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A characteristic length scale causes anomalous
size e�ects and boundary programmability in
mechanical metamaterials
Corentin Coulais1,2,3*, Chris Kettenis2 and Martin van Hecke1,2

The architecture of mechanical metamaterials is designed to
harness geometry1–6, nonlinearity7–11 and topology11–15 to obtain
advanced functionalities such as shape morphing7,9,16–21, pro-
grammability18,22,23 and one-way propagation11,13,14. Although a
purely geometric framework successfully captures the physics
of small systems under idealized conditions, large systems
or heterogeneous driving conditions remain essentially unex-
plored. Here we uncover strong anomalies in the mechanics of
a broad class of metamaterials, such as auxetics2,5,24, shape
changers16–21 or topological insulators11–13,15; a non-monotonic
variation of their sti�ness with system size, and the ability of
texturedboundaries to completely alter their properties. These
striking features stem from the competition between rotation-
based deformations—relevant for small systems—and ordi-
nary elasticity, and are controlled by a characteristic length
scale which is entirely tunable by the architectural details.
Our study provides new vistas for designing, controlling and
programming the mechanics of metamaterials.

A central strategy for the design of metamaterials leverages the
notion of a mechanism, which is a collection of rigid elements
linked by completely flexible hinges, designed to allow for a
collective, free rotational motion of the elements. Mechanism-
based metamaterials borrow the geometric design of mechanisms,
but instead of hinges feature flexible parts which connect stiffer
elements2,3,5,9,11–13,15–18,22,23,25,26. The tacit assumption is then that the
low-energy deformations of such metamaterials are similar to
the free motion of the underlying mechanism, and the ability to
control deformations by geometric design is the foundation for the
unusual mechanics of a wide variety of mechanical metamaterials.
Such mechanism-based metamaterials have mostly been studied
for small systems and for homogeneous loads, where the response
indeed closely follows that of the underlying mechanism. However,
the physics of large systems, or for inhomogeneous boundary
conditions, remains largely unexplored.

We first illustrate that deformations of mechanism-based meta-
materials deviate from those of their underlying mechanism
under inhomogeneous forcing. Specifically, we consider point forc-
ing of a paradigmatic metamaterial (Fig. 1a), which is based
on a mechanism consisting of counter-rotating hinged squares
(Fig. 1b)2,7,9,10,23,24. Whereas the local deformations mimic that of
the underlying mechanism, at larger scales, we observe that the
counter-rotations slowly decay away from the boundary (Fig. 1c).
This indicates elastic distortions of the underlying rotating square
mechanism, where no such decay can occur. In this example,

two-dimensional (2D) effects complicate the physics, and we there-
fore focus on quasi-1D meta-chains, consisting of 2× N square
elements of diagonal L linked at their tips (Fig. 2a,b); whenever con-
venient, we will express lengths in units of L. We measure the linear
response of these samples by forcing the outer horizontal joints.
Surprisingly, both experiments and finite element (FEM) simula-
tions show an exponential decay of the mechanism-like rotations
away from the boundary when the meta-chain is stretched or com-
pressed (Fig. 2c). This spatial decay defines a novel characteristic
length n∗ (Fig. 2c inset), and suggests that elastic distortions of
the underlying mechanism are a general feature of mechanism-
based metamaterials.

A first striking consequence of these distortions emerges when
probing the effective stiffness of mechanism-basedmetamaterials as
a function of system size. Whereas for elastic continua the effective
spring constant or stiffness is inversely proportional to the linear
size27, experiments and FEM simulations of meta-chains reveal
remarkable deviations from this behaviour. For small systems we
find that the stiffness ko for oddN ismuch larger than the stiffness ke
for even N . Moreover, whereas ko decays monotonously with N , ke
initially increases with N . Eventually the stiffness ke peaks at length
np, and for larger N , ke approaches ko and both decay with system
size (Fig. 2d). This anomalous size dependence is a robust feature—
we have numerically determined the size-dependent stiffness for the
2D metamaterial shown in Fig. 1, as well as a 3D generalization of
these18, and find that these exhibit a similar peak in stiffness (see
Supplementary Fig. 2).

The stiffness anomaly reflects the hybrid nature of mechanism-
based metamaterials, as can be seen by comparing two simple
models. Whereas a chain consisting of N unit springs of stiffness κ
in series has a global spring constant k that is inversely proportional
to the system size N : k= κ/N , the stiffness of a rotating squares
chain where all hinges are dressed by torsional springs of stiffness
Cb (refs 11,16,23) does not decay with N . Specifically, for even
N , the local rotation Ω and globally applied deformation u are
of the same order, and the spring constant ke∼N—longer chains
are thus stiffer in this model. For odd N , the counter-rotating
motions cancel in leading order, so that Ω≫ u and ko diverges
(see Supplementary Information, ‘Model B’). Hence, whereas the
total deformation in a spring chain is evenly distributed over all
elastic elements, such homogeneity breaks down for mechanisms,
precisely because of the counter-rotations. The response of flexible,
mechanism-based metamaterials hybridizes pure mechanism-like
and homogeneous elastic deformations, leading to a crossover from
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Figure 1 | Mechanism-based metamaterials. a, A paradigmatic example of a mechanism-based metamaterial consisting of rubber slab patterned with a
regular array of holes2,7,9,10,23,24. Point forcing concentrated near the slender link between two square elements yields a characteristic diamond-platter
pattern near the tip and more smooth deformations further away (scale bar, 9 mm). b, The rotating squares mechanism2 consists of counter-rotating,
hinged rigid squares with diagonal L and underlies the design of the metamaterial shown in a. The deformation from the symmetric state can be specified
by a single angleΩ . c, A zoom-in reveals that the deformation field of the mechanism-based metamaterial is highly textured, with the rotationΩ slowly
decaying away from the boundary—here, L=6.4 mm.
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Figure 2 | Anomalies in the sti�ness and deformations of meta-chains. a, 3D printed meta-chain of length N, thickness H=7.5 mm and square diagonal
L= 17 mm; the black ellipses are used for tracking positions and rotations. b, Hinge geometry defined by ` and w. c, Rotation field for a meta-chain of length
N= 14—the rotation rate ω(n) is the proportionality coe�cient between the rotations of the square elements and the deformation δ (see Methods and
Supplementary Fig. 1). Maroon (blue) symbols denote the data obtained from the upper (lower) squares. Inset: the decay length converges to a well defined
value n∗= 1.9±0.1 in the limit of large system size. Coloured symbols denote experiments for odd (ko; orange) and even (ke; blue) meta-chains, and
dashed curves denote FEM simulations, for `= 1.7 mm, w= 1.7 mm. d, Sti�ness as function of N (see Methods). The sti�ness ke peaks at np=6.0±0.1.

a mechanism-dominated, inhomogeneous regime for small systems
to a homogeneous elastic regime for larger system sizes.

Both n∗ and np reveal this crossover, but we note that their values
differ. To understand what sets these values and untangle their
relation, we consider a hybrid dressed mechanism where the hinges
are subject to bending, stretching and shear, with stiffnesses Cb, kj
and Cs, respectively (see Supplementary Information, ‘Model BSS’).
Stretching and shear introduce deformations that compete with the
purely counter-rotating mode of the underlying mechanism. The

equations that govern mechanical equilibrium are controlled by the
dimensionless ratios (see Supplementary Information):

α=

(
1+

L
`

)2 Cs

4Cb
; β=

kjL2

4Cb
(1)

which tune the relative elastic penalties of mechanism-preserving
and mechanism-distorting deformations. The purely torsional
model corresponds to the limit where both the stretching and
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Figure 3 | Characteristic scales. a,b, Contour plots of n∗ (a) and np (b) versus the shear-to-bending ratio α and the stretch to bending ratio β computed for
the hybrid mechanism (see Methods). Insets show the characteristic length n∗ scales as the square root of α (a) and the peak length scale np collapses
onto a master curve when plotted as np/

√
β versus α/β (b). c, Sti�ness versus system size in experiments with di�erent filament length `. We fit a cubic

function (continuous curves) to the data near the peak of ke, allowing us to estimate np to within±0.5, which corresponds to the average 95% interval of
confidence of the fits. d, Corresponding location of the length scales np (disks) and n∗ (squares) versus filament length `.

shear stiffnesses are much larger than the bending stiffness (that
is, α,β→∞). We have checked that solutions to this model for
appropriate values of α and β show excellent agreement with the
experimental results (seeMethods and Supplementary Figs 3 and 4):
dressing themechanismwith elastic hinge interactions is an effective
approach to describe mechanism-based metamaterials.

The competition between mechanism-preserving and
mechanism-distorting deformations controls the characteristic
length scale. To show this, we vary the control parameters α and β ,
and determine n∗ and np. When mechanism-like deformations are
energetically cheap (large α, β), both n∗ and np diverge, whereas
when rotations are energetically expensive (small α, β), the lengths
n∗ and np become small (Fig. 3a,b). Experimentally, we can leverage
this connection to vary and control the length scale, as the relative
costs of the mechanism-preserving and mechanism-distorting
deformations are controlled by the hinge geometry. To demonstrate
this, we have varied the experimental hinge length ` to push the
stiffness ratios α and β up, and we find that increasing ` indeed
leads to an increase of both n∗ and np (Fig. 3c,d).

Strikingly, n∗ is independent of β whereas np depends on both α
and β , and as we will show below, also on the boundary conditions.
The variation of n∗ with α can be understood from the competi-
tion between the energy cost ∼NCbu2 of purely counter-rotating

deformations, and the energy cost∼Cs/Nu2 of a shear-induced gra-
dient of these rotations. Balancing these terms yields a characteristic
length n∗∼

√
Cs/Cb∼

√
α, consistent with our data (Fig. 3a inset).

We note that exactly solving the underlying equations of the dressed
mechanism in the real space as well as solving the band spectrum
in the Fourier space make this argument rigorous, and allow us
to formally demonstrate how n∗ appears as an α-dependent bulk
quantity, which, surprisingly, is smaller and scales differently than
the decay of edge states (see Supplementary Information).

In contrast, the length scale np depends on bothβ and the bound-
ary conditions. The variation of np can be rationalized through
scaling arguments (see Supplementary Information); np∼

√
α for

α/β� 1, whereas np∼
√
β for α/β� 1: this underlies the data

collapse of np ∼ β
1/2 when plotted as function of (α/β) (see

Fig. 3b inset). To probe the boundary dependence of np, we con-
sider boundary conditions where we independently control the
forces F (red) and F ′ (blue) at alternating locations at the edge
of the chain, by setting F ′ = λF (Fig. 4a). So far, we consid-
ered λ=0, which corresponds to a very sharp indenter, whereas
λ=1 describes a blunt indenter. The intrinsic length scale n∗ is
insensitive to the choice of boundary conditions, but the bound-
ary hybridization factor λ allows us to control np over a wide
range (Fig. 4b): the boundary conditions select the relative strength
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of the mechanism-like rotational deformations and the elastic
distortions (Fig. 4c).

To illustrate that this sensitivity to boundary conditions is rele-
vant for a wide class of mechanism-based metamaterials, we con-
sider a topological metamaterial which exhibits one-way motion
amplification11 (Fig. 4d). In themechanism limit, suchmetamaterial
is isostatic. Whereas the infinite—bulk—medium is rigid, a finite
sample admits one unique zero mode that is either localized on
the left or the right, depending on a topological integer—the wind-
ing number11–15. When mechanically loaded from its hard (soft)
side, the metamaterial exhibits amplification (decay). For a hybrid
mechanism where the hinges are dressed with torsional and stretch
interactions, the boundary conditions control the hybridization of
mechanism-like and ordinary elastic deformations. Surprisingly,
whereas in the mechanism limit deformations are located near the
right boundary, so that forces/displacements excited from the left
are amplified, manipulation of the boundary conditions allows us
to tune the gain of the displacement amplification over a giant—
80 dB—range (Fig. 4e) and to excite deformations that can be local-
ized near the left edge, near the right edge, or near both boundaries
(Fig. 4f). Hence, the introduction of finite energy distortions allevi-
ates topological protection and allows boundary programmability.

A physically appealing picture appears: mechanism-based
metamaterials have an intrinsic length scale n∗ that depends on
the geometric design and diverges in the purely mechanism limit.
Such a length scale quantifies the spatial extension of a soft mode,
which localizes near inhomogeneities such as boundaries. Whether
this mode is excited depends on the boundary conditions. For the
case of the meta-chain, if we choose boundary conditions which
are compatible with the counter-rotating texture of the underlying
mechanism (that is, λ=−1), the crossover length np between
mechanism-like and elastic behaviour diverges, whereas strongly
incompatible boundary conditions lead to a rapid crossover to
ordinary elastic behaviour.

We expect that most mechanism-based metamaterials, includ-
ing cellular metamaterials7,9–11,18,23,24, allosteric networks28,29, gear-
based metamaterials15 and origami4,16,19–22, feature similarly large
characteristic scales. Continuum descriptions need to encompass
such large scales—in contrast to Cosserat-type descriptions of ran-
dom cellular solids governed by the bare cell size—as well as

the compatibility between the textures of the mechanism and the
boundary18. We stress that proper hinge design is critical for main-
taining functionality in large metamaterial samples, and we suggest
exploring hierarchical designs, with multiple small sub-blocks con-
nected via ‘meta connectors’ that promote the propagation of the
required mechanism in each block, thus ensuring that the function-
ality survives elastic hybridization in the large-scale limit.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Experiments.We fabricate our samples by 3D printing a flexible
polyethylene/polyurethane thermoplastic mixture (Filaflex by Recreus, Young’s
modulus E=12.75MPa, Poisson’s ratio ν∼0.5). The samples are 7.5mm thick,
initially made of N=14 rows of squares of diagonal L=17mm, which are
connected by ligaments of length `=1.7mm and width w=1.7mm (Fig. 2a,b of
the main text). We measure the stiffness of these samples by pinching the outer
horizontal joints between two rods, which are positioned such that they tightly
grip the joints—this boundary condition ensures that the rotational mode is
strongly excited. The rods are attached to an uniaxial testing device equipped with
a 100N load cell, which measures compressive forces F and compressive
displacements δ with 1mN and 10 µm accuracy, respectively, and with which we
apply an external displacement from δ=0.50mm (in compression) to
δ=−1.50mm (in extension). We focus on the linear response regime, and
measure the stiffness k in the displacement range δ∈[0.25mm,−1.25mm] by
using the linear coefficient of a second-order polynomial fit to the
force–displacement F versus δ curve (see Supplementary Fig. 1a), leading to a
relative error (95% margin of confidence) of less than 0.2% for the value of the
stiffness. Note that it is important to include the quadratic correction in the fitting
procedure to obtain an accuracy below 1%. To measure the variation of k with N ,
we print N=14 samples, perform experiments, remove a pair of squares to obtain
N=13, perform more experiment and so on.

We have marked these elements and record images with a high-resolution
complementary metal-oxide-semiconductor (CMOS) camera (Basler
acA2040-25gm; resolution 4Mpx), which is triggered by the mechanical testing
device. This allows us to measure rotations θ(n) with 1×10−1 deg accuracy versus
the displacement δ. In the linear regime, θ(n) is proportional to δ, and we
determine the rotational rate ω(n) from a linear fit of the θ(n) versus δ curves
(see Supplementary Fig. 1b).

Numerical simulations. For our static finite elements simulations, we use the
commercial software Abaqus/Standard and a neo-Hookean energy density as a
material model, with a shear modulus, G=4.25MPa and bulk modulus,
K=212GPa (or equivalently a Young’s modulus E=12.75MPa and Poisson’s ratio
ν=0.49999) in plane strain conditions with hybrid quadratic triangular elements
(abaqus type CPE6H). We perform a mesh refinement study to ensure that the
thinnest parts of the samples where most of the stress and strain localized are

meshed with at least four elements. As a result, the metamaterial has approximately
from 3×103 to 6×104 triangular elements, depending of the value of N .

Simulation of the full metamaterial.We simulate the full metamaterial by applying
boundary conditions by pinching the most outer vertical connections as in the
experiments. We impose a small displacement of magnitude δ=3×10−4L to the
structure and measure the reaction force F . Given that such small displacement
ensures the structure is probed in its linear response, we estimate the stiffness
as k=F/δ.

Measurement of the hinge stiffnesses. The shear, bending and stretching stiffnesses
all depend strongly on the hinge geometry, including the width w. In simple cases
such as hinges of constant cross-section, it is possible in the slender limit (w�`)
to use beam theory to give analytical expressions for these stiffnesses versus the
hinge geometry and the bulk material elastic constants. However, our hinges are
neither in the slender-beam limit nor of constant cross-section (the squares also
deform and as such are part of the hinges, as can be readily seen in Supplementary
Fig. 4a). Therefore we estimate them using FEM, presented in the following.

We measure the individual bending, stretch and shear stiffness by simulating
two squares connected by one elastic ligament and applying three sorts of
boundary conditions depicted in Supplementary Fig. 3. To apply bending,
stretching and shear boundary conditions, we define constraints for every node on
the vertical diagonal of each square and assign their displacements to the motion of
a virtual node, which is then displaced by a small amount δ=3×10−4L. We then
extract the reaction forces Fb, Fj and Fs, respectively on this virtual node to
calculate the stiffnesses as follows

Cb=
L2

4
Fb

δ
(2)

kj=
Fj

δ
(3)

Cs=
`2

2
Fs

δ
(4)

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon request.
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