reset. In tegenstelling tot adaptive gain stelt deze theorie dat 

de afleidbaarheid tijdens periodes van verhoogde LC activiteit wordt veroorzaakt door 

herhaalde ‘network resets’: abrupte veranderingen in de staat van het brein en 

bijkomende cognitieve shifts. 

Breed genomen convergeren de bestaande theorieën over de functie van het LC-

NE systeem (zoals adaptive gain en network reset, maar ook andere theorieën die 

hier niet zullen worden besproken) op de conclusie dat de LC veranderingen in gedrag 

reguleert, op basis van veranderingen in de omgeving. Echter, waar deze theorieën 

voornamelijk van elkaar verschillen, is de manier waarop het LC-NE veranderingen in 

gedrag implementeert op een neuraal niveau. Zoals hieronder besproken: 

sensorische informatie die een persoon informeert over de staat van de omgeving 

wordt niet eenduidig verwerkt door het brein, maar wordt sterk beïnvloed door 

spontane, intrinsieke, hersenactiviteit. Recent onderzoek suggereert dat NE mogelijk 

een belangrijke rol speelt bij het vormen van deze spontane hersenactiviteit en de 

interactie daarvan met de verwerking van sensorische informatie. Dit biedt mogelijk 

nieuwe inzichten in de manier waarop het LC-NE systeem gedrag reguleert.  

 

 

7.2   De samenkomst van brain state, neuromodulatie, en cognitie 

 

Hersenactiviteit volgt niet simpelweg uit de verwerking van externe (sensorische) 

informatie, maar ontstaat door een complexe en non-lineaire interactie tussen 

sensorische informatie en spontane – intern gegenereerde – hersenactiviteit. De staat 

van deze spontane hersenactiviteit, en de interactie met sensorische informatie, is 

niet statisch, maar fluctueert over de tijd.  

Een bekend voorbeeld van zulke fluctuaties in de staat van het brein is het 

circadiaan ritme. Tijdens de diepe stadia van slaap schommelt hersenactiviteit 

ritmisch tussen periodes waarin neuronen gezamenlijk vuren, en periodes van bijna 

complete absentie van neuronaal vuren. Deze synchrone staat gaat samen met een 

verminderde responsiviteit van het brein op sensorische informatie, en vormt een sterk 

contrast met de waaktoestand, waarin neuronen voornamelijk asynchroon vuren en 

waarin men sensorische informatie over het algemeen normaal verwerkt. Recentelijk 

is aangetoond dat binnen de waaktoestand ook afwisselingen plaatsvinden tussen de 



  

 

synchrone en asynchrone staat, zij het op een minder prominente manier dan over de 

gehele circadiane cyclus.  

Onze capaciteit om doelrelevante sensorische informatie te selecteren en 

irrelevante informatie te negeren, genaamd top-down ‘aandacht’, vertoont soortgelijke 

neurale karakteristieken als de asynchrone toestand van het brein. Schommelingen 

tussen synchrone en asynchrone hersenactiviteit gaan samen met schommelingen in 

de responsiviteit van neuronen die sensorische informatie verwerken, en met 

schommelingen in onder andere het reactievermogen. Dit heeft geleid tot het voorstel 

dat aandacht mogelijk wordt gereguleerd door dezelfde neurale mechanismes als 

veranderingen in de staat van het brein.  

De activiteit van de LC co-fluctueert ook met de hierboven beschreven 

schommelingen in de staat van het brein. Tijdens de transitie van de waaktoestand 

naar slaap neemt de activiteit van de LC geleidelijk af, en valt deze nagenoeg stil 

tijdens de diepere stadia van slaap. Daarnaast gaan overgangen van de synchrone 

staat naar asynchrone staat van het brein tijdens de waaktoestand samen met de 

afgifte van NE in de hersenschors, en met een toename in de diameter van de pupil. 

De grootte van de pupil co-fluctueert ook met de activiteit  van de LC. Daarnaast gaan 

al deze schommelingen in brain state, pupil, en LC activiteit, samen met 

schommelingen in eigenschappen van gedrag zoals het reactievermogen, 

accuratesse, en afleidbaarheid.  

Het bovenstaande geeft aan dat de staat van het brein, neuromodulatie, en 

cognitieve capaciteiten zoals aandacht, sterk met elkaar verbonden zijn. Deze 

samenkomst vormt het centrale thema van dit proefschrift. Wat volgt is een korte 

samenvatting van de empirische hoofdstukken van dit proefschrift waarin elk 

hoofdstuk wordt besproken in de context van brain state, neuromodulatie, cognitie, of 

een combinatie van deze sub-thema’s. 

 

 

7.3   Samenvatting van dit proefschrift 

 

7.3.1     Hoofdstuk 2: Post-Error Slowing as a Consequence of Disturbed Low- 

Frequency Oscillatory Phase Entrainment 

 

Een van de meest voorkomende bevindingen in reactietijd (RT) taken is dat RTs 

langer worden na het maken van fouten. Dit fenomeen heet post-error slowing, en 

treedt op onder verschillende taakcondities en in diverse respons-modaliteiten. Er zijn 

verschillende voorstellen gedaan over de aard van post-error slowing, waaronder de 

strategische aanpassing van gedrag met als doel het voorkomen van verdere fouten, 

als wel interferentie in stimulusverwerking als gevolg van de fout.    

Zoals besproken in de voorgaande sectie, beïnvloedt de staat van het brein ons 

vermogen om relevante sensorische informatie te selecteren en er op te reageren. 

Voorgaand onderzoek suggereert dat onder omstandigheden waarin stimuli ritmisch 
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worden aangeboden de staat van ons brein dynamisch wordt aangepast aan dit ritme 

(zogenaamde entrainment), zodat stimuli geanticipeerd worden en optimaal worden 

verwerkt. Op deze manier faciliteert entrainment snelle en accurate gedragsmatige 

responsen op stimuli. 

In hoofdstuk 2 van dit proefschrift testen we de nieuwe hypothese dat post-error 

slowing mogelijk veroorzaakt wordt door een verstoring van entrainment. Deze 

hypothese hebben we getest door proefpersonen een moeilijke RT taak te laten 

uitvoeren onder tijdsdruk, terwijl we ritmische EEG activiteit maten. Onze resultaten 

laten zien dat de staat van het brein zich inderdaad aanpast aan het ritme van de 

stimuluspresentatie, en dat de fase van deze ritmische hersenactiviteit de RT 

voorspelt. Ook tonen onze resultaten aan dat de fase van ritmische hersenactiviteit 

tijdelijk verstoord is na het maken van een fout, en dat de mate van deze verstoring 

de mate van post-error slowing voorspelt.  

Onze resultaten zijn consistent met de orienting account van post-error slowing, 

die stelt dat fouten, als gevolg van het feit dat ze verrassende gebeurtenissen zijn, 

resulteren in de tijdelijke heroriëntatie van aandacht weg van de taak, en als gevolg 

van deze heroriëntatie, langere RTs op volgende trials. Een interessante observatie 

is dat de LC fasisch vuurt in reactie op verrassende stimuli, en er bestaan in de 

literatuur theoretische voorstellen die post-error slowing linken aan activiteit in het LC-

NE systeem. Daarnaast stelt de network reset theorie dat activatie van het LC-NE 

systeem (in de huidige context, als gevolg van fouten) leidt tot een aanpassing van 

gedrag. We speculeren dat het mogelijk is dat entrainment, en de daaruit volgende 

responsstaat, verstoord wordt door een orienting respons in het LC-NE systeem. Deze 

verstoring hindert de prestatie op de taak op de korte termijn, maar is mogelijk adaptief 

op de langere termijn. 

 

7.3.2     Hoofdstuk 3: Catecholaminergic Neuromodulation Shapes Intrinsic MRI  

Functional Connectivity in the Human Brain 

 

Spontane hersenactiviteit correleert tussen hersengebieden. De ruimtelijke 

structuur van deze correlaties verandert dynamisch met veranderingen in de staat van 

bewustzijn en taakcondities. In hoofdstuk 3 van dit proefschrift testen we de hypothese 

dat fluctuaties in de sterkte van deze correlaties geïnduceerd worden door het LC-NE 

systeem. Proefpersonen kregen in deze dubbelblind uitgevoerde studie op twee 

aparte sessies placebo en atomoxetine. Atomoxetine remt de NE transporter, en 

verhoogt daarmee de beschikbaarheid van NE in het brein. Vervolgens onderzochten 

we wat het effect van deze verhoogde beschikbaarheid van NE was op de sterkte van 

spontane correlaties in hersenactiviteit, gemeten met functionele MRI. 

 Zoals hierboven besproken heeft NE invloed op gain. Als gevolg daarvan vindt 

er een facilitatie plaats van het doorgeven van neurale signalen over het gehele brein. 

Computermodellen van neurale netwerken hebben gesuggereerd dat deze toename 

in het doorgeven van neurale signalen moet leiden tot een toename in de sterkte van 



  

 

zowel positieve als negatieve correlaties in hersenactiviteit, alsmede de mate van 

clustering van deze correlaties. Op basis van deze voorspellingen, en op basis van 

pupil-gerelateerde bevindingen, verwachtten we dat atomoxetine de sterkte en de 

mate van clustering van spontane correlaties zou moeten verhogen. Daarnaast, 

gegeven de veronderstelde homogeniteit van de projecties van de LC over het brein 

heen, verwachtten we dat een atomoxetine-geïnduceerde toename in sterkte van 

correlaties ook homogeen zou moeten zijn over het brein.  

Echter, tegen de verwachting in vonden we dat atomoxetine de sterkte van 

correlaties verminderde, en op een ruimtelijk gestructureerde manier. De afname in 

de sterkte van correlaties vertoonde een gradiënt over het brein heen, was afhankelijk 

van de baseline sterkte van correlaties, en was het sterkste voor connecties tussen 

verschillende netwerken in het brein. Onze bevindingen zijn de eersten die aantonen 

dat neuromodulatie de sterkte en ruimtelijke structuur van intrinsieke correlaties 

vormgeeft. De onverwachte afname in de sterkte van deze correlaties is een eerste 

indicatie dat het effect van neuromodulatie op spontane hersenactiviteit afhangt van 

de staat van het brein. Deze bevinding sluit goed aan bij theoretische voorstellen, 

maar is moeilijk te verklaren enkel door een toename in gain. Het ruimtelijk 

gestructureerde effect van atomoxetine op de sterkte van correlaties is mogelijk te 

verklaren door recente bevindingen die heterogeniteit in het LC-NE systeem 

aantonen, alsmede door heterogeniteit in de verdeling van NE receptoren over het 

brein heen.  

 

7.3.3     Hoofdstuk 4: Catecholamines Modulate Intrinsic Long-range Correlations in  

the Human Brain 

 

In hoofdstuk 4 testen we de voorspelling van de network reset theorie dat een 

toename in de beschikbaarheid van NE zou moeten leiden tot een reorganisatie van 

de functionele netwerken in het brein. Hiervoor hebben we de data gebruikt uit 

hoofdstuk 3, waarin proefpersonen atomoxetine toegediend kregen (waardoor de 

beschikbaarheid van NE verhoogd werd). We hebben twee complementaire 

analysemethodes toegepast om het effect van NE op de fijnmazige patronen van MRI 

correlaties te onderzoeken: ‘dual regression’ en ‘spatial mode decomposition’. In 

tegenstelling tot hoofdstuk 3, onderzoeken we in hoofdstuk 4 of atomoxetine leidt tot 

veranderingen in de spatiële structuur (topologie) van spontane correlaties in 

hersenactiviteit, gemeten met fMRI, in plaats van alleen de sterkte van deze 

correlaties. 

Beide analysemethodes leverden aansluitend bewijs voor een afname in de 

sterkte van correlaties tussen verschillende hersengebieden, met name tussen 

sensorische en motor-gerelateerde hersengebieden. Daarnaast leverde spatial mode 

decomposition bewijs voor een shift in dominantie van links- naar rechts-

gelateraliseerde frontopariëtale netwerkactiviteit. Het belangrijkste effect van 

atomoxetine was het schalen van de sterkte van correlaties binnen bestaande 
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netwerken, in plaats van een globale reorganisatie van de topologie van deze 

netwerken. 

Onze bevindingen zijn consistent met eerdere bevindingen in primaten: 

atomoxetine veroorzaakte verminderingen in de sterkte van correlaties binnen 

sensorische en motor-gerelateerde netwerken. Echter, wij tonen aan dat deze 

afnames in sterkte ook kwantitatief van aard kunnen zijn, in plaats van noodzakelijk 

het resultaat van een topologische verandering, zoals voorspeld door de network reset 

theorie.  We concluderen dat NE dynamisch de sterkte van spontane correlaties 

aanpast, mogelijk met als doel om gedrag flexibel aan te passen aan de eisen 

omgeving.  

 

7.3.4      Hoofdstuk 5: Pupil Diameter Tracks Lapses of Attention 

 

Ons vermogen om voor langere tijd doel-relevante informatie te monitoren en er 

op te reageren, langdurige aandacht, is niet onbeperkt. Voorgaande studies over de 

relatie tussen verslappingen van de aandacht en psychofysiologische markers van 

langdurige aandacht, zoals pupildiameter, hebben tegenstrijdige resultaten 

opgeleverd. De adaptive gain theorie voorspelt dat baseline pupildiameter een 

omgekeerde-U relatie zou moeten vertonen met prestatie op taken waarbij aandacht 

besteed moet worden aan doel-relevante stimuli. Met andere woorden, de meeste 

verslappingen van de aandacht zouden onder adaptive gain moeten optreden op 

momenten dat de pupil zowel relatief groot is, als relatief klein. In hoofdstuk 5 testen 

we deze voorspelling. Daarnaast verkennen we additionele markers van de staat van 

aandacht, deels gebaseerd op voorgaand onderzoek dat een relatie heeft aangetoond 

tussen de afgeleide van pupildiameter en de staat van het brein.  

We onderzoeken de relatie tussen tonische fluctuaties in de diameter van de 

pupil, en de prestatie op een uitdagende taak waarbij langdurige aandacht van belang 

is. Onze resultaten laten zien dat pupildiameter een robuuste lineaire relatie vertoont 

met verschillende maten van taakprestatie, waarbij de meeste verslappingen van de 

aandacht optreden op momenten dat de pupil relatief klein is. Echter, deze 

bevindingen werden voornamelijk gedreven door een gedeeld effect van time-on-task 

op zowel pupildiameter als prestatie op te taak. De lineaire relatie tussen 

pupildiameter en prestatie op de taak verdween nadat we statistisch corrigeerden voor 

het effect van time-on-task. In plaats daarvan vonden we een consistente 

omgekeerde-U relatie tussen pupildiameter en taakprestatie. 

Daarnaast vonden we een sterke lineaire relatie tussen de afgeleide van 

pupildiameter en prestatie op de taak, die grotendeels onafhankelijk was van het effect 

van time-on-task. Onze resultaten helpen om tegenstrijdige bevindingen in de 

literatuur te verklaren, en zijn consistent met de adaptive gain theorie van LC-NE 

functie. Verder suggereren onze resultaten dat de afgeleide van pupildiameter 

mogelijk een nuttige psychofysiologische maat is die gebruikt zou kunnen worden voor 

het online voorspellen en voorkomen van verslappingen in de aandacht.    



  

 

7.3.5      Hoofdstuk 6: Task-free Spectral EEG Dynamics Track and Predict Patient  

      Recovery From Severe Acquired Brain Injury 

 

Zoals besproken in de voorgaande sectie, hangt ons vermogen om sensorische 

informatie te verwerken en er op te reageren af van de staat van ons brein. Prominente 

voorbeelden waarbij dit vermogen niet goed functioneert, zijn de 

bewustzijnsstoornissen die kunnen optreden na hersenletsel. Sommige van deze 

patiënten ontwikkelen later weer tekenen van bewustzijn, terwijl andere patiënten non-

responsief blijven. Neuraal gezien doen de pathofysiologische tekenen van 

bewustzijnsstoornissen denken aan de hypoactivatie van het LC-NE systeem die 

optreedt tijdens slaap, en de bijgaande synchronisatie van corticale activiteit. Zoals 

aangetoond in hoofdstuk 3 en 4 van dit proefschrift zijn fluctuaties in 

gesynchroniseerde herenactiviteit vatbaar voor neuromodulatie door NE. In hoofdstuk 

6 van dit proefschrift verkennen we of de staat (gekwantificeerd als amplitude en 

connectiviteit) van zulke gesynchroniseerde herenactiviteit het niveau en het herstel 

van bewustzijn kan voorspellen bij patiënten met bewustzijnsstoornissen. Hievoor 

analyseren we een bestaande dataset van patiënten die deelnamen aan het ‘Early 

Intensive Neurorehabilitation Programme’.  

Onze resultaten tonen aan dat, vergeleken met gezonde controle proefpersonen, 

de patiënten een algemene ‘vertraging’ laten zien van hersenritmes, waarbij 

laagfrequente (synchrone) schommelingen in hersenactiviteit dominant zijn. 

Daarnaast veranderde over de duur van het herstel van de proefpersonen de 

frequentieband specifieke eigenschappen van corticale ritmes op een non-ineaire 

manier. Deze veranderingen sloten goed aan bij de diagnostieke en prognostieke 

waarde van deze frequentiebanden. Opmerkelijk genoeg voorspelden correlaties in 

hersenactiviteit tussen hersengebieden het niveau van herstel van de patiënten 

ongeveer 3 maanden later 75% correct.    

Onze bevindingen tonen aan dat de amplitude van, en correlaties in, de staat van 

spectrale hersenactiviteit het verloop en niveau van het herstel van patiënten kunnen 

voorspellen op een automatische manier, die los staat van de sensorische en 

cognitieve capaciteiten van de patiënt. Tot slot: onze bevindingen suggereren dat de 

mate waarin verbindingen tussen diepe hersenkernen (zoals bijvoorbeeld de LC of de 

thalamus) en de hersenschors gespaard zijn gebleven, de mate van het herstel van 

bewustzijn na hersenletsel kunnen voorspellen. Onze bevindingen geven mogelijk 

nieuwe inzichten in de pathofysiologische brain state-gerelateerde processen die ten 

grondslag liggen aan bewustzijnsstoornissen.  
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