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CHAPTER2
What’s so special about human

action?

Over a relatively short time span, the discipline of robotics has
advanced from producing industrial non-autonomous, repeti-
tive machines to semi-autonomous agents that will be able to

function in a dynamic, human-driven world. Simple examples include
robotic vacuum cleaners such as Roombas, but more flexible and au-
tonomous humanoid robots are currently under development (e.g. the
RoboHow project [31]). As robots perform more and more everyday hu-
man activities such as household chores, interacting with humans, and
thereby almost becoming citizens in our societies, we believe that psy-
chologists can provide relevant knowledge about human behavior that
is generalizable to robots.

Like early approaches to ai, traditional cognitive psychology considers
behavior (of biological or artificial agents) to emerge from discrete se-
ries of cognitive operations that take information from the environment
(registered by sensory organs or artificial sensors), process this informa-

This chapter is an adaptation of the article de Kleijn, R., Kachergis, G., & Hommel, B.
(2014). Everyday robotic action: Lessons from human action control. Frontiers in Neuro-
robotics, 8:13.
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2. What’s so special about human action?

tion inmore or less complexways, and eventuallymanipulate something
in the environment as a result of this processing. In psychology, this
discrete, serial processing model of cognition has been successful in ex-
plaining various psychological phenomena, but for some reason most
research has focused on the early and middle stages of this process, leav-
ing action and motor control far behind. Indeed, psychology as an au-
tonomous science has historically shown an impressive neglect of the
study of action and motor control, to the extent that it has even been
called the “Cinderella of psychology” [127].

Fortunately, however, more recent approaches have emphasized the role
of action not only as an output function but as a precondition and ba-
sic ingredient of human cognition (e.g. [28, 65, 110]). These recent ap-
proaches have criticized the traditional sequential-stage account of hu-
man behavior for analyzing action as a consequence of stimuli. They ar-
gue that action is more aptly characterized as people’s means to produce
stimuli (desired outcomes), rather than as a means to respond to stim-
uli [63]. Moreover, actions are more than mere ballistic outputs: they
are events that unfold in time and that must be structured in such a way
that their outcome satisfies current needs and goals. Consider, for exam-
ple, the act of tea-making, which consists of a number of components:
(1) boiling water, (2) putting a tea bag in a teapot, (3) pouring the boiling
water in the teapot, and (4) pouring the tea in one or more cups. Execut-
ing these different components in such a way that the intended goal is
eventually achieved requires planning.

In the following, we will provide a brief overview of available psycholog-
ical insights into how this planning works in humans, and how these
insights might inform the creation of robotic everyday action systems.
At the moment, although robot actions mimic human action, the con-
trol systems are in fact quite different. We will confine our discussion
to four principles that we think could be particularly beneficial for robot
control: (1) the integration of symbolic and subsymbolic planning of ac-
tion sequences, (2) the integration of feedforward and feedback control,
(3) the clustering of complex actions into subcomponents, and (4) the
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2.2. Symbolic and subsymbolic planning

contextualization of action-control structures through goal representa-
tions.

2.2 Integrating symbolic and subsymbolic planning

In contrast to the ballistic, single-step actions that participants in lab-
oratory experiments often carry out, everyday action commonly con-
sists of multiple components, as in the tea-making example. In ai and
robotics, multi-component actions are commonly planned at a symbolic
level, with each action component being represented by an arbitrary sym-
bol or function. The strips (Stanford Research Institute Problem Solver)
planner [47] is a famous example: it serves to translate an initial state
into an intended goal state by determining the subset of actions (de-
fined as a symbolically described relation between sets of pre- and post-
conditions) needed to do so. The format of all representations involved
is symbolic allowing all goals and actions to be represented in basically
the sameway, although they can be arbitrarily linked to subsymbolic trig-
ger states. This uniformity allows for a very efficient planning process, as
action components can be easily manipulated and exchanged until the
entire plan is optimal.

Symbolic action planning of this sort is consistent with early models of
human action planning, which typically connected underspecified sym-
bolic action representations with subsymbolic trigger states that took
care of timing. For instance,Washburn considered that later action com-
ponentsmight be triggered by the perception of the execution of the pre-
vious one: “If the necessary stimulus for pronouncing the last syllable of
a series were the muscular contractions produced in pronouncing the
next to the last syllable, then the proper sequence of movements would
be insured” [167, p. 9]. Along the same lines, James [69] suggested a serial
chaining model, according to which each action component is triggered
by the perception of the sensory feedback produced by the previous com-
ponent. Accordingly, learners will create associations linking the motor
patterns and their sensory consequences in a chain-like fashion.
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2. What’s so special about human action?

Asmore studies were conducted, however, it was found that chaining ac-
counts of sequential behavior cannot account for several empirical obser-
vations. In a seminal paper, the neurophysiologist Lashley [87] pointed
out that the serial chaining models of the time were not adequate, be-
cause: (1) movements can still be executed if sensory feedback is im-
paired; (2) some movements are executed too quickly to have time to
process feedback from preceding actions, and (3) errors in behavior sug-
gest the presence of predetermined action plans [129]. Rosenbaum et al.
[129] added further arguments against a chaining account of sequential
action. For example, the time needed to initiate an action is a function
of its complexity [59, 79, 125], suggesting that the agent anticipates later
action components before beginning to execute the first.

Along the same lines, Cohen and Rosenbaum [30] (for another good ex-
ample see [163]) had participants grasp a vertical cylinder placed on a plat-
form and move it to another platform that was either higher or lower
than the initial location. The researchers determined the vertical loca-
tion of the grasp, and found that the grasp location was dependent on
the expected end state. More specifically, subjects tended to choose a
lower grasp location when bringing the cylinder to a higher position,
and vice versa. Likewise, when subjects were asked to move the cylin-
der back to its starting position, they tended to grasp it in the location
where they grasped it before. This end-state comfort effect suggests that
people anticipate the position that they will assume after the action has
been completed.

The same conclusion is suggested by studies on context effects in speech
production. For example, people round their lips before pronouncing
the t in the word tulip, in anticipation of pronouncing the u later in the
sequence [14, 35, 49, 126]. This does not seem to be a purely epiphenom-
enal property of human action; one can easily see how this produces
more efficient, smoother speech, and a more careful use of the human
speech-production “hardware”. An analogous action blending effect oc-
curs when people reach for objects: people adaptively flex their fingers
while moving the hand toward an object [71], and has been observed to
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2.2. Symbolic and subsymbolic planning

develop when sequentially moving a cursor through a learned series of
stimuli [75]. Compared to typical step-wise robotic motion, this action
blending seems to be more efficient, using predictive motion to mini-
mize the time and energy required to achieve the goal.

Further insights into human sequential action planning come fromGen-
tner et al. [51], who conducted a photographic study of a skilled typist. Us-
ing high-speed photography, they analyzed the handmovements of a 90-
wpm typist, and found that the typist’s hands weremoving continuously,
with fingers starting to move toward a destination before several preced-
ing characters were to be typed. In fact, for 96% of all keystrokes, move-
ment was initiated on average 137ms before the preceding keystroke was
completed, and for 21% the movement was initiated before the preced-
ing keystroke was initiated. Larochelle [86] presents a similar but more
extensive study, analyzing the typing of four professional typists while
they typed eitherwords or non-words, ofwhich half were typedwith one
hand, and the other half with two hands. In more than half of the trials
themovementwas initiated before completion of the previous keystroke
for two-handed trials.

These interactions between early and later sequence elements cast doubt
on a simple chaining theory of sequential action. Rosenbaum et al. [129]
interpreted these findings as evidence that sensory feedback is not a nec-
essary component for action sequencing, in keeping with the conclusion
of Lashley [87]. They argued that “the state of the nervous system can
predispose the actor to behave in particular ways in the future,” [129, p.
526], or, there are action plans for some behaviors. And yet, studies on
spontaneous speech repair (e.g. [103]) also show that people are very fast
in fixing errors in early components of a word or sentence, much too fast
to assume that actionoutcomes are evaluated only after entire sequences
are completed. This means that action planning cannot be exclusively
feedforward, as Lashley [87] seemed to suggest, but must include several
layers of processing, with lower levels continuously checking whether
the current action component proceeds as expected. In other words, ac-
tion planning must be a temporally extended process in which higher-
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2. What’s so special about human action?

level representations to some extent provide abstract goal descriptions,
which must be integrated with lower-level subsymbolic representations
controlling sensorimotor loops. The existence of subsymbolic sensori-
motor representations would account for context and anticipation ef-
fects, as described above. In the more general field of knowledge rep-
resentation, some authors even take it one step further, positing that
subsymbolic, sensorimotor representations are necessary for higher-level
symbolic cognition. For example, Barsalou’s [11, 12] perceptual symbol
systems theory defines cognition as embedded in the world, stating that
agents form grounded models via perception and interaction with their
environments. With these models, the representation of abstract con-
cepts can be implemented using grounded perceptual symbols. The em-
pirical support for theories like these motivate the notion that both sym-
bolic and subsymbolic representations can (and should) work together
to account for human cognition.

A good example for an action planningmodel that includes one symbolic
and one subsymbolic level is the typewriting model suggested by Rumel-
hart and Norman [131]. To control typing the word “WORD,” say, the
model would assume that the symbolic (or “semantic”) representation
WORDwould activatemotor units controlling the fingermovements re-
quired to type “W,” “O,” “R,” and “D” in parallel. This parallel activation
allows for crosstalk between the different units, whichwould account for
context effects and anticipations. At the same time, the activated units
are prevented from firing prematurely by means of a forward-inhibition
structure. That is, each unit is inhibiting all following units in the se-
quence (so that the “W” unit inhibits the “O,” “R,” and “D” units, the “O”
unit the “R” and “D” units, and the “R” the “D” unit) and releases that in-
hibition only once they are executed. The dynamics of these inhibition
and release processes automatically produce the necessary sequence. It
is thought that such activation and inhibition processes play a role even
in young infants [165]. Immediate feedback, though not explicitly ad-
dressed by Rumelhart andNorman [131], could serve to repair the actions
controlled by particular units, but the feedback would not be needed to
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2.3. Feedforward and feedback mechanisms

produce the sequence—amajor advantage over chaining models. For an
overview of similar models and other action domains, see [90].

The main lesson for robotic everyday action control is that purely sym-
bolic planning may be too crude and context-insensitive to allow for
smooth and efficient multi-component actions. Introducing multiple
levels of action planning and action control may complicate the engi-
neering considerably, but it is also likely to make robot action more flex-
ible and robust—and less “robotic” to the eye of the user.

2.3 Integrating feedforward and feedback mechanisms

In perfectly predictable environments such as industrial construction
halls, there is hardly any need for feedback mechanisms. Indeed, early
industrial robots, such as Unimate, could rely on fully preprogrammed
feedforward control for repetitivemulti-component actions such as pick-
ing up and manipulating objects [56]. However, real-life environments
aremuch toounpredictable to allow for purely feedforward control. Con-
sidering that purely feedback-based control is oftenmuch too slow to al-
low for real-life human action, it is unsurprising that human action con-
trol seeks for an optimal integration of feedforward and feedback mech-
anisms.

One of the earliest studies into feedforward planning was conducted by
Henry and Rogers [59], who compared reaction times of participants per-
forming a simple finger movement to reaction times of a moderately
complex arm movement (reaching and grasping) in response to a stimu-
lus. The authors found that participants performing the more complex
movement showed a 20% increase in reaction time, with as much as a
25% increase for even more complex movement. This suggests the exis-
tence of feedforward action planning prior to action execution.

Linguistic studies have shown a similar effect. Eriksen et al. [44] had par-
ticipants read aloud two-digit numbers consisting of a varying number
of syllables. Longer numberswere shown to have a longer onset delay. In
order to account for the possibility that factors other than motor plan-
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2. What’s so special about human action?

ning played a role, participants were given the same task with a delay
between stimulus onset and vocalization. Here, the effect disappeared,
again providing evidence for pre-execution action plan formation.

However, while it may be tempting to conclude that an action plan is
formed completely before action onset, incremental approaches to se-
quential action posit that this is not the case. Palmer and Pfordresher
[113] argued that it is unlikely for actors to have access to all elements
in a long sequence, as this would place unnecessarily large demands on
memory—just think of a conductor starting to conduct a 4-hour Wag-
ner opera. Instead, planning and execution co-occur in time, limiting
access to sequence elements that appeared much earlier or that lie far in
the future. Evidence for this was indeed found by Sternberg et al. [151],
in which six participants prepared and produced sequences of mono- or
tri-syllabicwords. In addition to the length effect discussed above, prepa-
ration timeswere found to increasewith length of theword sequence un-
til approaching asymptote (which was 10.3 ± 0.6 words for sequences of
mono-syllabicwords and 6.4 ± 0.9words for tri-syllabicwords). This sug-
gests that plan formation and execution occur simultaneously, at least
for longer sequences of actions, with a limited capacity.

However, feedforward mechanisms alone cannot account for such com-
plex action as our tea-making example. A complete feedforward pro-
gram would need to incorporate numerous unknown parameters, such
as the exact location and physical properties (e.g. weight) of all necessary
objects. The prior unavailability of such parameters is not the only rea-
son feedback mechanisms might be helpful. Some parameters might be
possible to include in a feedforward program, but would simply be more
efficient or optimal if filled in online, such as grip strength. Even if all
this information were available, an actor still needs to be able to correct
possible—sometimes inevitable—perturbations in action execution.

Indeed, it seems that the presence of uncertainty (i.e. unavailability of
necessary parameters) increases the importance of feedbackmechanisms.
Saunders andVijayakumar [137] fittedparticipantswith aprosthetic hand
that couldprovide vibrotactile feedback. Using this prosthetic hand, they
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2.3. Feedforward and feedback mechanisms

were asked to manipulate objects of different weights. Manipulating
both feedforward uncertainty by adding an unpredictable delay in the
prosthetic hand and feedback information by manipulating vibrotactile
feedback, they found that performance decreased when feedback was re-
moved in situations with feedforward uncertainty. This illustrates that
human action emerges from the interaction of feedforward and feedback
mechanisms.

Integrating feedforward and feedbackmechanisms holds the promise to
get the best from both worlds. Feedforward mechanisms are likely to
determine the necessary action components and pre-load at least some
of them before initiating the action [59], and to selectively tune atten-
tion to stimuli and stimulus dimensions that are relevant for the task
[64]. Feedback processes, in turn, provide excellent accuracy—often at
the cost of speed [141]. These strengths and weaknesses have motivated
hybrid models claiming that feedforward mechanisms provide the skele-
ton of action plans which leave open slots for parameters provided by
feedback processes [53, 64, 140].

A particularly good example of this kind of interaction is provided by the
observations of Goodale et al. [55]. In a clever experiment, participants
were asked to rest their hand on a platform and point to a visual target
presented at a random location on an imaginary line in their right visual
field. The participants were not told that in half of the trials the target
changed location during the first saccade. The authors found that par-
ticipants would successfully point to the target on these trials without
even being aware of the location change, and without additional delay.
As feedforward programming is thought to take time, a fast and online
feedbackmechanismofwhich participants are unaware has to be respon-
sible for this finding. After this study showing online adaptation of hand
velocity, Prablanc andMartin [120] found that these results generalize to
two dimensions. Using stimuli presented on a screen, it was found that
both the velocity and trajectory of the hand were adjusted online. This
demonstrates that action is the result of a preprogrammed action plan
(the initial movement of the hand) combined with online adaptation to
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2. What’s so special about human action?

reach goal requirements. Interestingly, such a division of labor fits well
with the architecture of the human brain, which includes both a slow,
cognitively penetrated ventral route from perception to action and a fast
dorsal sensorimotor loop (for a broader overview, see [97]).

It is clear that both feedforward and feedback mechanisms are respon-
sible for producing complex action, but a number of questions remain
unanswered. Are feedforward processes always responsible for certain
actions? How are these plans learned, and how do people know when
to apply them? How does feedback on a lower level result in action re-
planning on a higher level, and does this require conscious intervention?
What is the division of labor between feedback and feedforward mecha-
nisms? How fluid is it—how hierarchical?

We know that with practice, the roles of feedback and feedforward pro-
cesses change. In a standard rapid aimed limbmovement paradigm, par-
ticipants are asked to perform amanual action in order to reach a target.
During such tasks, the response can be regarded as having two elements:
(1) a ballistic primary movement, thought to be controlled by a feedfor-
ward mechanism, and (2) a secondary, corrective movement, thought to
be caused by a feedback mechanism. Pratt and Abrams [121] used such a
paradigm to investigate the effect of practice on the weight of primary
and secondary movements. Participants were asked to repeatedly move
a visual cursor to a target location using wrist rotation. With more prac-
tice, the percentage of time spent in the first movement increased, while
time spent in the second movement decreased. As the first movement
is feedforward-controlled, this suggests that practice reduces the need
of feedback control, as the feedforward process becomes more accurate.
But will this learning generalize to new situations with similar action
requirements, and is it long-lasting?

To investigate the relationship between practice and feedback control,
Proteau et al. [123] had participants practice an aiming task on either 200
or 2000 trials and found that, when visual feedback was taken away, par-
ticipants who had more practice were more impaired by the removal of
feedback. This is notwhat onewould expect if practice simply shifts con-
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2.4. Hierarchical action representation

trol to feedforward processes. Subsequent research has shown that, with
practice, higher peak velocities are reached in the early phase of move-
ment, thereby leaving more time for corrective submovements based on
feedback. Thus, instead of a shift from feedback control to feedforward
control, feedback processes seem to be optimized as a result of practice
[40, 78, 123].

While the first generation of robots and other intelligent systems had
a strong preference for feedforward control, not in the least because of
the rather predictable environments they were implemented in, some
modern systems rely heavily on feedback control to perform actions—
especially humanoid systems operating in real-world scenarios. This is
likely to work as long as action production in such robots is slower than
the feedback loops informing them [118], but progress in action mechan-
ics is likely to make hybrid feedforward/feedback systems an attractive
alternative in the near future.

2.4 Hierarchical action representation

Human actions can often be described in a hierarchical fashion: “Going
on vacation” implies action such as “packing my bags,” “getting the car,”
“loading it,” “driving down to city X,” et cetera. Many authors have taken
that to imply that action control is hierarchical as well. According to
Lashley [87], only a hierarchical organization of actions and action plans
can provide the opportunity to have the same motor acts acquire differ-
ent meanings, depending on the context in which the motor act is per-
formed. In Miller’s [96] seminal book, action plans are even hierarchical
by definition: “A Plan is any hierarchical process in the organism that can
control the order in which a sequence of operations is to be performed”
[96, p. 16]. And yet, while it is certainly uncontroversial that it is possible
to describe actions as hierarchical, this need not have any implication for
the cognitive organization of actions. As Badre [10] argues, “the fact that
a task can be represented hierarchically does not require that the action
system itself consist of structurally distinct processing levels” [10, p. 193]
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2. What’s so special about human action?

(see also [80]). Moreover, it is not always clear what authors mean if they
say that actions are organized in a hierarchical fashion.

Uithol et al. [162] noted that there are at least two ways to look at hi-
erarchical action. These two ways differ in what are considered to be
the different levels in such a hierarchy. One way to look at action hier-
archies is the view of part-whole relations. In this account, each level
in the hierarchy exists solely as the sum of lower-level units. In other
words, an action unit such as “get a pan for pancake making” consists
of the subunits “open the cupboard,” “take pan from cupboard,” “place
pan on counter,” and “close the cupboard.” It should be clear that when
all subordinate units are present, the superordinate unit “get a pan” is
also present, as it is identical to the sum of its parts. Uithol et al. [162]
argue that this kind of hierarchy does not provide an explanation of the
complex action; it merely provides a thorough description of the to-be-
explained action, in which higher levels are more complex than lower
levels. It also does not give information about the causal relationship
between the different levels in the hierarchy, as you cannot consider an
element to be the cause of its own parts. Another restriction of this type
of hierarchy is that it can only accommodate levels that are of a similar
nature. That is, actions can only be divided into sub-actions, not into
objects or world states.

Another way to view hierarchies is to see the different levels as repre-
senting causal relations between the levels. In this approach, units on
a higher level causally influence units on a lower level. In this type of
hierarchy, lower-level units can be modulated by higher-level units. In
contrast with the part-whole hierarchy, lower levels are not necessarily
less complex than higher levels. Goals that are formulated as simple and
propositional states can be the cause of more complex elements. Using
this hierarchical approach also opens up the possibility of states or ob-
jects being the cause of an action, as it does not have the limitation of
requiring action-type goals.

Uithol et al. [162] proposed a newmodel, inwhich the fundamental foun-
dation for the hierarchical structure is not cause-and-effect (i.e. goals
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2.4. Hierarchical action representation

cause motor acts), or complexity (i.e. complex motor acts such as grab-
bing a pan consist of simpler acts such as flexing fingers and grasping
the handle), but temporal stability. In this view, stable representations
can be considered goal-related, while more temporary representations
reflect motor acts on different levels, not unlike the more enduring con-
ceptual representations and the less enduring motor units of Rumelhart
and Norman’s [131] model discussed above. However, this representa-
tion proposal does not include a model of how the hierarchies within a
task are abstracted and learned from experience, nor of how theymay be
shared across tasks despite requiring different parameterizations.

Botvinick and Plaut [18] tackled some of these issues, pointing out that
not only is it unclear how existing hierarchical models learn hierarchies
from experience, but also that most theoretical accounts lead to a cir-
cular reference: acquiring sequence knowledge relies on the ability to
identify event boundaries, which in turn requires sequence knowledge.
A further problem is sequencing in hierarchical structures; many mod-
els (e.g. [66, 131]) solve that by means of forward inhibition, but this only
works on units at the lowest level of a hierarchy. Botvinick and Plaut
[18] offered a recurrent connectionist networkmodel that helps to avoid
these problems. Using computer simulations they showed that such a
network, which contains no inherent hierarchical structure, can learn a
range of sequential actions that many consider hierarchical. The hierar-
chy, they argued, emerges from the system as a whole. The network they
used is a three-layer recurrent network, with an input layer representing
held objects and fixated objects, an output layer representing actions to
be taken, and a hidden layer (with recurrent connections) for the inter-
nal representation. Having trained this network on a routine complex
task (making coffee or tea), they showed that it can perform complex ac-
tion that can be considered hierarchical in nature (e.g. varying orders
of subactions leading to the same outcome) without relying on a hier-
archical system architecture. The network also showed slips of action
when the internal representation layer was degraded, as well as other
action errors found in empirical studies, although Cooper and Shallice
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[33] suggest that the relative frequency and types of errors shown by the
recurrent model do not match human subjects.

We believe that architectures offering such hierarchical behavior, with-
out necessarily being hierarchically structured, can provide robots with
the needed flexibility to function in a dynamic, human-driven world.
Botvinick and Plaut’s [18] model seems to be able to account for some
aspects of flexible behavior, but more complex and biologically inspired
models such as leabra [76, 111] promise to generalize to other tasks, as
well as being able to learn relatively fast, two aspects of human behavior
we consider essential to emulate in robot behavior.

2.5 Contextualizing action control

As pointed out above, one of the reasons why Lashley [87] considered ac-
tion representations to be necessarily hierarchically organized was the
fact that the meaning and purpose of action components vary with the
goal that they serve to accomplish: while making a kicking movement
with your right leg can easily be replaced by moving your head sideways
when trying to score a goal in a soccer game, that would not be a par-
ticularly good idea when performing a group can-can on stage during
a performance of Orpheus in the Underworld. In other words, goals are
needed to contextualize action components. In ai, robotics, and some
information-processing approaches in psychology, the main function of
goal representation is to guide the selection of task components, includ-
ing stimulus and response representations or perception-action rules. In
traditional processing models, like act-r or Soar [3, 85], goal representa-
tions limit the number of production rules considered for a task, which
reduces the search space and makes task preparation more efficient [33].
Moreover, goals commonly serve as a reference in evaluating an action,
when comparing the current state of the environment with the desired
state [96].

This practice was challenged by Botvinick and Plaut [18], who pointed
out at least two problems with goal representations in cognitive models.
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2.5. Contextualizing action control

First, goals themselves may be context-dependent. The goal of cleaning
the house may have rather different implications depending on whether
it serves to satisfy the expectations of one’s partner or to prepare for a
visit of one’s mother-in-law. Likewise, the goal of stirring will produce
somewhat different behavior depending on whether one is stirring egg
yolks or cement. Most models that postulate the existence of goals do
not allow for such context dependence. Second, it is argued that many
everyday activities do not seem to have definable, or at least not invariant
goals; just think of playing amusical instrument or taking awalk. The au-
thors demonstrated that goal-directed behavior can be achievedwithout
the explicit representation of goals. In the previously mentioned simula-
tion studies with recurrent neural networks, they were able to simulate
goal-directed actions that operate very much likeMiller et al.’s [96] tote
units, without any need to represent the goal explicitly. Obviating the
need for representing goals, such a model could be applied to behavior
with non-obvious goals, such as taking awalk as a consequence of feeling
restless or having the thought of fresh air [18].

Cooper and Shallice [33] took issue with this non-representationalist ac-
count of goals, giving at least two reasons why goals should be imple-
mented in cognitive models. First, goals allow for the distinction be-
tween critical and supporting actions. When making pancakes, the sub-
action of adding egg to the mixture consists of picking up an egg, break-
ing it (above the bowl), and discarding the empty shell (not above the
bowl). It should be clear that the breaking of the egg is the most impor-
tant action in this sequence. Dissociating important actions from less
important actions can account for skipping unnecessary steps. When
applying butter to two slices of toast, it is not necessary to execute the
supporting actions “discard knife” and “pick up knife” between the two
executions of the “butter toast” action program. Second, the implemen-
tation of goals would allow for subactions that serve the same purpose
to be interchanged. For example, flipping a pancake by flipping it in the
air or flipping it using a spatula would both be perfectly good methods
for pancake flipping, and the shared goal allows these actions to be in-
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terchanged. Models without goal representation can only show this be-
havior if they are explicitly trained on all the alternative actions that can
be taken. To make the realization that a set of actions are equivalent for
achieving a goal, a model would in essence have to contain a representa-
tion of that goal.

Interestingly, however, goal representations (whether explicit or implicit)
can play an important role in contextualizing cognitive representations.
Most representational accounts assume that representations of stimu-
lus and action events are invariant. The need to contextualize represen-
tations (i.e. to tailor them to the particular situation and task at hand)
thus seems to put the entire burden on the goal, so that the explicit rep-
resentation of the goal seems to be a necessary precondition for adaptive
behavior. But, from a grounded cognition perspective, it seems that al-
ternative scenarios are possible. In a grounded cognition framework, the
representation of objects and object categories takes an embodied form,
usingmodal features from at least the visual, motor, and auditorymodal-
ities [122]. For example, the concept of apple would be represented by a
network of visual codes representing <green> and <round>, but also
the auditory <crunchy sound> of biting into it. The embodied cog-
nition framework has already been successfully implemented in robot
platforms such as iCub, and shows stimulus compatibility effects similar
to those that can be observed in humans [93, 115].

Similarly, according to the Theory of Event Coding [65], events are repre-
sented—like objects—in a feature-based, distributed fashion. This will
mean that the aforementioned apple would be represented by a network
of codes representing not only its perceptual features such as <green-
ish> and <round>, but also other properties such as being <edible>,
<graspable>, <carryable>, <throwable>, etc. In this view, one
of the main roles of goals is to emphasize (i.e. increase the weight of)
those features that in the present task are of particular importance. This
means that when hungry, the feature of being <edible>will be primed
in advance and become more activated when facing an apple, while the
feature of <throwability> will become more important when being
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in danger and trying to defend oneself. Several studies have provided ev-
idence that goals are indeed biasing attentional settings toward action-
relevant feature dimensions (e.g. [45, 83, 172]), suggesting that the impact
of goals goes beyond the selection of production rules and outcome eval-
uation. Interestingly, this kind of “intentional weighting” function [95]
can be considered to represent the current goal without requiring any ex-
plicit representation, very much along the lines of Botvinick and Plaut’s
connectionist model [18].

Another potential role of goals is related to temporal order. In chaining
models, the dimension of time was unnecessary because the completion
of each component automatically “ignites” the next component. The
same holds for current planners in cognitive robotics, which commonly
fix the order of action subcomponents (e.g. cram [13]). But action plans
may follow a more abstract syntax instead, much like how syntactic con-
straints of natural languages allow for various possible sequences. For
instance, again consider the process of making tea. With the possible ex-
ception of true connoisseurs, it doesn’t make any difference for most tea
drinkers whether one puts the tea or the water into the cup first; i.e. the
order of these two subactions is interchangeable. A truly flexible system
would thus allow for any of these orders, depending onwhether water or
tea is immediately at hand. While a chaining model would not allow for
changing the original order, a more syntactic action plan would merely
define possible slots for particular subcomponents (e.g. [128]), so that the
actual order of execution would be an emerging property of the interac-
tion of the syntactic plan and the situational availability of the necessary
ingredients.

These considerations suggest that robotic systems need to incorporate
at least some rudimentary aspects of time and temporal order to get
on par with humans. Along these lines, Maniadakis and Trahanias [94]
have propagated the idea that robotic systems should be equipped with
some kind of temporal cognition, be it by incorporating temporal logic
or event calculus. Indeed, recent robotic knowledge representation sys-
tems, such as KnowRob [156], do possess the ability to do spatiotempo-
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ral reasoning about the changing locations of objects, such as predicting
when and where objects can be found.

2.6 Conclusion

We have discussed how conceptions of robotic action planning can ben-
efit from insights into human action planning. Indeed, we believe that
constructing truly flexible and autonomous robots requires inspiration
from human cognition. We focused on four basic principles that char-
acterize human action planning, and we have argued that taking these
principles on board will help to make artificial cognition more human-
like.

First, we have discussed evidence that human action planning emerges
from the integration of a rather abstract, perhaps symbolic representa-
tional level and concurrent planning at a lower, more concrete represen-
tational level. It is certainly true that multi-level planning can create dif-
ficult coordination problems. Using grounded cognition approaches in
robotics is potentially a good method to ground such higher-level sym-
bolic representation in lower-level sensorimotor representations, which
may allow robot action to become more flexible and efficient.

Second, we have argued that human action planning emerges from the
interplay of feedforward and feedback mechanisms. Again, purely feed-
forward or purely feedback architectures are likely to be more transpar-
ent and easier to control. However, fast, real-time robotic action in un-
certain environments will require a hybrid approach that distributes la-
bor much like the human brain does by combining slow and highly op-
timized feedforward control with fast sensorimotor loops that contin-
uously update the available environmental information. A major chal-
lenge for the near future will be to combine such hybrid systems with
error-monitoring and error-correcting mechanisms. When preparing
pancake dough, accidentally pouring some milk outside the bowl would
need to trigger a fast correction mechanism informed by low-level sen-
sory feedback but not necessarily the re-planning of (or crying over) the
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entire action. However, if for some reason the entire milk carton is emp-
tied by this accident, leaving the agent without the necessary ingredi-
ent, feedback would have to propagate to higher, more abstract or more
comprehensive planning levels to decide whether the plan needs to be
aborted. How this works in detail and how decisions are made as to
which level is to be informed is notwell understood, but progress is being
made. Research into feedback processes has yielded information about
the optimal speed of sensorimotor loops [73], and we find it reasonable
to expect that models using such fast feedback loops combined with ac-
curate feedforward planning can ultimately produce human-like motor
performance in robots.

Third, we have argued that while descriptions of human actions may re-
fer to a hierarchy, it is not yet clear whether the cognitive—in vivo or in
silico—representations of such actions need to be explicitly hierarchical
as well. Equally unclear is whether representations that differ in hier-
archical level would necessarily need to differ in format. However, it is
clear that representations that are considered to be “higher in hierarchy”
are more comprehensive. The concept of “making a pancake,” say, is
necessarily richer and more abstract than the associated lower-level ac-
tions of “reaching for egg” and “grabbing a pan,” suggesting that the latter
two are more directly grounded in sensorimotor activity [82]. Future re-
searchwill need to investigate how representations at different planning
levels (or different levels of description) interact or relate to each other.

The nature of goals and their role in action control is also a matter of
ongoing research. The two different viewpoints—i.e. that goals require
explicit representation or not—seem to reflect different preferences in
conceptualization and modeling techniques, and it may well turn out
that an explicit representation of goals in the preferred modeling lan-
guage translates to a more implicit representation of goals in the actual
functional or neural architecture. In robotics, most modern plan lan-
guages use a form of explicit goal-related action control that defines a
goal as a requiredworld state onwhich constraints can be imposed. Such
a structure is flexible enough to allow equifinality, but it is unclear how
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knowledge about the variousmeans to produce a result is acquired. Ulti-
mately, we believe that subsymbolic programming approachesmay allow
for more adaptive, human-like representational architectures—though
likely more difficult to engineer and define provably safe operating con-
ditions for.

To conclude, we believe that the construction of robots that are up to
real-life, everyday actions in environments that are as uncertain as hu-
man environments requires the considerationof cognitive principles like
the four principles we have discussed in this article. The benefit of do-
ing so will be twofold. For one, it will strongly increase the flexibility of
robots. For another, it will make robots more human-like in the eyes of
the human user, which will help us understand and cooperate with our
future robotic colleagues.
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