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Abstract: Although a rich record of Pleistocene human-associated archaeological assemblages 

exists, the scarcity of hominin fossils often impedes the understanding of which hominins 

occupied a site. Using targeted enrichment of mitochondrial DNA we show that cave sediments 

represent a rich source of ancient mammalian DNA that often includes traces of hominin DNA, 

even at sites and in layers where no hominin remains have been discovered. By automation-

assisted screening of numerous sediment samples we detect Neandertal DNA in eight 

archaeological layers from four caves in Eurasia. In Denisova Cave we retrieved Denisovan 

DNA in a Middle Pleistocene layer near the bottom of the stratigraphy. Our work opens the 

possibility to detect the presence of hominin groups at sites and in areas where no skeletal 

remains are found. 

 

One Sentence Summary: DNA from archaic humans can be retrieved from Late and Middle 

Pleistocene sediments, even in the absence of their skeletal remains. 

  



 

 

Main Text:  

DNA recovered from ancient hominin remains enriches our understanding of human evolution 

and dispersal (e.g. (1) and references therein), and has, for example, resulted in the discovery of 

the Denisovans, a previously unknown group of archaic hominins in Asia who were distantly 

related to Neandertals (2-4). However, hominin fossils are rare. We therefore decided to 

investigate whether hominin DNA may survive in sediments at archaeological sites in the 

absence of macroscopically visible skeletal remains. 

 Mineral and organic components in sediments can bind DNA (e.g. (5-8)) (Figs. S1-S3) 

and the amplification of short stretches of mitochondrial (mt) or chloroplast DNA from 

sediments by the polymerase chain reaction (PCR) has been used to demonstrate the past 

presence of animals and plants at several sites (e.g. (9-14)). More recently, DNA extracted from 

sediments has been converted to DNA libraries, from which DNA fragments were sequenced 

directly (“shotgun” sequencing) (15, 16). This approach is preferable to PCR as it allows the 

entire sequence of DNA fragments to be determined. This is important as it makes it possible to 

detect cytosine (C) to thymine (T) substitutions near the ends of DNA fragments, which are 

caused by the deamination of cytosine bases (17) and indicate that the DNA is of ancient origin 

(18-20). However, the abundance of bacterial DNA in sediments and the difficulty in assigning 

short nuclear DNA sequences to mammalian taxa limit the utility of shotgun sequencing for 

analyzing DNA from sediments.  

 

Isolating DNA from Pleistocene cave sediments 

To investigate whether ancient mammalian DNA, especially of archaic humans, may be 

preserved in Pleistocene cave sediments, we collected 85 samples from seven archaeological 



 

 

sites with known hominin occupation, varying in age between ~14 thousand years ago (kya) and 

>550 kya (Data file S1) (8). Some samples were collected specifically for the purpose of this 

study: 4 from Les Cottés (France), 5 from Trou Al’Wesse (Belgium), 1 from El Sidrón (Spain), 1 

from Vindija Cave (Croatia), 3 from Denisova Cave (Russia) and 13 from Caune de l’Arago 

(France). The other samples, 49 from Denisova Cave and 9 from Chagyrskaya Cave (Russia), 

had been collected previously for luminescence dating. The latter two sites are located in the 

Altai Mountains, where remains of both Neandertals and Denisovans have been uncovered (3, 

21). We extracted DNA from between 38 and 160 milligrams of each sample and converted 

aliquots of the DNA to single-stranded DNA libraries (8, 22, 23). All libraries were shotgun 

sequenced and analyzed using a taxonomic binning approach (8). Whereas most of the DNA 

sequences (79.1%-96.1%) remained unidentified, the majority of those that could be identified 

were assigned to microorganisms and between 0.05% and 10% to mammals (Figs. S7-S15). 

 

Enrichment of mammalian mtDNA 

To determine the taxonomic composition of the mammalian DNA in the sediments, we isolated 

DNA fragments bearing similarities to mammalian mtDNAs by hybridization capture using 

probes for 242 mitochondrial genomes, including human mtDNA (8, 24). MtDNA is useful for 

this purpose because it is present in higher copy numbers than nuclear DNA in most eukaryotic 

cells and is phylogenetically informative in spite of its small size due to its fast rate of evolution 

in mammals. Between 3,535 and 3.2 million DNA fragments were sequenced per library (Data 

file S2), of which between 14 and 50,114 could be assigned to mammalian families with a 

strategy for taxonomic identification of short and damaged DNA fragments (8) (Fig. S18). To 

assess whether the sequences were of ancient origin, we evaluated them for the presence of C to 



 

 

T substitutions at their 5’- and 3’-ends (17, 18) (see Fig. S19 for an example). Additionally, we 

computed the variance of coverage across the mitochondrial genome for each taxon to test 

whether sequences mapped randomly across the reference genome (Fig. S20), as would be 

expected for sequences that are genuinely derived from the taxon they are assigned to. With the 

exception of 46 sequences from a single sample from Les Cottés, which were originally 

attributed to procaviids but that mapped only to one restricted region of the genome (Fig. S21), 

this analysis lent support to the correct taxonomic classification of the sequences we obtained.  

Of the 52 sediment samples from the Late Pleistocene, 47 contained mtDNA fragments 

from at least one family showing evidence of ancient DNA-like damage, while 14 out of 33 

Middle Pleistocene samples did so (Figs. 1, S22). Overall, we detected ancient mtDNA 

fragments from 12 mammalian families, of which the most common were hyaenids, bovids, 

equids, cervids and canids (Data file S3, Figs. S23-S32). These taxa are all present in the 

zooarchaeological records of the sites as reconstructed from faunal remains (Fig. S33).  

We exploited the known genetic variation within these families to determine the affinity 

of the sequences we obtained to specific species (8) (Data file S3). In all libraries containing 

elephantid DNA, the majority (71-100%) of sequences matched variants found in the mtDNAs of 

woolly mammoths, a species that became extinct in Eurasia during the Holocene (25), but not in 

other elephantids. Likewise, sequences attributed to rhinocerotids most often carried variants 

specific to the woolly rhinoceros branch (54-100% support), thought to have become extinct at 

the end of the Late Pleistocene (25), and show little support (0-6%) for other rhinoceros lineages. 

In ~70% of libraries containing hyaenid mtDNA, the sequences matched variants of the extinct 

cave hyena and/or the spotted hyena which exists today only in Africa (26). Lastly, 90% of ursid 

mtDNA sequences retrieved from Vindija Cave carried variants matching Ursus ingressus, an 



 

 

Eastern European cave bear lineage which became extinct approximately 25,000 years ago (27, 

28).  

Extraction and DNA library preparation negative controls contained between 32 and 359 

mammalian mtDNA sequences. These sequences do not exhibit damage patterns typical of 

ancient DNA and they originate from common contaminants (24, 29-31), predominantly human 

DNA, as well as DNA of bovids, canids and suids (Fig. S34). 

 

Targeting hominin DNA 

Among the samples analyzed, the only site that yielded sequences from putatively deaminated 

DNA fragments that could be assigned to hominids (or hominins assuming that no other great 

apes were present at the sites analyzed here) was El Sidrón. This site differs from the others in 

that no ancient faunal DNA was identified there (Fig. 1), consistent with the almost complete 

absence of animal remains at the site (32). To test whether animal mtDNA was too abundant at 

other sites to detect small traces of hominin mtDNA, we repeated the hybridization capture for 

all DNA libraries using probes targeting exclusively human mtDNA (8). Between 4,915 and 2.8 

million DNA fragments were sequenced per library, out of which between 0 and 8,822 were 

unique hominin sequences passing our filtering scheme (8). Between 10 and 165 hominin 

mtDNA sequences showing substitutions typical of ancient DNA were obtained from 15 

sediment samples from four sites (Data file S4). To generate sufficient data for phylogenetic 

analyses, we prepared DNA extracts from additional subsamples of 10 of these samples and used 

automated liquid handling to generate 102 DNA libraries from these as well as the original 

extracts (Data file S1, Fig. S22). After enriching for human mtDNA and merging all sequences 



 

 

from a given sediment sample, 9 samples yielded a sufficient number of deaminated hominin 

mtDNA fragments (between 168 and 13,207) for further analyses (Data file S4).  

 

Identifying Neandertal and Denisovan mtDNA 

We identified “diagnostic” positions in the mtDNA genome that are inferred to have changed on 

each branch of a phylogenetic tree relating modern humans, Neandertals, Denisovans and a 

~430,000-year-old hominin from Sima de los Huesos (8, 33). For eight sediment samples from 

El Sidrón, Trou Al’Wesse, Chagyrskaya Cave and Denisova Cave, the Neandertal state is shared 

by 87-98% of sequences overlapping positions diagnostic for Neandertal mtDNA, whereas the 

modern human, Denisovan and Sima de los Huesos branches are supported by 4-11%, 0-2% and 

0-2% of sequences, respectively. In the ninth sample, collected in layer 15 of the East Gallery in 

Denisova Cave, 84% (16/19) of sequences carry Denisovan-specific variants, compared to 0% 

(0/10), 5% (1/19) and 0% (0/23) for the modern human, Neandertal and Sima de los Huesos 

variants, respectively, pointing to a Denisovan origin for these mtDNA fragments (Data file S4, 

Fig. S40). We note that none of the hominin sequences present in the extraction or library 

preparation negative controls carry variants specific to the Neandertal, Denisovan or Sima de los 

Huesos branches (Data file S4).  

The average sequence coverage of the mitochondrial genome varied between 0.4- and 44-

fold among the nine samples. To be able to reconstruct phylogenetic trees using these sequences, 

we called a consensus base at positions covered by at least two deaminated fragments and 

required more than two-thirds of fragments to carry an identical base (34). These relatively 

permissive parameters were chosen to avoid discarding samples that produced very small 

numbers of hominin sequences and allowed us to reconstruct between 8% and 99% of the 



 

 

mtDNA genome (Table S3). Phylogenetic trees relating each of the reconstructed mtDNA 

genomes to those of modern and ancient individuals (8) (Table S5) show that they all fall within 

the genetic variation or close to known mtDNA genomes of Neandertals or Denisovans (Figs. 2, 

S41-S49).  

 

Single vs. multiple sources of hominin mtDNA 

We next aimed to assess whether mtDNA fragments from more than one individual are present 

in a given sediment sample. For this purpose, we identified positions in the mitochondrial 

genome that are covered by at least ten sequences exhibiting evidence of deamination. Three 

samples have sufficient data for this analysis (Fig. S50). At each of these positions, nearly all 

sequences from a sample collected in the Main Gallery of Denisova Cave carry the same base, 

suggesting that the DNA may derive from a single individual. In contrast, sequences from the El 

Sidrón sample support two different bases at a single position, as is the case for a second sample 

from Denisova Cave. Thus, at least two mtDNA genomes seem to be present in both these 

samples (Fig. S51). The fact that the variable position in the latter sample is a known variant 

among Neandertal mtDNAs supports the conclusion that more than one Neandertal contributed 

DNA to it (Table S7). 

We then developed a maximum-likelihood approach to infer the number of mtDNA 

components also in low-coverage data (8) (Fig. S52), allowing us to investigate this issue in four 

additional samples. We detect only one ancient mtDNA type in the sample from Chagyrskaya 

Cave and in two other samples from Denisova Cave, while a fifth sample from that site contains 

mtDNA from at least two ancient individuals (Table S9).  

 



 

 

DNA yields from sediments 

To assess how much DNA can be recovered from sediment compared to skeletal elements, we 

counted the number of mtDNA fragments retrieved per milligram of bone (2, 21, 35-38) or 

sediment originating from the same layers at three archaeological sites. The number of hominin 

mtDNA fragments retrieved from bone ranges from 28 to 9,142 per milligram, compared to 

between 34 and 4,490 mammalian mtDNA fragments in sediment (Table S10). Thus, 

surprisingly large quantities of DNA can survive in cave sediments. We note that most of the 

ancient taxa we identified are middle- to large-sized (Fig. 1), consistent with larger animals 

leaving more of their DNA in sediments.  

The hominin DNA is present in similar concentrations among subsamples of sediment 

removed from larger samples (Fig. S53). This suggests that in most cases, the DNA is not 

concentrated in larger spots but spread relatively evenly within the sediment, which is 

compatible with it originating from excreta or the decay of soft tissue (9, 39, 40). One exception 

is a sample from the Main Gallery of Denisova Cave, from which one subsample contains over 

500 times more hominin mtDNA fragments than others. As the mtDNA retrieved from it may 

originate from a single Neandertal (Tables S7, S9), we hypothesize that this is due to an 

unrecognized small bone or tooth fragment in the subsample. Despite its high content of hominin 

DNA, the library remains dominated by DNA from other mammals, as only ~7.5% of sequences 

were attributed to hominins following its enrichment with the mammalian mtDNAs probes. 

Nonetheless, if such microscopic fragments can be identified and isolated, they may represent a 

source of hominin DNA sufficiently devoid of other mammalian DNA to allow for analyses of 

the nuclear genome. 

 



 

 

DNA movement across layers 

Post-depositional mixing of particles or a saturation of the sediments by large amounts of DNA 

can potentially lead to movements of DNA between layers in a stratigraphy (40-42). At the sites 

investigated here, the overall consistency between the taxa identified from DNA and the 

archaeological records (Fig. S33) suggests the integrity of the spatial distribution of DNA. In 

Chagyrskaya Cave for example, we recovered abundant mammalian mtDNA fragments showing 

degradation patterns typical of ancient DNA in layers rich in osseous and lithic assemblages, 

while no ancient mammalian DNA was identified in an archaeologically sterile layer underneath 

(43). Additionally, mtDNA sequences attributed to the woolly mammoth and woolly rhinoceros 

were identified in Late Pleistocene layers, yet they are absent from the layer which postdates the 

presumed time of extinction of these taxa (25) (Data file S3, Fig. S24). This implies that little or 

no movement of mtDNA fragments occurred downwards or upwards in Chagyrskaya Cave. 

However, as local conditions may affect the extent to which DNA can move in a stratigraphy, 

these need to be assessed at each archaeological site before the DNA recovered can be linked to 

a specific layer. This may be best achieved by dense sampling in and around layers of interest.  

 

Conclusions 

We show that mtDNA can be efficiently retrieved from many Late and some Middle Pleistocene 

cave sediments using hybridization capture (Fig. 1). Encouragingly, this is possible also for 

samples that were stored at room temperature for several years (8). Sediment samples collected 

for dating, site formation analyses or the reconstruction of ancient environments at sites where 

excavations are now completed can thus be used for genetic studies.  



 

 

The mtDNA genomes reconstructed from sediments of four archaeological sites 

recapitulate a large part of the mitochondrial diversity of Pleistocene hominins hitherto 

reconstructed from skeletal remains (Fig. 2). The recovery of Neandertal mtDNA from El 

Sidrón, Chagyrskaya Cave and Layer 11.4 of the East Gallery of Denisova Cave is in agreement 

with previous findings of Neandertal remains at those sites and in those layers (21, 32, 44). At 

Trou Al’Wesse, where we find Neandertal mtDNA, no hominin remains have been found in the 

Pleistocene layers. However, Late Mousterian artefacts and animal bones with cut-marks support 

the use of the site by Neandertals (45). In Denisova Cave, we detect Neandertal mtDNA in layers 

with Middle Paleolithic stone tools in the Main Gallery (46), in which no Neandertal remains 

have been found. In the East Gallery, we identify Denisovan as well as Neandertal mtDNA lower 

in the stratigraphy than where skeletal remains of archaic humans have been discovered (Fig. 3), 

indicating the repeated presence of both groups in the region.  

The absence of identifiable ancient DNA in Middle Pleistocene layers in Caune de 

l’Arago and Chagyrskaya Cave is not surprising given their age (>300 kya). Although compared 

to other animals, hominins constitute a rare taxon at most sites, we were able to detect 

Neandertal DNA in the sediments of four of the six sites containing Late Pleistocene layers. For 

the remaining two sites, Vindija Cave and Les Cottés, only one and four samples, respectively, 

were available for this study, suggesting that extensive sampling is necessary at each site to 

ensure that hominin DNA is detected if present. Fortunately, the automation of laboratory 

procedures to generate DNA libraries and isolate DNA by hybridization capture (8) now makes it 

possible to undertake large-scale studies of DNA in sediments. This is likely to shed light on the 

genetic affiliations of the occupants of large numbers of archaeological sites where no human 

remains are found.  
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Fig. 1. Ancient taxa detected in Late Pleistocene (LP) and Middle Pleistocene (MP) 

sediment samples from seven sites. For each time period, the fraction of samples containing 

DNA fragments which could be assigned to a mammalian family and authenticated to be of 

ancient origin is indicated. The shaded symbols representing each family are not to scale. 

 

Fig. 2. Cladogram relating mtDNA genomes reconstructed from sediment samples to those 

of modern and ancient individuals. The branches leading to mtDNA genomes reconstructed 

from sediments (dashed lines) were superimposed on a neighbor-joining tree relating the 

previously determined mtDNA genomes of ancient and present-day humans (purple), 

Neandertals (orange), Denisovans (green) and the Sima de los Huesos hominin (blue) (Table S5). 

Discrete phylogenetic trees relating each of the mtDNAs reconstructed here and the comparative 

data are shown in Figs. S41-S49. 

 

Fig. 3. Hominin mtDNAs along the stratigraphy of the East Gallery in Denisova Cave. 

Layer numbers are noted in gray. The layers of origin for sediment samples and skeletal remains 

yielding Neandertal (orange) and Denisovan (green) mtDNA genomes are denoted. For details 

on these and other hominin skeletal remains from other parts of the cave see (8). 

  



 

 

Supplementary Materials: 

Materials and Methods 

Figures S1-S53 

Tables S1-S10 

References (47-159) 

Data files S1-S4 


