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Bacterial cell morphogenesis requires coordination among multiple cellular systems, including the bacterial
cytoskeleton and the cell wall. In the vibrioid bacterium Caulobacter crescentus, the intermediate filament-like
protein crescentin forms a cell envelope-associated cytoskeletal structure that controls cell wall growth to
generate cell curvature. We undertook a genetic screen to find other cellular components important for cell
curvature. Here we report that deletion of a gene (wbgL) involved in the lipopolysaccharide (LPS) biosynthesis
pathway abolishes cell curvature. Loss of WbqL function leads to the accumulation of an aberrant O-
polysaccharide species and to the release of the S layer in the culture medium. Epistasis and microscopy
experiments show that neither S-layer nor O-polysaccharide production is required for curved cell morphology
per se but that production of the altered O-polysaccharide species abolishes cell curvature by apparently
interfering with the ability of the crescentin structure to associate with the cell envelope. Our data suggest that
perturbations in a cellular pathway that is itself fully dispensable for cell curvature can cause a disruption of
cell morphogenesis, highlighting the delicate harmony among unrelated cellular systems. Using the wbqL
mutant, we also show that the normal assembly and growth properties of the crescentin structure are
independent of its association with the cell envelope. However, this envelope association is important for

facilitating the local disruption of the stable crescentin structure at the division site during cytokinesis.

Most bacterial species display a particular cellular morphol-
ogy that is generally preserved across generations. The pro-
duction and maintenance of shape require coordination among
multiple cellular systems positioned at different places within
the cell. The peptidoglycan cell wall, located external to the
cytoplasmic membrane, is an important structural element that
is required for shape maintenance. The processes governing
the localization and timing of cell wall growth and turnover are
likewise critical (8, 9, 23). The bacterial cytoskeleton is thought
to play a central role in cell morphogenesis by exerting spatio-
temporal control over peptidoglycan growth (8, 9, 23). In order
for it to do so, there are numerous proteins that are required
to connect cytoskeletal control mechanisms to the periplasmic
enzymes that directly synthesize and modify the peptidoglycan
cell wall. These proteins, such as MreC, MreD, RodA, and
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RodZ, are essential for maintenance of cell shape and are
positioned in the cytoplasmic membrane to presumably link
cytoskeletal elements in the cytoplasm to the activities of pep-
tidoglycan-modifying enzymes in the periplasm (2, 5, 9, 23, 29).
Some bacterial species also contain additional components
that make important contributions to cell shape, such as cell
wall teichoic acids in Gram-positive bacteria (9) and periplas-
mic flagella in spirochetes (41).

In the vibrioid bacterium Caulobacter crescentus, an inter-
mediate filament-like protein, crescentin, is required for cell
curvature (3). Crescentin forms an intracellular filamentous
structure that is associated with the cell wall and is thought to
mechanically govern cell wall growth to produce cell curvature
(7). The crescentin structure is localized along the inner cur-
vature of the cell under the cytoplasmic membrane (3, 7) and
is highly stable, with no detectable subunit exchange (10). The
association between the crescentin structure and the cell en-
velope appears essential for its function, since an attachment-
defective crescentin mutant is unable to support cell curvature
(7). The function of the actin-like protein MreB is also critical
for the envelope association of the crescentin structure (10),
and MreB may provide one part of the connection between the
crescentin structure and the peptidoglycan cell wall.

Since bacterial morphogenesis requires multiple cellular
components and systems, we used a genetic screen to find
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other factors important for cell curvature in C. crescentus.
Surprisingly, we found that an alteration in the lipopolysaccha-
ride (LPS) biosynthesis pathway can have a catastrophic effect
on the ability of the crescentin structure to associate with the
cell envelope and govern cell curvature.

MATERIALS AND METHODS

Strains, pl ids, media, mutag and growth conditions. C. crescentus

was grown at 30°C in PYE (peptone-yeast extract) or M2G supplemented with
1% PYE (M2G™) (16). Vanillic acid (0.5 mM) or xylose (0.3%) was added to the
medium to induce the P, or P,, promoter, respectively, when appropriate.
Plasmids were mobilized from Escherichia coli strain S17-1 into C. crescentus by
conjugation (16) or electroporation. Plasmids and strains are listed in Table 1,
and their construction and primers are described in the text of the supplemental
material. Exponentially growing cultures were used for all experiments unless
otherwise noted. For transposon mutagenesis, a plasmid bearing the mini-Tn5
Km?2 (LS1680) was mated into CTW940 or a plasmid bearing the Himar/ element
(pSC189) (11) was electroporated into CJW1034. UV mutagenesis was per-
formed on strain CJW1126. Two 100-pl drops of an overnight culture (in sta-
tionary phase) were placed on a petri dish, set atop a Spectroline TVC-312R UV
transilluminator, and irradiated for 40 s at the maximum intensity setting.

Light microscopy and photobleaching. Cells were imaged at room tempera-
ture (~22°C) or at 31°C using an objective heater on either a Nikon E1000
microscope fitted with 100X differential interference contrast (DIC) and phase-
contrast objectives and a Hamamatsu Orca-ER LCD camera or a Nikon E80i
microscope with similar objectives, an Andor iXon+ camera, and a Hamamatsu
Orca-IIER LCD camera. The latter setup and the Andor camera were used for
photobleaching with a Photonic Instruments Micropoint laser system with a
481-nm dye cell. Photobleaching was performed with 10 pulses with power 2 at
the attenuator plate and 18% transmission at the internal attenuator, using an
NDS filter. Cells were immobilized on 1% agarose-PYE or M2G™* agarose-
padded slides containing vanillic acid or xylose inducers when appropriate. Im-
munofluorescence microscopy was performed as previously described (3) using
anticrescentin antibodies at 1:800. Images were taken and analyzed with the
Metamorph software program (MDS Analytical Technologies). For live-cell
immunofluorescence, cells were incubated with 1:200 anti-“smooth” LPS (S-
LPS) in PYE medium for 15 min at 30°C, washed twice with PYE, incubated with
1:200 fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit immuno-
globulin in PYE for 15 min, washed twice with PYE, resuspended in M2G ™, and
mounted on M2G*-1% agarose pads for microscopy.

Cell curvature analysis. Automated cell curvature analysis was performed
using Matlab as described previously (7). Briefly, cell outlines were obtained
from phase-contrast images, and the center line of each cell was detected. In
order to find the curvature of the cells, multiple points located equidistantly
along the center line were fitted to an arc of a circle, minimizing the sum of the
squared distances to the centerline points from their projections to the arc. The
reciprocal of the radius of the best-fit arc is the curvature value. The few cells
where the centerline shape was not representative of cell curvature (e.g., dividing
cells that bend at the constriction site) were removed prior to statistical analysis
by applying a cutoff to the curvature distribution. Statistical calculations were
done using Matlab.

Gel staining and immunoblotting. Affinity-purified anticrescentin antibodies
were used for immunoblotting at a dilution of 1:15,000. The load volume was
normalized to optical density at 600 nm (ODyg) values. Polysaccharide isolation
for LPS immunoblot analysis was performed as previously described (38). Spe-
cifically, cells were washed with 10 mM HEPES, pH 7.2, resuspended in 10 mM
Tris-1 mM EDTA, and frozen in a volume of 250 pl. Samples were thawed,
combined with 1 pl DNase (0.5 mg/ml), 20 ul lysozyme (10 mg/ml), and 3 wl 1
M MgCl,, and incubated at room temperature for 15 min. The above mixture
(38.75 pl) was then combined with 10 pl of 5X SDS dye, incubated at 100°C for
10 min, and cooled to room temperature. Proteinase K (1.25 wl of a 20-mg/ml
stock solution) was added, and the sample was incubated at 60°C for 1 h. Samples
were analyzed on 10% or 12% acrylamide gels by SDS-PAGE. Gels were silver
stained according to a previously described method (36) with minor modifica-
tions (38). Blots were generally probed with anti-S-LPS antibodies (37) at a
dilution of 1:100,000 for 15 to 30 min. For anti-RsaA (S-layer) blotting, total cell
extracts (normalized by ODg) or isolated shed material was used. Shed mate-
rial was collected on a nylon mesh, washed extensively with 1 M Tris (pH 7.5),
and then dissolved in 0.1 M Tris (pH 7.5)-8 M urea. Anti-RsaA was used at
1:10,000.

LPS INTERFERENCE WITH CAULOBACTER CURVATURE 3369

Sucrose gradient centrifugation. CB15N cells (800 ml) at an ODj of 0.3 were
pelleted (12,000 X g) and resuspended in 28 ml of 10 mM Tris (pH 7.5)-0.75 M
sucrose at 4°C, at which temperature all the following steps were performed.
Lysozyme was added to 50 pg/ml, an EDTA-free complete protease inhibitor
cocktail tablet (Roche) was added, and then 56 ml of cold 1.5 mM EDTA (pH
7.5) was added dropwise with constant swirling. The cells were incubated on ice
for 10 min before being lysed in a French press set to ~750 Ib/in? (a very low
pressure that results in only a fraction of the cells being lysed; higher pressures
cause the formation of predominately mixed inner/outer membrane vesicles that
cannot be separated by density). The lysate was cleared by centrifugation
(16,000 X g), and the cleared lysate was ultracentrifuged at 160,000 X g for 1.5 h.
The membrane pellet was resuspended by Dounce homogenization in 3.3 mM
Tris (pH 7.5)-1 mM EDTA-0.25 M sucrose, and 500 wl was carefully laid over
a 35 to 60% sucrose (in 5 mM EDTA [pH 7.5]) step gradient in Beckman-
Coulter SW41 tubes. The tubes were centrifuged for 40 h at 140,000 X g at 4°C.
Fractions (500 wl) were collected by hand, and 4 volumes of each fraction were
mixed with 1 volume of 5X SDS loading buffer. The samples were separated by
10% PAGE, transferred to polyvinylidene difluoride (PVDF) membranes, and
immunoblotted.

Muropeptide analysis. Sacculi were isolated from 1-liter PYE cultures grown
without antibiotics at 30°C and harvested in mid-log phase (ODg¢, between 0.3
and 0.4). Under these conditions, CB15N doubles in 90 min, and CJW1090 and
CJW1249 double in 95 min. Isolation, identification, and high-performance lig-
uid chromatography (HPLC) analysis of muropeptides were performed as de-
scribed previously (19) with previously published modifications (34).

RESULTS AND DISCUSSION

Identification of a gene required for cell curvature. To find
genes involved in the generation or maintenance of normal cell
morphology, we made libraries of mutant C. crescentus cells by
UV or transposon mutagenesis. To increase the randomness of
transpositions, we independently used either the Tn5-derived
mini-Tn5 Km?2 or the mariner-based Himarl. We then visually
screened these mutant libraries for cell shape defects by DIC
microscopy. UV-generated mutations of interest were mapped
by complementation using a cosmid library in a 96-well plate
format, while transposon insertions were identified by cloning
the transposon and surrounding sequence into a vector and by
sequencing from the transposon sequence.

From more than 5,000 transposon mutants screened, 8 had
a cell curvature defect. This defect was quantified by comput-
erized image analysis (7) to obtain numerical values for cell
curvature (see Materials and Methods). For comparison, wild-
type cells have a median cell curvature of 0.39 pm ™! (Fig. 1A,
panel ii), whereas crescentin-null mutant cells, which have vir-
tually no detectable curvature, have a median cell curvature of
0.06 um ™' (Fig. 1A, panel i). Four of the 8 mutants with
curvature defects had a Tn5 insertion in the crescentin-encod-
ing gene creS. Transposon insertions in rcdA, encoding a CtrA
degradation regulator, the gene cc_0884, encoding a predicted
transcriptional regulator, and the cell division gene ftsH also
produced cells with reduced curvature, but these mutants were
elongated compared to the wild type (data not shown) and
therefore were not analyzed further. However, a Himar/ in-
sertion in the gene cc_0632 of hypothetical function produced
cells with normal lengths but with a considerable reduction of
cell curvature (0.2 pm™'; Fig. 1A, panel iii).

The cc_0632 gene is the penultimate gene of a predicted
operon encompassing cc_0635 to cc_0631 (Fig. 1B), suggesting
a potential polar effect on the downstream cc_0631 gene. Con-
sistent with this notion, a UV-generated mutant with a straight
cell shape (0.11 pm ™) was found to have a point mutation in
cc_0631 (Fig. 1A, panel v). A cosmid (cos1-10-A) containing
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TABLE 1. Strains and plasmids

J. BACTERIOL.

Strain or plasmid

Relevant genotype or description

Reference or
source

C. crescentus
CBI5N
CIW914
CIW926
CIW940
CIW1034
CIW1084
CIW1090
CIW1117
CIW1126
CIW1243
CIW1249
CIW1537
CIW1901
CIW1908
CIW1917
CIW1930
CIW1933
CIW1935
CIW2861
CIW2876
CIW3130
CIW3292
CIW3295
CIW3329
CIW3330
CIW3332
JS1003
LS3812

E. coli
DH5a
CIW1014
CIW1080
CIW1082
CIW1259
CIW1268
CIW1446
CIW1907
CIW3363
LS385
LS1680
S17-1

Plasmids
cosl-10-A

pBGENT
pBGENT-KO

pBGENTPvancreS-tc
pBIM1

pHL23
pHL23creS-mgfp
pHL32PvancreS-gfp
pJS14

pJSl4creS-tc
pJS14PxylcreSAN27
pKS (Bluescript)
pMR10
pMR10divK-cfp
pMR20
pMR20div]-myfp-divK-mcfp
pMR20divL-cfp
pMR20P, ,creS(AN27)-tc
pMR20wbqL
PpMR20tipN-wbqP
pRK415
pRK415wbqL
pSC189

pXMCST7ftsZ
pUT-mini-Tn5 Km2

Synchronizable variant of CB15, also known as NA1000
CBI5N/pJS14P, creS sno7

CBI5N pleC::pleC-yfp wbqL(W138R)

CBI5N recA pleC::pleC-tdimer2/pMR20div]-myfp-divK-mcfp

CBI15N recA cckA::Q) div]::pBGENTcckA-yfpdiv]-tdimer2/pMR20divL-cfp
CBI5N pleC::pleC-yfp cc_0631(WI138R)/cos1-10-A

CBI5N wbgL::pBGENT-KO

CB15N wbqL::pBGENT-KO/pMR20wbqL

CBI5N pleC::pleC-yfp/pMR10divK-cfp

CBI5N wbgV::Tn5 (also known as mutant F3)

CBI15N wbgP::Tn5 (also known as mutant F24)

CBISN AcreS/pMR20P,  creSnz7-te

CBI5N wbgL::Tn5 (also known as mutant F26)

CB15N wbqP::Tn5 wbqL::pBGENT-KO

CB15N wbqP::Tn5 wbqL::pBGENT-KO/pMR20tipN-wbqP

CBI5N wbgV::Tn5 wbqL::pBGENT-KO

CBI15N cc_0632::Himar/

CBI5N cc_0632::Himar/pMR20wbqL

CBI15N creS::pHL23creS-mgfp

CB15N wbqL::pBGENT-KO creS::pHL23creS-mgfp

CBISN ftsZ:pXMCSTftsZ creS::pHL23creS-mgfp wbqL::pBGENT-KO
CBI5N ftsZ::pBIM1 wbqL::)pBGENT-KO

CB15N wbqL::pBGENT-KO/pJS14creS-tc

CBI5N AcreS wbqL::pBGENT-KO P,,,,::.pBGENTP
CBI15N/pJS14creS-tc

CBI5N ftsZ:pXMCST7ftsZ AcreS P,,,::pBGENTP,,,creS-tc::.pHL32P,,,,creS-gfp wbqL::pBGENT-KO
CBI5N rsaA::KSac

CB15N AcreS

vancreS-tc::pHL32P,,, creS-gfp

Cloning strain

DHS5a Apir+/pSC189
S17-1/cos1-10-A
S17-1/pMR20wbqL
S17-1/pMR20P, ,creS(AN27)-tc
S17-1/pRK415
S17-1/pJS14creS-tc
S17-1/pBGENT-KO
S17-1/pMR20tipN-wbqP
S17-1/pBGS18T

S17-1 Apir/pUT-mini-Tn5 Km2
M294::RP4-2 (Tc::Mu)(Km::Tn7); for plasmid mobilization

Cosmid containing a ~20-kb chromosomal segment between coordinates 684666 and 715000 in the
C. crescentus genome; contains genes cc_0620-cc_0646

Integration plasmid (Gen")

pBGENT containing a 450-bp SacI/Kpnl internal fragment of wbgL cloned into pBGENT for wbhqL
gene disruption by vector insertion

pBGENT carrying creS-tc under the control of P,,,

pBGSTI8T carrying a 5" portion of ftsZ ORF under the control of P,

Integration plasmid (Kan")

pHL23 carrying an insert coding for crescentin with a C-terminal fusion of monomeric GFP

pHL32 carrying creS-gfp under the control of P,

Chl" pBBR1-derived medium-copy-no. broad-host-range vector

pJS14 carrying the creS-tc gene

pJS14 carrying creS(AN27) under the control of the xylose-inducible promoter

Amp" cloning vector

Tet" low-copy-no. broad-host-range vector

pMRI10 carrying divK-cfp

Tet" low-copy-no. broad-host-range vector

PMR20 carrying divJ-myfp and divK-mcfp

PMR20 carrying divL-cfp

PMR20 carrying creS(AN27)-tc under the control of the xylose-inducible promoter

PMR20 carrying the wbgL gene

PMR20 carrying the tipN and wbqP genes

Unstable Tet" plasmid in C. crescentus

pRK415 carrying the wbgL gene

Delivery plasmid bearing the Himar/ transposon

pXMCST7 carrying ftsZ under the control of P,

pUT delivery plasmid carrying the mini-Tn5 transposon

17

This study
This study
This study
This study
This study
This study
This study
This study
4

4

7

4

This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
15

18

Invitrogen

11

Craig Stephens
This study
This study
20

This study
This study
This study
Lucy Shapiro
14

30

Craig Stephens

22
This study

10

39

21

This study

10

Jeffrey Skerker
This study
This study
Stratagene
Richard Roberts
This study

28

22

This study

7

This study
This study

20

This study

11

10
14

“ ORF, open reading frame.
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FIG. 1. Mutations in cc_0631 cause cell curvature and S-layer shedding defects. (A) Differential interference contrast (DIC) images of
transposon or point mutants found in a screen for cell curvature loss and the same mutants when complemented with extra copies of the wild-type
genes on plasmids or cosmids. i, straight rod-shaped AcreS cells; ii, wild-type cells; iii, cc_0632::Himar/ mutant cells (CJW1933); iv,
cc_0632::Himar! cells expressing cc_(0631 from a low-copy-number plasmid (CIW1935); v, cc_0631 (W138R) cells (UV mutant; CIW926); vi,
cc_0631 (W138R) cells carrying a cosmid, cos1-10-A, contammg cc_0631 and flanking regions (CJW1084) vii; cells in which cc_0631 has been
disrupted by insertion of plasmid pBGENT-KO (CIW1090); viii, cc_0631::pBGENT-KO cells expressing cc_0631 from low-copy-number plasmid
pMR20 (CJW1117). Quantified cell curvature values for each strain are in the lower left corner of each image. (B) Schematic representation of
chromosomal gene arrangement with the locations of mutations or transposon insertions indicated. (C) Photograph of stationary-phase wild-type
and cc_00631::pBGENT-KO (CIJW1090) liquid cultures after growth overnight in PYE medium. (D) Anti-S-layer immunoblot of material shed into
the culture medium by the cc_0631 point and insertion mutants. Blots of whole-cell extracts from the wild type (WT) (CB15N; lane 1) and an rsa4
mutant that does not produce S layer (lane 2) are shown for reference. Lanes 3 and 4 show isolated shed material from wbgL mutants (CJW926

and CJW1090, respectively). Lane 5 shows a whole-cell extract from washed wbgL mutant cells (CJW1090) after removal of shed material.

cc_0631 and flanking regions complemented the UV mutant
(0.39 pm™'; Fig. 1A, panel vi), whose point mutation in
cc_0631 should have no effect on the expression of cc_0632.
Additionally, the cc_0632::Himar! cell shape defect could be
rescued with a plasmid bearing the cc_0631 sequence driven by
P.. (032 pm™%; Fig. 1A, panel iv), suggesting that a polar
effect on the expression of cc_0631 was responsible for the
moderate curvature defect of cc_0632::Himar! cells. To con-
firm this, we specifically interrupted the cc_0631 gene by plas-
mid insertion (generating strain CJW1090) (Fig. 1A, panel vii).
This gene disruption resulted in the same loss of curvature as
observed for the UV mutant (0.11 pm™*) and could be com-
plemented by plasmid-borne cc_0631 (0.38 pm™') (Fig. 1A,
panel viii). Collectively, these results indicate that the proper
functioning of the cc_0631 gene product is required for cell
curvature.

Loss of cell curvature is accompanied by altered O-polysac-
charide and S-layer shedding. We noticed that stationary-
phase liquid cultures of cc_0631 mutant cells contained debris
that was visible on the sides of culture tubes (Fig. 1C). In C.
crescentus, the surface of the cell is covered by an S layer, a
hexagonal protein lattice (32). Since there are some C. cres-
centus mutants that are known to shed S-layer proteins (37), we
tested to see whether this debris contained S layer, which is

made of the RsaA protein (15, 31). Immunoblots of whole-cell
extracts of wild-type CBI15N cells displayed a clear band of
RsaA at ~130 kDa (15) (Fig. 1D, lane 1), while cells with an
antibiotic resistance cassette in the rsa4 gene (JS1003) lacked
detectable protein (Fig. 1D, lane 2). Along with these controls,
we analyzed the debris shed by the cc_0631 disruption mutant
and the cc_0631 UV mutant. The debris was isolated from
stationary-phase cultures on nylon mesh, washed, and solubi-
lized in urea. The lanes containing this debris exhibited the
characteristic RsaA band (Fig. 1D, lanes 3 and 4), showing that
the shed material contained S layer. Some S-layer material
remained associated with the cell (Fig. 1D, lane 5).

Since the paracrystalline array of S-layer protein is attached
to the cell surface through the O-polysaccharide portion of
lipopolysaccharide (LPS) in the outer membrane and since
mutants in LPS synthesis shed S layer (37), we tested whether
cc_0631 mutants produced altered LPS. To do so, we used an
antibody that is specific for “smooth” LPS (S-LPS) (37). S-LPS
is composed of lipid A, to which core sugar and O-polysaccha-
ride are linked. Since this antibody does not recognize “rough”
LPS containing only lipid A and core sugar (26), we assume
that this antibody is specific for the O-polysaccharide portion
of LPS. In Escherichia coli, the lipid-bound core and O-antigen
oligosaccharides are synthesized separately at the inner face of
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FIG. 2. Altered O-antigen species, and not the synthesis of O antigen or S layer, causes the loss in cell curvature. (A) Anti-O-antigen
immunoblot of extracts prepared from wild-type (CB15N; lane 1), O-antigen-null (wbgP::Tn5; CJW1249; lane 2), wbqL(W138R) mutant (CJW926;
lane 3) or wbqL::pBGENT mutant (CJW1090; lane 4) cells or wbqL::pBGENT-KO cells complemented with wbgL expressed from pMR20
(CJW1117; lane 5). Loading for all immunoblots in this figure was normalized by ODg values. (B) DIC images of cells lacking S layer (rsaA::KSac;
JS1003), lacking O-antigen production (wbgP::Tn5; CIW1249), lacking O-antigen production but also carrying wbgL::pBGENT-KO (CJW1908;
wbgP wbqL mutant), or wbgP::Tn5 wbgL::pBGENT-KO with wbgP expressed from pMR20 (CJW1917). Quantified curvature values are given
below each image. (C) Anti-O-antigen immunoblot of the strains shown in the images in panel B and reference strains: lane 1, wild type; lane 2,
rsaA::KSac strain; lane 3, wbgP::Tn5 strain; lane 4, wbgL::pBGENT-KO strain; lane 5, wbgP::Tn5 wbqL::pBGENT-KO strain; lane 6, wbgP::Tn5

wbqL::pBGENT-KO strain with wbgP expressed from pMR20.

the cytoplasmic membrane before being flipped onto the
periplasmic face (40). There, multiple O-antigen oligosaccha-
rides are ligated to the lipid-bound core, which is then shuttled
to the outer membrane (24). Anti-O-polysaccharide immuno-
blots of C. crescentus polysaccharide extracts typically display a
single band, corresponding to a homogeneous O-polysaccha-
ride length (37). We confirmed this length homogeneity in
wild-type cells (Fig. 2A, lane 1). As a negative control, we used
a transposon mutant of wbgP (4) that does not produce a
detectable O-polysaccharide band (lane 2, Fig. 2A). Consistent
with an absence of O-polysaccharide, WbqP has been pro-
posed, based on sequence homology, to initiate the formation
of O-polysaccharide in the cytoplasm by conjugating the first
sugar to the undecaprenol lipid carrier (4). Both cc_0631 mu-
tants (UV-generated and gene disruption; lanes 3 and 4 in Fig.
2A, respectively) showed heterogeneity in O-polysaccharide
length, with multiple bands of shorter length than that for the
wild type, with the shortest band being the most abundant.
Addition of cc_0631 on a low-copy-number plasmid in the
cc_0631 disruption mutant (strain CJW1117) restored both
wild-type cell curvature (Fig. 1A, panel viii) and wild-type
O-polysaccharide length uniformity (Fig. 2A, lane 5). These
data indicate that the CC0631 protein plays a role in LPS
biosynthesis in C. crescentus and that defects in LPS production

are responsible for the S-layer shedding phenotype of cc_0631
mutants.

Prior to this work, a screen had been performed to identify
mutants that were defective in attachment of the S layer (4).
Through this screen, a wbgL transposon mutant was identified
(4). At the time, the mutant was characterized, but the se-
quence or reference number of the wbgL gene was not made
publicly available until after we had determined, by comparing
the gene length and those of neighboring genes, that their
mutation was in cc_0631, which will here be called wbgL.
Awram and Smit (4) showed that a wbgL::Tn5 mutant sheds S
layer and produces altered LPS but made no mention of a
defect in cell shape. We confirmed that their wbgL::Tn5 mu-
tant had the same curvature defect that we observed with our
wbgL mutants (data not shown).

BLAST alignment of the predicted WbqL protein sequence
revealed that it matches the COG4421 superfamily of bacterial
capsular polysaccharide biosynthesis proteins and shows sub-
stantial homology to a number of these proteins. The UV point
mutation in wbqL that abolishes cell curvature (Fig. 1A, panel
v) causes a tryptophan-to-arginine substitution at position 138
(W138R). Tryptophan 138 is located in a region of the se-
quence displaying high levels of conservation among different
polysaccharide biosynthesis proteins (data not shown), in ac-

662 NI9/AYVYEIT SNAVIVM Ad LTOZ ‘€ JoquianoN uo /610 wse qlj/:dny wouy papeojumoq


http://jb.asm.org/

Vor. 192, 2010

cord with this substitution affecting protein function. Consis-
tent with an earlier alignment analysis suggesting that WbqL is
a glycosyltransferase (4), HHpred structural prediction analy-
sis (33) matched WbqL to general glycosyltransferase structure
as well as to E. coli WaaF, which is ADP-heptose-LPS hepto-
syltransferase II. WaaF is responsible for ligating the second
heptose unit to the core sugar of E. coli LPS (25). The com-
position of the core sugar of C. crescentus LPS is slightly dif-
ferent from E. coli (27), and its assembly pathway has not yet
been determined. Because genes putatively involved in C. cres-
centus LPS biosynthesis have been identified solely based on
abnormal or absent LPS in mutants and by sequence compar-
ison to known LPS biosynthesis proteins (4), it is difficult to
assign WbqL a specific function in LPS biosynthesis. In any
case, it is clear that without WbqL, the cells accumulate an
aberrant O-polysaccharide species (4).

Altered O-polysaccharide but not absence of O-polysaccha-
ride or S layer results in cell curvature loss. Since the altered
LPS species and associated S-layer shedding in wbgL mutant
strains were correlated with a straight cell shape, we next
examined whether cell curvature required the production of
either S layer or O-polysaccharide. To test the dependence of
curvature on S layer, we used an rsaA4 mutant strain (JS1003).
These cells, which produce no detectable S layer (Fig. 1D, lane
2), had a curvature value of 0.32 um ™' (Fig. 2B), which is close
to the wild-type value (0.39 wm™"'). Therefore, cell curvature
does not require S-layer production. Similarly, synthesis of
O-polysaccharide is dispensable for cell curvature, since
wbgP::Tn5 cells (CJW1249) displayed near-normal curvature
(0.35 pm ™) (Fig. 2B).

Even though wbgL mutants shed the S layer and have al-
tered O-polysaccharide, disruption of S layer or O-polysaccha-
ride synthesis does not result in a defect in cell curvature. It
was not clear whether the alteration in O-polysaccharide was
directly related to the cell curvature defect. It was possible that
WbgL might have a second role, unrelated to O-polysaccha-
ride synthesis, which might result in the straight-rod shape in
the wbgqL mutant. Because wbgP mutant cells do not produce
any detectable O-polysaccharide, wbgP would be predicted to
be upstream of wbgL in the pathway of O-polysaccharide bio-
synthesis. We therefore created a wbqP wbql. double mutant
(CJW1908), which would produce no O-polysaccharide (and
therefore no altered O-polysaccharide either), and examined
the shape of the cells. If a wbgP mutation in the wbgL null
background could restore wild-type curved cell morphology,
this would indicate that the altered O-polysaccharide species
likely causes the straight-rod shape. If a wbgP mutation in the
wbgL null background could not rescue wild-type curved cell
morphology, this would support a model in which WbqL has
dual roles, and the abrogation of WbqL’s second role would
cause the straight-rod shape independently from its effect
on LPS.

The wbgP wbgL double mutant strain exhibited curvature
(0.37 pm™!) virtually indistinguishable from that of the wild
type (Fig. 2B) and did not produce any detectable O-polysac-
charide (Fig. 2C, lane 5). Supplying wbgP on a low-copy-num-
ber plasmid in this strain background (CJW1917) allowed the
production of the aberrant O-polysaccharide species (Fig. 2C,
lane 6) and led to cell curvature loss (0.11 pm™'; Fig. 2B)
identical to that of a wbgL mutant alone (Fig. 1A, panel vii).
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FIG. 3. Loss of cell curvature is caused by dissociation of the crescentin
structure from the cell envelope. (A) Anticrescentin immunoblot of cell ex-
tracts from wild-type CBI5N, crescentin-null AcreS, or wbgL::pBGENT-KO
strains. Loading was normalized by ODy, values. (B) Anticrescentin immu-
nofluorescence (red) micrograph of mCBISN  wbgL::pBGENT-KO
(CJW1090; left panel) or wild-type CBISN cells (right panel). 4',6-Dia-
midino-2-phenylindole (DAPI) counterstain is shown in blue. (C) Fluores-
cence micrograph of mGFP-labeled crescentin structures in CBISN
creS::pHL23creS-mgfp wbgL::pBGENT-KO (CJW2876) cells. Overlay with
phase-contrast image (blue) is also shown. (D) Top panel: DIC and GFP
images from a time-lapse series showing the motion of mGFP-labeled cres-
centin structures in CJW2876 cells. Bottom panel: control time-lapse series
from CBI5N creS:pHL23creS-mgfp (CJW2861) cells.

This result suggested that it is the generation of an altered
O-polysaccharide species, rather than the loss of normal O-
polysaccharide, that causes the curvature defect. This strongly
argues against a secondary function of WbqL that specifically
relates to cell curvature, instead suggesting that a loss of cell
curvature in a wbgL mutant is specifically due to the produc-
tion of an altered O-polysaccharide species.

The crescentin structure does not associate with the cell
envelope in a wbgL mutant. Since crescentin plays an essential
role in cell curvature, we asked whether crescentin production,
structure, or function was disrupted in wbgL mutants. Immu-
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noblot analysis showed that crescentin was present in wbgL
mutant extracts, with no visible degradation or size shift (Fig.
3A), indicating that the cell curvature defect was not caused by
the absence or degradation of crescentin. Immunofluorescence
microscopy revealed that while crescentin formed filamentous
structures in wbgL mutant cells, these structures were S shaped
and seemingly in the cytoplasm (Fig. 3B) instead of being
linear and membrane juxtaposed along one side of the cells as
seen in wild-type cells (3). This mislocalization was also visible
in live cells (CJW2876) when crescentin was coproduced with
monomeric green fluorescent protein-tagged crescentin (cres-
centin mGFP, which labels the endogenous crescentin struc-
ture [3]) (Fig. 3C). This localization pattern was reminiscent of
envelope-dissociated crescentin structures generated by drug
treatment or crescentin truncation (7, 10). We reasoned that
such dissociated structures should display increased mobility
within the cell, as previously observed (7, 10). Time-lapse im-
aging of mGFP-labeled crescentin structures revealed visible
mobility within these cells (Fig. 3D). Thus, the loss of curvature
in wbgL mutant cells is caused by a defect in the association of
the crescentin structure with the cell envelope.

Collectively, our data suggest that an altered O-polysaccha-
ride species in a wbgL mutant interferes with the association of
the crescentin structure and the cell envelope. How might this
interference occur? Since very little is known about LPS bio-
genesis in C. crescentus, we can only speculate. O-polysaccha-
ride can still be exported in wbgL mutant cells, as evidenced by
the presence of anti-O-polysaccharide-accessible epitopes on
the surfaces of intact cells (see Fig. S1 in the supplemental
material). However, it is unclear whether these epitopes rep-
resent the aberrant O-polysaccharide species or the small
amount of normal-length O-polysaccharide produced in the
mutant (Fig. 2C). As previously observed (4), silver staining for
LPS revealed a faster-migrating band in the wbglL mutant that
stained with intensity similar to that of the wild type (see Fig.
S2 in the supplemental material). Since undecaprenyl-linked
O-antigen precursors in E. coli have been reported to stain less
efficiently than lipid A-linked LPS with silver (35), this raises
the possibility that the aberrant band in the wbgL mutant
represents a mature (lipid A-linked) LPS species that has been
exported to the cell surface. Without more information, it is
difficult to envision how an exported (i.e., noncytoplasmic)
aberrant LPS product could interfere with the cytoplasmic
crescentin structure.

Interference could be indirect, and we considered an effect
on the peptidoglycan, since chemical perturbations of pepti-
doglycan synthesis can cause a similar phenotype of crescentin
structure detachment (7, 10). However, the HPLC profiles of
peptidoglycan digests (muropeptides) of wild-type, wbgL mu-
tant, and wbgP mutant cells were very similar (Fig. 4A), show-
ing identical peptidoglycan cross-linking and only a minor in-
crease in glycan chain length in the wbgLL mutant relative to the
wild type (Fig. 4B; see also Tables S1 and S2 in the supple-
mental material). Since this small increase was also present in
a wbqP mutant, which produces no LPS and has normal cres-
centin structure localization and function, these data strongly
argue against a perturbation in peptidoglycan structure or syn-
thesis interfering with crescentin structure localization in the
wbqL mutant. Still, it remains possible that some aberrant LPS
intermediates might be inefficiently exported across the cyto-

J. BACTERIOL.

plasmic membrane, causing them to accumulate on the inner
face of the cytoplasmic membrane, where they might interfere
with the crescentin structure. Direct evidence for such a dis-
ruptive interaction is difficult to obtain, since membrane frac-
tionation methods do not differentiate between membrane
leaflets, and overlap of inner and outer membrane peaks is
exacerbated in wbgL mutants (data not shown), complicating
interpretation. However, in membrane fractionation of wild-
type cells, a faster-migrating O-polysaccharide band detectable
by anti-S-LPS is enriched in cytoplasmic-membrane fractions
(see Fig. S3 in the supplemental material). This result raises
the possibility that the faster-migrating band may represent an
intermediate that normally faces the cytoplasm. If such inter-
mediates accumulated in wbgL mutant cells, they might con-
ceivably occlude or disrupt interactions between the crescentin
structure and cytoplasmic membrane-associated factors that
keep the crescentin structure localized at the cell envelope.

While the precise mechanism disrupting the crescentin
structure localization in whgL mutants remains speculative, we
clearly show that a mutation altering LPS biosynthesis affects
crescentin-mediated cell curvature. The intersection of these
two usually unrelated cellular processes highlights the impor-
tance of physiological balance in cells. Perturbation of one
pathway can upset this balance, possibly leading to production
of an aberrant product and inducing a novel, disruptive inter-
action with another cellular component. Disruptive interac-
tions of this kind have also been reported for other systems. In
Staphylococcus aureus, disruptions in the teichoic acid biosyn-
thesis pathway that are usually lethal are bypassed if the first
enzyme in the pathway is inactivated (13). In this case, aberrant
buildup of toxic teichoic intermediates is probably at play,
possibly analogous to the aberrant O-polysaccharide species
seen in a whbgL mutant. Similarly, an O-polysaccharide trans-
porter knockout in E. coli inhibits cell growth and division but
not when a gene upstream in the synthesis pathway is inacti-
vated (12). The potential for creating harmful interactions may
be an evolutionary constraining force, favoring changes that
refine the harmony between different cellular systems as an
organism adapts to its environment.

Envelope-dissociated crescentin blocks cell division when
overproduced. The dissociation of crescentin structures in a
wbqL disruption background provides a useful tool for probing
the configuration and behavior of dissociated crescentin struc-
tures in the absence of crescentin mutations or drug treat-
ments. Consistent with earlier reports (7, 10), we observed
primarily left-handed (91%; n = 204) helical structures by both
immunofluorescence and mGFP tagging in elongated cells
made by depleting the cell division protein FtsZ (Fig. 5A to C).
Addition of new crescentin subunits along the entire length of
the crescentin structure was independent of envelope associa-
tion (data not shown). Similarly, biphasic growth, where lon-
gitudinal extension is replaced by primarily lateral thickening
once crescentin structures reach the cell poles (10), was normal
and thus independent of membrane association in the wbqL
mutant (data not shown).

During normal cell division in C. crescentus, the crescentin
structure is cleaved or locally depolymerized at the division site
so that each daughter cell inherits part of the crescentin struc-
ture. This process works well even when crescentin (tagged
with a tetracysteine motif [TC]) is strongly overproduced from
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FIG. 4. Muropeptide analysis of wild-type and wbqL mutant peptidoglycan. Muropeptide analysis was performed for wild-type (CB15N),
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wbqL::)pBGENT-KO (CIW1090), and wbgqP::Tn5 (CIW1249) strains. The wbgP mutant strain was used as a control, since this strain (CJW1249)

does not produce any detectable LPS but shows normal crescentin structure localization and function. (A) Chromatographic traces of HPLC-
separated muropeptides from the three strains. (B) Comparison of the abundance of each cross-linked muropeptide species, the overall
cross-linking percentage, the abundance of anhydro glycan ends, and the average glycan chain length. The values are expressed as percentages of
the wild-type value. The data reflect the means of results from two independent experiments; error bars represent standard deviations. The
numerical values for the data shown in this panel are given in Table S1 in the supplemental material, and the abundance of each individually

identified muropeptide species is listed in Table S2.
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FIG. 5. Cell envelope-dissociated crescentin structures adopt a helical configuration. (A) Anticrescentin immunofluorescence (red) micrograph
of CBI5N fisZ::.pBJM1 wbqL::)pBGENT-KO (CIW3292) cells depleted of FtsZ for 4.3 h. DAPI counterstain is shown in blue. (B) Fluorescence
micrograph of GFP-labeled crescentin structures in CJW3130 (CBISN fisZ:pXMCS7ftsZ creS::pHL23creS-mgfp wbgL::pBGENT-KO) cells
elongated by depletion of FtsZ for 3.5 h. Crescentin-mGFP (red) is laid over a phase-contrast image (blue). (C) Optical sections of a CJW3130
cell to show helical handedness of the mGFP-labeled crescentin structure. (D) Time-lapse images of CJW3332 (CBI15N ftsZ:pXMCS7{tsZ AcreS
P, :pBGENTP,,, creS-tc::pHL32P, ,, creS-gfp wbgL::)pBGENT-KO) cells. The cells are producing crescentin-TC and crescentin-GFP de novo
(due to the presence of vanillic acid inducer) under FtsZ depletion conditions (due to the absence of xylose), so that the cells do not divide during

induction of crescentin-TC and crescentin-GFP synthesis.

a medium-copy-number plasmid, pJS14 (Fig. 6A). We there-
fore tested whether the cell division-dependent disruption of
the crescentin structure was related to envelope association.
We similarly produced crescentin-TC from pJS14 in a wbgL
disruption background (CJW3295). In these wbqgL mutant
cells, the overproduced crescentin-TC formed a brightly fluo-
rescent, nearly straight filamentous structure within cells (Fig.
6B). The straight rather than helical configuration of the cres-
centin-TC structure likely results from crescentin overproduc-
tion, since dissociated crescentin structures in FtsZ-depleted
cells (CJW3332) also tend to lose their helicity during the
course of overproduction (Fig. 5D). This loss of crescentin
structure helicity may be due to its becoming stiffer as a result
of continued lateral addition of crescentin subunits.
Overproduction of crescentin in wbgL mutant cells also
caused a striking cell chaining phenotype, with many cells in
the population appearing to be linked together by a single
crescentin structure (Fig. 6B). Additionally, thin cellular ex-
tensions, visible by phase-contrast microscopy, appeared to
link some chained cells together (Fig. 6B, arrowheads). These
extensions often contained a crescentin-TC structure (Fig. 6B,
inset), suggesting that the presence of a dissociated, thicker
crescentin structure caused a block in cell division. However, it
was also possible that this inability of cells to divide efficiently
in the presence of a thick crescentin structure was specific to
the inactivation of wbgL. To rule this out, we used an N-
terminally truncated mutant of crescentin, crescentin,ys,s,
which is able to form a filamentous structure but is dissociated
from the cell envelope (7). We overexpressed creS(AN27)-tc
using the P,, promoter on the low-copy-number plasmid
PMR20 in a crescentin-null background (CJW1537), so that it

was the only source of crescentin in the cell. Upon induction of
crescentin,n,,-TC production, a strong cell chaining pheno-
type developed. Just as in the wbgL mutant background,
crescentin,n,,-TC filamentous structures were straight (con-
sistent with overproduction) and spanned the length of multi-
ple chained cells (Fig. 6C). The cell chains displayed clear
constrictions that contained crescentinn,,-TC structures (Fig.
6C, arrows), giving the impression that the cells had attempted
to divide but could not separate the crescentin structure.

Since crescentin has not yet been conclusively identified in
electron cryotomography (ECT) experiments (6), we reasoned
that the thinness of these crescentin,y,,-containing constric-
tions, combined with protein overproduction, might allow good
visualization of the crescentin,y,; structure. Indeed, ECT re-
vealed thick and straight filament bundles within the cytoplasm
of cells that were sometimes bent at stalled division sites (Fig.
6D). In the image shown, the division site appears to have
constricted until it reached the approximate diameter of the
crescentin bundle but no further. Fully developed flagellar
motors (FM, Fig. 6D) and chemoreceptor arrays (CR, Fig. 6D)
are present at each side of the constriction, as might be ex-
pected if daughter cells failed to separate but then advanced
through their respective cell cycles. Collectively, these data
suggest that the thicker crescentin structures formed by cres-
centin overproduction interfere with the completion of cytoki-
nesis when they are dissociated from the cell envelope.

How might envelope association assist in successful division
of the crescentin structure during cell division? One possibility
is that a protein or factor that promotes degradation or disas-
sembly of crescentin filaments at the division site is membrane
associated and therefore cannot act efficiently on the crescen-
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FIG. 6. Overproduction of envelope-dissociated crescentin causes cell chaining. (A) Image of fluorescein arsenical helix binder (FlAsH)-
labeled crescentin-TC (red) overproduced in a wild-type background (CIW3330; CB15N/pJS14creS-tc cells), laid over phase-contrast micrograph
(blue). (B) Micrographs of cells overproducing crescentin-TC in a wbgL:pBGENT-KO background (CJW3295; CBISN
wbqL::)pBGENT-KO/pJS14creS-tc). Phase-contrast image is given at top, with an overlay of phase-contrast (blue) with FIAsH-stained crescen-
tin-TC (red) at bottom. Arrowheads indicate visible thin extensions connecting chained cells; inset magnifies the presence of a visible crescentin
structure running through one such extension (arrow). (C) Images of FIAsH-stained crescentinyy,,-TC (red) overproduced (induced for 4 h) as
the only source of crescentin in the cell [CJW1537; CB15N AcreS/pMR20P, ,creS(AN27)-tc], laid over phase-contrast micrograph (blue). Arrow
indicates a crescentin,y,,-TC structure running between chained cells. (D) Section of an electron cryotomogram of two chained CJW914 cells
[CB15N/pJS14P,,,creS(AN27)] overproducing crescentin,y,;. F, filamentous structure; CR, chemoreceptor array; FM, flagellar motor; S, S layer;
OM, outer membrane; PG, peptidoglycan; IM, inner membrane.
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tin structure when this structure is dissociated from the mem-
brane, as in a whbgL mutant. Interestingly, E. coli displays a cell
chaining defect when crescentin is exogenously expressed even
though the crescentin structure is envelope associated (7). It is
therefore possible that the evolutionarily distant E. coli lacks
an important factor for splitting the crescentin structure during
division. C. crescentus also exhibits a considerable period of
midcell elongation preceding division that is not shared by E.
coli (1). It is tempting to hypothesize that midcell elongation in
C. crescentus would tend to stretch the envelope-associated
crescentin structure, making its disruption at the division site
more favorable.
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