Universiteit

U Leiden
The Netherlands

Control of complex actions in humans and robots
Kleijn, R.E. de

Citation
Kleijn, R. E. de. (2017, November 23). Control of complex actions in humans and robots.
Retrieved from https://hdl.handle.net/1887/57382

Version: Not Applicable (or Unknown)

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/57382

License:

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/57382

Cover Page

The handle http://hdl.handle.net/1887/57382 holds various files of this Leiden University

dissertation

Author: Kleijn, Roy de
Title: Control of complex actions in humans and robots
Date: 2017-11-23


https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/57382

CHAPTER 6 l

Optimized behavior in a robot
model of sequential action

EQUENTIAL ACTION is one of the cornerstones of human everyday
action. Most of our everyday activities, such as coffee making or
driving a car, can be regarded as complex but sequential actions.

How humans perform these sequential actions has been the subject of
study for at least a century. As described in Chapter 2, sequential action
can be represented on a symbolic (what will my next action be?) level,
as well as a subsymbolic, sensorimotor (what motor parameters should
1 use?) level [173]. Interaction effects between the two levels of represen-
tation have been observed, and integration between the two is necessary
to produce smooth sequential action. Due to their embeddedness (i.e. an
implementation in a physical environment), (virtual, humanoid) robots
are suitable subjects for developing and investigating models of behavior
in which interaction with the environment is important (see [9] for an
extensive overview). Robot paradigms have been successfully used to in-
vestigate psychological phenomena that require such embeddedness like
hand-eye coordination [84], object handling [67], and imitation learning

This chapter is an adaptation of the article de Kleijn, R., Kachergis, G., & Hommel, B. (in
preparation). Optimized behavior in a robot model of sequential action.

103



6.1.1

6. OPTIMIZED BEHAVIOR IN A ROBOT MODEL

[138]. Used in the proper way, they hold promise to investigate the rela-
tion between symbolic planning of actions and the subsymbolic execu-
tion of these actions.

Optimization of motor control

The specific motor parameters used in the execution of motor commands
is influenced by several effects and constraints. A good example is the
end-state comfort effect [30], in which the grasp location of an object is a
function of the expected end state of the arm. In other words, the arm
end state is optimized. Other optimization is seen in the form of con-
textual lip rounding [35], where the lips are rounded in preparation for
pronouncing the /u/ sound well in advance, and bending of mouse tra-
jectories when sequentially reaching for stimuli with a mouse cursor by
predicting its future location [75].

Other authors have investigated such predictive movements using sim-
ilar measures. In earlier work, Dale et al. [34] used a paradigm similar
to the one used in Chapters 4 and 5, with different levels of sequence
complexity’. As sequence complexity decreased, participants were found
to make larger predictive movements (i.e. movements toward the next
stimulus) and be more likely to have explicit sequence knowledge. Par-
ticipants not making predictive movements were observed to move their
mouse cursor to the center of the screen, equidistant from all stimuli.
The authors mention that “even participants with low pattern awareness
engaged in this form of behavior” (p. 204), but our findings described in
Chapter 5 show that it is specifically this group without explicit sequence
awareness that engages in this type of behavior. Duran and Dale [38]
agree with this finding, and report that this centering strategy is likely
employed to compensate for lack of sequence knowledge, making it im-
possible to accurately predict the next target. In those circumstances,
moving the mouse cursor to a position equidistant to all alternatives
would be an effective strategy.

'More specifically, a measure of grammatical regularity was used inverse to the first-
order entropy of the sequence, as used in [70].

104



6.1. Introduction

6.1.2 The current study

In the current study, we directly manipulated prediction quality in a se-
quential reaching task with a virtual robot hand controlled by an artificial
neural network. The task was similar in nature to the task described by
Dale et al. [34] and Kachergis et al. [77]: reaching for targets that appeared
or changed color in a repeating sequence.

In any modeling problem using artificial neural networks, the connec-
tion weights between the artificial neurons (or units) have to be opti-
mized. In other words, the goal is to find those connection weights that
cause the artificial agent to produce the behavior that most closely ap-
proaches the required behavior as measured by a fitness or cost function
determined by the researcher. One of the most popular methods for de-
termining suitable connection weights is known as backpropagation [132],
in which the network is presented with an input vector, after which the
output produced by the network is compared to the desired output, and
network weights are then updated according to their error value, start-
ing with the output units and working back through the network.

Evolutionary algorithms such as neuroevolution (e.g. [5]) can find suitable
network weights not by directly calculating an error measure for each
input-output pair presented to the network, but by quantifying the per-
formance of agents controlled by the network. In its most simple form,
the method of neuroevolution generates a large number of agents with
randomly initialized networks and quantifies how well they perform on
the required task during a fixed period of time. Next, the best performing
agents are allowed to “reproduce”, and are copied to the following gener-
ation in a slightly modified way (e.g. by adding random noise to the con-
nection weights). In subsequent generations, this procedure is repeated
until some predefined fitness criterion is reached. Neuroevolution is
considered an efficient approach to solving reinforcement learning prob-
lems. Past studies have shown neuroevolution to be faster and more
efficient than reinforcement learning methods such as Q-learning (see
Chapter 4) on several tasks, including robot arm control [99, 100, 150].

105



6.2

6.2.1

6. OPTIMIZED BEHAVIOR IN A ROBOT MODEL

Evolutionary algorithms have been used to simulate a wide range of psy-
chological phenomena, ranging from reciprocity [4] to selective atten-
tion [114] and category learning [101].

Method

Task design

The task used for the virtual robots was analogous to the task described
by Kachergis et al. [77]. 1t was designed as an environment of size 50 X
50 represented in continuous space (i.e. as floating-point values). Over
the course of one run of 500 discrete time steps, target stimuli appeared
sequentially in one of the four corners of the environment (distance 10
from the environment border), following a simple repeating 1-2-3-4 se-
quence. In one condition, networks were provided with accurate infor-
mation about the next stimulus. In a second condition, the information
was not predictive of the next stimulus. In a third condition, no infor-
mation about the next stimulus was provided to the network. The exact
implementation is described below under Network design.

A virtual robot arm was to touch the target (come within a square of
size 6 X 6 centered on the target) as quickly as possible. After touching
a target, no targets were visible for 20 time steps as an inter-stimulus
interval (1S1), after which the next target would appear. Every run (one
network-controlled virtual robot arm performing the task for 500 time
steps), the starting location was initialized to the center of the screen.
During each run, the amount of targets touched and the total distance
moved was calculated. Also, to encourage fast movement, a reward with
decaying value was associated with each target. Rewards were initialized
to value 100, decreasing by 1 with each time step. After completion of the
run, network fitness was calculated by

fitness = touched stimuli + total reward — (.0001 X distance moved)

An agent with perfect prediction capability (i.e. immediately touching
the stimulus that just appeared by already being in its location) would

100



6.2.2

6.2. Method

therefore be able to reach a theoretical maximum fitness score of 2525.

Network design

The virtual robot arm was controlled by a two-layer feedforward neu-
ral network with four sensory neurons, two prediction neurons, eight
internal (hidden) neurons, and two motor neurons (see Figure 6.1). All
sensory and prediction neurons were normalized in the range [0.0, 1.0],
with Gaussian noise sampled from N(0,.05) added to the input. The
two motor neurons were truncated to the range [-2.0, 2.0], and allowed
for movement in the two-dimensional plane. For simplicity we did not
model the kinematics of an articulated effector.

The input to the two prediction neurons was constant (i.e. also present
during the 1S1) and represented either (1) the correct location of the next
stimulus, (2) the location of one of the four stimuli, randomly chosen, or
(3) a constant input of [0.0, 0.0]. So although in the second condition the
prediction neurons were provided with the location of a stimulus, this
location was not informative of the actual location of the next stimulus.
These conditions will be referred to as accurate prediction, random pre-
diction, and no prediction, respectively.

The output O; of a hidden or motor neuron j was determined by the
sigmoid activation function

1
Oj = ~
1+ exp(— Zi:l w;;0; — b))

(6.1)

in which N represents the number of input neurons i, O, their output,
w;; the connection weight from i to j, and b; the bias. Of the four sensory
neurons, two were used for sensing the target, and two for sensing the
location of the agent.

107



6.2.3

6. OPTIMIZED BEHAVIOR IN A ROBOT MODEL

Input Hidden Output
layer layer layer
Prediction #1 —

Prediction #2 —:

Visual #1 70
Visual #2 —O/
Visual #3 70

Visual #4 70 — >

Figure 6.1 | Two-layer feedforward network architecture used. Six input units
(two prediction units and four sensory units), eight hidden units, and
two output units controlled the virtual robot arm.

Evolution of the network

Network weights were optimized using a neuroevolution algorithm us-
ing a direct encoding scheme (i.e. there was a one-to-one mapping of
genotype to phenotype) similar to Nolfi et al. [109]. Although direct en-
coding schemes have been criticized for being biologically implausible
[108], and having difficulties with scalability? direct encoding provided a
good trade-off between simplicity and performance for the relatively sim-
ple networks used in this study. The initial population consisted of 100
networks with weights uniformly random € [-2.0,2.0]. For each sub-
sequent generation, the twenty networks with the highest fitness value
were allowed to reproduce by generating four copies each, with Gaussian
noise sampled from N (0, .3) added to the network weights. In addition,
each of the twenty best networks was kept unmodified and added to the
next generation, keeping the population size a constant 100. In pseu-

*The search space in direct encoding schemes increases exponentially with network
size.

108



6.3

6.3. Results

docode, the evolutionary algorithm was:

Algorithm 1: High-level description of neuroevolution algorithm

initialize 100 networks with random weights;
for 1000 generations do
foreach network do
‘ evaluate fitness;
end
sort networks by fitness;
for 20 best networks do
generate 4 mutated copies;
generate 1 identical copy;
end

end

All simulations were run 30 times per condition, so a total of 9o simula-
tions were run.

Results

Maximum fitness of the networks differed between conditions, F(2, 87) =
9.29, p < .00I, né =.176. Post-hoc pairwise t-tests showed that networks
with accurate predictions fed into the prediction neurons developed a
higher maximum fitness (M = 1868) than networks with no prediction
(M =1262), t(58) = 2.76, p = .008, d = .72, and than networks with random
prediction (M = 947), t(58) = 4.12, p < .001, d = 1.08. These differences
remained significant after Holm-Bonferroni correction.

Figure 6.2 shows the evolution of fitness over time. Although the net-
works with no prediction evolved somewhat faster than networks with
accurate prediction, maximum fitness leveled off after ~250 generations.
For the networks with accurate prediction the network weights evolved
slower, but surpassed the fitness of the non-predicting networks after
320 generations and continued to increase. Networks with random pre-
diction evolved slower overall, and attained lowest maximum fitness.

109



6. OPTIMIZED BEHAVIOR IN A ROBOT MODEL

1500 4

1000 4

Maximum fitness

500 A s e — Accurate prediction
, ---- No prediction
—=- Random prediction

0 250 500 750 1000
Generation

Figure 6.2 | Networks with accurate prediction attained higher maximum fit-
ness than networks with no prediction or random prediction. These
networks evolved to make efficient use of the information from the
prediction neurons. Displayed are means over 30 simulations per
condition.

Centering behavior differed between conditions, F(2, 86) = 8.09, p < .001,
né =.158. Post-hoc pairwise t-tests showed that networks with accurate
prediction spent a smaller proportion of 1T1 time in the center 10 X 10
units (M = .195) than both networks with no prediction (M = .415), t(57) =
4.64, p < .001, d = 1.23, and networks with random prediction (M = .340),
t(58) = 2.96, p = .004, d = .778. These differences remained significant
after Holm-Bonferroni correction. The networks with no prediction
and random prediction did not differ significantly, p = .277. Results are
shown in Figure 6.3.

Movement across the environment is displayed in Figure 6.4. The net-
works with random prediction (Figure 6.4b) learned that the information
provided was not informative, and reached their maximum fitness by re-
turning to the center of the environment after touching each stimulus,
whereas networks with accurate prediction (Figure 6.4a) moved toward
the next target, waiting for it to appear.

II0



6.3. Results

0.5 1

0.4

——

0.3

—t—

0.2 1

i

0.1 1

Mean proportion of time in center

0.0

No Accurate Random
prediction prediction prediction

Figure 6.3 | The mean proportion of 1TI time spent in the center of the screen
for all three conditions. Networks with accurate prediction spent
less time in the center. Error bars indicate 95% CI.

]

(a) In the condition with accurate (b) With random prediction, the net-

prediction, position density is works evolve to produce center-

clustered around the stimuli, ing behavior. Most time is spent

indicating active movement in a position equidistant to all
toward stimuli. targets.

Figure 6.4 | Density heat map showing the relative amount of time spent across
locations in the accurate prediction and random prediction condi-
tions, ranging from blue (little time spent) to red (most time spent).

III



6. OPTIMIZED BEHAVIOR IN A ROBOT MODEL

6.4 Discussion

In this study, we investigated the behavior found in earlier work by Du-
ran and Dale [38], Dale et al. [34], and the work described in Chapters
4 and 5. These studies describe a centering behavior in which partici-
pants moved their mouse to the center of the screen under some cir-
cumstances. In Chapter 5, we describe how this seems to be related to
the quality of the action plan, or the capability to predict the next stim-
ulus. This also makes sense on a theoretical level, as a centered posi-
tion, equidistant to all possible stimuli is optimal under maximum un-
certainty.

In the current study we evolved artificial neural networks that controlled
a robotic arm, with a task analogous to the one used in Chapters 4 and
5. In one condition, an accurate prediction of the next stimulus was pro-
vided to the network as part of the input. In the second condition, the in-
put given was randomly determined, and unrelated to the next stimulus.
In a third condition, input to the prediction neurons was kept constant
at zero. Under the last two conditions, centering behavior developed,
with the networks that were provided random input and networks that
were given no input developing the same centering strategy as human
participants in Chapters 4 and 5 that had not developed explicit sequence
knowledge. In summary, we showed that centering behavior evolved in
a robotic arm controlled by an artificial neural network as a function of
prediction quality, analogous to the findings described in Chapters 4 and
5.

Future research could shed light on the differences between the random
prediction condition and the no prediction condition. From our results,
it seems that performance was worse under the random prediction con-
dition (although not significantly so), and developed more slowly. Ap-
parently, the networks had trouble ignoring the dynamic, but uninfor-
mative input. In comparative studies with human participants, it would
be interesting to distinguish between participants who know that they
are unaware of the sequence (no prediction), and participants who are

112



6.4. Discussion

actively, but unsuccessfully, trying to predict the sequence (random, or
at least partly incorrect prediction).

113






