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CHAPTER1
General introduction

Robots are claimed to take over our jobs soon, and after that the
world. Of course, in order for that to happen, the robots that
would do that are nothing like the robots we know traditionally.

No, the robots that will take over our jobs will be smart robots. But what
is it exactly that makes a robot smart? One definition could be that a
smart robot is a robot that can do things that humans can, such as doing
the dishes or cooking your dinner. At themoment, there aremany exam-
ples of software that can do things even better than humans can, such as
playing chess [26], recognizing faces [116], and even playing Texas Hold
‘Em poker [119]. Impressive as that may be, all these applications of arti-
ficial intelligence are domain-specific, and the intelligence they seem to
possess in particular tasks is not generalizable to other tasks.

1.1 Human everyday action

If we truly want artificial intelligence to power the robots we know from
Hollywood—that is, the robots thatwe can talk to, can interactwith, and
that can perform all different kinds of tasks for us—wemay need to look
at humans for inspiration. Thankfully, the tasks we would want such
robots to perform have been the subject of study, and are collectively
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1. General introduction

known as everyday action. Good examples of everyday action that are of-
ten used in the literature are teamaking, eating breakfast, and driving to
work. But although the use of “everyday” could be interpreted as mean-
ing “trivial”, everyday human action is far more complex than the phrase
may imply.

While we perform these everyday actions often without effort, it is clear
that there are dependencies between subactions and dependencies on
world knowledge that make these actions far from trivial. We can subdi-
vide the action (or goal, depending on your theoretical viewpoint) of tea
making into the subactions (1) getting a kettle from the cupboard, (2) fill-
ing the kettle with water, (3) putting the kettle on the stove, (4) pouring
the boiling water in a teapot, (5) adding a teabag to the teapot, (6) getting
a teacup from the cupboard, (7) pouring the tea into a teacup, and (8)
adding somemilk to the teacup. Although this is a good description of a
single episode, it is quite clear that the information contained in this ac-
tion plan is not enough for a completely naive person (or robot, for that
matter) to successfully complete the action.

First, completing some of the subactions requires specific world knowl-
edge thatmaynot be available to the agent. For example, filling the kettle
with water requires knowing that water is generally drawn from the tap
in the kitchen. Second, the action plan is a high-level description of the
task, and is severely underspecifiedwith regards tomotor parameters. In
other words, it is necessary to convert the symbolic information in the
action plan to subsymbolic information needed to actually perform the
action. Several models have actually been proposed to explain motor
action by integrating both symbolic and subsymbolic information (e.g.
[90, 131]). Third, not all subactions are equal. Some can, under some
circumstances, be omitted while still completing the action somewhat
successfully. For example, skipping the pouring of milk into the teacup
may not be that big of a problem, depending on the taste of the drinker.
However, refraining to get a teacup from the cupboard will cause a prob-
lem for anyone longing for tea.

It should now be clear that, although everyday action seems trivial, it in
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1.2. Project background

fact relies on mechanisms that are quite complex. Creating a robot that
could perform everyday action by instructing it symbolically (e.g. by pro-
viding it with a recipe) or by haptic or observational instruction was the
goal of the FP7-funded RoboHow project [31], and the research described
in this dissertation was conducted as part of this project.

1.2 Project background

RoboHow’s scientific goal was to “[enable cognitive] robots to compe-
tently perform everyday human-scale manipulation activities—both in
human working and living environments.” Cognitive robots are robots
that reason, plan, and act, similar to humans. Due to the scope of the
project, a consortium consisting of roboticists, computer scientists, and
cognitive psychologists spread over five universities, two research insti-
tutes and one industry partner was formed, with Prof. Michael Beetz at
Technische Universität München as project PI. Similar to humans, the
resulting robot would be able to take a high-level action plan (such as a
recipe) as input and successfully execute it (see Figure 1.1). As described
before, this requires much more effort that it seems at first sight, and
in fact the complexity of everyday action has proven to be one of the
biggest obstacles in the RoboHow project. The project was completed
in the summer of 2016.

1.2.1 RoboHowwork packages

In order to tackle the complex problem of executing everyday action, the
project was divided into ninework packages, of which six focussed on ac-
tual research problems, with each work package solving part of the prob-
lem before integrating the different work packages into a single robot
pipeline:

• Representation: How are activities, knowledge, and data repre-
sented, and how canwe reasonwith them? How can they be trans-
formed into executable robot programs?
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1. General introduction

Figure 1.1 | The RoboHow processing pathway. A preliminary robot plan is cre-
ated by parsing symbolic information (e.g. from a recipe). From this,
a refined, executable motor plan is created.

• Observation of human demonstrations: How can a video image,
as captured by the robot’s sensors, be converted into a usable sym-
bolic representation of scene objects and actors? How are these
representations associated over time?

• Constraint- and optimization-based control: How can the robot
generate fast and smooth movement that is constraint- or optim-
ization-based?

• Perception for robot actionandmanipulation: Howcan the robot
best use its sensors to extract useful information about objects in
the environment? How can the robot learn task constraints?

• Learning from interaction with a human: Developing adaptive
stiffness control to ensure grasp stability; learning of haptic inter-
action.
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• Plan-based control: Developing a plan language to represent and
specify robot behavior. Howcan the robot infer gaps in incomplete
symbolic action specifications? How can the robot learn complex
action and its subcomponents?

The work conducted at Leiden University, part of which is the result you
are reading, concerned itself with representation and plan-based control.
More specifically, the relationship between complex action in humans
and robots, and the question of how the acquisition of sequential action
could best be investigated andmodeledwere investigated. However, this
was not the only focus of our research.

1.2.2 Cognitive work inside RoboHow

Over the course of the project, our group focused on several issues rele-
vant for robot control. During the first year of the project, we developed
a deep recurrent neural network model for the execution of sequential
action [76]. Using an extension of the leabra framework [111, 112], we
investigated the effect of layer size and architecture on network perfor-
mance. We found that for relatively simple tasks, two-layer networks
perform as well as deep networks, and that recurrence in a single layer is
enough to learn simple sequential tasks.

Next, we investigated the flexibility of action plans generated by ai plan-
ners, and ways to improve this flexibility. Traditional planners such as
strips determine the set of actions required to reach a goal state from
an initial state. However, should one of those actions fail, the goal state
can no longer be reached. What would be the correct course of action
to take? Standard planners would fail, and return control to a higher
planning layer or human operator. Smarter control is needed for robots
performing everyday action. For example, a cooking robot asked tomake
pancakes should not fail if the recipe calls for whole milk, but only skim
milk can be found in the refrigerator. In other words, ingredient replace-
ment is a necessary capability for planners in smart robots. Tomake this
possible, we developed an open-source, ros-based software component
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1. General introduction

that uses holographic reduced representations [117] to determine simi-
larity between ingredients. By analyzing a large corpus of recipes, in-
gredients that are used in similar ways are considered to have a higher
similarity coefficient. This component could readily be integrated in the
robot architecture used in RoboHow.

Finally, we focused our attention on the acquisition of action sequences.
In order to capture rich data, we adapted Nissen and Bullemer’s serial
response time (SRT) task [107] to a mouse cursor paradigm, allowing us
to investigate predictive processes and context effects. Also, we manip-
ulated the nature of the task by adapting it to a reinforcement learning
task, in which participants were no longer cued by the stimuli. Instead,
they were expected to explore all possible alternatives and learn the se-
quence by trial-and-error. The results of this research direction are de-
scribed in the rest of this dissertation.

1.3 Learning sequential action

1.3.1 History

The acquisition of action sequences has been studied as far back as the
19th century, when the first theories of sequential action argued that sub-
actions in a sequence are triggered by the sensory effects of the previous
subaction [69, 167]. Early critics, such as Münsterberg [102] noted that
these chaining models lack the directional element required to guarantee
the correct order of execution due to the bidirectional nature of associ-
ations. That is, if stimulus A activates stimulus B, then the activation
of stimulus B is likely to activate stimulus A, leading to an infinite loop.
Instead, he argued that the executionof action sequences relies on the ac-
quisition of amotor program. Since, ample evidence has been published
to suggest that this is indeed the case [59, 79, 87, 125, 129, 160].

One popular paradigm to study the acquisition of action sequences is
the serial reaction time (SRT) task [107]. In this task, a visual stimulus
appears in one of four locations, horizontally distributed on a computer
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screen. Four buttons are located below the four possible stimulus loca-
tions, and participants are asked to press the button below the visual
stimulus that appears as quickly as possible. Unbeknownst to partici-
pants, the sequence of stimuli presented could either be a determinis-
tic, repeating sequence of length 10, or a randomly generated sequence.
Comparing the two conditions, Nissen and Bullemer [107] found that
speed-up over time was larger for the deterministic group, indicating
learning of the sequence, both explicitly and implicitly.

Although this paradigm may be effective for investigating sequence ac-
quisition, it has several limitations. Improved performance on the SRT
task is shown to be caused by general motor speed-up as participants get
used to the task, but also the learning of the sequence, evidenced by the
difference in response times between a random condition and a deter-
ministic, repeating sequence. It is thought that predictive processes are
responsible for this speed-up—that is, action onset precedes stimulus on-
set. However, due to its discrete nature of responding, the standard SRT
paradigm does not allow researchers to differentiate between predictive
movement and associative learning mechanisms. Indeed, decreased re-
action times may just be a reflection of efficient responding due to the
strength of local memory traces, similar in nature to Hommel’s prepared
reflex concept [34, 61] (see also section 1.4).

Adapting the discrete nature of responses in the SRT task to a more con-
tinuousmeasure of behavior does allow for such a distinction to bemade.
Earlier studies have shown that hand or mouse tracking allows for the
investigation of continuous, dynamic internal processes that reflect cog-
nitive states [48, 146–148]. One way to adapt the SRT task to a trajectory
paradigm, is to map the four stimulus (and response) alternatives to four
corners of a computer screen (see Figure 1.2).

Several studies using this paradigmhave validated the adaptationby repli-
catingNissen andBullemer’s [107] original findings [75, Chapters 4 and 5].
And because this paradigm allows investigators to look at movements in
the inter-trial interval (ITI) and right before and after targets have been
reached, it has been successfully used to investigate reactive and predic-
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Figure 1.2 | A trajectory adaptation of the SRT task. Instead of discrete button
presses, participants are required to move the mouse cursor to one
of four targets. Adapted from [34].

Figure 1.3 | Different types of movement during a trajectory SRT task. Partic-
ipants with reactive movements tend to stay at the stimulus that
was last touched, or move to the center when uncertain about the
next stimulus. Participants with sequence knowledge make predic-
tive movements toward the next stimulus during the ITI. Adapted
from [34].

tive movements (illustrated in Figure 1.3), as well as context effects (e.g.
[34, 75], but also Chapters 4 and 5).

But even with the rich data that can be extracted from mouse trajecto-
ries, what exactly is themechanism bywhichwe acquire these sequences
remains unclear. One approach to tackling these questions is known as
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computational modeling. In this technique, a formalmodel in the form of
a computer program¹ is designed to reflect the cognitive processes and
their interactions that are thought to be responsible for a phenomenon.
By comparing the behavior of human participants with the behavior ex-
pressed by the model and by investigating which parameters and vari-
ables cause systematic changes in model behavior, it is possible to infer
properties of underlying mechanisms in humans.

1.3.2 A reinforcement learning account of sequential action learning

One class of models that can give a computational account of the pro-
cess of sequence acquisition are known as reinforcement learning mod-
els. Reinforcement learning is an area of machine learning dating back
to the 1950s, inspired by Thorndike’s operant conditioning. Unlike super-
vised learning, another popular approach in machine learning in which
a predictive model is trained using an external knowledgable supervi-
sor, reinforcement learning models learn by interacting with the envi-
ronment and receiving feedback on their produced actions in the form
of a positive or negative reward. So, instead of being told what to do by a
supervisor, reinforcement learners have to discover that autonomously
by trial-and-error [153]. A simple reinforcement learning model consists
of five basic elements:

1. The agent, which represents a learning agent that can sense its sur-
roundings to determine the state of itself and the environment, do
something with that information based on its knowledge, and pro-
duce behavior that changes its state.

2. The environment, which represents the current state of the agent’s
observable world.

¹Or in the form of mathematical concepts and language, in which case this is known
asmathematical modeling.
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1. General introduction

3. A reward function, which maps each state–action pair to a reward,
indicating the desirability of that state. In other words, it defines
the reward r when action a is taken in state s.

4. The agent’spolicy, definingwhat action the agent should takewhen
observing a certain state.

5. (optional) A model of the environment. Some RLmodels work us-
ing a model of the environment, e.g. to estimate the transition
probability from state s to state s′ when action a is taken. These
RL models are calledmodel-based, others are known asmodel-free.

The goal is to discover the policy thatmaximizes accumulated reward. At
the start of the learning process, no information is known about the re-
wards associated with actions taken in certain states; it is the task of the
learner to explore the environment in order to learn these state–action
reward values, and update its policy accordingly. After a certain amount
of interactions with the environment, the agent can somewhat reliably
predict which actions to take in which states in order to maximize re-
ward. In other words, it can exploit the knowledge it has gathered.

This trade-offbetween exploration and exploitationhas a large influence
on the speed and accuracy of learning. If an agent would mostly exploit
the knowledge it already has, it runs the risk of consistently choosing
actions that produce small rewards, simply by virtue of having encoun-
tered them before having had the chance to try other actions. On the
other hand, an agent that only explores does not make good use of the
information about state–action rewards it has gathered over time.

Human participants in reinforcement learning tasks (i.e. tasks in which
the participant is rewarded or punished in a systematic or probabilistic
way for performing an action in a given state) vary widely in how fast
they learn, and how sensitive they are to reward (see Chapter 4 for a
good example). By comparing the performance of reinforcement learn-
ing models with the behavior produced by human participants, these
differences can be identified and quantified. But these individual differ-
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ences in learning action sequences do not require computational model-
ing to be made visible.

1.4 Executive control modes in sequential action

There is evidence to suggest that implicit learning takes place in the SRT
task, demonstrated by the fact that amnesic patients could learn the se-
quencewithout being able to verbalize or regenerate the sequence, while
healthy participants nearly all gained explicit sequence knowledge [107].
Clearly, the sequence could be learned either with or without explicit
knowledge. However, several studies have shown that explicit sequence
knowledge strongly correlates with higher accuracy in manually repro-
ducing the sequence [34], a higher proportion of predictive movements
[34, Chapter 5], and a reduced stimulus–response compatibility effect
[60, 159, 160].

The development of explicit sequence knowledge is considered to be a
consequence of the shift from a reactive, stimulus-based control mode
to a predictive, plan-based controlmode that takes place during learning
[160]. Under stimulus-based control, the cognitive system relies on “pre-
pared reflexes” [61] to respond to highly response-compatible stimuli in
an automatic fashion. Under this executive control mode, control is del-
egated to the stimulus, and little of the sequence is actually learned. Un-
der plan-based control, plan-related representations are internally gen-
erated, thereby reducing the reliance on stimuli. As such, this control
mode is less affected by stimulus-related properties such as frequency or
stimulus–response compatibility [160]. In Chapter 5 of this dissertation,
determinants of these executive control modes and their behavioral ef-
fects are investigated and discussed.

1.5 Dissertation outline

The contents of this dissertation are divided into two parts. In the first
part, an overview is presented of the theoretical similarities and differ-
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ences between human action control and robotic action control. In the
second part, empirical studies are presented that give an account of hu-
man sequence acquisition.

In Chapter 2, complexities surrounding everyday action are explained.
First, in order for an agent to perform complex action, it is necessary
to integrate symbolic and subsymbolic representations. Purely symbolic
information, such as defined in a recipe for example, is not enough to
actually execute the action. Such action instructions are usually under-
defined, and it is necessary for the agent to fill in the necessary motor
parameters in order to successfully complete the action. Second, after
initiating amotor action by preparing themotor plan, feedback from the
environment must have to be integrated in order to monitor successful
execution and adapt the motor plan to changing circumstances. Also,
while complex action is often hierarchical in nature, it is still unclear if
the cognitive representations need to be hierarchical as well, and what
the implications of that might be.

The histories of cognitive robotics and cognitive psychology, and how
these fields have interacted historically are discussed in Chapter 3. Con-
cepts like feedforward and feedback control systems are common to both
fields, and learningmechanisms such as reinforcement learning andmo-
tor babbling are successful in explaining or producing learning behav-
ior in both humans and robots. Other theories from cognitive psychol-
ogy are increasingly used in robotics, such as Biederman’s recognition-
by-components theory, that tries to explain how humans infer object
affordances based on an object’s geometric properties.

Human everyday action is characterized by its sequential nature. As ac-
tion sequences are learned, people get faster at performing them, which
is easily shown by comparing people following a deterministic, repeat-
ing sequence with people following a random, unpredictable sequence
[107]. However, most studies using this so-called SRT paradigm use dis-
crete button presses, response times and response accuracy, leading to
several limitations [34, 146]. In Chapter 4, a more informative trajectory
task was used to reveal dynamic internal processes. By frequently and ac-
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curately capturing participants’ mouse position, predictive movements
and context effects can be analyzed. However, even with trajectory anal-
ysis, the SRT paradigm used might not be a valid analogy for real-world
sequence acquisition. Instead of responding to visual stimuli that are
flashed on a screen, everyday sequence learningmight be better regarded
as exploratory—that is, people try things and receive positive or negative
feedback regarding the outcome. To investigate this, the SRT paradigm
was adapted to a reinforcement learning paradigm, inwhich participants
could explore possible alternatives and receive feedback in the form of
points. Interestingly, resulting scores were non-normally distributed,
with a distinct low-performing group and a high-performing group with
almost perfect performance. Several model-free reinforcement learning
modelswere fit to participants’ data to see if any of themcould accurately
model their performance, but the high-performing group easily outper-
formed all of them. Apparently, humans use other algorithms than sim-
ple model-free reinforcement learning to acquire action sequences.

Due to power limitations caused by the low number of participants, as
well as the exploratory nature of this study, we could not say anything
about the cause of the large difference in performance. However, in
Chapter 5 a larger group of participants was recruited, and several addi-
tional measures were collected. It was hypothesized that differences in
performance could be attributed to cognitive limitations such as IQor vi-
suospatial working memory, or strategies or preferences for action plan
formation. In a reinforcement learning paradigm, action plan formation
was found to be strongly associated with explicit knowledge sequence,
and predicted by both IQ and visuospatial working memory, but not
by personal preferences. It seems that sequential action in exploratory
paradigms is limited by cognitive capacity.

Whereas reinforcement learning models can account for the learning of
action sequences (although not with the same performance as humans),
they do not account for observed motor behavior during the trajectory
tasks discussed earlier. More specifically, participants in the studies dis-
cussed in Chapters 4 and 5 were observed to move their mouse to the
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center of the screen under conditions of uncertainty. This has also been
observed in other studies (e.g. [34, 38]) and seems to be an efficient strat-
egy as it minimizes the distance to possible targets. To investigate the
nature of this behavior, in Chapter 6 an artificial neural network em-
bedded in a virtual robot was evolved using different levels of prediction
quality. It was hypothesized that lower prediction quality would cause
centering behavior in a cursor controlled by the neural network. Indeed,
this seemed to be the case, confirming that this strategy is an efficient
one under conditions of uncertainty.
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