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CHAPTER7
Summary and general discussion

7.1 Summary of this dissertation

The research described in this dissertation tried to shed light on the rela-
tion between complex action control in humans and robots. Taking the
acquisition of action sequences as an example, a paradigm for the study
of sequential action was introduced, and several models were discussed
that can account for sequence learning and execution.

7.1.1 How human and robotic complex action control are related

First, the main obstacles in the way of autonomous, everyday action ex-
ecution by robots were discussed from a cognitive psychological view-
point in Chapter 2. Four main categories of problems are identified that
need to be dealt with in order tomake truly flexible, autonomous robots:
(1) the integration of symbolic and subsymbolic planning; (2) the integra-
tion of feedforward and feedback planning and execution mechanisms;
(3) the structure of action representation; and (4) the contextualization
of action control.

Early ai planners, such as strips [47], were designed to reach an intended
goal state from an initial state through symbolically represented subac-
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7. Summary and general discussion

tions. This symbolic nature of action representation has many advan-
tages: it allows, for example, for easy manipulation of action compo-
nents leading to efficient planning. Early approaches in the study of hu-
man sequential action also assumed a symbolic representation of action
sequences, with subsymbolic (sensorimotor) triggers responsible for tim-
ing. Both James [69] and Washburn [167] suggested a chaining theory of
sequential action, in which the sensory feedback produced by executing
the subaction at t0 would trigger the execution of the subaction at time
t1. However, several empirical findings seem to be incompatible with a
chaining account of sequential action. For example, such models can-
not account for context effects as found in studies into anticipatory lip
rounding, in which facial muscles adapt to sounds that are to be pro-
duced later in time [14] or Gentner’s typewriting studies that showed a
large amount of movement in anticipation of subactions several units
ahead [51]. Instead, models that integrate symbolic and subsymbolic rep-
resentations such as the typewriting model suggested by Rumelhart and
Norman [131], seem to bemore promising. In thismodel, the correct tem-
poral order of subaction execution is ensured by feedforward inhibition.

As the field of robotics advances from repetitive, predictable actions such
as factory work to highly dynamic and complex actions in everyday life,
feedforward control systems alone are no longer sufficient. On the other
hand, feedback systems are often slow as they require information from
the environment to be produced and detected. Successful integration
of feedforward and feedback control systems is needed to create agents
that are both fast and adaptive. The existence of feedforward planning
mechanisms in humans is demonstrated by the relation between onset
delay and sequence complexity in finger and arm movements [59], as
well as Eriksen et al.’s [44] linguistic studies on number pronunciation.
However, feedback controlmechanisms are essential for filling in param-
eters unavailable or unreliable at planning time, such as object weight
and required grip strength. Hybrid architectures, in which skeleton ac-
tion plans are generated by feedforward mechanisms, and where param-
eters are filled in by feedback processes seem to combine the best of both
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7.1. Summary of this dissertation

worlds [53, 64].

Another difficulty in complex action planning is that the meaning and
purpose of subactions vary with the goal that they serve to accomplish.
In ai planners, the function of goals is to guide the selection of task com-
ponents, and in cognitive processing models such as act-r goals reduce
the search space, making task preparation more efficient [33]. Some au-
thors have argued against the representation of goals for two reasons [18].
First, goals themselves may be context-dependent, and as such require
different subactions to accomplish them. Second, many everyday activi-
ties such as taking a walk do not always have clearly defined goals. Oth-
ers, however, emphasize that it is the representation of goals that makes
useful action plan manipulation such as subaction substitution or skip-
ping possible [33]. Alternatively, implicit goal representation from a tec
viewpoint can be viewed as a kind of “intentional weighting”mechanism
in which relevant features are activated more than others, priming the
agent to execute different subactions [65, 95]. Whatever the exact nature
of goal representation, it is clear that some form of end-state representa-
tion is necessary to generate flexible behavior.

Chapter 3 discussed how the relationship between cognitive psychology
and cognitive robotics developed over time. After breaking away from
philosophy, psychology found itself depending on unreliable, subjective
information. In a push toward reliable, empirical observation as the basis
of a scientific psychology, behaviorismemerged as themethod that could
put psychology on par with the natural sciences. However, behaviorism
proved untenable as a general theory of human behavior as it could not
account for fundamental cognitive processes such as language andmem-
ory, leading towhat is nowknown as the neocognitive revolution. Mean-
while, in the 1950s the field of artificial intelligence arose from cybernet-
ics, mathematics, and computer science, and over the following decades
expert systems such asmycin and symbolic ai (nowknownas gofai, good
old-fashioned ai) were able to show impressive results. Also, computers
were slowly beginning to gain public interest. Cognitive psychologists
started to wonder if humans are like computers: input–output devices

117



7. Summary and general discussion

with sensory information as input and behavior as output, known as the
so-called computer analogy. Meanwhile, roboticists were considering
animal behavior as a foundation for robot control. Some early cognitive
robots were roughly inspired by biology [21], but even more specific par-
allels could be drawn between humans and robots.

The problemof integrating feedforward and feedback control in robotics
had gained interest as task demands for robots became less predictable.
Where the absence of a feedback loop in a factory environment may not
be a big problem as long as all manipulanda are in the correct location
and orientation, feedback is required in almost all situations in the out-
side world. Brooks’ subsumption architecture [21] was a response to tradi-
tional gofai and showed that complex behavior could emerge without
the traditional separation of feedforward and feedback systems. How-
ever, this architecture worked for rather low-level behavior such as wan-
dering, avoiding, and homing, and it is unclear how well it would scale
up to more complex situations. More complex, goal-directed behavior
in robots is usually the product of a planner¹. This component takes an
intended state, compares it with the initial state, and determines the ac-
tions to take in order to successfully reach the intended state. Tradi-
tional planners such as strips fail when one of the subactions cannot be
successfully completed, and backtrack to try alternative subactions.

7.1.2 Empirical studies on sequence learning

One of themost widely used paradigms in sequence learning is the serial
reaction time (SRT) task [107]. In this task, participants are asked to press
the button associated with one of four horizontally distributed stimuli.
Unbeknownst to the participants the four stimuli appear in a repeating,
deterministic sequence. Over time, participants show a larger decrease
in response times compared to a random sequence, indicating learning
of the sequence. However, due to the discrete nature of this task it is

¹Although both Brooks [22] and Braitenberg [20] are excellent examples of apparent
complex behavior without a planner.
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7.1. Summary of this dissertation

impossible to investigate interstimulus processes such as prediction or
context effects [146].

In Chapter 4, we described an adaptation of the SRT task into the con-
tinuous domain. Instead of four discrete buttons associatedwith stimuli,
we presented four squares in the corners of a computer screen, with the
instruction of moving the mouse cursor as fast as possible to the square
that changes color. This type of data collection allows researchers to
capture the temporal dynamics of cognitive processes and the interac-
tion between them [48, 146, 148]. First, we were able to replicate Nissen
& Bullemer’s [107] original findings: more speedup in the deterministic,
repeating sequence than in a random sequence. Second, we showed that
this speedup was due to predictive responses made during the ITI, and
that participants employed different strategies. While some participants
actively moved the cursor to the next target during the ITI, others used
a centering strategy in which they moved cursor to a central location
equidistant from all possible alternatives, a phenomenon reported ear-
lier in the literature [34, 38].

Due to the questionable ecological validity of the SRT task—after all, ev-
eryday sequence learning is not often characterized by merely respond-
ing to attention-grabbing stimuli—we adapted the SRT task to a rein-
forcement learning paradigm. In this task, participants no longer could
respond to squares changing color but had to actively explore the alterna-
tives, receiving a 1-point reward when choosing the correct alternative,
and a reward of −1 for choosing an incorrect alternative. Participants
varied widely in the amount of points collected. To investigate possi-
ble causes, we fit three model-free reinforcement learning models: (1)
Q-learning, (2) SARSA, and (3) Q-learning with eligibility traces.

Reinforcement learning models are a class of machine learning models
that learn what to do in order to maximize reward, roughly inspired by
operant conditioning in cognitive psychology. As such, the learner is not
told explicitly what to do—as is the case in supervised learning—but has
to discover which actions produce the highest reward through trial-and-
error. In traditional reinforcement learningmodels, each possible action
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that can be taken in a given state has a certain value: the immediate re-
ward the action will yield plus the total amount of reward that can be
expected in the future. In order to keep track of these values, they are
often stored in a table², mapping discrete actions in discrete states to
Q-values.

The models as used in their current form were not able to approach the
final scores of the best human participants. However, Q-learning per-
formed better than SARSA, and Q(𝜆) produced even better results. The
relatively bad performance of Q-learning—which was quite surprising
given the relative simplicity of the task—could be due to the specific ac-
tion selection policy used. This is further explained in Section 7.2.2.

In the study described in Chapter 4, we found centering behavior to be
a function of uncertainty, and a large variance in scores attained on the
reinforcement learning task. To further examine these phenomena, the
study described in Chapter 5 used a larger sample and a within-subject
design. Wewanted to investigate the factors that predict successful plan
formation, and compare performance between the responsive SRT task
and the exploratory reinforcement learning task. Participants in an SRT
task can rely on two modes of executive control: stimulus-based con-
trol and plan-based control [160]. Under stimulus-based control, partici-
pants are prepared to respond to stimuli in an automatized fashion, del-
egating control to the external stimulus. Under plan-based control, an
internal representation of the motor plan is made. These two modes of
executive control can be strategically chosen under some circumstances.
In a reinforcement learning paradigm, stimulus-based control is not a vi-
able strategy, as there are no external stimuli to respond to. Participants
were asked to perform both tasks described in Chapter 4 in randomized
order, as well as completemeasures of IQ, visuospatial workingmemory,
need for structure, and locus of control.

For the SRT task, we used three measures of plan-based control: (1) the

²The action–value function need not necessarily be represented as a table. In fact,
much progress has beenmade in the last years using (deep) neural networks as action-value
function approximators, see e.g. [98].
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acquisitionof explicit knowledge about the sequence, (2) predictivemove-
ment toward the correct target in the inter-stimulus interval, and (3) the
magnitude of frequency effects. Participants who acquired explicit se-
quence knowledge made increasingly larger predictive movements over
the course of the task, whereas participants without explicit sequence
knowledge hardly did so. Of all predictors, only visuospatial working
memory predicted the acquisition of explicit sequence knowledge.

For the reinforcement learning task, both visuospatial working mem-
ory and IQ predicted final score. This suggests that the formation of
an action plan in the current paradigm is limited by cognitive capacity,
although another explanation could be that people with high IQ orWM
are more likely to actively look for structure in sequential tasks.

In Chapter 6, we investigated the centering behavior described in Chap-
ters 4 and 5 in more detail. We used a simulated robotic arm controlled
by an artificial neural network to perform the same task as the one de-
scribed in the earlier chapters: moving the mouse toward a stimuli that
appear in a deterministic, repeating order. In one condition, the net-
works were providedwith accurate information about the next stimulus,
similar to human participants that have learned the sequence and are
able to predict the next one. In another condition, the networks were
given a random stimulus location as a prediction, making the prediction
uninformative in that it contains no useful information about the next
stimulus. In a third condition, we did not provide any stimulus location
as a prediction, i.e. the input to the prediction units were fixed at zero.

We found that thenetworks thatwere given accurate predictions evolved
predictive behavior. They moved toward the next stimulus after touch-
ing the current one, but before the next one appeared. The networks
with either random or no prediction developed a centering strategy sim-
ilar to the one described in Chapters 4 and 5: they moved the cursor to
the center of the screen, an optimal location towait for the next stimulus
to appear.
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7.2 Discussion and future directions

7.2.1 Sequential action under stimulus-based and plan-based control

Two modes of executive control were discussed and studied in this dis-
sertation: stimulus-based and plan-based control. Our paradigm was a
hybrid between our earlier trajectory SRT work and Tubau et al.’s [160]
study into stimulus-based vs. plan-based control. In our design, we used
a sequencewith straight (left–right or up–down)movements beingmore
frequent than diagonal movements in order to examine frequency ef-
fects, which were found by Tubau et al. [160] to decrease under plan-
based control. However, due to the increased dimensionality of our para-
digm there are many more possible frequency effects in play: horizontal
repeat or switch, vertical repeat or switch, diagonal or straight, stimulus
location, etc. This reduced the usability of frequency effects as ameasure
of plan-based control.

Other shortcomingswith the used paradigm can be identified. Although
the use of the original SRT sequence allows for a straightforward com-
parison with earlier work (e.g. [107]), this sequence is not specifically de-
signed for the analyses conducted in our work. For example, with four
alternatives the distances between alternatives are not identical, as di-
agonal movements require longer distances than straight movements.
Although an analysis of response times between diagonal and straight
movements in the random condition did not show an effect of move-
ment type on response times, other properties of thesemovements could
affect our results. For example, Burk et al. [23] found that movement dis-
tance affects decision making, and this could have made diagonal move-
ments a less attractive choice for participants because they require more
effort to perform. Additionally, location and transition probabilities are
not balanced in the standard SRT sequence. A similar, balanced three-
alternative paradigm could be used in future research to remove these
confounds.

Another interesting avenue of research would be the role of stimulus
probability on centering behavior. If the centering behavior described in
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this dissertation is indeed due to minimization of mean travel distance
to stimuli, altering stimulus probabilities would cause the centering lo-
cation to shift toward more probable stimuli. This can be investigated
both by using human participants as subjects, or in a simulated robotics
paradigm such as the one described in Chapter 6.

7.2.2 Reinforcement learning: action selection and parameter fitting

The studies described in this dissertation compared humanperformance
on a sequential reinforcement learning task with the performance of
three reinforcement learningmodels: Q-learning, SARSA, andQ(𝜆). For
a reinforcement learning model to perform well, the method of action
selection it uses needs to balance between exploitation, using the infor-
mation it has gathered from experience and that is stored in its Q-table,
and exploration, allowing the model to try other and possibly better ac-
tions. At the start of any task or learning process, the Q-table may have
been initialized to zero, or filled with small, random values. Either way,
the information it contains is uninformative, and therefore should not
be used for action selection. Different action selection policies deal dif-
ferently with this problem. Several different action selection policies are
used in the literature:

• greedy: the agent always selects the action that maximizes the
value estimate;

• random: the agent always selects an action at random;

• 𝜖-greedy: the agent selects the action that maximizes the value
estimate Q with probability 1 − 𝜖, otherwise it selects an action at
random;

• softmax: the agent selects an action based on weighted probabil-
ities by applying a softmax function over the value estimates. A
temperature parameter 𝜏 can be used to control the spread of the
softmax distribution.
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The greedy policy could be considered purely exploitative, while the ran-
dom policy is purely explorative. It should be clear that neither policy
will provide good results in the paradigms described in this dissertation,
as the greedy policy will always choose the action that happens to have
the associated highest random value at Q-table initialization, while the
random policy will never use the information stored in the Q-table. In
the study described in Chapter 4, an 𝜖-greedy policy was used. However,
preliminary analyses of the data (not described in this dissertation) show
that both softmax and another policy have the potential of outperform-
ing even humans. The policy involves temporal decay of random action
rate 𝜖 in the 𝜖-greedypolicy. 𝜖 is initialized to a relatively high value at the
start of the sequence, exploring all possible actions and updating the Q-
table with associated rewards. As the Q-values stabilize over the course
of the experiment, 𝜖 decreases, making use of the informative Q-values
that now populate the Q-table.

Also, the learning rule and action selection policy interact, as is clear
from their definitions. The update rule in Q-learning updates Q for any
state-action pair <𝑠, 𝑎> using an experience tuple <𝑠, 𝑎, 𝑠′, 𝑟>, with learn-
ing rate 𝛼 ∈ [0, 1] and discount factor 𝛾 ∈ [0, 1]:

𝑄′(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑄[𝑠′, argmax
𝑎′

(𝑄[𝑠′, 𝑎′])]) (7.1)

SARSA, on the other hand, does not use the maximum attainable re-
ward in state 𝑠′ to update the Q-table, but instead chooses 𝑎′ using the
same policy it used to choose 𝑎. It therefore uses the experience tuple
<𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′>:

𝑄′(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑄[𝑠′, 𝑎′]) (7.2)

Under a greedy action selection policy, Q-learning and SARSA are equiv-
alent³, and will update Q with the maximum attainable reward in state
𝑠′: Q-learning by definition, and SARSA by virtue of always selecting

³Although note that Q-learning first updates Q, and selects the next action based on
the updated Q, while SARSA chooses the action first and then updates Q.
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the action that will yield the maximum attainable reward. Future stud-
ies should investigate the influence of action selection policies and their
parameters on model performance in the paradigms discussed in this
dissertation.

Also, if these reinforcement learningmodels are shown to be able to out-
perform humans in the task described in Chapters 4 and 5, parameter
fitting could shed light on the nature of individual differences between
human participants if the models turn out to be identifiable using spe-
cific cost metrics. For example, a final score of only 200 points could be
due to either a low value of learning rate 𝛼, placing too little weight on
the latest reward, or a too high value of random action rate 𝜖, taking too
many exploratory actions instead of exploiting the information in the
Q-table. Instead, by looking at the learning trajectory, and using it as an
error function, it could be possible tomake thesemodels identifiable. As
another interesting manipulation, the reward schedule of the reinforce-
ment learning task could be manipulated. By making certain rewards
contingent on (a series of) earlier actions, differences in discount rate 𝛾
could be investigated, making this paradigm quite versatile for explain-
ing individual differences.

7.3 Conclusion

This dissertation concerned itself with everyday action, and the mech-
anisms by which humans and robots are able to perform it. First, we
described the fundamentals of everyday action, and explained that it is
not as simple as the word implies. Also, we described the capacities a
robot should have in order to perform everyday action. Next, we investi-
gated the similarities and differences between human and robotic action
control. Several mechanisms by whichmotor control is learned (e.g. mo-
tor babbling and reinforcement learning) are already common to both
human and robotic action control.

The adaptation of the SRT task into a trajectory paradigm allows for
the observation of predictive processes in sequential action control, and
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shows that participants tend to adopt either a predictive or reactive strat-
egy. Our results suggest that the quality of the action plan that is formed
is a function of individual limitations in IQ and visuospatial working
memory. The reinforcement learning models investigated did not per-
form as well as humans, but we suspect that the specific action selection
policy used was partly to blame.

Participantswho did not generate a reliable action plan tended to engage
in centering behavior: moving the cursor to the center of the screen in
anticipation of the next stimulus. We showed, using an evolutionary
robotics approach, that this behavior evolves in an artificial neural net-
work that controls a robot arm as a function of prediction quality. This
suggests that this behavior is an emerging strategy caused by task con-
straints. The optimality of this behavior should be investigated further
by manipulating target frequency and location.

Overall, the paradigms presented in this dissertation are well-suited to
investigate both symbolic sequential action in the formof reinforcement
learning, as well as sensorimotor action control in the form of evolved
motor behavior in a robot arm controlled by an artificial neural network.
Both paradigms provide ample opportunity for manipulation to further
investigate the commonalities between complex human and robot ac-
tion control.
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