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CHAPTER3
Robotics and human action

The field of robotics is shifting from building industrial robots
that can perform repetitive tasks accurately and predictably in
constrained settings, to more autonomous robots that should be

able to perform a wider range of tasks, including everyday household
activities. To build systems that can handle the uncertainty of the real
world, it is important for roboticists to look at how humans are able to
perform in such a wide range of situations and contexts—a domain that
is traditionally the purview of cognitive psychology. Cognitive scientists
have been rather successful in bringing computational systems closer to
human performance. Examples include image and speech recognition
and general knowledge representation using parallel distributed process-
ing (e.g. modern deep learning models).

Similarly, cognitive psychologists can use robotics to complement their
research. Robotic implementations of cognitive systems can act as a
“computational proving ground”, allowing accurate and repeatable real-
world testing of model predictions. All too often, theoretical predict-

This chapter is an adaptation of the book chapter de Kleijn, R., Kachergis, G., &Hommel,
B. (2015). Robotic action control: On the crossroads of cognitive psychology and robotics. In H.
Samani (Ed.), Cognitive robotics. Taylor & Francis.
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3. Robotics and human action

ions—and even carefully conductedmodel simulations—do not scale up
or even correspond well to the complexity of the real world. Psychology
should always seek to push theory out of the nest of the laboratory and
see if it can take flight. Finally, cognitive psychologists have an oppor-
tunity to conduct experiments that will both inform roboticists as they
seek tomakemore capable cognitive robots, and increase our knowledge
of how humans perform adaptively in a complex, dynamic world. In this
chapter, we will give a broad but brief overview of the fields of cognitive
psychology and robotics, with an eye to how they have come together to
inform us about how (artificial and natural) actions are controlled.

3.2 Early history of the fields

3.2.1 History of cognitive psychology

Before cognitive psychology and robotics blended into the approachnow
known as cognitive robotics, both fields already had a rich history. Cog-
nitive psychology as we now know it has had a rocky past (as have most
psychological disciplines, for that matter). Breaking away from philos-
ophy, after briefly attempting to use introspection to observe the work-
ings of themind, the field of psychology found it more reliable to rely on
empirical evidence.

Although making rapid strides using this empirical evidence, for exam-
ple in the form ofDonders’ now classic reaction time experiments which
proposed stages of processing extending fromperception to action, early
cognitive psychology came to be dominated by a particular approach, be-
haviorism. This position, popularized by Watson [169] and pushed fur-
ther by Skinner [143], held that the path for psychology to establish itself
as a natural science on par with physics and chemistry would be to re-
strict itself to observable entities such as stimuli and responses. In this
sense, behaviorists such as Skinner were strongly antirepresentational,
i.e. against the assumption of internal knowledge and states in the ex-
planation of behavioral observations. On the other hand, the focus on
observable data brought further rigor into the field, and many interest-
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3.2. Early history of the fields

ing effects were described and explained.

The behaviorist approach dominated the field of psychology during the
first half of the 20th century. In the 1950s, seeming limitations of be-
haviorism fueled what some scholars would call the neocognitive revolu-
tion. StartingwithChomsky’s scathing 1959 reviewof Skinner’s book [27]
that tried to explain how infants learn language by simple association,
many researchers were convinced that behaviorism could not explain
fundamental cognitive processes such as learning (especially language)
and memory. The foundations of the field of artificial intelligence were
also nascent, and pursuing explanations of high-level, uniquely human
aptitudes—e.g. analytical thought, reasoning, logic, strategic decision-
making—grew in popularity.

3.2.2 The computer analogy

Another factor contributing to theneocognitive revolutionwas the emer-
gence of a new way to describe human cognition as similar to electronic
computer systems. The basic mechanism operating computers was (and
still is, in a fundamental way) gathering input, processing it, and out-
putting the processed information, not unlike the basic cognitive mo-
del of stimulus detection, storage and transformation of stimuli, and re-
sponse production.

Clearly, this processing of information requires some representational
states which are unaccounted for (and dismissed as unnecessary) by be-
haviorists. This new way to look at human cognition as an information
processing system not only excited psychologists as a way of understand-
ing the brain, but the analogy also raised hopes for building intelligent
machines. The idea was that if computer systems could use the same
rules and mechanisms as the human brain, they could also act like hu-
mans. Perhaps the most well-known proponent of this optimistic vision
was Turing [161], who suggested that it wouldn’t be long before machine
communication would be indistinguishable from human communica-
tion. Maybe the secret of cognition lies in the way the brain gathers,
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3. Robotics and human action

stores, and subsequently manipulates data, it was thought.

Alas, the optimists would be disappointed. It soon became clear that
computers and humans have very different strengths and weaknesses.
Computers can calculate half a million decimals of π within a second.
Humans can read terrible handwriting. Clearly, humans are not so com-
parable to basic input–output systems after all. It would take another 25
years for cognitive psychology and artificial intelligence to begin their ro-
mance once again, in the form of the parallel distributed processing (pdp)
approach [130].

3.2.3 Early cognitive robots

With this idea of smart computer systems in mind, it seemed almost
straightforward to add embodiment to build intelligent agents. The first
cognitive robots were quite simple machines. The Machina Speculatrix
[166] consisted of a mobile platform, two sensors, actuators and “nerve
cells”. Understandably, these robots were designed to mimic behavior
of simple animals, and could move safely around a room and recharge
themselves using relatively simple approach and avoidance rules. Due
to their simplicity, it was questionable exactly how cognitive these robots
were—they aremore related to cybernetics and control theory (e.g. [8])—
but soon enough complexity made its way into cognitive robotics.

From the 1960s, robots would be able to represent knowledge and plan
sequences of operations using algorithms such as strips [47], that would
now be considered essential knowledge for every ai student. The strips
planner, which represents goal states and preconditions and attempts
to derive the action sequences that would achieve them before carrying
them out, is quite slow to execute. Moreover, this type of planning suf-
fers from its closed world assumption (i.e. that the environment and all
relevant states are known—by programming—and will not change), and
the massive complexity of the real world, leading to intractable compu-
tations. Yet the general approach taken by strips—of modeling the en-
vironment, possible actions and state transformations, and goal states
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via predicate logic, and operating robots via a sense-plan-act loop—has
dominated cognitive robotics for quite some time, and is still a strong
thread today.

Various behavior-based robotics architectures and algorithms—taking
some inspiration from biological organisms—have been developed in
the past fewdecades. An early, influential example is Rodney Brooks’ sub-
sumption architecture [21], which eschews planning entirely; “planning is
just a way of avoiding to figure out what to do next”, using a defined
library of basic behaviors arranged hierarchically to generate behavior
based on incoming stimuli. Although fast and often generating surpris-
ingly complex behavior from simple rules (see also [20]), the subsump-
tion architecture andmany other behavior-based robotics algorithms do
not yet incorporatemuch from the lessons to be learned frompsycholog-
ical studies in humans.

3.3 Action control

3.3.1 Introduction

One of the other areas that shows considerable overlap between robots
and humans is motor or action control. Two types of control systems
govern motor action: feedforward and feedback control systems.

A feedforward motor control system sends a signal from the (human
or robotic) motor planning component to the relevant motor compo-
nent using predetermined parameters, executing said action. Informa-
tion from the environment can be considered only before execution be-
gins, which makes feedforward control suitable for predictable environ-
ments. In contrast, a feedback motor control system incorporates in-
formation from itself or the environment (feedback) more or less con-
tinuously to modulate the control signal. In this way, the system can
dynamically alter its behavior in response to a changing environment.
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3. Robotics and human action

3.3.2 Feedforward and feedback control in humans

For many years, psychology and related disciplines have approached ac-
tion control from rather isolated perspectives. As the probably first sys-
tematic study on movement control by Woodworth [171] had provided
strong evidence for the contribution of environmental information,
many authors have tried to develop closed-loopmodels of action control
that rely on a continuous feedback loop (e.g. [1]). At the same time, there
was strong evidence fromanimal and lesion studies [81, 155] and from the-
oretical considerations [87] that various movements can be considered
in the absence of sensorimotor feedback loops, which has motivated the
development of feedforward models (e.g. [59]).

Schmidt [140] was one of the first who argued that human action con-
trol consists of both feedforward and feedback components. According
to his reasoning, human agents prepare a movement schema that spec-
ifies the relevant attributes of the intended movement but leave open
parameter slots that are specified by using online environmental infor-
mation. In particular, feedforward mechanisms seem to determine the
necessary action components offline and pre-load at least some of them
before initiating the action [59], and to selectively tune attention to stim-
uli and stimulus dimensions that are relevant to the task [64]. Feedback
processes, in turn, provide excellent accuracy—often at the cost of speed
[141]. These strengths and weaknesses have motivated hybrid models
claiming that feedforward mechanisms provide the skeleton of action
plans which leave open slots for parameters provided by feedback pro-
cesses. Neuroscientific evidence has provided strong support for such
a hybrid control model, suggesting that offline action planning along a
ventral cortical route is integrated with online sensorimotor specifica-
tion along a dorsal route [53, 54, 64, 140].

A particularly good example of this kind of interaction is provided by the
observations of Goodale et al. [55]. In a clever experiment, participants
were asked to rest their hand on a platform and point to a visual target
presented at a random location on an imaginary line in their right visual
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field. The participants were not told that in half of the trials the target
would change location during the first saccade. The authors found that
participants would successfully point to the target on these trials with-
out even being aware of the location change, and without additional de-
lay. As feedforward programming is assumed to take time, a fast and
online feedbackmechanism of which participants are unaware has to be
responsible for this finding.

On a higher level, interaction between feedforward and feedback sys-
tems must exist for goal-directed action to be carried out. Higher-level,
goal-directed action planning, such as planning tomake pancakes would
be impossible to plan in a completely feedforward fashion: it would re-
quire all motor parameters to be specified a priori, and thus would re-
quire exact knowledge of the position and properties of all necessary
equipment and ingredients, such asweight, friction coefficients, et cetera.

Instead, many of these parameters can be filled in online by using in-
formation from the environment. It is not necessary to know the ex-
act weight of a pan, because you can determine that easily by picking
it up: you increase the exerted force until the pan leaves the surface of
the kitchen counter. This does not rule out a complementary role for
feedforward parameter estimation: you likely also learn a distribution of
probable pan weights (e.g. more than 50 g and less than 10 kg) from your
experience of other pans—or even just similarly-sized objects.

Interaction between feedforward and feedback becomes even more ap-
parent on ahigher levelwhenaplanned action fails to be executed. When
a necessary ingredient is missing, replanning (or cancellation) of a pre-
programmed action sequence may be necessary: if there is no butter,
can I use oil to grease up the pan? Somehow, this information gathered
by feedback processes must be communicated to the higher level action
planner.
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3. Robotics and human action

3.3.3 Feedforward and feedback control in robots

The theorizing on action control in robotic systems must be considered
rather ideological, sometimes driven by the specifics of particular robots
or tasks considered and sometimes by broadly generalized antirepresen-
tationalist attitudes. Many early robots only had ahandful of sensors and
responded in a fixed pattern of behavior given a particular set of stimuli.
Some robots were even purely feedforward, performing the same action
or action sequence, with no sensory input whatsoever [106]. Feedfor-
ward or simple reactive control architecturesmake for very brittle behav-
ior: even complex, carefully-crafted sequences of actions and reactions
will appear clumsy if the environment suddenly presents an even slightly
novel situation.

More complex architectures have been proposed, often with some anal-
ogy to biology or human or animal behavior, giving birth to the field of
behavior-based robotics. The subsumption architecture [21] was a response
to the traditional gofai, and posited that complex behavior need not
necessarily require a complex control system. Different behaviors are
represented as layers that can be inhibited by other layers. For example,
a simple robot could be provided with the behaviorswandering, avoiding,
pickup, and homing. These behaviors are hierarchically structured, with
each behavior inhibiting its preceding behavior [7].

This hierarchy of inhibition between behavior is (although somewhat
more complex) also visible in humans. For example, if your pants are
(accidentally) set on fire while doing the dishes, few people would fin-
ish the dishes before stopping, dropping, and rolling. In other words,
some behaviors take precedence over others. An approach similar to the
subsumption architecture has been proposed by Arkin [6]. The motor
schema approach also uses different, parallel layers of behavior, but does
not have the hierarchical coordination that the subsumption approach
does. Instead, each behavior contributes to the robot’s overall response.

On a higher level, as noted in the previous section, other problems arise.
When a planned action fails to succeed, for example because a robot can’t
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find a pan to make pancakes in, replanning is necessary. The earliest ai
planners such as gpswould simply backtrack to the previous choice point
and try an alternative subaction. However, this does not guarantee the
eventual successful completion of the action. Other planners, such as
abstrips [134], use a hierarchy of representational levels. When it fails to
complete a subaction, it could return to a more abstract level.

However, truly intelligent systems should be more flexible in handling
such unforeseen events. If a robot cannot make me a pizza with ham,
maybe it should make me one with bacon? Generalization and substitu-
tion remain an elusive ability for robots, although vector spacemodels of
semantics (e.g. beagle [72]) offer a step in the right direction. Like neural
networks, thesemodels represent items (e.g. words) in a distributed fash-
ion, using many-featured vectors with initially low similarity between
random items. As the model learns—say, by reading documents—item
representations are updated to make them more similar (on a continu-
ous scale) to contextually similar items. These continually-updated rep-
resentations can be used to extract semantic as well as syntagmatic (e.g.
part-of-speech) relationships between items. Beyond text learning, vec-
tor space models may ultimately be used to learn generalizable represen-
tations for physical properties andmanipulations of objects and environ-
ments.

3.3.4 Robotic action planning

It is understood that reaching movements in humans have an initial bal-
listic feedforward component, followedby a slower feedback-driven com-
ponent that corrects for error in the initial movement. As people be-
come more adept at reaching to targets at particular distances, a greater
portion of their movement is devoted to the initial feedforward compo-
nent and less time is spent in the feedback component, thus speeding
response times. Understanding how this happens should enable roboti-
cists to make more adaptive, human-like motor planning systems for
robots.
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In this line of research, Kachergis et al. [75] studied sequence learning
using mouse movements. Inspired by earlier work of Nissen and Bulle-
mer [107], subsequences of longer sequences were acquired by human
participants during a learning phase. The participants seem to implic-
itly extract the subsequences from longer sequences by showing faster
response times and context effects.

These findings cast doubt on a simple chaining theory of sequential ac-
tion. Rosenbaum et al. [129] interpreted these findings as evidence that
sensory feedback is not a necessary component for action sequencing, in
keeping with the conclusion of Lashley [87]. They argued that “the state
of the nervous system can predispose the actor to behave in particular
ways in the future,” (p. 526), or, there are action plans for some behav-
iors. And yet, studies on spontaneous speech repair (e.g. [103]) also show
that people are very fast in fixing errors in early components of a word
or sentence, much too fast to assume that action outcomes are evalu-
ated only after entire sequences are completed. This means that action
planning cannot be exclusively feedforward, as Lashley [87] seemed to
suggest, but must include several layers of processing, with lower lev-
els continuously checking whether the current action component pro-
ceeds as expected. In other words, action planning must be a tempo-
rally extended process in which abstract representations to some extent
provide abstract goal descriptions, whichmust be integrated with lower-
level subsymbolic representations controlling sensorimotor loops. The
existence of subsymbolic sensorimotor representations would account
for context and anticipation effects, as described above.

Themain lesson for robotic motor planning is that purely symbolic plan-
ning may be too crude and context-insensitive to allow for smooth and
efficientmulti-component actions. Introducingmultiple levels of action
planning and action control may complicate the engineering consider-
ably, but it is also likely to make robot action more flexible and robust—
and less “robotic” to the eye of the user.
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3.4 Acquisition of action control

3.4.1 Introduction

In order for humans or robots to be able to achieve their goals, it is nec-
essary for them to know what effect an action would have on their envi-
ronment. Or, reasoning back to the inverse model, what actions are re-
quired to produce a certain effect in the environment. Learning relevant
action–effect bindings as an infant is a fundamental part of development
and likely bootstraps later acquisition of general knowledge.

In humans, learned action–effects seem to be stored bidirectionally. Fol-
lowing Lotze [91] and Harless [57], James [69] noted that intentionally
creating a desired effect requires knowledge about, and thus the previous
acquisition of action–effect contingencies. The Theory of Event Coding
(tec) is a comprehensive empirically well-supported theoretical frame-
work explaining the acquisition and use of such action–effect bindings
for goal-directed action ([65], for recent reviews see [63, 142]). tec states
that actions and their expected effects share a common neural represen-
tation. Therefore, performing an action activates the expectation of rel-
evant effects and thinking of (i.e. intending or anticipating) an action’s
effects activates motor neurons responsible for achieving those effects.

3.4.2 Human action–effect learning

In traditional cognitive psychology experiments, action–effect bindings
are acquired by having humans repetitively perform an action (such as
pressing a specific button on a keyboard), after which an effect (such as
a sound or a visual stimulus) is presented. After a certain amount of ex-
posure to this combination of action and effect, evidence suggests that a
bidirectional binding has been formed. When primed with a previously
learned effect, people respond fasterwith the associated action [42]. This
action–effect learning is quite robust but sensitive to action–effect con-
tingency and contiguity [43].

Of course, action–effect learning does not only happen in artificial en-
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vironments such as psychology labs. In fact, action–effect learning in
humans starts almost instantly after birth [164] and some would argue
even before. Young infants perform uncoordinated movements known
as body ormotor babbling. Most of these movements will turn out to be
useless. However, some of them will have an effect that provides the in-
fant with positive feedback. For example, a baby could accidentally push
downwith its right armwhile lying on its belly, resulting in rolling on its
back and seeing all sorts of interesting things. Over time, the infant will
build up action–effect associations for actions it deems useful, and can
perform motor acts by imagining their intended effects.

Havingmastered the intricacies of controlling the ownbody, higher level
action–effects canbe learned in amanner similar tomotor babbling. Een-
shuistra et al. [39] give the example of piloting a spacecraft that you are
trying to slow down. If nobody ever instructed you on how to do that,
your best option would probably be pressing random buttons until the
desired effect is reached (be carefulwith that self-destruct button!). Once
you have learned this action–effect binding, performance in a similar sit-
uation in the future will be much better.

3.4.3 Robotic action–effect learning

The possibility that cognition can be grounded in sensorimotor expe-
rience and represented by automatically created action–effect bindings
has attracted some interest of cognitive roboticists already. For instance,
Kraft et al. [82] have suggested a three-level cognitive architecture that
relies on object-action complexes, that is, sensorimotor units on which
higher-level cognition is based. Indeed, action–effect learningmight pro-
vide the cognitivemachinery to generate action-guiding predictions and
the offline, feedforward component of action control. This component
might specify the invariant aspects of an action, that is, those charac-
teristics that need to be given for an action to reach its goal, to create
its intended effect while an online component might provide fresh envi-
ronmental information to specify the less goal-relevant parameters, such
as the speed of a reaching movement when taking a sip of water from
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a bottle [64]. Arguably, such a system would have the benefit of allow-
ing for more interesting cognitive achievements than the purely online,
feedback-driven systems that aremotivated by the situated-cognition ap-
proach [22]. At the same time, it would be more flexible than systems
that rely entirely on the use of internal forward models [36]. Thus, in-
stead of programmers trying to imagine all possible scenarios and enu-
merate reasonable responses, it might be easier to create robots that can
learn action–effect associations appropriate to their environment and
combine them with online information.

In robots as well as in humans, knowledge about one’s own body is re-
quired to acquire knowledge about the external world. Learning how
to control your limbs—first separately and then jointly (e.g. walking)—
clearly takes more than even the first few years of life: after learning to
roll over, crawl, and then walk, we are still clumsy at running and sport
for several years (if, indeed, we ever become very proficient). Motor bab-
bling helps develop tactile perception and proprioception—as well as
visual and even auditory cues—of what our body in motion feels like.
Knowing these basic actions and their effects on ourselves (e.g. what
hurts) lays the foundation for learning how our actions can affect our
environments.

In perhaps the first ever study of motor babbling in a (virtual) robot, Ku-
perstein [84] showed how randommovement execution can form associ-
ations between a perceived object-in-hand position and the correspond-
ing arm posture. This association is bidirectional, and as such is in line
with ideomotor (or tec) theory. We (and others, e.g. [25]) believe that
such bidirectional bindings can help robots overcome traditional prob-
lems, such as inverse model inference from a forward model.

More recent investigations in roboticmotor babbling have extended and
optimized themethod to include behavior thatwewould consider curios-
ity in humans. For example, Saegusa et al. [135] robotically implemented
a sensorimotor learning algorithm that organized learning in twophases:
exploration and learning. In the exploration stage, random movements
are produced, while in the learning stage the action–effect bindings (or,
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more specifically, mapping functions) are optimized. The robot can then
direct more effort to learning bindings that have not yet been learned
well.

3.5 Directions for the future

3.5.1 What’s next?

Many questions remain with respect to the acquisition and skillful per-
formance of not only well-specified, simple actions (e.g. reaching to a
target) but of complex actions consisting of various components and in-
volving various effectors. Indeed, howcanwe create a learning algorithm
that can go from basic motor babbling to both successful goal-directed
reaching, grasping, and manipulation of objects? To accomplish this ob-
viously difficult goal, it will likely be beneficial for psychologists to study
infants’ development of these abilities and beneficial for cognitive roboti-
cists to learn more from human capabilities.

3.5.2 Affordance learning

Objectmanipulation and use is an indispensable activity for robotswork-
ing in human environments. Perceiving object affordances—i.e. what a
tool can do for you or how you can use an object—seems to be a quick,
effortless judgment for humans, inmany cases. For example, whenwalk-
ing around and seeing a door, you automatically pull the handle to open
it.

One of the ways robots can perform object affordance learning is by mo-
tor babbling using simple objects as manipulators (e.g. [152]). In a so-
called behavioral babbling stage a robot applies randomly chosen behav-
iors to a tool and observes their effects on an object in the environment.
Over time, knowledge about the functionality of a tool is acquired, and
can be used to manipulate a novel object with the tool.

As impressive as this may sound, this approach does not allow for easy
generalization, and the robot cannot use this knowledge to manipulate
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objects using another, similar, tool. More recent approaches, such as
demonstrated by Jain and Inamura [68] infer functional features from
objects to generalize affordances to unknown objects. These functional
features are supposed to be object invariant within a tool category.

In humans, an approach that seems successful in explaining affordance
inference is based on Biederman’s recognition-by-components theory [15].
This theory allows for object recognition by segmenting an encountered
object in elementary geometric parts called geons. These are simple geo-
metric shapes such as cones, cylinders and blocks. By reducing objects to
a combination of more elementary units invariance is increased, simpli-
fying object classification. Biederman recognized 36 independent geons,
having a (restricted) generative power of 154 million three-geon objects.

In addition to being useful for object classification, geons can also be
used to infer affordances. For example, a spoon is suitable for scooping
because its truncated hollow sphere at the end of its long cylinder allows
for containing things, and an elongated cylinder attached to an object
can be used to pick it up. One very promising example of the use of geons
in affordance inference is demonstrated by Tenorth and Beetz [157]. This
technique matches perceived objects to three-dimensional cad models
from a public database such as Google Warehouse. These models are
then segmented into geons, which makes affordance inference possible.

However, the affordances that geons give us need to be learned in some
way. Teaching robots how to infer what a tool can be capable of remains
difficult. Ultimately, we want affordances to develop naturally during
learning: be it from watching others, from verbal instruction, or from
embodied experimentation. Task context is also an important aspect
of affordance learning: depending on the situation, a hammer can be
used as a lever, a paperweight, a missile, or well, a hammer. To under-
stand how context affects action planning, studying naturalistic scenes
and human activities jointly seems essential (cf. [2]).

Learning geon affordances that can be generalized to object affordances
seems a fruitful approach to automating affordance learning in robots,
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although it is early to say whether this or other recent approaches will
fare better. For example, deep neural networks use theirmultiple hidden
layers along with techniques to avoid overfitting to learn high-level per-
ceptual features for discriminating objects. The representations learned
by such networks are somewhat more biologically plausible than geon
decompositions, and thus may be more suitable for generalization (al-
though cf. [154] for recently discovered generalizationproblemswithdeep
neural networks).

3.5.3 Everyday action planning

Amajor obstacle in the way of robots performing everyday actions is the
translation of high-level, symbolic task descriptions into sensorimotor
action plans. In order to make such translations, one method would be
to learn the other way around: by observing sensorimotor actions, seg-
ment and classify the input.

Everyday action is characterized by sequential, hierarchical action sub-
sequences. Coffee and tea-making tasks, for example, have shared sub-
sequences such as adding milk or sugar. Moreover, the goal of adding
sugar might be accomplished in one of several ways: e.g. tearing open
and adding from a packet, or spooning from a bowl or box. Also, these
subsequences do not necessarily have to be performed in the same order
every time (with some constraints, of course). It is this flexibility and
ability to improvise that makes everyday action so natural for humans,
yet so hard for robots.

Cognitivemodels that represent hierarchical information have been pro-
posed (e.g. [18, 33]), but differ in the way they represent these hierar-
chies. One approach explicitly represents action hierarchies by hard-
coding them into the model—hardly something we can do for a general
autonomous robot—whereas the lattermodels hierarchy as an emergent
property of the recurrent neural network. More recently, the model put
forth by Kachergis et al. [76], uses a recurrent neural network with bi-
ologically plausible learning rules to extract hierarchies from observed
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sequences, needing far fewer exemplars than previous models.

3.6 Conclusion

In this chapter, we have discussed several concepts that are shared be-
tween cognitive robotics and cognitive psychology in order to argue that
the creation of flexible, truly autonomous robots depends on the imple-
mentation of algorithms that are designed tomimic human learning and
planning. Thus, there are many relevant lessons from cognitive psychol-
ogy for aspiring cognitive roboticists.

Ideomotor theory and its implementations such as tec provide elegant
solutions to action–effect learning. Robotic motor learning algorithms
that use motor babbling to bootstrap higher-order learning seem to be
promising, and require little a prioriknowledge givenby theprogrammer,
ultimately leading to more flexible robots.

Generalization of action plans is still a very difficult problem. Inferring
hierarchical structure of observed or learned action sequences seems to
be a promising approach, although the structure of everyday action ap-
pears to be nearly as nuanced and intricate to untangle as the structure
of human natural language—and less well-studied, at this point. Again,
we believe that biologically inspired learning models such as LeabraTI
can play a role in making robotic action more human-like.

The overlapping interests of cognitive robotics and cognitive psychol-
ogy have proven fruitful so far. Mechanisms like motor babbling and
affordance inference, which are extensively studied in humans, can pro-
vide robots with techniques to make their behavior more flexible and
human-like. We believe human inspiration for robots can be found at
an even lower level by incorporating biologically-inspired neural models
for learning in robots.
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