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CHAPTER5
Predicting action plan formation

in sequential reactive and
reinforcement learning

Almost all types of everyday action can be considered sequential.
From making coffee to using the bathroom, these complex ac-
tions consist of subactions that are completed one after another.

The mechanisms by which we learn such action sequences and execute
them has been the subject of investigation for many decades. An early
theory by James [69] argued that elementary action units in a sequence
are triggered by the sensory effects of the preceding unit. However,Mün-
sterberg [102] noted that such an associative account is insufficient to
explain sequential action because a directional element is required to
successfully execute subactions in the correct order. Instead, he argued
that the learning of action sequences relies on the acquisition of a mo-
tor program. Tubau et al. [160] suggested that these two approaches are

This chapter is an adaptation of the article de Kleijn, R., Kuipers, M., Kachergis, G., &
Hommel, B. (in preparation). Predicting action plan formation in sequential reactive and rein-
forcement learning.
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5. Predicting action plan formation

notmutually exclusive, but in fact reflect two different executive control
modes that—under specific circumstances—can be strategically chosen.

5.1.1 Stimulus-based and plan-based control

Tubau et al. [160] compared James’s stimulus-driven account of sequen-
tial action with the prepared reflex concept of Hommel [61], and referred
to it as stimulus-based control. This type of executive control is charac-
terized by the automaticity by which stimuli are attended to. Due to the
highly automatized response to stimuli, the sequence itself is often not
learned. Instead, what is learned is a strategy of delegating control to ex-
ternal stimuli [160]. In other words, people learn how to respond quickly
to incoming information. Plan-based control, on the other hand, is as-
sumed to rely on action plans, which are structured sequences of action
effects [62, 96]. In contrast to stimulus-based control, representations in
plan-based control are internally generated.

There is evidence to suggest that sequence learning does not rely on the
prediction of sequences of external stimuli, but the prediction of themo-
tor action to be performed. In other words, participants do not learn
stimulus–event sequences, but in fact learn sequences of responses. As
such, it is thought that sequence learning involves a shift from stimulus-
based control to plan-based control, implying the generation of action
plans by which participants can predict a sequence of responses even in
the absence of stimuli [60, 104].

Tubau et al. [160] investigated this shift and its modulators in a compre-
hensive study consisting of five experiments. In a serial reaction time
paradigm in which participants had to respond to the letter X appearing
on the left or right side of the screen and responding with the appro-
priate hand, they presented participants with a repeating sequence of
stimuli. In this sequence, location switches occurred four timesmore of-
ten than location repetitions, but stimuli were equally often presented
to the left or right. They found that participants’ controlmodewas influ-
enced by instruction type, where intentional instruction (i.e. telling par-
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5.1. Introduction

ticipants that the shown sequence is deterministic, and is to be learned
explicitly) induced plan-based control. Participants’ control mode was
assessed by the size of the frequency effect, which should be smaller un-
der plan-based control. Participants having received intentional instruc-
tions showed a smaller frequency effect, which was attributed to the for-
mation of an action plan. Also, these participants were more likely to
have acquired explicit knowledge of the sequence, as they were able to
verbally report the correct sequence at the end of the experiment¹.

However, plan-based control is not just a strategy that participants em-
ploy at their own choosing—task structure and demands have a large in-
fluence. For example, removing stimulus–response compatibility by us-
ing symbolic stimuli instead of spatially compatible stimuli seems to lead
to plan-based control, as is evidenced by the elimination of the frequency
effect. Also, playing irrelevant sounds that hamper symbolic encoding of
the sequence prevents the successful formation of an action plan, leaving
stimulus-based control the only viable mode of executive control [160].
In some circumstances (for example the exploratory paradigm discussed
later), stimulus-based control is not a feasible strategy due to the lack of
stimuli.

5.1.2 Studying sequence learning

The acquisition of action sequences has been the subject of study in do-
mains ranging from linguistics [41, 136] to everyday action [18, 32], with
perhaps the serial response time task (SRT, [107]) being the most popular
paradigm.

In the SRT task, a visual stimulus appears in one of four locations, hori-
zontally distributed on a computer screen. Four buttons are located be-
low the four possible stimulus locations, and participants are asked to
press the button below the visual stimulus that appears as quickly as pos-
sible. In their original study, Nissen and Bullemer [107] compared a con-

¹Although it should be noted that explicit sequence knowledge is not at all necessary
for learning (see e.g. [89, 107])
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5. Predicting action plan formation

dition using random stimulus locations with a condition using a repeat-
ing, deterministic sequence, and found evidence for implicit sequence
learning: participants in the deterministic sequence showed larger re-
duction in response times than participants in the random condition.

Most of the sequence learning literature has focused on cued paradigms
such as the SRT task, in which participants have to respond to sequences
of stimuli that appear. However, it seems clear that sequence learning
in daily life is often not learned by simply chaining stimulus–response
associations [87]. Instead, acquiring new action sequences is better char-
acterized as exploratory, in which people try several alternatives before
discovering the correct one.

In one recent study, Kachergis et al. [77] adapted the SRT task to a re-
inforcement learning paradigm. In this task, participants were not cued
by the stimuli, but had to explore the four alternatives to find out which
one was correct. Participants could collect points by predicting the next
stimulus correctly. A strong correlation was observed between behavior
on the SRT task and its reinforcement learning adaptation in terms of re-
sponse time and accuracy per sequence position. Interestingly, the final
scores were bimodally distributed, suggesting that participants used dif-
ferent strategies. Although purely stimulus-based control is impossible
in this paradigm, it is clear that the accuracy of participants’ action plans
showed a large range of variance. Although their study investigated both
the SRT task and its reinforcement learning adaptation, the study had a
between-subject design, making it impossible to examine characteristics
of participants that produce effects that are common to both tasks.

5.1.3 The current study

In scenarios where both stimulus-based control and plan-based control
are possible, participants may strategically (or perhaps even randomly)
choose an executive control mode. In the current study, we investigated
predictors of executive control mode in an SRT task and action plan for-
mation in a reinforcement learning task in which plan-based control is
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5.2. Method

the only control mode available.

Earlier research has shown that visuospatial working memory capacity
predicts both implicit and explicit sequence learning performance [16,
17]. In this study, we will look at visuospatial working memory capac-
ity and IQ measurements as predictors of executive control mode that
reflect cognitive limitations. One possibility would be that some partic-
ipants simply do not have the cognitive capacity to form (long enough)
action plans. Another possibility would be that control modes are cho-
sen strategically or preferentially. The formation of an action planmight
reflect individual differences in the need for structure. That is, some
people may prefer to actively predict the future according to a plan or
schema instead of waiting for stimuli to arrive, while others might want
to delegate control to the external environment [105].

5.2 Method

5.2.1 Participants

Forty undergraduate and graduate students (13 males, 27 females) were
recruited from Leiden University. Participants either received course
credit or were paid 6.50 euro for participation. All participants had nor-
mal or corrected-to-normal vision. The total duration of the experiment
was approximately 90 minutes.

5.2.2 Materials

In order to assess possible predictors of participant behavior, several tasks
and questionnaires were administered.

Fluid intelligence

Fluid intelligencewas estimated using a shortened, 10-minute version of
the Raven’s Standard Progressive Matrices (SPM) test [124]. It measures
the individual’s ability to formperceptual relations and for analogical rea-
soning. It is awidely used test tomeasure fluid intelligence, independent
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5. Predicting action plan formation

of language and schooling, and is considered to have excellent reliability
[24]. The number of correct responses in 10minutes over all participants
are normalized to a distribution with mean 100 and SD 15, resulting in
an estimated IQ score.

Locus of control

To investigate the influence of an individual’s locus of control on control
mode, we administered the Levenson Multidimensional Locus of Con-
trol Scales [88], a 24-item questionnaire consisting of three subscales: (1)
internality, (2) powerful others, and (3) chance. People who have an in-
ternal locus of control tend to perceive reinforcement as a result of one’s
behavior, while people with an external locus of control tend to perceive
it as a result of factors beyond one’s control. It could be hypothesized
that people with an internal locus of control are more likely to engage
in plan-based control, while people with an external locus of control are
more environment-driven.

Personal need for structure

To assess participants’ tendency to seek out structured ways of dealing
with the world, we administered the Personal Need for Structure scale
[158]. This questionnaire quantifies people’s need for simple structure,
and consists of 12 statements (e.g. “I enjoy having a clear and structured
mode of life.”) which the participant can either agree or disagree with,
rated on a 6-point scale. It has been shown to have good reliability and
validity [105]. It has been hypothesized that personal need for structure
reflects a strategy for simplifying the world due to a general lack of intel-
lectual abilities, but the correlation between the PNS scale and IQ seems
to be minimal [105]. It is therefore more likely to reflect a strategy that
participants can choose to employ, and participants who score high on
this measure could be more likely to actively search for structure in ac-
tion sequences.
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5.2. Method

Visuospatial working memory

Weassessed visuospatial workingmemory using the computer task from
Bo et al. [17]. In their study, which used an adaptation of the visual work-
ing memory task used by Luck and Vogel [92], a relationship was found
between visuospatial working memory capacity and performance on a
serial reaction time task. In this task, participants were presented with a
sample array for 100ms followed by a blank screen delay of 900ms, after
which a test array was presented for 2000ms. Participants were asked to
determine whether the test array was different or similar to the sample
array by pressing either D or S. Arrays consisted of 2–8 colored circles,
and for each trial the test array was either the same as the sample array
or different with one of the colors changed. Visuospatial working mem-
ory capacity was calculated as K = array size × (hit rate − false alarm rate).
The average K across all array sizes was computed to estimate visuospa-
tial working memory capacity [17]. Participants completed 140 trials in
total.

Trajectory SRT task

The trajectory SRT task is an adaptation of Nissen & Bullemer’s serial
response time task [107]. It maps the four buttons of the original SRT
task to four squares located on the corners of a computer screen, requir-
ing participants to move the mouse cursor to each square that lights up
[74, 75]. Unbeknownst to participants, the sequence is a repeating se-
quence of 10 items. Speed-up over time compared to a condition with a
random sequence is thought to reflect implicit learning of the sequence.
In the current study, we used a different sequence (3–2–4–2–1–4–3–4–2–
1) than in the original SRT task to prevent carryover effects between this
task and the RL task. The complete task consisted of 800 movements
(80 repetitions of the 10-item sequence).

In order to assess first-order frequency effects, the sequencewas designed
in such a way that it consisted of 8 straight movements, and 2 diagonal
movements. After completing the 800 movements, participants were
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5. Predicting action plan formation

asked if they noticed any structurewithin the experiment, and if so, were
asked to reproduce the sequence.

Reinforcement learning task

The RL task is an adaptation of the trajectory SRT task (see above), with
the difference being that the next stimulus is not cued, but to be discov-
ered by the participant through trial-and-error [77]. Participants moved
to one of the four squares, and received feedback by the square turning
green in the case of a correctmovement, andbeing returned to the center
of the screen in the case of an incorrectmovement. Points were awarded
for correctmovements (+1 point), anddeducted for incorrectmovements
(−1 point), and participants were instructed tomaximize their amount of
points. The amount of points collected was continuously visible to the
participant, their progress in the task, however, was not. The task ended
after 800 correct movements of the original SRT sequence (4–2–3–1–3–
2–4–3–2–1).

A participant having knowledge of the sequence before starting andwho
never made a mistake would therefore make 800 movements directly to
valid targets, receiving a theoretical maximum score of 800 points. A
participant with no memory of even the previous target they had tried
could make an infinite number of mistakes, never finishing the experi-
ment. If participantswould not repeat the same invalid targetmore than
oncewhen seeking each target (i.e. an elimination strategy), a participant
would expect on average to score 0 points, as the expected value of com-
pleting onemovement successfully is 0 using this strategy². Participants
were not told that therewas a repeating deterministic sequence, let alone
details such as how long the sequence was.

²33% chance of success in one try (+1), 33% chance of success in two tries (−1+1), and
33% chance of success in three tries (−1−1+1).
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5.3. Results

5.2.3 Design and procedure

All participants performed both the trajectory SRT task, as well as the
reinforcement learning task. The order of the two tasks was counterbal-
anced over participants, and the two tasks used different sequences to
prevent carryover effects.

Participants were seated at a computer after having given their informed
consent. All subsequent tasks were performed on the computer. First,
the Personal Need for Structure questionnaire was completed, followed
by the Levenson Multidimensional Locus of Control questionnaire, the
visuospatial working memory task, and Raven’s SPM. After this, partici-
pantswere given a 5-minute break. Participants then completed, in coun-
terbalanced order, the trajectory SRT task and the reinforcement learn-
ing task.

5.3 Results

5.3.1 Trajectory SRT task

Data preparation

Prior to analysis, movement times >1500 ms were removed, and the ex-
periment was divided into 10 blocks of 8 sequence repetitions. As an
analysis of data collected earlier (described in Chapter 4) using a random
sequence showed no significant difference in movement times between
straight and diagonal movements, there was no correction applied for
the somewhat larger distance required to make diagonal movements.

Response times

Comparative analyses were performed using the means of participants’
median movement time, with the movement time defined as the time
between cue onset (stimulus changing color) to touching any part of the
stimulus with themouse cursor. Medianmovement time to a target was
464 ms (SD = 223 ms). Participants’ movement time decreased from 546
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5. Predicting action plan formation

(a) Participants’ movement time
decreased over time, indicating
learning of the sequence.

(b) Error rates increased during the
first three blocks, but remained
relatively stable during the rest
of the task.

Figure 5.1 | Movement times and accuracy for the trajectory SRT task. Error bars
indicate within-subject 95% CI.

ms in the first block to 413 ms in the tenth block, indicating learning of
the sequence, F(9, 360) = 15.80, p < .001, 𝜂2

𝐺 = .126.

Accuracy was high across all blocks of the experiment, but especially so
during the first two blocks. There was an effect of time on accuracy, F(9,
360) = 4.50, p < .001, 𝜂2

𝐺 = .042, indicating some degree of speed-accuracy
tradeoff. However, after the third block movement times are still de-
creasing, while accuracy remains stable. Both movement times and ac-
curacy are shown in Figure 5.1.

Explicit sequence knowledge

Participants were grouped into an implicit knowledge group and an ex-
plicit knowledge group. Only those 13 participants who could correctly
recall the complete repeating sequence after having completed the task
were considered to have explicit knowledge. Participants with explicit
sequence knowledge had a significantly larger working memory capac-
ity (2.87 vs. 2.25, t(28.08) = 2.95, p = .006, d = 1.11), but did not differ on
estimated IQ, the Levenson Multidimensional Locus of Control scales,

94



5.3. Results

Factor df F 𝜂2
𝐺 p

Block 9, 342 23.94 .17 < .001
Block × Knowledge 9, 342 8.37 .07 < .001
Frequency 1, 38 106.00 .09 < .001
Frequency × Knowledge 1, 38 4.43 .004 .042
Frequency × Block 9, 342 2.75 .005 .004
Knowledge 1, 38 6.44 .089 .015

Table 5.1 | Results of analysis of variance on movement times.

or Personal Need for Structure scales (ts < .81, ps > .42).

Modes of executive control

Similar to Tubau et al. [160], we used frequency effects (i.e. the facilita-
tion of responses to frequent (straight) compared to infrequent (diag-
onal) transitions) to determine whether participants engaged in either
stimulus-based or plan-based control. An analysis of variance revealed
main effects of block, frequency, and knowledge onmovement time (see
Table 5.1). Overall, participants with explicit sequence knowledge had
faster movement times (M = 398 ms) than participants without (M = 485
ms), and frequent (straight) movements were performed faster (M = 417
ms) than infrequent (diagonal) movements (M = 496 ms).

Predictive movements

As the task progressed, participantsmade an increasing amount ofmove-
ment during the ITI—in the absence of a stimulus, F(9, 342) = 6.53, p <
.001, 𝜂2

𝐺 = .053. Total ITI (predictive) movement, defined as the distance
from the previous target at the onset of the next target, increased from
171 pixels in block 1 to 305 pixels in block 10. There was no main effect
of knowledge. Results are shown in Figure 5.2a.

Similar to Dale et al. [34], we can then define correct predictive move-
ment as the distance to the next target at target onset. An analysis of
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5. Predicting action plan formation

(a) Participants made increasingly
largermovements during the ITI.

(b) Larger movements during the
ITI reflect correct prediction of
the next stimulus, as initial dis-
tance to the stimulus decreased
over time.

Figure 5.2 | Predictive movements in the trajectory SRT task. Participants made
increasingly larger predictivemovements, which reflects correct pre-
diction of the next stimulus. This effect was stronger for explicit
than for implicit learners. Error bars indicate 95% CI.

variance using block and knowledge as factors shows a main effect of
block, meaning that distance to next target decreased from 609 pixels to
474 pixels, or that correct predictive movement increased over time, F(9,
342) = 32.36, p < .001, 𝜂2

𝐺 = .22.

In the final block of the task, predictive movements (defined as move-
ments larger than 300 pixels during the ITI, but not necessarily toward
the correct target) appeared to show a mixed distribution over partici-
pants. Where some participants hardly showed any movement during
the ITI, others had almost half of all their movements classified as pre-
dictive. Hartigan’s dip test of unimodality [58] confirms this observation,
D = .079, p = .038.

While implicit learners hardly increased their correct predictive move-
ments, explicit learners showed a strong increase over time, as evidenced
by a block × knowledge interaction, F(9, 342) = 14.00, p < .001, 𝜂2

𝐺 = .11. Re-
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sults are shown in Figure 5.2b.

Centering behavior

In Chapter 4, participants in the random condition showedmore center-
ing behavior than those in the deterministic condition. This finding sug-
gested that centering is a strategy that can be employed in the absence
of reliable sequence knowledge, minimizing the distance to possible tar-
gets. Indeed, centering behavior, defined as the proportion of the ISI
spent in the center 100 × 100 pixels of the screen, was highest for partic-
ipants without explicit sequence knowledge, t(30.46) = 2.34, p = .026, d =
.85.

5.3.2 Reinforcement learning task

As explained in Section 5.2.2,maximumscore on the reinforcement learn-
ing task was 800, with the most basic elimination strategy leading to 0
points. Mean score was 525, ranging from 140 to 774 points. Distribu-
tions of scores was non-normal, with a large group of participants scor-
ing 700 points, and a group scoring quite low. For subsequent analyses,
a midpoint split on 457 points was performed, dividing the participants
into low and high performers.

Predicting task performance

Low performers on the reinforcement learning task had a significantly
lower estimated IQ of 91.4, compared to high performers with an esti-
mated IQ of 104.9, t(39) = 3.06, p = .004, d = .98. Also, low performers
had a significantly lower visuospatial workingmemory capacity of 2.13 vs.
the high performers’ 2.65 capacity, t(39) = 2.40, p = .021, d = .77. Results
are shown in Figure 5.3. IQ and visuospatial working memory capacity
were uncorrelated, r(39) = .213, p = .181.

There was no difference between the two groups on the Levenson Mul-
tidimensional Locus of Control scales, t(39) = .27, p = .790, and no differ-
ence on the Personal Need for Structure scale, t(39) = .28, p = .780.
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5. Predicting action plan formation

Figure 5.3 | Differences in estimated IQ and visuospatial working memory ca-
pacity between low and high performers on the reinforcement learn-
ing task. Error bars indicate 95% CI.

Explicit sequence knowledge was strongly related to task performance,
as the 23 participants with explicit sequence knowledge had a far higher
final score (M = 634) than participants without explicit knowledge (M =
375), t(24.67) = 4.61, p < .001, d = 1.86.

Stimulus- vs. plan-based control In the SRT task, two measures of ex-
ecutive control mode are used. First, explicit knowledge of the sequence
is considered to be an indicator of a plan-based control mode. Second,
the amount of correct predictivemovements is evidence of the existence
of an action plan, implying a plan-based control mode.

Participantswith explicit sequence knowledge in the SRT taskweremore
likely to have acquired explicit sequence knowledge in the reinforcement
learning task, McNemar’s 𝜒2(1,N = 40) = 4.5, p = .034. This suggests that
the acquisition of explicit knowledge in both tasks relies on a common
mechanism or dependency. However, the amount of correct predictive
movements in the SRT task was not related to the final score in the re-
inforcement learning task, r(38) = −.025, p = .880, nor did explicit knowl-
edge in the reinforcement learning task relate to correct predictivemove-
ments in the SRT task, t(38) = 1.32, p = .195.
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5.4. Discussion

In summary, participants using plan-based control in the SRT task did
not score higher on the reinforcement learning task, but participants
with explicit knowledge formation in the SRT task were more likely to
acquire explicit knowledge on the RL task. This suggests that predictive
movements and explicit knowledge do not similarly reflect successful
plan formation, andmay not be equally good indicators for a plan-based
control mode.

5.4 Discussion

5.4.1 Movement trajectories

Learning was evident in both the trajectory SRT task and the reinforce-
ment learning task. In the trajectory SRT task, the findings of Tubau
et al. [160] were replicated. The trajectory paradigm allowed us to find
further evidence for a plan-basedmode of control: participants made in-
creasingly large movements toward the next stimulus, but participants
with explicit knowledge of the sequence did more so than those with
implicit knowledge. Instead, participants without explicit knowledge
showed centering behavior during the ITI, moving the mouse to a po-
sition equidistant to all possible targets.

This centering strategy has been described in the literature (e.g. [34]), but
has not before been associated with quality of prediction or sequence
knowledge. Our results show that this behavior is a function of explicit
sequence knowledge. It has been suggested that this centering behavior
is an artifact of the spatial layout of the task, but we hypothesize that
the centroid of any polygon defined by response locations should be a
preferred (optimal) resting place whenwaiting for an uncertain stimulus.
Future studies should be able to shed light on this theory.

5.4.2 Limitations preventing plan formation

In the reinforcement learning task, final scores showed a bimodal distri-
bution, similar to what has been reported in [77]. The low-performing

99



5. Predicting action plan formation

and high-performing groups differed in IQ and working memory capac-
ity, but did not differ in personal need for structure or locus of con-
trol. This suggests that sequence learning performance in an exploratory
paradigm is not determined by personal characteristics or preferences,
but by cognitive limitations.

In both the SRT task and the reinforcement learning task, explicit se-
quence knowledgewas predicted by visuospatialworkingmemory capac-
ity. Earlier research by Bo et al. [17] showed a relationship between visu-
ospatial workingmemory capacity and performance on a non-trajectory
SRT task, but the current study shows that this holds in an exploratory
paradigmaswell and predicts explicit sequence knowledge. The observa-
tion that participants who were more likely to acquire explicit sequence
knowledge in the SRT task were also more likely to acquire it in the re-
inforcement learning task further corroborates this finding.

5.4.3 Suggestions for future research

A promising approach to investigating this relationship is by modeling
the learning process in the reinforcement learning task (seeChapter 4 for
an example). IQ and visuospatial working memory could be compared
to the learning rate and state space in reinforcement learning models
that are fit to the performance of individual participants. This may shed
further light on the exact mechanisms that explain the wide range of
performance on exploratory sequence learning.

Another possible explanation of the diverse learning outcomes could be
rooted in different beliefs about the task. Participants were not told
that the response locationswould be a repeating, deterministic sequence.
They may have instead believed it was to some extent probabilistic—as
many psychological tasks are. Different assumptions about the task may
lead participants to arrive at different strategies, with variable success
in the task. Participants expecting a random sequence may be less in-
clined to predict the next stimulus and are—in the current paradigm—
indistinguishable from participants expecting a deterministic sequence
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5.4. Discussion

but unable to learn it due to intellectual limitations. However, manipu-
lating these variables is straightforward and could be an interesting av-
enue for future research.
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