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CHAPTER4
Predictive movements and

human reinforcement learning
of sequential action

Most daily human behaviors can be seen as learned sequential
actions: fromwalking, cooking, and cleaning to speaking and
writing. Consequently, sequence learning has been studied

in different contexts ranging from implicit sequence learning [19, 29, 107,
149] to language acquisition [41, 136], typing [46, 52], and manual every-
day actions [18, 32]. In implicit learning research, an important paradigm
has been the serial reaction time (SRT) task, which requires participants
to press one of four buttons when cued by a corresponding light, in a se-
quence that repeats—unbeknownst to learners—every 10 presses [107].
Subjects trained on this repeating sequence developed faster reaction
times (RTs) over the course of training, as compared to a control group re-
sponding to a random sequence of stimuli. The SRT paradigm has been
cited as evidence for implicit learning, as subjects experiencing the re-

This chapter is an adaptation of the article de Kleijn, R., Kachergis, G., & Hommel, B.
(under revision). Predictive movements and human reinforcement learning of sequential action.
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4. Reinforcement learning of sequential action

peating sequence, despite showing faster RTs over time, report no ex-
plicit knowledge of the sequence when debriefed afterwards. However,
performance does suffer somewhat when participants must simultane-
ously perform a second task [107], suggesting that learning in the SRT
task does require some attentional resources or effort. The role of atten-
tion in the SRT task was further studied by Fu et al. [50], who demon-
strated that reward motivation can improve the development of aware-
ness of the sequence. They reasoned that reward motivation regulates
the amount of attention paid towards the stimuli, which in turn facili-
tates sequence learning. Additionally, Willingham et al. [170] found that
some participants achieved a degree of declarative knowledge after a
fixed training period in the SRT task, and that additional training re-
sulted in more explicit knowledge for many subjects, if not all. On bal-
ance, it seems that the SRT task is neither wholly implicit nor wholly
explicit.

The dissociation of implicit and explicit processes facilitating sequence
learning remains a topic of debate, yet learning remains robust under
high degrees of noise and complex structure in the sequences [29]. Com-
plex action sequences are notmere stimulus–response chains, but rather
require representing sequential context in order to learn [87]. Moreover,
human behavior is often thought of as predictive—indeed, many models
of sequential learning operate on a prediction-based error signal [18, 76].
As such, it is problematic that the discrete button presses in the SRT
paradigm cannot distinguish an anticipatory response due to correctly
predicting the stimulus (or a slow response due to an incorrect predic-
tion) from reactive (though perhaps pre-potentiated) responses based on
the cue. Truly predictive responses—that is, thosemade in the interstim-
ulus interval before the next response is cued—are not valid responses in
the SRT paradigm.

In this paper we introduce two modifications of the SRT paradigm that
allow us to naturally investigate both predictive and reactive responding
in human sequence learning. In Experiment 1, recognizing that actions
are continuous movements that can reveal the underlying dynamics of
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4.1. Introduction

the cognitive processes driving them [147], we used a mouse-tracking
adaptationof the SRT task inwhich spatial locations are both stimuli and
response options [74, 75]. By tracking their movement before and after
the next target is cued, we investigated changes in predictive versus cued
responding over the course of the experiment [160]. Using this trajectory
SRTparadigm, we replicated the overall Nissen andBullemer [107] RT re-
sults, and moreover show sequential context effects—predictive bends
in response trajectories—along with different movement dynamics pre-
and post-cue.

In many implicit learning tasks such as artificial language learning and
the SRT paradigm, learning is dependent on recognizing some statisti-
cally reliable sequential structure in stimuli not under the learner’s con-
trol. However, everyday human action learning is often not character-
ized by processing a steady stream of stimuli, but by exploring the envi-
ronment (i.e. choosing actions) and receiving positive and negative feed-
back. Prediction is thus an essential element of reinforcement learn-
ing (RL), which is a well-established paradigm in the field of machine
learning [153] that was originally motivated by much earlier behaviorist
stimulus–response learning studies [144]. RL paradigms allow learning
agents to interact with a task solely through observations, actions, and
rewards. The rewards validate the actions, without the need for explicit
cueing or other forms of instruction. Thus, learning is exploratory, and
accomplished via trial-and-error. In Experiment 2, we further modified
the trajectory SRT paradigm by not cueing responses at all: participants
had to explore response alternatives until the correct one was found, re-
ceiving feedback (negative or positive points) at each response. We inves-
tigated sequence learning in this RL SRT paradigm that required predic-
tion rather than reaction, and found correspondences between success-
ful learners in this paradigm and in the reactive SRT paradigm in Experi-
ment 1. Using the RL paradigm allowed us to study the effect of rewards
on sequence acquisition inmore detail, yielding not only response times
but also errors over time. Thus, the current study adapted the trajectory
SRT task to allow for free movement and limited instruction, allowing
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4. Reinforcement learning of sequential action

learners to explore and learn from trial-and-error.

In addition, we attempted to capture human performance and error pat-
terns using reinforcement learning models. Due to the relatively simple
nature of the task, we investigated if simple (i.e. model-free) RL models
were sufficient to learn the repeating sequence by trial-and-error. We as-
sessed the RL data both in terms of earlier SRT data and in comparison
to three standard RL models. Overall, this study provides insights into
prediction error-driven learning of sequential action learning.

4.2 Experiment 1

The purpose of the first experiment was to replicate earlier findings by
Nissen andBullemer [107] using the trajectory SRTparadigm. This study
used four stimuli in a recurring sequence of length 10, horizontally dis-
played on a screen. Designating the stimulus positions from left to right
as numbers, the original sequence read 4–2–3–1–3–2–4–3–2–1. To fit
the trajectory paradigm the sequence was mapped to a square, left-to-
right and top-to-bottom (i.e. 1 = top left, 2 = top right, 3 = bottom left,
and 4 = bottom right). Participants moved the mouse from one stimu-
lus position to the next, corresponding to the sequence. We tested two
groups of participants, one trained on the recurring sequence and the
other trained on a random sequence. After ten blocks of training partici-
pants completed a generating task. This task consisted of the same basic
test conditions, except participants were asked to predict the sequence
instead of following it.

Nissen and Bullemer [107] originally found that participants showed im-
proved performance within the first block of training. Performance suf-
fered under dual-task conditions and varied as a function of serial posi-
tion in a pattern suggesting that learners were chunking the sequence
into two pieces. In total, the study’s results suggest that attention to the
sequence is crucial for both implicit and explicit sequence learning, but
that improved performance is not critically dependent on awareness of
the sequence. For the purpose of Experiment 1 only the initial experi-
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4.2. Experiment 1

ment was replicated. We expected to replicate the basic improvement
of performance, as well as the chunking pattern that was observed. Like
Willingham et al. [170], we included a final generation task, in which par-
ticipants were asked to reproduce any action sequence they felt they had
learned during training.

4.2.1 Methods

Participants

Participants in this experiment were 22 Leiden University undergradu-
ate students who participated in exchange for 3.50 euros or course credit.

Apparatus and materials

The experiment was performed on a computer with a 21-inch monitor
with 60 Hz refresh rate and a resolution of 1024x768 pixels. Participants
used a mouse to move the cursor. The experiment was programmed in
Python with the PyGame library, and cursor position was sampled at ev-
ery screen refresh.

Procedure

Participantswere alternately assigned tooneof the twobetween-subjects
conditions according to the order they signed up. In the NB87 sequence
condition, participants were given a repeating sequence of 10 locations
corresponding to the Nissen and Bullemer [107] sequence (4–2–3–1–3–
2–4–3–2–1). In the random sequence condition, participants followed a
randomly generated movement sequence without repetitions (i.e. stay-
ing at the same location).

Participants were told to quickly and accurately move the mouse cursor
to whichever square turned green. After arriving at the highlighted stim-
ulus, another stimulus was highlighted after a 500 ms ISI. Participants
completed 80 training trials, each of which contained a series of 10 loca-
tions. Participants were given a rest break every 20 training trials. Fol-
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4. Reinforcement learning of sequential action

lowing the training phase, participants were asked to try to reproduce
any sequence they had learned.

Each block contained a series of 80 location stimuli (i.e. 10 repetitions
of the NB87 sequence) which participants had to track with the cursor.
The stimulus display consisted of four red squares (location 1 = upper left,
2 = upper right, 3 = lower left, 4 = lower right), displayed continuously.
Each stimulus was an 80 × 80 pixel square, separated by 440 pixels of
white space. As a participant’s cursor arrived at the green square, the
square’s colorwould change to red, like the other stimuli. Thenext target
stimulus in the sequence would change color after a 500 ms ISI.

After training, participants were given a generating task similar to the
training task. In the generating task, participants were asked to predict
where they thought the stimulus would appear and move the mouse to
that square. In other words, they were asked to complete the sequence
without being cued. A correct prediction would cause no color change
while an error would cause the correct continuation of the sequence to
appear in green, and participants were to move to the next location.

4.2.2 Results

Response times

Data were analyzed from the 22 participants (11 per condition) that com-
pleted the experiment. Median movement time to a target was 1,040
ms (SD: 1,776). Of 17,578 target arrival times, 84 were removed for being
slower than 2,816ms (median + SD). Each subject’smedianRT for correct
movements on each block was computed. Figure 4.1a shows the mean
of median RTs by block for the two conditions. Participants in both con-
ditions got faster over the course of the experiment, but participants in
the NB87 sequence condition improved more than those in the random
condition, replicating theNissen andBullemer [107] speedup. Therewas
a 25% reduction in reaction time over the course of training. These data
were analyzed by a two-way analysis of variance, which indicated signif-
icant main effects of condition (F(1, 20) = 31.3, p < .001) and block (F(7,
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4.2. Experiment 1

(a)Mean of median RTs by block
show that both conditions sped
up over the course of Experiment
1, but that NB87 improved more.

(b)Mean number of errors by block
shows only the NB87 partici-
pants made an increasing num-
ber of errors.

Figure 4.1 | Experiment 1 RTs and error rates by block. Error bars show +/−1 SE.

168) = 6.3, p < .05), and a significant interaction effect (F(7, 210) = 14.7, p <
.01) between the two.

The accuracy data is shown in Figure 4.1b. Accuracy was high across
training blocks although it dropped over time in the NB87 group, partic-
ularly after the first three blocks of training. A two-way analysis of vari-
ance confirmed a significantmain effect of group (F(1, 20) = 36.7, p < .001)
and a significant interaction effect (F(9, 210) = 14.1, p < .001). These re-
sults are evidence of sequence learning, replicating the Nissen and Bulle-
mer [107] keypress-based results. However, there was a speed-accuracy
tradeoff in theNB87 condition: both accuracy andRTdroppedover time.
This was not present in the Nissen and Bullemer [107] results, but can
be explained through the difference in response execution. Key-presses
are intermittent and can only be made in response to a stimulus (pre-
stimulus responseswere not recorded), whilemousemovements are con-
tinuous and made constantly. Indeed, in the NB87 condition faster me-
dian hit RTs on a training block had a significant negative correlation
with the number of errors in that block (for the 67 of 110 blocks con-
taining errors; r = −.56, t(65) = −5.48, p < .001), showing a speed-accuracy

63



4. Reinforcement learning of sequential action

Figure 4.2 | Proportion of predictive movements (i.e. movements made during
the ITI) by block in each condition. Random condition participants
re-center, whereas NB87 participants move towards other stimuli.
By block 4, NB87 participants were making more than half of their
movement predictively, and continued to move more predictively:
up to 57% by the end of the experiment. Error bars show +/−1 SE.

tradeoff. This is likely due to the trajectory SRT paradigm encouraging
prediction, allowing participants tomove freely while performing the ex-
periment.

Indeed, an analysis of the proportion of distance traveled before arriving
at the next target during the 500 ms interval before the cue appeared
(i.e. predictive movement), shown in Figure 4.2, shows that participants
in the random condition level off at making half of their movement, on
average, during the pre-cue interval, whereas by block 10, participants in
the NB87 condition predictively completed over 57% of their movement
in the 500ms interval before the next location is highlighted. This shows
that participants in the NB87 are predicting the next target location and
alreadymoving towards–getting over halfway there–before the next cue
appears.

A two-way ANOVA with block as between-subject and serial position
as within-subject factors showed significant main effects for block (F(9,
210) = 32.3, p < .001 and serial position (F(9, 100) = 10.2, p < .01). To de-
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4.2. Experiment 1

termine whether participants became faster at the entire sequence or
rather learned some chunks better than others, mean RT was calculated
for each serial position. Similar to the Nissen and Bullemer [107] results,
RTs on the second, fifth and eighth serial positions are slow, which may
indicate that participants chunk the full sequence into two small, well-
learned pieces.

Performance on the generating task was poor, as participants on aver-
age did not manage to reproduce the sequence withoutmakingmany er-
rors (M = 5.77 errors). This indicates that, although training performance
showed evidence of sequence learning, participants were not explicitly
aware of the sequence. It is possible that participants would eventually
be able to reproduce the sequence if training were extended, as in Will-
ingham et al. [170]. Nissen and Bullemer [107] originally found that par-
ticipants were able to score around 80% correct on the generating task
after two blocks of ten trials. Although the current study only required
participants to complete one block of ten trials during the generating
task, participants did not show any improvement during the task.

Trajectory results

Figure 4.3 shows an example of mouse movements during a character-
istic trial from each condition. Participants in the random condition
(e.g. Figure 4.3a) tended to re-center the cursor after hitting a target, dur-
ing the 500 ms ISI. This strategy is not unreasonable under conditions
of uncertainty, as it minimizes the distance to potential targets, and the
next target cannot be predicted in the random condition. Centering be-
havior is shown in Figure 4.4a. Centering behavior is defined as the pro-
portion of time spent in the center 100×100 pixels of the screen between
reaching the previous target and current target reached. We deemed the
distinction between reactive and predictivemovements (asmade byDale
et al. [34]) unsuitable for the current analyses due to the random condi-
tion used to compare. As the experiment progressed, participants in the
random condition adopted a centering strategy thatminimized distance
to potential targets, while participants in the predictableNB87 condition
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4. Reinforcement learning of sequential action

(a) A trial from the random condi-
tion, in which the next location
was chosen at random, without
repeats. All 11 random partici-
pants adopted a similar strategy
of re-centering the cursor after
each response. This is optimal in
the sense that it was impossible
to know which location will be
highlighted next.

(b) A characteristic trial of a par-
ticipant’s movements during
the NB87 sequence, beginning
at location 4 (lower right) and
ending at location 1 (upper left).
These isomorphic trajectories
can be compared for context ef-
fects. Only 4 NB87 participants
showed centering movements in
the last half of training.

Figure 4.3 | Characteristic movements in one trial from the random condition
(a) and the NB87 condition (b). 𝑡0 = red, 𝑡𝑒𝑛𝑑 = yellow.

did not show this behavior. Participants in the random condition spent
an increasingly larger proportion of time in the center of the screen com-
pared to NB87 participants, F(9, 180) = 2.51, p = .010 for the interaction
between block and condition. Similar centering behavior has been re-
ported, but not quantified in the current context by Duran andDale [38],
and Dale et al. [34]. Interestingly, not all participants in the random con-
dition displayed this centering strategy, as evidenced by the large stan-
dard errors, especially in the final half of the experiment. Instead, partic-
ipants seemed to employ either a non-centering strategy or a centering
strategy in which they spent almost 25% of the ISI in the center of the
screen.

66



4.2. Experiment 1

(a) Proportion of time spent in the
center of the screen, defined as a
100 × 100 pixel square in the cen-
ter of the screen. Centering be-
havior in the random condition
is clearly visible. Error bars show
+/−1 SE.

(b)Distribution of centering behav-
ior for the last half of the experi-
ment for the random condition.
Two groups of participants can
be identified: those who center
during the ISI and those who do
not.

Figure 4.4 | Centering behavior during the ISI.

With learning, targets are predictable in the NB87 sequence condition,
thus participants are expected to show faster reaction times (RTs) as train-
ing proceeds.

The NB87 sequence, 4–2–3–1–3–2–4–3–2–1, contains only one identical
transition (3–2, a diagonal movement), although other movements are
isomorphic (e.g. 4–2 and 3–1). We examined the development of sequen-
tial context effects–deflections in response trajectory caused by the prior
or subsequent location–by plotting the average trajectories for the iso-
morphic movements: 4–2 vs. 3–1. In the experiment, these movements
are vertical, and we were interested in investigating the average deflec-
tions from the direct path from one stimulus center to another. We av-
eraged position across subjects for these movements and plotted their
deviation from the direct path (y-axis) over time (x-axis) in Figure 4.5,
split by condition, and for each half of training. Early in training, some
centering behavior is apparent in both conditions, most notably in the
4–2movement. Thismovement also clearly shows the absence of center-
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4. Reinforcement learning of sequential action

(a)Horizontal deviation during
movement (i.e. over time) in
early training. Both conditions’
trajectories show some centering
behavior, bending towards the
middle (i.e. up for 3–1, down for
4–2). NB87 trajectories show less
deviation.

(b)Horizontal deviation during
movement in late training. The
random condition shows more
centering behavior, while the
NB87 trajectories show little
variation except at the end
of the movements when they
diverge, showing prediction of
the subsequent stimulus.

Figure 4.5 | Averaged trajectories for vertical movements 4–2 and 3–1.

ing behavior late in training for the NB87 condition. The 4–2movement
also shows participants tended tomove towards the left after completing
the movement. As the next target in the sequence is 3, which is situated
to the bottom left of the current target, this indicates they were begin-
ning to move towards the subsequent target. These trajectory analyses
corroborate that NB87 participants were making increasingly predictive
movements, bending towards the next stimulus position based on their
contextual knowledge.

4.2.3 Discussion

In summary, Experiment 1 replicated the results from the Nissen and
Bullemer [107] serial button-pressing task with a mouse-trajectory ver-
sion of the task, showing that participants learn regularities in the stim-
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4.3. Experiment 2

ulus stream and exhibit speeded responding, even though they are bad
at explicitly reproducing the sequence. We have also demonstrated the
advantage of the trajectory-tracking SRT task: because participants can
move the mouse cursor during the interstimulus interval—before the
next cue has appeared—we can distinguish predictive movements (to-
wards the correct next stimulus) from post-cue speed-ups. Indeed, we
found that participants in theNB87 sequence conditionmade an increas-
ingly large proportion of their movement during the 500 ms pre-cue
interval. Also, we found centering behavior similar to Dale et al. [34].
However, in addition to their findings we compared centering behav-
ior between the random and NB87 condition, showing that participants
in the random condition show significantly more centering behavior,
which can be explained by uncertainty in prediction. Having established
that prediction plays a role in the speed-up seen in the SRT-trajectory
paradigm, in Experiment 2 we made prediction the essential goal of the
task, requiring learners to move to the next location without a cue, and
only giving feedback upon making a response.

4.3 Experiment 2

The results of Experiment 1 show that spatial sequences can be learned
through cued learning, replicating a huge body of literature on the SRT
task introduced by Nissen and Bullemer [107]. However, sequence learn-
ing in everyday action can hardly be considered cued. Instead, humans
are in constant interaction with their environment, exploring it and re-
ceiving positive or negative feedback on their taken actions. In Exper-
iment 2, we adapted the paradigm of the trajectory SRT into an explo-
ration paradigm in which participants actively try out the alternative op-
tions and receive feedback (reinforcement or punishment). More specif-
ically, the goal of Experiment 2 was to examine reinforcement learn-
ing within the trajectory SRT paradigm, and to compare human perfor-
mance to basic baseline models. The trajectory SRT task was adapted to
no longer cue participants with the next target position, forcing them to
instead explore the response alternatives until the correct onewas found.
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4. Reinforcement learning of sequential action

Moving the mouse cursor from the previous target to another response
alternative resulted in a reward (+1) or penalty (−1) that was accumulated
throughout the experiment and displayed continuously. Upon reaching
a valid target, it would change color to green, add to the score by 1, and al-
low the participant to continue exploring. Reaching for an invalid target
caused it to change to red, subtract from the score by 1, while the cur-
sor was relocated to the previously occupied target, effectively resetting
the participant’s progress. Target validity was determined by a recurrent
sequence, taken from the Nissen and Bullemer [107] study, and adapted
to fit the trajectory SRT paradigm. Designating the stimuli as numbers
from left to right, top to bottom, the sequence read 4–2–3–1–3–2–4–3–
2–1.

4.3.1 Methods

Participants

Participants in this experiment were 13 Leiden University students and
employees (agedM = 23.9, SD = 6.4) who participated in exchange for 3.50
euros or for course credit.

Procedure

Participants were instructed that they would be presented with four tar-
get squares in the corners of the screen which they were to explore by
moving the mouse, each time resulting in either a gain or loss of one
point. Participants were told to try to maximize their score, which was
displayed continuously at the top of the screen. Unbeknownst to the
participants, only one of the four targets would be valid at any given
moment, but all were colored blue, so the target could not be visually
distinguished. Upon reaching a valid target, its color would change to
greenmomentarily and the scorewould increase by one. The participant
would then be able to continue exploring for the next target. Arriving at
an invalid target caused it to change to red momentarily and the score
was decreased by one, while the cursor was relocated to the previously
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4.3. Experiment 2

occupied target. Thus, although there were no instructions explicitly in-
dicating it, participants likely inferred that they had chosen the incorrect
stimulus, and should choose one of the remaining two—if they also as-
sumed the same target was never repeated immediately, which was true.
In the absence of a previous target (i.e. at the beginning of the experi-
ment or after a rest break) the cursor was moved back to the middle of
the screen.

Unbeknownst to the participants, each trial consisted of a series of 10 tar-
gets (labeled 1–4 left-to-right and top-to-bottom: 4–2–3–1–3–2–4–3–2–1)
that repeated continuously, with no indication where one trial stopped
and the next began. Participants completed eight blocks of 10 such tri-
als, with a short rest break after every two blocks (i.e. 200 correct move-
ments). A participant who somehow knew the sequence before enter-
ing the experiment and never made an error would therefore make 800
movements to valid targets, receiving the theoretical maximum of 800
points. At worst, a participant with no memory of even the previous tar-
get they had triedmaymake an infinite number of errors, andmay never
finish the experiment. Assuming enoughmemory to not repeat the same
invalid target more than once when seeking each target (i.e. an elimina-
tion strategy), a participant using this elimination strategy would expect
on average to score 0 points, as the expected value (EV) of completing
one movement successfully is 0.¹ Note that participants were not told
that there was a single deterministic sequence, let alone details such as
how long the sequence was.

4.3.2 Results

The data from all 13 participants were analyzed. The distribution was
bimodal, with four participants collecting less than 300 points and all
but one of the rest accumulating more than 500 points each. Given the
bimodal score distribution, a median split was used to divide the par-
ticipants into high-performing (≥ 526; 7 people) and low-performing (<

¹33% of chance success in one try (+1), 33% chance of success in two tries (−1+1), and
33% chance of success in three tries (−1−1+1).
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4. Reinforcement learning of sequential action

526; 6 people) groups. In the high-scoring group, participants achieved
almost flawless performance after only approximately 30 trials, with a
final mean score of 652 (max: 725), while the low-scoring group only
gradually increased their score (final mean score: 287). The remaining
analyses were carried out for each group in an attempt to understand
the great variability in performance—and the impressive success of the
high-scoring group.

Response times

The overall median response time (RT) for all stimulus arrivals was 1,401
ms (SD = 4,980). Of 10,400 correct target arrival times (median = 1,078
ms, SD = 2,216), 317 (3%) were trimmed for being too slow (median + 2
⋅ SD). Of the 4,117 incorrect stimulus arrival times (median = 2,397 ms,
SD = 8,401), 100 were trimmed for being too slow (2.4%). Each subject’s
median RT for correct and incorrect movements was computed for each
10-trial block. Figure 4.6 shows themean of subjects’ median correct and
incorrect RTs over the experiment, split into high- and low-performing
group. RTs for correct movements improve in both groups during the
first few blocks, but the high-scoring group speeds up more than the
low-scoring group. Figure 4.6 also shows that the rare incorrect RTs for
the high-performing group get slower over the course of the experiment,
whereas the low-performing group’s incorrect RTs only increase a bit.
The strikingly slow errors of high-performing participants, compared to
errors that are barely slower than correct movements for the low per-
formers may indicate a different mode of behavior. A possible explana-
tion is that low performers are simply not trying to learn a sequence, or
do not expect it to to be deterministic, whereas high performers explic-
itly learn the sequence, and when they are uncertain they must pause to
try to recall the next target.

Accuracy

The mean number of errors made over the entire experiment was 19.8
(SD = 21.3) for the high-scoring group, and 63.5 (SD = 11.9) for the low-
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4.3. Experiment 2

Figure 4.6 | The mean of subjects’ median correct RTs by block shows that high-
performers’ (left panel) RTs improvedmore than the low-performers’
(right panel) RTs over training. The mean of subjects’ median incor-
rect RTs by block shows that the high-performing group’s incorrect
RTs actually increased, whereas the low-performing group’s stayed
roughly the same across the experiment. Error bars show +/−1 SE.

scoring group. Over time, the number of errors decreased especially for
the high scoring group. Examining the errors made by each group of
participants according to where they were in the sequence revealed that
for both groups the fifth stimulus was particularly challenging. This is
reflected in the mean number of errors for each group (see Figure 4.7b,
as well as in the mean RT to the target by sequence position (see Fig-
ure 4.7a).

Comparison to Experiment 1

The pattern we observe in the accuracy and response time data bears
some resemblance to the pattern observed in Experiment 1, despite the
use of cues in that experiment. Although the RL SRT task in Experiment
2 was fundamentally different from the cued SRT task in Experiment
2, the same sequence was used in both experiments. We can therefore
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4. Reinforcement learning of sequential action

(a)Mean of subjects’ median correct
response times by median split
and sequential position. The cor-
rect RTs for the two performance
groups were not significantly cor-
related, r(8) = .17, p = .65.

(b) The mean number of errors
made at each position in the
sequence split by performance
group. The errors are highly
correlated, r(8) = .79, p < .01.

Figure 4.7 | RTs and error rates by median split and sequential position. Note
how much worse sequence position 5 was for the low-performing
group relative to the next-worst position (8). Low-performers
showed twice as many errors in position 5 as in 8, while the high-
performing group showed only a 25% increase in errors. Error bars
reflect +/−1 SE.

compare the scaled response time and accuracy data from the two exper-
iments in Figure 4.8, which shows a similar pattern across experiments.

We examined errors and correct response times by their sequential posi-
tion, and compared these to RTs from Experiment 1. Overall, there is a
significant correlation r(8) = .88, p < .001, between correct RTs from the
RL experiment and RTs from the cued SRT experiment. Comparing the
cued RTs to the high- and low-scoring groups separately, revealed a dif-
ference between the groups. The cued SRT RTs do not correlate signifi-
cantlywith the high-scoring group’s RTs, r(8) = .51, p = .13, but do correlate
significantly with the number of errors made in the RL experiment, r(8)
= .83, p < .01. The low-scoring group shows the opposite pattern. The
cued SRT RTs correlated significantly with the RL correct RTs, r(8) = .80,
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Figure 4.8 | Scaled mean number of errors in Experiment 2 (RL) against scaled
correct RTs from Experiment 1’s cued SRT paradigm (NB87) by se-
quence position. The number of errors per position and the correct
RTs are significantly correlated, r(8) = .64, p < .05. Error bars show
+/−1 SE.

p < .01, but not with the RL errors, r(8) = .57, p = .09. Comparing the two
groups with each other revealed a significant correlation in errors, r(8) =
.79, p < .01, but no significant correlation in RT, r(8) = .17, p > .05.

4.4 Models

Modeling environment

To compare human sequence acquisition with existing reinforcement
learning models, we implemented three reinforcement learning models
and a simple negative recency biased model (SCM; [19]) using PyBrain
[139]. The environment contains all data regarding the targets, which
it passes to the task, which in turn passes the current state of the envi-
ronment to the agent, which selects the relevant action. The action is
evaluated by the environment, which updates itself and passes a reward
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Experiment

Task
Environment

Agent

rewardactionobservation

Figure 4.9 | Overview of the experimental setup for the reinforcement learning
models. Each plated component is a PyBrain class, which interact
with each other according to the arrows to simulate the same trial-
and-error learning process that humans undergo.

to the agent. The reward is used to update the agent’s strategy, and the
model continueswith the next step. Wedefined the reinforcement learn-
ing SRT task in this framework for our simulations, see Figure 4.9 for the
specific design.

As in the human experiment, the data regarding the targets was only
partially visible to the agent. The task acted as a veil through which a
certain state would be observable. To a human participant, the current
position in the sequence would be obvious, as it was colored differently
from the other stimuli. At a minimum, the immediately prior occupied
position was probably obvious as well, readily available in memory. Posi-
tions preceding that, however, might not be reliably accessible in mem-
ory. In the sequence we used (4–2–3–1–3–2–4–3–2–1), following Nissen
and Bullemer [107], each position’s identity is fully determined by the
previous two positions. That is, one could perfectly predict the next po-
sition given only the two prior to it—assuming one has determined that
there is a deterministic, periodically repeating sequence. The RL mod-
els we use rely on a set of third-order observations, assuming that the
models know their current position and the two prior positions.
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On-policy vs. off-policy learners

The reinforcement learning models differ in their learning component,
which is contained within the agent and maintains a mapping between
input states and action-values. For each given input state there are three
action-values, corresponding to the number of movements that can be
madeby the agent. After receiving a reward, the agent updates the action-
values using its learning algorithm. We tested three learning algorithms:
SARSA [133], standard Q-learning, and Q(𝜆)–Q-learning with eligibility
traces [168].

Off-policy learners such as Q-learning learn the value of the optimal pol-
icy independently of the agent’s actions. They learn about the greedy pol-
icy, updating old action-values using the maximum of all action-values
for the current state, while—depending on the action selection policy—
it can stochastically select actions and explore.

The update rule in Q-learning updates Q for any state-action pair <𝑠, 𝑎>
using an experience tuple <𝑠, 𝑎, 𝑠′, 𝑟>, with learning rate 𝛼 ∈ [0, 1] and
discount factor 𝛾 ∈ [0, 1]:

𝑄′(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑄[𝑠′, argmax
𝑎′

(𝑄[𝑠′, 𝑎′])]) (4.1)

In contrast, on-policy learners (e.g. SARSA) learn the value of the policy
actually being carried out by the agent: instead of the maximum, they
also take into account the action that was selected for the current state.
In other words, it does not use the maximum attainable reward in state
𝑠′ to update the Q-table, but instead chooses 𝑎′ using the same policy it
used to choose 𝑎. It therefore needs the experience tuple <𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′>:

𝑄′(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑄[𝑠′, 𝑎′]) (4.2)

The eligibility traces in Q(𝜆) are temporary records of an event (e.g. an
action or state) that help with temporal credit assignment by adding a
trace to events that are eligible for learning updates. Theoretically, eli-

77



4. Reinforcement learning of sequential action

gibility traces link RL temporal difference methods (like Q-learning and
SARSA) to Monte Carlo methods.

Simple condensator model

To investigate if perhaps an even more elementary mechanism could be
responsible for participants’ behavior, we also included a condensator
model, introduced by Boyer et al. [19], and inspired by Dominey [37]. In
this model, each target is assigned a corresponding unit, with activation
ranging from .0 to 1.0. Summed activation across units is always 1.0, and
all units were initialized at .25. Each step, the unit with the highest acti-
vation is chosen, and its activation is then distributed equally among the
other three units.

These reinforcement learning models were chosen as simple baselines
that differ somewhat in exploratory behavior and learning speed, and
thusmay be suitable to compare to human behavior which varied widely.
As with the human participants, the simulated SARSA and Q-learners
were tasked with iterating over the repeated sequence until the success-
ful completionof 800movements. For eachmodel, a grid search over the
parameters (learning rate 𝛼 and discounting factor for future rewards 𝛾)
was used to find optimal values.

Modeling results

Thebest parameters found for the SARSAmodel (𝛼 = .01, 𝛾 = .98) achieved
a mean final score of 183 (SD = 292). The best parameters found for Q-
learning (𝛼 = .38, 𝛾 = .98) yielded amean final score of 346 (SD = 75), while
Q(𝜆) reached a mean final score of 369 (SD = 53, parameters: 𝛼 = .001, 𝛾 =
.95, 𝜆 = .99). However, despite considerable learning by the end of the ex-
periment, none of the models performed as well as the high-performing
human learners, who averaged a final score of 652. Even the maximum
scores achieved by the models were below the high-scoring humans av-
erage or maximum (human = 725; Q-learning = 473, Q(𝜆) = 440; SARSA
= 477).
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Figure 4.10 | RL task scores of the different models tested. A hybrid Q(𝜆)–SCM
model performs better than all of the other RLmodels, but none of
the models reach human performance.

We hypothesized that an RL model combined with a negative recency
bias in early learning (with high levels of uncertainty) could perhaps yield
better results. Using this technique, humans may be using a recency
avoidance strategy in early learning, which would become less necessary
after the sequence has been acquired. To investigate, we tested a hybrid
model in which the SCMmodel would choose the next target when cer-
tainty (expected action value) of the RLmodel was low (defined by an op-
timized parameter: .61). This hybrid Q(𝜆)–SCM model averaged a final
score of 604 (SD = 4). Results from allmodels are displayed in Figure 4.10.

Although these common RL models were unable to reach human-level
performance, we thought it worthwhile to examine whether their error
patterns resemble those of people. the mean number of errors made by
each model at each position in the sequence, as was done earlier for hu-
mans. The errorsmade by the SARSA andQ-learning algorithms did not
vary much by sequence position. Q(𝜆) made more errors in the middle
of the sequence, but still did not resemble human error patterns.
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4.5 General discussion

This paper introduced the trajectory serial reaction time task and found
that it replicates the results of Experiment 1 ofNissen andBullemer [107].
Thus, while the trajectory SRT paradigm retains the essence of the orig-
inal SRT, it also affords the opportunity to measure a variety of more
detailed statistics about subjects’ continuous motions. Response trajec-
tories can reveal uncertainty, predictive movements, reversals in deci-
sion, and other phenomena that may reveal the dynamics of the learn-
ing mechanisms at work. The present study examined the average tra-
jectories of two isomorphic vertical movements that appear in the NB87
sequence, as well as in the random condition. The twomovements have
different subsequent stimuli in the NB87 condition, and were thus ex-
pected to show a sequential context effect: as participants learn where
the next stimulus will be, they may start to move towards this response
even as they finish the previous movement–as a piano player may reach
for the next key while the current one is being sustained [145].

We found not only that the expected context effects had developed by
late training, but also evidence of possibly strategic adaptive behavior
in the random condition. Many participants in the random condition
developed a re-centering approach after each response, waiting for the
next (unpredictable) stimulus to appear. In a way this behavior is opti-
mal, since the center of the screen is as close as possible to all stimuli.
Some participants in both conditions showed this behavior to a limited
extent early in training, but those trained on theNB87 sequence lost this
behavior over time as they learned to predict the location of the subse-
quent stimulus–hinted at by the decrease in reaction times in this con-
dition, and confirmed by the deviation in average trajectory towards the
subsequent stimuli. Of the participants in the random condition, two
groups could be identified: a centering group and a non-centering group.
This might reflect differences in strategy similar to Tubau et al.’s [160]
stimulus-based vs. plan-based control mode, or Dale et al.’s [34] reactive
vs. predictive movements. How these different behavioral strategies are
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related could be the focus of future research.

Overall, the behavioral results show a striking similarity to the Nissen
and Bullemer [107] results. The pattern of reaction times over sequence
position was strikingly similar to the pattern observed in the original
study, although the movement reaction times were higher throughout
training and participants showed less overall improvement. This can be
explained through the mechanics of the paradigm: mouse movements
require more time to be executed than single keypresses, and require
some fine motor control and error correction. The sensitivity of the
mouse can be adjusted to achieve a balance between RT and error; we
used a very low sensitivity to reduce overall noise. Participants in the
NB87 sequence condition nonetheless showed an increased number of
errors during training, indicative of a speed-accuracy trade-off which
was not present in the Nissen and Bullemer [107] results. It is possible
that extending the training would eventually lead to a reduction of er-
rors, as participants would gradually become aware of the sequence.

In Experiment 2, we adapted the trajectory SRT paradigm to be a rein-
forcement learning task. The task proved to be more challenging for
some than for others, as indicated by differences in response times and
accuracy. Those data also suggest that participants adopt different strate-
gies, and tried to adapt when they were not learning. These findings are
similar to those in Experiment 1: RT and accuracywere correlated across
experiments. In particular, data from the high-performing participants
compared remarkably well to Experiment 1, despite the task differences.
The most notable similarity was the difficulty participants experienced
with the fifth stimulus position.

A bimodal distribution of scores showed that half of the participants did
really well, as they made very few errors after roughly 10 repetitions of
the sequence. Block-by-block analysis of the response times showed a
difference in speed-up across the experiment between groups, indicat-
ing the high-performing group learned the sequence much better than
the low-performing group. The difference in response times to incorrect
targets suggests the two groupsmight have used different strategies. The
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rare but increasingly slow errors in the high-performing group suggest
more time was spent figuring out the next stimulus, while the persis-
tent and relatively fast errors of the low-performing group suggest par-
ticipants may have adopted a probabilistic view of the task, randomly
trying options instead of trying to learn a deterministic pattern.

Despite the major difference of the absence of cueing of the next re-
sponse, performance in the RL experiment was quite comparable to per-
formance in the cued SRT experiment. The pattern of correlations in-
dicated a difference between the low- and high-performing groups that
was not immediately obvious. Overall, the cued SRT response times are
correlated to RTs and accuracy data from the RL experiment, whereas
this is not true for both the low- and high-performing groups separately.
We expect this is due to different strategies among groups, leading to a
different pattern of speed and accuracy at different sequence positions.

In addition to our behavioral analyses, we tested three different rein-
forcement learning models to see if human behavior could be explained
by simple, model-free responses to sequential stimuli. High-performing
humans were still far better than the models, which on average scored
roughly as well as the low-performing humans. SARSA had quite vari-
able performance, but was lowest on average, while Q-learning with el-
igibility traces fared the best. Examining the models’ performance by
sequence position showed they did not correspond well with human er-
rors in either group. This suggests that simplemodel-free reinforcement
algorithms do not capture the process by which humans learn action
sequences, even though they eventually converge on a proper solution.
One explanation for this is the fact that the task andmodels used in stud-
ies like this do not fully capture the essence of human action learning,
which is goal-directed by nature. Interestingly, a hybrid model in which
a simple negative recency bias guides behavior in early training outper-
forms all reinforcement learningmodels. Future studies could shed light
on the role of goals in the acquisition of such action sequences, and the
way learning shifts from simple to more complex mechanisms, as has
been shown to exist for single-step action (see, for example, Hommel

82



4.5. General discussion

et al. [65] for one proposedmechanism of goal-directed action). The pro-
cess by which humans acquire action sequences is subtle, can yield quite
variable performance, and is not easily captured by simple learning algo-
rithms. However, studying it is important, as most of human behavior
is essentially sequential in nature.
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