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CHAPTER1
General introduction

Robots are claimed to take over our jobs soon, and after that the
world. Of course, in order for that to happen, the robots that
would do that are nothing like the robots we know traditionally.

No, the robots that will take over our jobs will be smart robots. But what
is it exactly that makes a robot smart? One definition could be that a
smart robot is a robot that can do things that humans can, such as doing
the dishes or cooking your dinner. At themoment, there aremany exam-
ples of software that can do things even better than humans can, such as
playing chess [26], recognizing faces [116], and even playing Texas Hold
‘Em poker [119]. Impressive as that may be, all these applications of arti-
ficial intelligence are domain-specific, and the intelligence they seem to
possess in particular tasks is not generalizable to other tasks.

1.1 Human everyday action

If we truly want artificial intelligence to power the robots we know from
Hollywood—that is, the robots thatwe can talk to, can interactwith, and
that can perform all different kinds of tasks for us—wemay need to look
at humans for inspiration. Thankfully, the tasks we would want such
robots to perform have been the subject of study, and are collectively
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1. General introduction

known as everyday action. Good examples of everyday action that are of-
ten used in the literature are teamaking, eating breakfast, and driving to
work. But although the use of “everyday” could be interpreted as mean-
ing “trivial”, everyday human action is far more complex than the phrase
may imply.

While we perform these everyday actions often without effort, it is clear
that there are dependencies between subactions and dependencies on
world knowledge that make these actions far from trivial. We can subdi-
vide the action (or goal, depending on your theoretical viewpoint) of tea
making into the subactions (1) getting a kettle from the cupboard, (2) fill-
ing the kettle with water, (3) putting the kettle on the stove, (4) pouring
the boiling water in a teapot, (5) adding a teabag to the teapot, (6) getting
a teacup from the cupboard, (7) pouring the tea into a teacup, and (8)
adding somemilk to the teacup. Although this is a good description of a
single episode, it is quite clear that the information contained in this ac-
tion plan is not enough for a completely naive person (or robot, for that
matter) to successfully complete the action.

First, completing some of the subactions requires specific world knowl-
edge thatmaynot be available to the agent. For example, filling the kettle
with water requires knowing that water is generally drawn from the tap
in the kitchen. Second, the action plan is a high-level description of the
task, and is severely underspecifiedwith regards tomotor parameters. In
other words, it is necessary to convert the symbolic information in the
action plan to subsymbolic information needed to actually perform the
action. Several models have actually been proposed to explain motor
action by integrating both symbolic and subsymbolic information (e.g.
[90, 131]). Third, not all subactions are equal. Some can, under some
circumstances, be omitted while still completing the action somewhat
successfully. For example, skipping the pouring of milk into the teacup
may not be that big of a problem, depending on the taste of the drinker.
However, refraining to get a teacup from the cupboard will cause a prob-
lem for anyone longing for tea.

It should now be clear that, although everyday action seems trivial, it in
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1.2. Project background

fact relies on mechanisms that are quite complex. Creating a robot that
could perform everyday action by instructing it symbolically (e.g. by pro-
viding it with a recipe) or by haptic or observational instruction was the
goal of the FP7-funded RoboHow project [31], and the research described
in this dissertation was conducted as part of this project.

1.2 Project background

RoboHow’s scientific goal was to “[enable cognitive] robots to compe-
tently perform everyday human-scale manipulation activities—both in
human working and living environments.” Cognitive robots are robots
that reason, plan, and act, similar to humans. Due to the scope of the
project, a consortium consisting of roboticists, computer scientists, and
cognitive psychologists spread over five universities, two research insti-
tutes and one industry partner was formed, with Prof. Michael Beetz at
Technische Universität München as project PI. Similar to humans, the
resulting robot would be able to take a high-level action plan (such as a
recipe) as input and successfully execute it (see Figure 1.1). As described
before, this requires much more effort that it seems at first sight, and
in fact the complexity of everyday action has proven to be one of the
biggest obstacles in the RoboHow project. The project was completed
in the summer of 2016.

1.2.1 RoboHowwork packages

In order to tackle the complex problem of executing everyday action, the
project was divided into ninework packages, of which six focussed on ac-
tual research problems, with each work package solving part of the prob-
lem before integrating the different work packages into a single robot
pipeline:

• Representation: How are activities, knowledge, and data repre-
sented, and how canwe reasonwith them? How can they be trans-
formed into executable robot programs?
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1. General introduction

Figure 1.1 | The RoboHow processing pathway. A preliminary robot plan is cre-
ated by parsing symbolic information (e.g. from a recipe). From this,
a refined, executable motor plan is created.

• Observation of human demonstrations: How can a video image,
as captured by the robot’s sensors, be converted into a usable sym-
bolic representation of scene objects and actors? How are these
representations associated over time?

• Constraint- and optimization-based control: How can the robot
generate fast and smooth movement that is constraint- or optim-
ization-based?

• Perception for robot actionandmanipulation: Howcan the robot
best use its sensors to extract useful information about objects in
the environment? How can the robot learn task constraints?

• Learning from interaction with a human: Developing adaptive
stiffness control to ensure grasp stability; learning of haptic inter-
action.

4



1.2. Project background

• Plan-based control: Developing a plan language to represent and
specify robot behavior. Howcan the robot infer gaps in incomplete
symbolic action specifications? How can the robot learn complex
action and its subcomponents?

The work conducted at Leiden University, part of which is the result you
are reading, concerned itself with representation and plan-based control.
More specifically, the relationship between complex action in humans
and robots, and the question of how the acquisition of sequential action
could best be investigated andmodeledwere investigated. However, this
was not the only focus of our research.

1.2.2 Cognitive work inside RoboHow

Over the course of the project, our group focused on several issues rele-
vant for robot control. During the first year of the project, we developed
a deep recurrent neural network model for the execution of sequential
action [76]. Using an extension of the leabra framework [111, 112], we
investigated the effect of layer size and architecture on network perfor-
mance. We found that for relatively simple tasks, two-layer networks
perform as well as deep networks, and that recurrence in a single layer is
enough to learn simple sequential tasks.

Next, we investigated the flexibility of action plans generated by ai plan-
ners, and ways to improve this flexibility. Traditional planners such as
strips determine the set of actions required to reach a goal state from
an initial state. However, should one of those actions fail, the goal state
can no longer be reached. What would be the correct course of action
to take? Standard planners would fail, and return control to a higher
planning layer or human operator. Smarter control is needed for robots
performing everyday action. For example, a cooking robot asked tomake
pancakes should not fail if the recipe calls for whole milk, but only skim
milk can be found in the refrigerator. In other words, ingredient replace-
ment is a necessary capability for planners in smart robots. Tomake this
possible, we developed an open-source, ros-based software component
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1. General introduction

that uses holographic reduced representations [117] to determine simi-
larity between ingredients. By analyzing a large corpus of recipes, in-
gredients that are used in similar ways are considered to have a higher
similarity coefficient. This component could readily be integrated in the
robot architecture used in RoboHow.

Finally, we focused our attention on the acquisition of action sequences.
In order to capture rich data, we adapted Nissen and Bullemer’s serial
response time (SRT) task [107] to a mouse cursor paradigm, allowing us
to investigate predictive processes and context effects. Also, we manip-
ulated the nature of the task by adapting it to a reinforcement learning
task, in which participants were no longer cued by the stimuli. Instead,
they were expected to explore all possible alternatives and learn the se-
quence by trial-and-error. The results of this research direction are de-
scribed in the rest of this dissertation.

1.3 Learning sequential action

1.3.1 History

The acquisition of action sequences has been studied as far back as the
19th century, when the first theories of sequential action argued that sub-
actions in a sequence are triggered by the sensory effects of the previous
subaction [69, 167]. Early critics, such as Münsterberg [102] noted that
these chaining models lack the directional element required to guarantee
the correct order of execution due to the bidirectional nature of associ-
ations. That is, if stimulus A activates stimulus B, then the activation
of stimulus B is likely to activate stimulus A, leading to an infinite loop.
Instead, he argued that the executionof action sequences relies on the ac-
quisition of amotor program. Since, ample evidence has been published
to suggest that this is indeed the case [59, 79, 87, 125, 129, 160].

One popular paradigm to study the acquisition of action sequences is
the serial reaction time (SRT) task [107]. In this task, a visual stimulus
appears in one of four locations, horizontally distributed on a computer
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1.3. Learning sequential action

screen. Four buttons are located below the four possible stimulus loca-
tions, and participants are asked to press the button below the visual
stimulus that appears as quickly as possible. Unbeknownst to partici-
pants, the sequence of stimuli presented could either be a determinis-
tic, repeating sequence of length 10, or a randomly generated sequence.
Comparing the two conditions, Nissen and Bullemer [107] found that
speed-up over time was larger for the deterministic group, indicating
learning of the sequence, both explicitly and implicitly.

Although this paradigm may be effective for investigating sequence ac-
quisition, it has several limitations. Improved performance on the SRT
task is shown to be caused by general motor speed-up as participants get
used to the task, but also the learning of the sequence, evidenced by the
difference in response times between a random condition and a deter-
ministic, repeating sequence. It is thought that predictive processes are
responsible for this speed-up—that is, action onset precedes stimulus on-
set. However, due to its discrete nature of responding, the standard SRT
paradigm does not allow researchers to differentiate between predictive
movement and associative learning mechanisms. Indeed, decreased re-
action times may just be a reflection of efficient responding due to the
strength of local memory traces, similar in nature to Hommel’s prepared
reflex concept [34, 61] (see also section 1.4).

Adapting the discrete nature of responses in the SRT task to a more con-
tinuousmeasure of behavior does allow for such a distinction to bemade.
Earlier studies have shown that hand or mouse tracking allows for the
investigation of continuous, dynamic internal processes that reflect cog-
nitive states [48, 146–148]. One way to adapt the SRT task to a trajectory
paradigm, is to map the four stimulus (and response) alternatives to four
corners of a computer screen (see Figure 1.2).

Several studies using this paradigmhave validated the adaptationby repli-
catingNissen andBullemer’s [107] original findings [75, Chapters 4 and 5].
And because this paradigm allows investigators to look at movements in
the inter-trial interval (ITI) and right before and after targets have been
reached, it has been successfully used to investigate reactive and predic-
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1. General introduction

Figure 1.2 | A trajectory adaptation of the SRT task. Instead of discrete button
presses, participants are required to move the mouse cursor to one
of four targets. Adapted from [34].

Figure 1.3 | Different types of movement during a trajectory SRT task. Partic-
ipants with reactive movements tend to stay at the stimulus that
was last touched, or move to the center when uncertain about the
next stimulus. Participants with sequence knowledge make predic-
tive movements toward the next stimulus during the ITI. Adapted
from [34].

tive movements (illustrated in Figure 1.3), as well as context effects (e.g.
[34, 75], but also Chapters 4 and 5).

But even with the rich data that can be extracted from mouse trajecto-
ries, what exactly is themechanism bywhichwe acquire these sequences
remains unclear. One approach to tackling these questions is known as
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1.3. Learning sequential action

computational modeling. In this technique, a formalmodel in the form of
a computer program¹ is designed to reflect the cognitive processes and
their interactions that are thought to be responsible for a phenomenon.
By comparing the behavior of human participants with the behavior ex-
pressed by the model and by investigating which parameters and vari-
ables cause systematic changes in model behavior, it is possible to infer
properties of underlying mechanisms in humans.

1.3.2 A reinforcement learning account of sequential action learning

One class of models that can give a computational account of the pro-
cess of sequence acquisition are known as reinforcement learning mod-
els. Reinforcement learning is an area of machine learning dating back
to the 1950s, inspired by Thorndike’s operant conditioning. Unlike super-
vised learning, another popular approach in machine learning in which
a predictive model is trained using an external knowledgable supervi-
sor, reinforcement learning models learn by interacting with the envi-
ronment and receiving feedback on their produced actions in the form
of a positive or negative reward. So, instead of being told what to do by a
supervisor, reinforcement learners have to discover that autonomously
by trial-and-error [153]. A simple reinforcement learning model consists
of five basic elements:

1. The agent, which represents a learning agent that can sense its sur-
roundings to determine the state of itself and the environment, do
something with that information based on its knowledge, and pro-
duce behavior that changes its state.

2. The environment, which represents the current state of the agent’s
observable world.

¹Or in the form of mathematical concepts and language, in which case this is known
asmathematical modeling.
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1. General introduction

3. A reward function, which maps each state–action pair to a reward,
indicating the desirability of that state. In other words, it defines
the reward r when action a is taken in state s.

4. The agent’spolicy, definingwhat action the agent should takewhen
observing a certain state.

5. (optional) A model of the environment. Some RLmodels work us-
ing a model of the environment, e.g. to estimate the transition
probability from state s to state s′ when action a is taken. These
RL models are calledmodel-based, others are known asmodel-free.

The goal is to discover the policy thatmaximizes accumulated reward. At
the start of the learning process, no information is known about the re-
wards associated with actions taken in certain states; it is the task of the
learner to explore the environment in order to learn these state–action
reward values, and update its policy accordingly. After a certain amount
of interactions with the environment, the agent can somewhat reliably
predict which actions to take in which states in order to maximize re-
ward. In other words, it can exploit the knowledge it has gathered.

This trade-offbetween exploration and exploitationhas a large influence
on the speed and accuracy of learning. If an agent would mostly exploit
the knowledge it already has, it runs the risk of consistently choosing
actions that produce small rewards, simply by virtue of having encoun-
tered them before having had the chance to try other actions. On the
other hand, an agent that only explores does not make good use of the
information about state–action rewards it has gathered over time.

Human participants in reinforcement learning tasks (i.e. tasks in which
the participant is rewarded or punished in a systematic or probabilistic
way for performing an action in a given state) vary widely in how fast
they learn, and how sensitive they are to reward (see Chapter 4 for a
good example). By comparing the performance of reinforcement learn-
ing models with the behavior produced by human participants, these
differences can be identified and quantified. But these individual differ-
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1.4. Executive control modes in sequential action

ences in learning action sequences do not require computational model-
ing to be made visible.

1.4 Executive control modes in sequential action

There is evidence to suggest that implicit learning takes place in the SRT
task, demonstrated by the fact that amnesic patients could learn the se-
quencewithout being able to verbalize or regenerate the sequence, while
healthy participants nearly all gained explicit sequence knowledge [107].
Clearly, the sequence could be learned either with or without explicit
knowledge. However, several studies have shown that explicit sequence
knowledge strongly correlates with higher accuracy in manually repro-
ducing the sequence [34], a higher proportion of predictive movements
[34, Chapter 5], and a reduced stimulus–response compatibility effect
[60, 159, 160].

The development of explicit sequence knowledge is considered to be a
consequence of the shift from a reactive, stimulus-based control mode
to a predictive, plan-based controlmode that takes place during learning
[160]. Under stimulus-based control, the cognitive system relies on “pre-
pared reflexes” [61] to respond to highly response-compatible stimuli in
an automatic fashion. Under this executive control mode, control is del-
egated to the stimulus, and little of the sequence is actually learned. Un-
der plan-based control, plan-related representations are internally gen-
erated, thereby reducing the reliance on stimuli. As such, this control
mode is less affected by stimulus-related properties such as frequency or
stimulus–response compatibility [160]. In Chapter 5 of this dissertation,
determinants of these executive control modes and their behavioral ef-
fects are investigated and discussed.

1.5 Dissertation outline

The contents of this dissertation are divided into two parts. In the first
part, an overview is presented of the theoretical similarities and differ-
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1. General introduction

ences between human action control and robotic action control. In the
second part, empirical studies are presented that give an account of hu-
man sequence acquisition.

In Chapter 2, complexities surrounding everyday action are explained.
First, in order for an agent to perform complex action, it is necessary
to integrate symbolic and subsymbolic representations. Purely symbolic
information, such as defined in a recipe for example, is not enough to
actually execute the action. Such action instructions are usually under-
defined, and it is necessary for the agent to fill in the necessary motor
parameters in order to successfully complete the action. Second, after
initiating amotor action by preparing themotor plan, feedback from the
environment must have to be integrated in order to monitor successful
execution and adapt the motor plan to changing circumstances. Also,
while complex action is often hierarchical in nature, it is still unclear if
the cognitive representations need to be hierarchical as well, and what
the implications of that might be.

The histories of cognitive robotics and cognitive psychology, and how
these fields have interacted historically are discussed in Chapter 3. Con-
cepts like feedforward and feedback control systems are common to both
fields, and learningmechanisms such as reinforcement learning andmo-
tor babbling are successful in explaining or producing learning behav-
ior in both humans and robots. Other theories from cognitive psychol-
ogy are increasingly used in robotics, such as Biederman’s recognition-
by-components theory, that tries to explain how humans infer object
affordances based on an object’s geometric properties.

Human everyday action is characterized by its sequential nature. As ac-
tion sequences are learned, people get faster at performing them, which
is easily shown by comparing people following a deterministic, repeat-
ing sequence with people following a random, unpredictable sequence
[107]. However, most studies using this so-called SRT paradigm use dis-
crete button presses, response times and response accuracy, leading to
several limitations [34, 146]. In Chapter 4, a more informative trajectory
task was used to reveal dynamic internal processes. By frequently and ac-
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1.5. Dissertation outline

curately capturing participants’ mouse position, predictive movements
and context effects can be analyzed. However, even with trajectory anal-
ysis, the SRT paradigm used might not be a valid analogy for real-world
sequence acquisition. Instead of responding to visual stimuli that are
flashed on a screen, everyday sequence learningmight be better regarded
as exploratory—that is, people try things and receive positive or negative
feedback regarding the outcome. To investigate this, the SRT paradigm
was adapted to a reinforcement learning paradigm, inwhich participants
could explore possible alternatives and receive feedback in the form of
points. Interestingly, resulting scores were non-normally distributed,
with a distinct low-performing group and a high-performing group with
almost perfect performance. Several model-free reinforcement learning
modelswere fit to participants’ data to see if any of themcould accurately
model their performance, but the high-performing group easily outper-
formed all of them. Apparently, humans use other algorithms than sim-
ple model-free reinforcement learning to acquire action sequences.

Due to power limitations caused by the low number of participants, as
well as the exploratory nature of this study, we could not say anything
about the cause of the large difference in performance. However, in
Chapter 5 a larger group of participants was recruited, and several addi-
tional measures were collected. It was hypothesized that differences in
performance could be attributed to cognitive limitations such as IQor vi-
suospatial working memory, or strategies or preferences for action plan
formation. In a reinforcement learning paradigm, action plan formation
was found to be strongly associated with explicit knowledge sequence,
and predicted by both IQ and visuospatial working memory, but not
by personal preferences. It seems that sequential action in exploratory
paradigms is limited by cognitive capacity.

Whereas reinforcement learning models can account for the learning of
action sequences (although not with the same performance as humans),
they do not account for observed motor behavior during the trajectory
tasks discussed earlier. More specifically, participants in the studies dis-
cussed in Chapters 4 and 5 were observed to move their mouse to the
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1. General introduction

center of the screen under conditions of uncertainty. This has also been
observed in other studies (e.g. [34, 38]) and seems to be an efficient strat-
egy as it minimizes the distance to possible targets. To investigate the
nature of this behavior, in Chapter 6 an artificial neural network em-
bedded in a virtual robot was evolved using different levels of prediction
quality. It was hypothesized that lower prediction quality would cause
centering behavior in a cursor controlled by the neural network. Indeed,
this seemed to be the case, confirming that this strategy is an efficient
one under conditions of uncertainty.
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Theoretical foundations





CHAPTER2
What’s so special about human

action?

Over a relatively short time span, the discipline of robotics has
advanced from producing industrial non-autonomous, repeti-
tive machines to semi-autonomous agents that will be able to

function in a dynamic, human-driven world. Simple examples include
robotic vacuum cleaners such as Roombas, but more flexible and au-
tonomous humanoid robots are currently under development (e.g. the
RoboHow project [31]). As robots perform more and more everyday hu-
man activities such as household chores, interacting with humans, and
thereby almost becoming citizens in our societies, we believe that psy-
chologists can provide relevant knowledge about human behavior that
is generalizable to robots.

Like early approaches to ai, traditional cognitive psychology considers
behavior (of biological or artificial agents) to emerge from discrete se-
ries of cognitive operations that take information from the environment
(registered by sensory organs or artificial sensors), process this informa-

This chapter is an adaptation of the article de Kleijn, R., Kachergis, G., & Hommel, B.
(2014). Everyday robotic action: Lessons from human action control. Frontiers in Neuro-
robotics, 8:13.
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2. What’s so special about human action?

tion inmore or less complexways, and eventuallymanipulate something
in the environment as a result of this processing. In psychology, this
discrete, serial processing model of cognition has been successful in ex-
plaining various psychological phenomena, but for some reason most
research has focused on the early and middle stages of this process, leav-
ing action and motor control far behind. Indeed, psychology as an au-
tonomous science has historically shown an impressive neglect of the
study of action and motor control, to the extent that it has even been
called the “Cinderella of psychology” [127].

Fortunately, however, more recent approaches have emphasized the role
of action not only as an output function but as a precondition and ba-
sic ingredient of human cognition (e.g. [28, 65, 110]). These recent ap-
proaches have criticized the traditional sequential-stage account of hu-
man behavior for analyzing action as a consequence of stimuli. They ar-
gue that action is more aptly characterized as people’s means to produce
stimuli (desired outcomes), rather than as a means to respond to stim-
uli [63]. Moreover, actions are more than mere ballistic outputs: they
are events that unfold in time and that must be structured in such a way
that their outcome satisfies current needs and goals. Consider, for exam-
ple, the act of tea-making, which consists of a number of components:
(1) boiling water, (2) putting a tea bag in a teapot, (3) pouring the boiling
water in the teapot, and (4) pouring the tea in one or more cups. Execut-
ing these different components in such a way that the intended goal is
eventually achieved requires planning.

In the following, we will provide a brief overview of available psycholog-
ical insights into how this planning works in humans, and how these
insights might inform the creation of robotic everyday action systems.
At the moment, although robot actions mimic human action, the con-
trol systems are in fact quite different. We will confine our discussion
to four principles that we think could be particularly beneficial for robot
control: (1) the integration of symbolic and subsymbolic planning of ac-
tion sequences, (2) the integration of feedforward and feedback control,
(3) the clustering of complex actions into subcomponents, and (4) the
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2.2. Symbolic and subsymbolic planning

contextualization of action-control structures through goal representa-
tions.

2.2 Integrating symbolic and subsymbolic planning

In contrast to the ballistic, single-step actions that participants in lab-
oratory experiments often carry out, everyday action commonly con-
sists of multiple components, as in the tea-making example. In ai and
robotics, multi-component actions are commonly planned at a symbolic
level, with each action component being represented by an arbitrary sym-
bol or function. The strips (Stanford Research Institute Problem Solver)
planner [47] is a famous example: it serves to translate an initial state
into an intended goal state by determining the subset of actions (de-
fined as a symbolically described relation between sets of pre- and post-
conditions) needed to do so. The format of all representations involved
is symbolic allowing all goals and actions to be represented in basically
the sameway, although they can be arbitrarily linked to subsymbolic trig-
ger states. This uniformity allows for a very efficient planning process, as
action components can be easily manipulated and exchanged until the
entire plan is optimal.

Symbolic action planning of this sort is consistent with early models of
human action planning, which typically connected underspecified sym-
bolic action representations with subsymbolic trigger states that took
care of timing. For instance,Washburn considered that later action com-
ponentsmight be triggered by the perception of the execution of the pre-
vious one: “If the necessary stimulus for pronouncing the last syllable of
a series were the muscular contractions produced in pronouncing the
next to the last syllable, then the proper sequence of movements would
be insured” [167, p. 9]. Along the same lines, James [69] suggested a serial
chaining model, according to which each action component is triggered
by the perception of the sensory feedback produced by the previous com-
ponent. Accordingly, learners will create associations linking the motor
patterns and their sensory consequences in a chain-like fashion.
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Asmore studies were conducted, however, it was found that chaining ac-
counts of sequential behavior cannot account for several empirical obser-
vations. In a seminal paper, the neurophysiologist Lashley [87] pointed
out that the serial chaining models of the time were not adequate, be-
cause: (1) movements can still be executed if sensory feedback is im-
paired; (2) some movements are executed too quickly to have time to
process feedback from preceding actions, and (3) errors in behavior sug-
gest the presence of predetermined action plans [129]. Rosenbaum et al.
[129] added further arguments against a chaining account of sequential
action. For example, the time needed to initiate an action is a function
of its complexity [59, 79, 125], suggesting that the agent anticipates later
action components before beginning to execute the first.

Along the same lines, Cohen and Rosenbaum [30] (for another good ex-
ample see [163]) had participants grasp a vertical cylinder placed on a plat-
form and move it to another platform that was either higher or lower
than the initial location. The researchers determined the vertical loca-
tion of the grasp, and found that the grasp location was dependent on
the expected end state. More specifically, subjects tended to choose a
lower grasp location when bringing the cylinder to a higher position,
and vice versa. Likewise, when subjects were asked to move the cylin-
der back to its starting position, they tended to grasp it in the location
where they grasped it before. This end-state comfort effect suggests that
people anticipate the position that they will assume after the action has
been completed.

The same conclusion is suggested by studies on context effects in speech
production. For example, people round their lips before pronouncing
the t in the word tulip, in anticipation of pronouncing the u later in the
sequence [14, 35, 49, 126]. This does not seem to be a purely epiphenom-
enal property of human action; one can easily see how this produces
more efficient, smoother speech, and a more careful use of the human
speech-production “hardware”. An analogous action blending effect oc-
curs when people reach for objects: people adaptively flex their fingers
while moving the hand toward an object [71], and has been observed to
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develop when sequentially moving a cursor through a learned series of
stimuli [75]. Compared to typical step-wise robotic motion, this action
blending seems to be more efficient, using predictive motion to mini-
mize the time and energy required to achieve the goal.

Further insights into human sequential action planning come fromGen-
tner et al. [51], who conducted a photographic study of a skilled typist. Us-
ing high-speed photography, they analyzed the handmovements of a 90-
wpm typist, and found that the typist’s hands weremoving continuously,
with fingers starting to move toward a destination before several preced-
ing characters were to be typed. In fact, for 96% of all keystrokes, move-
ment was initiated on average 137ms before the preceding keystroke was
completed, and for 21% the movement was initiated before the preced-
ing keystroke was initiated. Larochelle [86] presents a similar but more
extensive study, analyzing the typing of four professional typists while
they typed eitherwords or non-words, ofwhich half were typedwith one
hand, and the other half with two hands. In more than half of the trials
themovementwas initiated before completion of the previous keystroke
for two-handed trials.

These interactions between early and later sequence elements cast doubt
on a simple chaining theory of sequential action. Rosenbaum et al. [129]
interpreted these findings as evidence that sensory feedback is not a nec-
essary component for action sequencing, in keeping with the conclusion
of Lashley [87]. They argued that “the state of the nervous system can
predispose the actor to behave in particular ways in the future,” [129, p.
526], or, there are action plans for some behaviors. And yet, studies on
spontaneous speech repair (e.g. [103]) also show that people are very fast
in fixing errors in early components of a word or sentence, much too fast
to assume that actionoutcomes are evaluated only after entire sequences
are completed. This means that action planning cannot be exclusively
feedforward, as Lashley [87] seemed to suggest, but must include several
layers of processing, with lower levels continuously checking whether
the current action component proceeds as expected. In other words, ac-
tion planning must be a temporally extended process in which higher-
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level representations to some extent provide abstract goal descriptions,
which must be integrated with lower-level subsymbolic representations
controlling sensorimotor loops. The existence of subsymbolic sensori-
motor representations would account for context and anticipation ef-
fects, as described above. In the more general field of knowledge rep-
resentation, some authors even take it one step further, positing that
subsymbolic, sensorimotor representations are necessary for higher-level
symbolic cognition. For example, Barsalou’s [11, 12] perceptual symbol
systems theory defines cognition as embedded in the world, stating that
agents form grounded models via perception and interaction with their
environments. With these models, the representation of abstract con-
cepts can be implemented using grounded perceptual symbols. The em-
pirical support for theories like these motivate the notion that both sym-
bolic and subsymbolic representations can (and should) work together
to account for human cognition.

A good example for an action planningmodel that includes one symbolic
and one subsymbolic level is the typewriting model suggested by Rumel-
hart and Norman [131]. To control typing the word “WORD,” say, the
model would assume that the symbolic (or “semantic”) representation
WORDwould activatemotor units controlling the fingermovements re-
quired to type “W,” “O,” “R,” and “D” in parallel. This parallel activation
allows for crosstalk between the different units, whichwould account for
context effects and anticipations. At the same time, the activated units
are prevented from firing prematurely by means of a forward-inhibition
structure. That is, each unit is inhibiting all following units in the se-
quence (so that the “W” unit inhibits the “O,” “R,” and “D” units, the “O”
unit the “R” and “D” units, and the “R” the “D” unit) and releases that in-
hibition only once they are executed. The dynamics of these inhibition
and release processes automatically produce the necessary sequence. It
is thought that such activation and inhibition processes play a role even
in young infants [165]. Immediate feedback, though not explicitly ad-
dressed by Rumelhart andNorman [131], could serve to repair the actions
controlled by particular units, but the feedback would not be needed to
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produce the sequence—amajor advantage over chaining models. For an
overview of similar models and other action domains, see [90].

The main lesson for robotic everyday action control is that purely sym-
bolic planning may be too crude and context-insensitive to allow for
smooth and efficient multi-component actions. Introducing multiple
levels of action planning and action control may complicate the engi-
neering considerably, but it is also likely to make robot action more flex-
ible and robust—and less “robotic” to the eye of the user.

2.3 Integrating feedforward and feedback mechanisms

In perfectly predictable environments such as industrial construction
halls, there is hardly any need for feedback mechanisms. Indeed, early
industrial robots, such as Unimate, could rely on fully preprogrammed
feedforward control for repetitivemulti-component actions such as pick-
ing up and manipulating objects [56]. However, real-life environments
aremuch toounpredictable to allow for purely feedforward control. Con-
sidering that purely feedback-based control is oftenmuch too slow to al-
low for real-life human action, it is unsurprising that human action con-
trol seeks for an optimal integration of feedforward and feedback mech-
anisms.

One of the earliest studies into feedforward planning was conducted by
Henry and Rogers [59], who compared reaction times of participants per-
forming a simple finger movement to reaction times of a moderately
complex arm movement (reaching and grasping) in response to a stimu-
lus. The authors found that participants performing the more complex
movement showed a 20% increase in reaction time, with as much as a
25% increase for even more complex movement. This suggests the exis-
tence of feedforward action planning prior to action execution.

Linguistic studies have shown a similar effect. Eriksen et al. [44] had par-
ticipants read aloud two-digit numbers consisting of a varying number
of syllables. Longer numberswere shown to have a longer onset delay. In
order to account for the possibility that factors other than motor plan-
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ning played a role, participants were given the same task with a delay
between stimulus onset and vocalization. Here, the effect disappeared,
again providing evidence for pre-execution action plan formation.

However, while it may be tempting to conclude that an action plan is
formed completely before action onset, incremental approaches to se-
quential action posit that this is not the case. Palmer and Pfordresher
[113] argued that it is unlikely for actors to have access to all elements
in a long sequence, as this would place unnecessarily large demands on
memory—just think of a conductor starting to conduct a 4-hour Wag-
ner opera. Instead, planning and execution co-occur in time, limiting
access to sequence elements that appeared much earlier or that lie far in
the future. Evidence for this was indeed found by Sternberg et al. [151],
in which six participants prepared and produced sequences of mono- or
tri-syllabicwords. In addition to the length effect discussed above, prepa-
ration timeswere found to increasewith length of theword sequence un-
til approaching asymptote (which was 10.3 ± 0.6 words for sequences of
mono-syllabicwords and 6.4 ± 0.9words for tri-syllabicwords). This sug-
gests that plan formation and execution occur simultaneously, at least
for longer sequences of actions, with a limited capacity.

However, feedforward mechanisms alone cannot account for such com-
plex action as our tea-making example. A complete feedforward pro-
gram would need to incorporate numerous unknown parameters, such
as the exact location and physical properties (e.g. weight) of all necessary
objects. The prior unavailability of such parameters is not the only rea-
son feedback mechanisms might be helpful. Some parameters might be
possible to include in a feedforward program, but would simply be more
efficient or optimal if filled in online, such as grip strength. Even if all
this information were available, an actor still needs to be able to correct
possible—sometimes inevitable—perturbations in action execution.

Indeed, it seems that the presence of uncertainty (i.e. unavailability of
necessary parameters) increases the importance of feedbackmechanisms.
Saunders andVijayakumar [137] fittedparticipantswith aprosthetic hand
that couldprovide vibrotactile feedback. Using this prosthetic hand, they
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were asked to manipulate objects of different weights. Manipulating
both feedforward uncertainty by adding an unpredictable delay in the
prosthetic hand and feedback information by manipulating vibrotactile
feedback, they found that performance decreased when feedback was re-
moved in situations with feedforward uncertainty. This illustrates that
human action emerges from the interaction of feedforward and feedback
mechanisms.

Integrating feedforward and feedbackmechanisms holds the promise to
get the best from both worlds. Feedforward mechanisms are likely to
determine the necessary action components and pre-load at least some
of them before initiating the action [59], and to selectively tune atten-
tion to stimuli and stimulus dimensions that are relevant for the task
[64]. Feedback processes, in turn, provide excellent accuracy—often at
the cost of speed [141]. These strengths and weaknesses have motivated
hybrid models claiming that feedforward mechanisms provide the skele-
ton of action plans which leave open slots for parameters provided by
feedback processes [53, 64, 140].

A particularly good example of this kind of interaction is provided by the
observations of Goodale et al. [55]. In a clever experiment, participants
were asked to rest their hand on a platform and point to a visual target
presented at a random location on an imaginary line in their right visual
field. The participants were not told that in half of the trials the target
changed location during the first saccade. The authors found that par-
ticipants would successfully point to the target on these trials without
even being aware of the location change, and without additional delay.
As feedforward programming is thought to take time, a fast and online
feedbackmechanismofwhich participants are unaware has to be respon-
sible for this finding. After this study showing online adaptation of hand
velocity, Prablanc andMartin [120] found that these results generalize to
two dimensions. Using stimuli presented on a screen, it was found that
both the velocity and trajectory of the hand were adjusted online. This
demonstrates that action is the result of a preprogrammed action plan
(the initial movement of the hand) combined with online adaptation to
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reach goal requirements. Interestingly, such a division of labor fits well
with the architecture of the human brain, which includes both a slow,
cognitively penetrated ventral route from perception to action and a fast
dorsal sensorimotor loop (for a broader overview, see [97]).

It is clear that both feedforward and feedback mechanisms are respon-
sible for producing complex action, but a number of questions remain
unanswered. Are feedforward processes always responsible for certain
actions? How are these plans learned, and how do people know when
to apply them? How does feedback on a lower level result in action re-
planning on a higher level, and does this require conscious intervention?
What is the division of labor between feedback and feedforward mecha-
nisms? How fluid is it—how hierarchical?

We know that with practice, the roles of feedback and feedforward pro-
cesses change. In a standard rapid aimed limbmovement paradigm, par-
ticipants are asked to perform amanual action in order to reach a target.
During such tasks, the response can be regarded as having two elements:
(1) a ballistic primary movement, thought to be controlled by a feedfor-
ward mechanism, and (2) a secondary, corrective movement, thought to
be caused by a feedback mechanism. Pratt and Abrams [121] used such a
paradigm to investigate the effect of practice on the weight of primary
and secondary movements. Participants were asked to repeatedly move
a visual cursor to a target location using wrist rotation. With more prac-
tice, the percentage of time spent in the first movement increased, while
time spent in the second movement decreased. As the first movement
is feedforward-controlled, this suggests that practice reduces the need
of feedback control, as the feedforward process becomes more accurate.
But will this learning generalize to new situations with similar action
requirements, and is it long-lasting?

To investigate the relationship between practice and feedback control,
Proteau et al. [123] had participants practice an aiming task on either 200
or 2000 trials and found that, when visual feedback was taken away, par-
ticipants who had more practice were more impaired by the removal of
feedback. This is notwhat onewould expect if practice simply shifts con-
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trol to feedforward processes. Subsequent research has shown that, with
practice, higher peak velocities are reached in the early phase of move-
ment, thereby leaving more time for corrective submovements based on
feedback. Thus, instead of a shift from feedback control to feedforward
control, feedback processes seem to be optimized as a result of practice
[40, 78, 123].

While the first generation of robots and other intelligent systems had
a strong preference for feedforward control, not in the least because of
the rather predictable environments they were implemented in, some
modern systems rely heavily on feedback control to perform actions—
especially humanoid systems operating in real-world scenarios. This is
likely to work as long as action production in such robots is slower than
the feedback loops informing them [118], but progress in action mechan-
ics is likely to make hybrid feedforward/feedback systems an attractive
alternative in the near future.

2.4 Hierarchical action representation

Human actions can often be described in a hierarchical fashion: “Going
on vacation” implies action such as “packing my bags,” “getting the car,”
“loading it,” “driving down to city X,” et cetera. Many authors have taken
that to imply that action control is hierarchical as well. According to
Lashley [87], only a hierarchical organization of actions and action plans
can provide the opportunity to have the same motor acts acquire differ-
ent meanings, depending on the context in which the motor act is per-
formed. In Miller’s [96] seminal book, action plans are even hierarchical
by definition: “A Plan is any hierarchical process in the organism that can
control the order in which a sequence of operations is to be performed”
[96, p. 16]. And yet, while it is certainly uncontroversial that it is possible
to describe actions as hierarchical, this need not have any implication for
the cognitive organization of actions. As Badre [10] argues, “the fact that
a task can be represented hierarchically does not require that the action
system itself consist of structurally distinct processing levels” [10, p. 193]
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(see also [80]). Moreover, it is not always clear what authors mean if they
say that actions are organized in a hierarchical fashion.

Uithol et al. [162] noted that there are at least two ways to look at hi-
erarchical action. These two ways differ in what are considered to be
the different levels in such a hierarchy. One way to look at action hier-
archies is the view of part-whole relations. In this account, each level
in the hierarchy exists solely as the sum of lower-level units. In other
words, an action unit such as “get a pan for pancake making” consists
of the subunits “open the cupboard,” “take pan from cupboard,” “place
pan on counter,” and “close the cupboard.” It should be clear that when
all subordinate units are present, the superordinate unit “get a pan” is
also present, as it is identical to the sum of its parts. Uithol et al. [162]
argue that this kind of hierarchy does not provide an explanation of the
complex action; it merely provides a thorough description of the to-be-
explained action, in which higher levels are more complex than lower
levels. It also does not give information about the causal relationship
between the different levels in the hierarchy, as you cannot consider an
element to be the cause of its own parts. Another restriction of this type
of hierarchy is that it can only accommodate levels that are of a similar
nature. That is, actions can only be divided into sub-actions, not into
objects or world states.

Another way to view hierarchies is to see the different levels as repre-
senting causal relations between the levels. In this approach, units on
a higher level causally influence units on a lower level. In this type of
hierarchy, lower-level units can be modulated by higher-level units. In
contrast with the part-whole hierarchy, lower levels are not necessarily
less complex than higher levels. Goals that are formulated as simple and
propositional states can be the cause of more complex elements. Using
this hierarchical approach also opens up the possibility of states or ob-
jects being the cause of an action, as it does not have the limitation of
requiring action-type goals.

Uithol et al. [162] proposed a newmodel, inwhich the fundamental foun-
dation for the hierarchical structure is not cause-and-effect (i.e. goals
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cause motor acts), or complexity (i.e. complex motor acts such as grab-
bing a pan consist of simpler acts such as flexing fingers and grasping
the handle), but temporal stability. In this view, stable representations
can be considered goal-related, while more temporary representations
reflect motor acts on different levels, not unlike the more enduring con-
ceptual representations and the less enduring motor units of Rumelhart
and Norman’s [131] model discussed above. However, this representa-
tion proposal does not include a model of how the hierarchies within a
task are abstracted and learned from experience, nor of how theymay be
shared across tasks despite requiring different parameterizations.

Botvinick and Plaut [18] tackled some of these issues, pointing out that
not only is it unclear how existing hierarchical models learn hierarchies
from experience, but also that most theoretical accounts lead to a cir-
cular reference: acquiring sequence knowledge relies on the ability to
identify event boundaries, which in turn requires sequence knowledge.
A further problem is sequencing in hierarchical structures; many mod-
els (e.g. [66, 131]) solve that by means of forward inhibition, but this only
works on units at the lowest level of a hierarchy. Botvinick and Plaut
[18] offered a recurrent connectionist networkmodel that helps to avoid
these problems. Using computer simulations they showed that such a
network, which contains no inherent hierarchical structure, can learn a
range of sequential actions that many consider hierarchical. The hierar-
chy, they argued, emerges from the system as a whole. The network they
used is a three-layer recurrent network, with an input layer representing
held objects and fixated objects, an output layer representing actions to
be taken, and a hidden layer (with recurrent connections) for the inter-
nal representation. Having trained this network on a routine complex
task (making coffee or tea), they showed that it can perform complex ac-
tion that can be considered hierarchical in nature (e.g. varying orders
of subactions leading to the same outcome) without relying on a hier-
archical system architecture. The network also showed slips of action
when the internal representation layer was degraded, as well as other
action errors found in empirical studies, although Cooper and Shallice
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[33] suggest that the relative frequency and types of errors shown by the
recurrent model do not match human subjects.

We believe that architectures offering such hierarchical behavior, with-
out necessarily being hierarchically structured, can provide robots with
the needed flexibility to function in a dynamic, human-driven world.
Botvinick and Plaut’s [18] model seems to be able to account for some
aspects of flexible behavior, but more complex and biologically inspired
models such as leabra [76, 111] promise to generalize to other tasks, as
well as being able to learn relatively fast, two aspects of human behavior
we consider essential to emulate in robot behavior.

2.5 Contextualizing action control

As pointed out above, one of the reasons why Lashley [87] considered ac-
tion representations to be necessarily hierarchically organized was the
fact that the meaning and purpose of action components vary with the
goal that they serve to accomplish: while making a kicking movement
with your right leg can easily be replaced by moving your head sideways
when trying to score a goal in a soccer game, that would not be a par-
ticularly good idea when performing a group can-can on stage during
a performance of Orpheus in the Underworld. In other words, goals are
needed to contextualize action components. In ai, robotics, and some
information-processing approaches in psychology, the main function of
goal representation is to guide the selection of task components, includ-
ing stimulus and response representations or perception-action rules. In
traditional processing models, like act-r or Soar [3, 85], goal representa-
tions limit the number of production rules considered for a task, which
reduces the search space and makes task preparation more efficient [33].
Moreover, goals commonly serve as a reference in evaluating an action,
when comparing the current state of the environment with the desired
state [96].

This practice was challenged by Botvinick and Plaut [18], who pointed
out at least two problems with goal representations in cognitive models.
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First, goals themselves may be context-dependent. The goal of cleaning
the house may have rather different implications depending on whether
it serves to satisfy the expectations of one’s partner or to prepare for a
visit of one’s mother-in-law. Likewise, the goal of stirring will produce
somewhat different behavior depending on whether one is stirring egg
yolks or cement. Most models that postulate the existence of goals do
not allow for such context dependence. Second, it is argued that many
everyday activities do not seem to have definable, or at least not invariant
goals; just think of playing amusical instrument or taking awalk. The au-
thors demonstrated that goal-directed behavior can be achievedwithout
the explicit representation of goals. In the previously mentioned simula-
tion studies with recurrent neural networks, they were able to simulate
goal-directed actions that operate very much likeMiller et al.’s [96] tote
units, without any need to represent the goal explicitly. Obviating the
need for representing goals, such a model could be applied to behavior
with non-obvious goals, such as taking awalk as a consequence of feeling
restless or having the thought of fresh air [18].

Cooper and Shallice [33] took issue with this non-representationalist ac-
count of goals, giving at least two reasons why goals should be imple-
mented in cognitive models. First, goals allow for the distinction be-
tween critical and supporting actions. When making pancakes, the sub-
action of adding egg to the mixture consists of picking up an egg, break-
ing it (above the bowl), and discarding the empty shell (not above the
bowl). It should be clear that the breaking of the egg is the most impor-
tant action in this sequence. Dissociating important actions from less
important actions can account for skipping unnecessary steps. When
applying butter to two slices of toast, it is not necessary to execute the
supporting actions “discard knife” and “pick up knife” between the two
executions of the “butter toast” action program. Second, the implemen-
tation of goals would allow for subactions that serve the same purpose
to be interchanged. For example, flipping a pancake by flipping it in the
air or flipping it using a spatula would both be perfectly good methods
for pancake flipping, and the shared goal allows these actions to be in-
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terchanged. Models without goal representation can only show this be-
havior if they are explicitly trained on all the alternative actions that can
be taken. To make the realization that a set of actions are equivalent for
achieving a goal, a model would in essence have to contain a representa-
tion of that goal.

Interestingly, however, goal representations (whether explicit or implicit)
can play an important role in contextualizing cognitive representations.
Most representational accounts assume that representations of stimu-
lus and action events are invariant. The need to contextualize represen-
tations (i.e. to tailor them to the particular situation and task at hand)
thus seems to put the entire burden on the goal, so that the explicit rep-
resentation of the goal seems to be a necessary precondition for adaptive
behavior. But, from a grounded cognition perspective, it seems that al-
ternative scenarios are possible. In a grounded cognition framework, the
representation of objects and object categories takes an embodied form,
usingmodal features from at least the visual, motor, and auditorymodal-
ities [122]. For example, the concept of apple would be represented by a
network of visual codes representing <green> and <round>, but also
the auditory <crunchy sound> of biting into it. The embodied cog-
nition framework has already been successfully implemented in robot
platforms such as iCub, and shows stimulus compatibility effects similar
to those that can be observed in humans [93, 115].

Similarly, according to the Theory of Event Coding [65], events are repre-
sented—like objects—in a feature-based, distributed fashion. This will
mean that the aforementioned apple would be represented by a network
of codes representing not only its perceptual features such as <green-
ish> and <round>, but also other properties such as being <edible>,
<graspable>, <carryable>, <throwable>, etc. In this view, one
of the main roles of goals is to emphasize (i.e. increase the weight of)
those features that in the present task are of particular importance. This
means that when hungry, the feature of being <edible>will be primed
in advance and become more activated when facing an apple, while the
feature of <throwability> will become more important when being
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in danger and trying to defend oneself. Several studies have provided ev-
idence that goals are indeed biasing attentional settings toward action-
relevant feature dimensions (e.g. [45, 83, 172]), suggesting that the impact
of goals goes beyond the selection of production rules and outcome eval-
uation. Interestingly, this kind of “intentional weighting” function [95]
can be considered to represent the current goal without requiring any ex-
plicit representation, very much along the lines of Botvinick and Plaut’s
connectionist model [18].

Another potential role of goals is related to temporal order. In chaining
models, the dimension of time was unnecessary because the completion
of each component automatically “ignites” the next component. The
same holds for current planners in cognitive robotics, which commonly
fix the order of action subcomponents (e.g. cram [13]). But action plans
may follow a more abstract syntax instead, much like how syntactic con-
straints of natural languages allow for various possible sequences. For
instance, again consider the process of making tea. With the possible ex-
ception of true connoisseurs, it doesn’t make any difference for most tea
drinkers whether one puts the tea or the water into the cup first; i.e. the
order of these two subactions is interchangeable. A truly flexible system
would thus allow for any of these orders, depending onwhether water or
tea is immediately at hand. While a chaining model would not allow for
changing the original order, a more syntactic action plan would merely
define possible slots for particular subcomponents (e.g. [128]), so that the
actual order of execution would be an emerging property of the interac-
tion of the syntactic plan and the situational availability of the necessary
ingredients.

These considerations suggest that robotic systems need to incorporate
at least some rudimentary aspects of time and temporal order to get
on par with humans. Along these lines, Maniadakis and Trahanias [94]
have propagated the idea that robotic systems should be equipped with
some kind of temporal cognition, be it by incorporating temporal logic
or event calculus. Indeed, recent robotic knowledge representation sys-
tems, such as KnowRob [156], do possess the ability to do spatiotempo-
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ral reasoning about the changing locations of objects, such as predicting
when and where objects can be found.

2.6 Conclusion

We have discussed how conceptions of robotic action planning can ben-
efit from insights into human action planning. Indeed, we believe that
constructing truly flexible and autonomous robots requires inspiration
from human cognition. We focused on four basic principles that char-
acterize human action planning, and we have argued that taking these
principles on board will help to make artificial cognition more human-
like.

First, we have discussed evidence that human action planning emerges
from the integration of a rather abstract, perhaps symbolic representa-
tional level and concurrent planning at a lower, more concrete represen-
tational level. It is certainly true that multi-level planning can create dif-
ficult coordination problems. Using grounded cognition approaches in
robotics is potentially a good method to ground such higher-level sym-
bolic representation in lower-level sensorimotor representations, which
may allow robot action to become more flexible and efficient.

Second, we have argued that human action planning emerges from the
interplay of feedforward and feedback mechanisms. Again, purely feed-
forward or purely feedback architectures are likely to be more transpar-
ent and easier to control. However, fast, real-time robotic action in un-
certain environments will require a hybrid approach that distributes la-
bor much like the human brain does by combining slow and highly op-
timized feedforward control with fast sensorimotor loops that contin-
uously update the available environmental information. A major chal-
lenge for the near future will be to combine such hybrid systems with
error-monitoring and error-correcting mechanisms. When preparing
pancake dough, accidentally pouring some milk outside the bowl would
need to trigger a fast correction mechanism informed by low-level sen-
sory feedback but not necessarily the re-planning of (or crying over) the
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entire action. However, if for some reason the entire milk carton is emp-
tied by this accident, leaving the agent without the necessary ingredi-
ent, feedback would have to propagate to higher, more abstract or more
comprehensive planning levels to decide whether the plan needs to be
aborted. How this works in detail and how decisions are made as to
which level is to be informed is notwell understood, but progress is being
made. Research into feedback processes has yielded information about
the optimal speed of sensorimotor loops [73], and we find it reasonable
to expect that models using such fast feedback loops combined with ac-
curate feedforward planning can ultimately produce human-like motor
performance in robots.

Third, we have argued that while descriptions of human actions may re-
fer to a hierarchy, it is not yet clear whether the cognitive—in vivo or in
silico—representations of such actions need to be explicitly hierarchical
as well. Equally unclear is whether representations that differ in hier-
archical level would necessarily need to differ in format. However, it is
clear that representations that are considered to be “higher in hierarchy”
are more comprehensive. The concept of “making a pancake,” say, is
necessarily richer and more abstract than the associated lower-level ac-
tions of “reaching for egg” and “grabbing a pan,” suggesting that the latter
two are more directly grounded in sensorimotor activity [82]. Future re-
searchwill need to investigate how representations at different planning
levels (or different levels of description) interact or relate to each other.

The nature of goals and their role in action control is also a matter of
ongoing research. The two different viewpoints—i.e. that goals require
explicit representation or not—seem to reflect different preferences in
conceptualization and modeling techniques, and it may well turn out
that an explicit representation of goals in the preferred modeling lan-
guage translates to a more implicit representation of goals in the actual
functional or neural architecture. In robotics, most modern plan lan-
guages use a form of explicit goal-related action control that defines a
goal as a requiredworld state onwhich constraints can be imposed. Such
a structure is flexible enough to allow equifinality, but it is unclear how
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knowledge about the variousmeans to produce a result is acquired. Ulti-
mately, we believe that subsymbolic programming approachesmay allow
for more adaptive, human-like representational architectures—though
likely more difficult to engineer and define provably safe operating con-
ditions for.

To conclude, we believe that the construction of robots that are up to
real-life, everyday actions in environments that are as uncertain as hu-
man environments requires the considerationof cognitive principles like
the four principles we have discussed in this article. The benefit of do-
ing so will be twofold. For one, it will strongly increase the flexibility of
robots. For another, it will make robots more human-like in the eyes of
the human user, which will help us understand and cooperate with our
future robotic colleagues.
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CHAPTER3
Robotics and human action

The field of robotics is shifting from building industrial robots
that can perform repetitive tasks accurately and predictably in
constrained settings, to more autonomous robots that should be

able to perform a wider range of tasks, including everyday household
activities. To build systems that can handle the uncertainty of the real
world, it is important for roboticists to look at how humans are able to
perform in such a wide range of situations and contexts—a domain that
is traditionally the purview of cognitive psychology. Cognitive scientists
have been rather successful in bringing computational systems closer to
human performance. Examples include image and speech recognition
and general knowledge representation using parallel distributed process-
ing (e.g. modern deep learning models).

Similarly, cognitive psychologists can use robotics to complement their
research. Robotic implementations of cognitive systems can act as a
“computational proving ground”, allowing accurate and repeatable real-
world testing of model predictions. All too often, theoretical predict-

This chapter is an adaptation of the book chapter de Kleijn, R., Kachergis, G., &Hommel,
B. (2015). Robotic action control: On the crossroads of cognitive psychology and robotics. In H.
Samani (Ed.), Cognitive robotics. Taylor & Francis.

37



3. Robotics and human action

ions—and even carefully conductedmodel simulations—do not scale up
or even correspond well to the complexity of the real world. Psychology
should always seek to push theory out of the nest of the laboratory and
see if it can take flight. Finally, cognitive psychologists have an oppor-
tunity to conduct experiments that will both inform roboticists as they
seek tomakemore capable cognitive robots, and increase our knowledge
of how humans perform adaptively in a complex, dynamic world. In this
chapter, we will give a broad but brief overview of the fields of cognitive
psychology and robotics, with an eye to how they have come together to
inform us about how (artificial and natural) actions are controlled.

3.2 Early history of the fields

3.2.1 History of cognitive psychology

Before cognitive psychology and robotics blended into the approachnow
known as cognitive robotics, both fields already had a rich history. Cog-
nitive psychology as we now know it has had a rocky past (as have most
psychological disciplines, for that matter). Breaking away from philos-
ophy, after briefly attempting to use introspection to observe the work-
ings of themind, the field of psychology found it more reliable to rely on
empirical evidence.

Although making rapid strides using this empirical evidence, for exam-
ple in the form ofDonders’ now classic reaction time experiments which
proposed stages of processing extending fromperception to action, early
cognitive psychology came to be dominated by a particular approach, be-
haviorism. This position, popularized by Watson [169] and pushed fur-
ther by Skinner [143], held that the path for psychology to establish itself
as a natural science on par with physics and chemistry would be to re-
strict itself to observable entities such as stimuli and responses. In this
sense, behaviorists such as Skinner were strongly antirepresentational,
i.e. against the assumption of internal knowledge and states in the ex-
planation of behavioral observations. On the other hand, the focus on
observable data brought further rigor into the field, and many interest-
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ing effects were described and explained.

The behaviorist approach dominated the field of psychology during the
first half of the 20th century. In the 1950s, seeming limitations of be-
haviorism fueled what some scholars would call the neocognitive revolu-
tion. StartingwithChomsky’s scathing 1959 reviewof Skinner’s book [27]
that tried to explain how infants learn language by simple association,
many researchers were convinced that behaviorism could not explain
fundamental cognitive processes such as learning (especially language)
and memory. The foundations of the field of artificial intelligence were
also nascent, and pursuing explanations of high-level, uniquely human
aptitudes—e.g. analytical thought, reasoning, logic, strategic decision-
making—grew in popularity.

3.2.2 The computer analogy

Another factor contributing to theneocognitive revolutionwas the emer-
gence of a new way to describe human cognition as similar to electronic
computer systems. The basic mechanism operating computers was (and
still is, in a fundamental way) gathering input, processing it, and out-
putting the processed information, not unlike the basic cognitive mo-
del of stimulus detection, storage and transformation of stimuli, and re-
sponse production.

Clearly, this processing of information requires some representational
states which are unaccounted for (and dismissed as unnecessary) by be-
haviorists. This new way to look at human cognition as an information
processing system not only excited psychologists as a way of understand-
ing the brain, but the analogy also raised hopes for building intelligent
machines. The idea was that if computer systems could use the same
rules and mechanisms as the human brain, they could also act like hu-
mans. Perhaps the most well-known proponent of this optimistic vision
was Turing [161], who suggested that it wouldn’t be long before machine
communication would be indistinguishable from human communica-
tion. Maybe the secret of cognition lies in the way the brain gathers,
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stores, and subsequently manipulates data, it was thought.

Alas, the optimists would be disappointed. It soon became clear that
computers and humans have very different strengths and weaknesses.
Computers can calculate half a million decimals of π within a second.
Humans can read terrible handwriting. Clearly, humans are not so com-
parable to basic input–output systems after all. It would take another 25
years for cognitive psychology and artificial intelligence to begin their ro-
mance once again, in the form of the parallel distributed processing (pdp)
approach [130].

3.2.3 Early cognitive robots

With this idea of smart computer systems in mind, it seemed almost
straightforward to add embodiment to build intelligent agents. The first
cognitive robots were quite simple machines. The Machina Speculatrix
[166] consisted of a mobile platform, two sensors, actuators and “nerve
cells”. Understandably, these robots were designed to mimic behavior
of simple animals, and could move safely around a room and recharge
themselves using relatively simple approach and avoidance rules. Due
to their simplicity, it was questionable exactly how cognitive these robots
were—they aremore related to cybernetics and control theory (e.g. [8])—
but soon enough complexity made its way into cognitive robotics.

From the 1960s, robots would be able to represent knowledge and plan
sequences of operations using algorithms such as strips [47], that would
now be considered essential knowledge for every ai student. The strips
planner, which represents goal states and preconditions and attempts
to derive the action sequences that would achieve them before carrying
them out, is quite slow to execute. Moreover, this type of planning suf-
fers from its closed world assumption (i.e. that the environment and all
relevant states are known—by programming—and will not change), and
the massive complexity of the real world, leading to intractable compu-
tations. Yet the general approach taken by strips—of modeling the en-
vironment, possible actions and state transformations, and goal states
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via predicate logic, and operating robots via a sense-plan-act loop—has
dominated cognitive robotics for quite some time, and is still a strong
thread today.

Various behavior-based robotics architectures and algorithms—taking
some inspiration from biological organisms—have been developed in
the past fewdecades. An early, influential example is Rodney Brooks’ sub-
sumption architecture [21], which eschews planning entirely; “planning is
just a way of avoiding to figure out what to do next”, using a defined
library of basic behaviors arranged hierarchically to generate behavior
based on incoming stimuli. Although fast and often generating surpris-
ingly complex behavior from simple rules (see also [20]), the subsump-
tion architecture andmany other behavior-based robotics algorithms do
not yet incorporatemuch from the lessons to be learned frompsycholog-
ical studies in humans.

3.3 Action control

3.3.1 Introduction

One of the other areas that shows considerable overlap between robots
and humans is motor or action control. Two types of control systems
govern motor action: feedforward and feedback control systems.

A feedforward motor control system sends a signal from the (human
or robotic) motor planning component to the relevant motor compo-
nent using predetermined parameters, executing said action. Informa-
tion from the environment can be considered only before execution be-
gins, which makes feedforward control suitable for predictable environ-
ments. In contrast, a feedback motor control system incorporates in-
formation from itself or the environment (feedback) more or less con-
tinuously to modulate the control signal. In this way, the system can
dynamically alter its behavior in response to a changing environment.
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3.3.2 Feedforward and feedback control in humans

For many years, psychology and related disciplines have approached ac-
tion control from rather isolated perspectives. As the probably first sys-
tematic study on movement control by Woodworth [171] had provided
strong evidence for the contribution of environmental information,
many authors have tried to develop closed-loopmodels of action control
that rely on a continuous feedback loop (e.g. [1]). At the same time, there
was strong evidence fromanimal and lesion studies [81, 155] and from the-
oretical considerations [87] that various movements can be considered
in the absence of sensorimotor feedback loops, which has motivated the
development of feedforward models (e.g. [59]).

Schmidt [140] was one of the first who argued that human action con-
trol consists of both feedforward and feedback components. According
to his reasoning, human agents prepare a movement schema that spec-
ifies the relevant attributes of the intended movement but leave open
parameter slots that are specified by using online environmental infor-
mation. In particular, feedforward mechanisms seem to determine the
necessary action components offline and pre-load at least some of them
before initiating the action [59], and to selectively tune attention to stim-
uli and stimulus dimensions that are relevant to the task [64]. Feedback
processes, in turn, provide excellent accuracy—often at the cost of speed
[141]. These strengths and weaknesses have motivated hybrid models
claiming that feedforward mechanisms provide the skeleton of action
plans which leave open slots for parameters provided by feedback pro-
cesses. Neuroscientific evidence has provided strong support for such
a hybrid control model, suggesting that offline action planning along a
ventral cortical route is integrated with online sensorimotor specifica-
tion along a dorsal route [53, 54, 64, 140].

A particularly good example of this kind of interaction is provided by the
observations of Goodale et al. [55]. In a clever experiment, participants
were asked to rest their hand on a platform and point to a visual target
presented at a random location on an imaginary line in their right visual
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field. The participants were not told that in half of the trials the target
would change location during the first saccade. The authors found that
participants would successfully point to the target on these trials with-
out even being aware of the location change, and without additional de-
lay. As feedforward programming is assumed to take time, a fast and
online feedbackmechanism of which participants are unaware has to be
responsible for this finding.

On a higher level, interaction between feedforward and feedback sys-
tems must exist for goal-directed action to be carried out. Higher-level,
goal-directed action planning, such as planning tomake pancakes would
be impossible to plan in a completely feedforward fashion: it would re-
quire all motor parameters to be specified a priori, and thus would re-
quire exact knowledge of the position and properties of all necessary
equipment and ingredients, such asweight, friction coefficients, et cetera.

Instead, many of these parameters can be filled in online by using in-
formation from the environment. It is not necessary to know the ex-
act weight of a pan, because you can determine that easily by picking
it up: you increase the exerted force until the pan leaves the surface of
the kitchen counter. This does not rule out a complementary role for
feedforward parameter estimation: you likely also learn a distribution of
probable pan weights (e.g. more than 50 g and less than 10 kg) from your
experience of other pans—or even just similarly-sized objects.

Interaction between feedforward and feedback becomes even more ap-
parent on ahigher levelwhenaplanned action fails to be executed. When
a necessary ingredient is missing, replanning (or cancellation) of a pre-
programmed action sequence may be necessary: if there is no butter,
can I use oil to grease up the pan? Somehow, this information gathered
by feedback processes must be communicated to the higher level action
planner.
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3.3.3 Feedforward and feedback control in robots

The theorizing on action control in robotic systems must be considered
rather ideological, sometimes driven by the specifics of particular robots
or tasks considered and sometimes by broadly generalized antirepresen-
tationalist attitudes. Many early robots only had ahandful of sensors and
responded in a fixed pattern of behavior given a particular set of stimuli.
Some robots were even purely feedforward, performing the same action
or action sequence, with no sensory input whatsoever [106]. Feedfor-
ward or simple reactive control architecturesmake for very brittle behav-
ior: even complex, carefully-crafted sequences of actions and reactions
will appear clumsy if the environment suddenly presents an even slightly
novel situation.

More complex architectures have been proposed, often with some anal-
ogy to biology or human or animal behavior, giving birth to the field of
behavior-based robotics. The subsumption architecture [21] was a response
to the traditional gofai, and posited that complex behavior need not
necessarily require a complex control system. Different behaviors are
represented as layers that can be inhibited by other layers. For example,
a simple robot could be provided with the behaviorswandering, avoiding,
pickup, and homing. These behaviors are hierarchically structured, with
each behavior inhibiting its preceding behavior [7].

This hierarchy of inhibition between behavior is (although somewhat
more complex) also visible in humans. For example, if your pants are
(accidentally) set on fire while doing the dishes, few people would fin-
ish the dishes before stopping, dropping, and rolling. In other words,
some behaviors take precedence over others. An approach similar to the
subsumption architecture has been proposed by Arkin [6]. The motor
schema approach also uses different, parallel layers of behavior, but does
not have the hierarchical coordination that the subsumption approach
does. Instead, each behavior contributes to the robot’s overall response.

On a higher level, as noted in the previous section, other problems arise.
When a planned action fails to succeed, for example because a robot can’t
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find a pan to make pancakes in, replanning is necessary. The earliest ai
planners such as gpswould simply backtrack to the previous choice point
and try an alternative subaction. However, this does not guarantee the
eventual successful completion of the action. Other planners, such as
abstrips [134], use a hierarchy of representational levels. When it fails to
complete a subaction, it could return to a more abstract level.

However, truly intelligent systems should be more flexible in handling
such unforeseen events. If a robot cannot make me a pizza with ham,
maybe it should make me one with bacon? Generalization and substitu-
tion remain an elusive ability for robots, although vector spacemodels of
semantics (e.g. beagle [72]) offer a step in the right direction. Like neural
networks, thesemodels represent items (e.g. words) in a distributed fash-
ion, using many-featured vectors with initially low similarity between
random items. As the model learns—say, by reading documents—item
representations are updated to make them more similar (on a continu-
ous scale) to contextually similar items. These continually-updated rep-
resentations can be used to extract semantic as well as syntagmatic (e.g.
part-of-speech) relationships between items. Beyond text learning, vec-
tor space models may ultimately be used to learn generalizable represen-
tations for physical properties andmanipulations of objects and environ-
ments.

3.3.4 Robotic action planning

It is understood that reaching movements in humans have an initial bal-
listic feedforward component, followedby a slower feedback-driven com-
ponent that corrects for error in the initial movement. As people be-
come more adept at reaching to targets at particular distances, a greater
portion of their movement is devoted to the initial feedforward compo-
nent and less time is spent in the feedback component, thus speeding
response times. Understanding how this happens should enable roboti-
cists to make more adaptive, human-like motor planning systems for
robots.
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In this line of research, Kachergis et al. [75] studied sequence learning
using mouse movements. Inspired by earlier work of Nissen and Bulle-
mer [107], subsequences of longer sequences were acquired by human
participants during a learning phase. The participants seem to implic-
itly extract the subsequences from longer sequences by showing faster
response times and context effects.

These findings cast doubt on a simple chaining theory of sequential ac-
tion. Rosenbaum et al. [129] interpreted these findings as evidence that
sensory feedback is not a necessary component for action sequencing, in
keeping with the conclusion of Lashley [87]. They argued that “the state
of the nervous system can predispose the actor to behave in particular
ways in the future,” (p. 526), or, there are action plans for some behav-
iors. And yet, studies on spontaneous speech repair (e.g. [103]) also show
that people are very fast in fixing errors in early components of a word
or sentence, much too fast to assume that action outcomes are evalu-
ated only after entire sequences are completed. This means that action
planning cannot be exclusively feedforward, as Lashley [87] seemed to
suggest, but must include several layers of processing, with lower lev-
els continuously checking whether the current action component pro-
ceeds as expected. In other words, action planning must be a tempo-
rally extended process in which abstract representations to some extent
provide abstract goal descriptions, whichmust be integrated with lower-
level subsymbolic representations controlling sensorimotor loops. The
existence of subsymbolic sensorimotor representations would account
for context and anticipation effects, as described above.

Themain lesson for robotic motor planning is that purely symbolic plan-
ning may be too crude and context-insensitive to allow for smooth and
efficientmulti-component actions. Introducingmultiple levels of action
planning and action control may complicate the engineering consider-
ably, but it is also likely to make robot action more flexible and robust—
and less “robotic” to the eye of the user.
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3.4 Acquisition of action control

3.4.1 Introduction

In order for humans or robots to be able to achieve their goals, it is nec-
essary for them to know what effect an action would have on their envi-
ronment. Or, reasoning back to the inverse model, what actions are re-
quired to produce a certain effect in the environment. Learning relevant
action–effect bindings as an infant is a fundamental part of development
and likely bootstraps later acquisition of general knowledge.

In humans, learned action–effects seem to be stored bidirectionally. Fol-
lowing Lotze [91] and Harless [57], James [69] noted that intentionally
creating a desired effect requires knowledge about, and thus the previous
acquisition of action–effect contingencies. The Theory of Event Coding
(tec) is a comprehensive empirically well-supported theoretical frame-
work explaining the acquisition and use of such action–effect bindings
for goal-directed action ([65], for recent reviews see [63, 142]). tec states
that actions and their expected effects share a common neural represen-
tation. Therefore, performing an action activates the expectation of rel-
evant effects and thinking of (i.e. intending or anticipating) an action’s
effects activates motor neurons responsible for achieving those effects.

3.4.2 Human action–effect learning

In traditional cognitive psychology experiments, action–effect bindings
are acquired by having humans repetitively perform an action (such as
pressing a specific button on a keyboard), after which an effect (such as
a sound or a visual stimulus) is presented. After a certain amount of ex-
posure to this combination of action and effect, evidence suggests that a
bidirectional binding has been formed. When primed with a previously
learned effect, people respond fasterwith the associated action [42]. This
action–effect learning is quite robust but sensitive to action–effect con-
tingency and contiguity [43].

Of course, action–effect learning does not only happen in artificial en-
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vironments such as psychology labs. In fact, action–effect learning in
humans starts almost instantly after birth [164] and some would argue
even before. Young infants perform uncoordinated movements known
as body ormotor babbling. Most of these movements will turn out to be
useless. However, some of them will have an effect that provides the in-
fant with positive feedback. For example, a baby could accidentally push
downwith its right armwhile lying on its belly, resulting in rolling on its
back and seeing all sorts of interesting things. Over time, the infant will
build up action–effect associations for actions it deems useful, and can
perform motor acts by imagining their intended effects.

Havingmastered the intricacies of controlling the ownbody, higher level
action–effects canbe learned in amanner similar tomotor babbling. Een-
shuistra et al. [39] give the example of piloting a spacecraft that you are
trying to slow down. If nobody ever instructed you on how to do that,
your best option would probably be pressing random buttons until the
desired effect is reached (be carefulwith that self-destruct button!). Once
you have learned this action–effect binding, performance in a similar sit-
uation in the future will be much better.

3.4.3 Robotic action–effect learning

The possibility that cognition can be grounded in sensorimotor expe-
rience and represented by automatically created action–effect bindings
has attracted some interest of cognitive roboticists already. For instance,
Kraft et al. [82] have suggested a three-level cognitive architecture that
relies on object-action complexes, that is, sensorimotor units on which
higher-level cognition is based. Indeed, action–effect learningmight pro-
vide the cognitivemachinery to generate action-guiding predictions and
the offline, feedforward component of action control. This component
might specify the invariant aspects of an action, that is, those charac-
teristics that need to be given for an action to reach its goal, to create
its intended effect while an online component might provide fresh envi-
ronmental information to specify the less goal-relevant parameters, such
as the speed of a reaching movement when taking a sip of water from
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a bottle [64]. Arguably, such a system would have the benefit of allow-
ing for more interesting cognitive achievements than the purely online,
feedback-driven systems that aremotivated by the situated-cognition ap-
proach [22]. At the same time, it would be more flexible than systems
that rely entirely on the use of internal forward models [36]. Thus, in-
stead of programmers trying to imagine all possible scenarios and enu-
merate reasonable responses, it might be easier to create robots that can
learn action–effect associations appropriate to their environment and
combine them with online information.

In robots as well as in humans, knowledge about one’s own body is re-
quired to acquire knowledge about the external world. Learning how
to control your limbs—first separately and then jointly (e.g. walking)—
clearly takes more than even the first few years of life: after learning to
roll over, crawl, and then walk, we are still clumsy at running and sport
for several years (if, indeed, we ever become very proficient). Motor bab-
bling helps develop tactile perception and proprioception—as well as
visual and even auditory cues—of what our body in motion feels like.
Knowing these basic actions and their effects on ourselves (e.g. what
hurts) lays the foundation for learning how our actions can affect our
environments.

In perhaps the first ever study of motor babbling in a (virtual) robot, Ku-
perstein [84] showed how randommovement execution can form associ-
ations between a perceived object-in-hand position and the correspond-
ing arm posture. This association is bidirectional, and as such is in line
with ideomotor (or tec) theory. We (and others, e.g. [25]) believe that
such bidirectional bindings can help robots overcome traditional prob-
lems, such as inverse model inference from a forward model.

More recent investigations in roboticmotor babbling have extended and
optimized themethod to include behavior thatwewould consider curios-
ity in humans. For example, Saegusa et al. [135] robotically implemented
a sensorimotor learning algorithm that organized learning in twophases:
exploration and learning. In the exploration stage, random movements
are produced, while in the learning stage the action–effect bindings (or,
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more specifically, mapping functions) are optimized. The robot can then
direct more effort to learning bindings that have not yet been learned
well.

3.5 Directions for the future

3.5.1 What’s next?

Many questions remain with respect to the acquisition and skillful per-
formance of not only well-specified, simple actions (e.g. reaching to a
target) but of complex actions consisting of various components and in-
volving various effectors. Indeed, howcanwe create a learning algorithm
that can go from basic motor babbling to both successful goal-directed
reaching, grasping, and manipulation of objects? To accomplish this ob-
viously difficult goal, it will likely be beneficial for psychologists to study
infants’ development of these abilities and beneficial for cognitive roboti-
cists to learn more from human capabilities.

3.5.2 Affordance learning

Objectmanipulation and use is an indispensable activity for robotswork-
ing in human environments. Perceiving object affordances—i.e. what a
tool can do for you or how you can use an object—seems to be a quick,
effortless judgment for humans, inmany cases. For example, whenwalk-
ing around and seeing a door, you automatically pull the handle to open
it.

One of the ways robots can perform object affordance learning is by mo-
tor babbling using simple objects as manipulators (e.g. [152]). In a so-
called behavioral babbling stage a robot applies randomly chosen behav-
iors to a tool and observes their effects on an object in the environment.
Over time, knowledge about the functionality of a tool is acquired, and
can be used to manipulate a novel object with the tool.

As impressive as this may sound, this approach does not allow for easy
generalization, and the robot cannot use this knowledge to manipulate
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objects using another, similar, tool. More recent approaches, such as
demonstrated by Jain and Inamura [68] infer functional features from
objects to generalize affordances to unknown objects. These functional
features are supposed to be object invariant within a tool category.

In humans, an approach that seems successful in explaining affordance
inference is based on Biederman’s recognition-by-components theory [15].
This theory allows for object recognition by segmenting an encountered
object in elementary geometric parts called geons. These are simple geo-
metric shapes such as cones, cylinders and blocks. By reducing objects to
a combination of more elementary units invariance is increased, simpli-
fying object classification. Biederman recognized 36 independent geons,
having a (restricted) generative power of 154 million three-geon objects.

In addition to being useful for object classification, geons can also be
used to infer affordances. For example, a spoon is suitable for scooping
because its truncated hollow sphere at the end of its long cylinder allows
for containing things, and an elongated cylinder attached to an object
can be used to pick it up. One very promising example of the use of geons
in affordance inference is demonstrated by Tenorth and Beetz [157]. This
technique matches perceived objects to three-dimensional cad models
from a public database such as Google Warehouse. These models are
then segmented into geons, which makes affordance inference possible.

However, the affordances that geons give us need to be learned in some
way. Teaching robots how to infer what a tool can be capable of remains
difficult. Ultimately, we want affordances to develop naturally during
learning: be it from watching others, from verbal instruction, or from
embodied experimentation. Task context is also an important aspect
of affordance learning: depending on the situation, a hammer can be
used as a lever, a paperweight, a missile, or well, a hammer. To under-
stand how context affects action planning, studying naturalistic scenes
and human activities jointly seems essential (cf. [2]).

Learning geon affordances that can be generalized to object affordances
seems a fruitful approach to automating affordance learning in robots,
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although it is early to say whether this or other recent approaches will
fare better. For example, deep neural networks use theirmultiple hidden
layers along with techniques to avoid overfitting to learn high-level per-
ceptual features for discriminating objects. The representations learned
by such networks are somewhat more biologically plausible than geon
decompositions, and thus may be more suitable for generalization (al-
though cf. [154] for recently discovered generalizationproblemswithdeep
neural networks).

3.5.3 Everyday action planning

Amajor obstacle in the way of robots performing everyday actions is the
translation of high-level, symbolic task descriptions into sensorimotor
action plans. In order to make such translations, one method would be
to learn the other way around: by observing sensorimotor actions, seg-
ment and classify the input.

Everyday action is characterized by sequential, hierarchical action sub-
sequences. Coffee and tea-making tasks, for example, have shared sub-
sequences such as adding milk or sugar. Moreover, the goal of adding
sugar might be accomplished in one of several ways: e.g. tearing open
and adding from a packet, or spooning from a bowl or box. Also, these
subsequences do not necessarily have to be performed in the same order
every time (with some constraints, of course). It is this flexibility and
ability to improvise that makes everyday action so natural for humans,
yet so hard for robots.

Cognitivemodels that represent hierarchical information have been pro-
posed (e.g. [18, 33]), but differ in the way they represent these hierar-
chies. One approach explicitly represents action hierarchies by hard-
coding them into the model—hardly something we can do for a general
autonomous robot—whereas the lattermodels hierarchy as an emergent
property of the recurrent neural network. More recently, the model put
forth by Kachergis et al. [76], uses a recurrent neural network with bi-
ologically plausible learning rules to extract hierarchies from observed
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sequences, needing far fewer exemplars than previous models.

3.6 Conclusion

In this chapter, we have discussed several concepts that are shared be-
tween cognitive robotics and cognitive psychology in order to argue that
the creation of flexible, truly autonomous robots depends on the imple-
mentation of algorithms that are designed tomimic human learning and
planning. Thus, there are many relevant lessons from cognitive psychol-
ogy for aspiring cognitive roboticists.

Ideomotor theory and its implementations such as tec provide elegant
solutions to action–effect learning. Robotic motor learning algorithms
that use motor babbling to bootstrap higher-order learning seem to be
promising, and require little a prioriknowledge givenby theprogrammer,
ultimately leading to more flexible robots.

Generalization of action plans is still a very difficult problem. Inferring
hierarchical structure of observed or learned action sequences seems to
be a promising approach, although the structure of everyday action ap-
pears to be nearly as nuanced and intricate to untangle as the structure
of human natural language—and less well-studied, at this point. Again,
we believe that biologically inspired learning models such as LeabraTI
can play a role in making robotic action more human-like.

The overlapping interests of cognitive robotics and cognitive psychol-
ogy have proven fruitful so far. Mechanisms like motor babbling and
affordance inference, which are extensively studied in humans, can pro-
vide robots with techniques to make their behavior more flexible and
human-like. We believe human inspiration for robots can be found at
an even lower level by incorporating biologically-inspired neural models
for learning in robots.
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CHAPTER4
Predictive movements and

human reinforcement learning
of sequential action

Most daily human behaviors can be seen as learned sequential
actions: fromwalking, cooking, and cleaning to speaking and
writing. Consequently, sequence learning has been studied

in different contexts ranging from implicit sequence learning [19, 29, 107,
149] to language acquisition [41, 136], typing [46, 52], and manual every-
day actions [18, 32]. In implicit learning research, an important paradigm
has been the serial reaction time (SRT) task, which requires participants
to press one of four buttons when cued by a corresponding light, in a se-
quence that repeats—unbeknownst to learners—every 10 presses [107].
Subjects trained on this repeating sequence developed faster reaction
times (RTs) over the course of training, as compared to a control group re-
sponding to a random sequence of stimuli. The SRT paradigm has been
cited as evidence for implicit learning, as subjects experiencing the re-

This chapter is an adaptation of the article de Kleijn, R., Kachergis, G., & Hommel, B.
(under revision). Predictive movements and human reinforcement learning of sequential action.
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peating sequence, despite showing faster RTs over time, report no ex-
plicit knowledge of the sequence when debriefed afterwards. However,
performance does suffer somewhat when participants must simultane-
ously perform a second task [107], suggesting that learning in the SRT
task does require some attentional resources or effort. The role of atten-
tion in the SRT task was further studied by Fu et al. [50], who demon-
strated that reward motivation can improve the development of aware-
ness of the sequence. They reasoned that reward motivation regulates
the amount of attention paid towards the stimuli, which in turn facili-
tates sequence learning. Additionally, Willingham et al. [170] found that
some participants achieved a degree of declarative knowledge after a
fixed training period in the SRT task, and that additional training re-
sulted in more explicit knowledge for many subjects, if not all. On bal-
ance, it seems that the SRT task is neither wholly implicit nor wholly
explicit.

The dissociation of implicit and explicit processes facilitating sequence
learning remains a topic of debate, yet learning remains robust under
high degrees of noise and complex structure in the sequences [29]. Com-
plex action sequences are notmere stimulus–response chains, but rather
require representing sequential context in order to learn [87]. Moreover,
human behavior is often thought of as predictive—indeed, many models
of sequential learning operate on a prediction-based error signal [18, 76].
As such, it is problematic that the discrete button presses in the SRT
paradigm cannot distinguish an anticipatory response due to correctly
predicting the stimulus (or a slow response due to an incorrect predic-
tion) from reactive (though perhaps pre-potentiated) responses based on
the cue. Truly predictive responses—that is, thosemade in the interstim-
ulus interval before the next response is cued—are not valid responses in
the SRT paradigm.

In this paper we introduce two modifications of the SRT paradigm that
allow us to naturally investigate both predictive and reactive responding
in human sequence learning. In Experiment 1, recognizing that actions
are continuous movements that can reveal the underlying dynamics of
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the cognitive processes driving them [147], we used a mouse-tracking
adaptationof the SRT task inwhich spatial locations are both stimuli and
response options [74, 75]. By tracking their movement before and after
the next target is cued, we investigated changes in predictive versus cued
responding over the course of the experiment [160]. Using this trajectory
SRTparadigm, we replicated the overall Nissen andBullemer [107] RT re-
sults, and moreover show sequential context effects—predictive bends
in response trajectories—along with different movement dynamics pre-
and post-cue.

In many implicit learning tasks such as artificial language learning and
the SRT paradigm, learning is dependent on recognizing some statisti-
cally reliable sequential structure in stimuli not under the learner’s con-
trol. However, everyday human action learning is often not character-
ized by processing a steady stream of stimuli, but by exploring the envi-
ronment (i.e. choosing actions) and receiving positive and negative feed-
back. Prediction is thus an essential element of reinforcement learn-
ing (RL), which is a well-established paradigm in the field of machine
learning [153] that was originally motivated by much earlier behaviorist
stimulus–response learning studies [144]. RL paradigms allow learning
agents to interact with a task solely through observations, actions, and
rewards. The rewards validate the actions, without the need for explicit
cueing or other forms of instruction. Thus, learning is exploratory, and
accomplished via trial-and-error. In Experiment 2, we further modified
the trajectory SRT paradigm by not cueing responses at all: participants
had to explore response alternatives until the correct one was found, re-
ceiving feedback (negative or positive points) at each response. We inves-
tigated sequence learning in this RL SRT paradigm that required predic-
tion rather than reaction, and found correspondences between success-
ful learners in this paradigm and in the reactive SRT paradigm in Experi-
ment 1. Using the RL paradigm allowed us to study the effect of rewards
on sequence acquisition inmore detail, yielding not only response times
but also errors over time. Thus, the current study adapted the trajectory
SRT task to allow for free movement and limited instruction, allowing
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learners to explore and learn from trial-and-error.

In addition, we attempted to capture human performance and error pat-
terns using reinforcement learning models. Due to the relatively simple
nature of the task, we investigated if simple (i.e. model-free) RL models
were sufficient to learn the repeating sequence by trial-and-error. We as-
sessed the RL data both in terms of earlier SRT data and in comparison
to three standard RL models. Overall, this study provides insights into
prediction error-driven learning of sequential action learning.

4.2 Experiment 1

The purpose of the first experiment was to replicate earlier findings by
Nissen andBullemer [107] using the trajectory SRTparadigm. This study
used four stimuli in a recurring sequence of length 10, horizontally dis-
played on a screen. Designating the stimulus positions from left to right
as numbers, the original sequence read 4–2–3–1–3–2–4–3–2–1. To fit
the trajectory paradigm the sequence was mapped to a square, left-to-
right and top-to-bottom (i.e. 1 = top left, 2 = top right, 3 = bottom left,
and 4 = bottom right). Participants moved the mouse from one stimu-
lus position to the next, corresponding to the sequence. We tested two
groups of participants, one trained on the recurring sequence and the
other trained on a random sequence. After ten blocks of training partici-
pants completed a generating task. This task consisted of the same basic
test conditions, except participants were asked to predict the sequence
instead of following it.

Nissen and Bullemer [107] originally found that participants showed im-
proved performance within the first block of training. Performance suf-
fered under dual-task conditions and varied as a function of serial posi-
tion in a pattern suggesting that learners were chunking the sequence
into two pieces. In total, the study’s results suggest that attention to the
sequence is crucial for both implicit and explicit sequence learning, but
that improved performance is not critically dependent on awareness of
the sequence. For the purpose of Experiment 1 only the initial experi-
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ment was replicated. We expected to replicate the basic improvement
of performance, as well as the chunking pattern that was observed. Like
Willingham et al. [170], we included a final generation task, in which par-
ticipants were asked to reproduce any action sequence they felt they had
learned during training.

4.2.1 Methods

Participants

Participants in this experiment were 22 Leiden University undergradu-
ate students who participated in exchange for 3.50 euros or course credit.

Apparatus and materials

The experiment was performed on a computer with a 21-inch monitor
with 60 Hz refresh rate and a resolution of 1024x768 pixels. Participants
used a mouse to move the cursor. The experiment was programmed in
Python with the PyGame library, and cursor position was sampled at ev-
ery screen refresh.

Procedure

Participantswere alternately assigned tooneof the twobetween-subjects
conditions according to the order they signed up. In the NB87 sequence
condition, participants were given a repeating sequence of 10 locations
corresponding to the Nissen and Bullemer [107] sequence (4–2–3–1–3–
2–4–3–2–1). In the random sequence condition, participants followed a
randomly generated movement sequence without repetitions (i.e. stay-
ing at the same location).

Participants were told to quickly and accurately move the mouse cursor
to whichever square turned green. After arriving at the highlighted stim-
ulus, another stimulus was highlighted after a 500 ms ISI. Participants
completed 80 training trials, each of which contained a series of 10 loca-
tions. Participants were given a rest break every 20 training trials. Fol-
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lowing the training phase, participants were asked to try to reproduce
any sequence they had learned.

Each block contained a series of 80 location stimuli (i.e. 10 repetitions
of the NB87 sequence) which participants had to track with the cursor.
The stimulus display consisted of four red squares (location 1 = upper left,
2 = upper right, 3 = lower left, 4 = lower right), displayed continuously.
Each stimulus was an 80 × 80 pixel square, separated by 440 pixels of
white space. As a participant’s cursor arrived at the green square, the
square’s colorwould change to red, like the other stimuli. Thenext target
stimulus in the sequence would change color after a 500 ms ISI.

After training, participants were given a generating task similar to the
training task. In the generating task, participants were asked to predict
where they thought the stimulus would appear and move the mouse to
that square. In other words, they were asked to complete the sequence
without being cued. A correct prediction would cause no color change
while an error would cause the correct continuation of the sequence to
appear in green, and participants were to move to the next location.

4.2.2 Results

Response times

Data were analyzed from the 22 participants (11 per condition) that com-
pleted the experiment. Median movement time to a target was 1,040
ms (SD: 1,776). Of 17,578 target arrival times, 84 were removed for being
slower than 2,816ms (median + SD). Each subject’smedianRT for correct
movements on each block was computed. Figure 4.1a shows the mean
of median RTs by block for the two conditions. Participants in both con-
ditions got faster over the course of the experiment, but participants in
the NB87 sequence condition improved more than those in the random
condition, replicating theNissen andBullemer [107] speedup. Therewas
a 25% reduction in reaction time over the course of training. These data
were analyzed by a two-way analysis of variance, which indicated signif-
icant main effects of condition (F(1, 20) = 31.3, p < .001) and block (F(7,
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(a)Mean of median RTs by block
show that both conditions sped
up over the course of Experiment
1, but that NB87 improved more.

(b)Mean number of errors by block
shows only the NB87 partici-
pants made an increasing num-
ber of errors.

Figure 4.1 | Experiment 1 RTs and error rates by block. Error bars show +/−1 SE.

168) = 6.3, p < .05), and a significant interaction effect (F(7, 210) = 14.7, p <
.01) between the two.

The accuracy data is shown in Figure 4.1b. Accuracy was high across
training blocks although it dropped over time in the NB87 group, partic-
ularly after the first three blocks of training. A two-way analysis of vari-
ance confirmed a significantmain effect of group (F(1, 20) = 36.7, p < .001)
and a significant interaction effect (F(9, 210) = 14.1, p < .001). These re-
sults are evidence of sequence learning, replicating the Nissen and Bulle-
mer [107] keypress-based results. However, there was a speed-accuracy
tradeoff in theNB87 condition: both accuracy andRTdroppedover time.
This was not present in the Nissen and Bullemer [107] results, but can
be explained through the difference in response execution. Key-presses
are intermittent and can only be made in response to a stimulus (pre-
stimulus responseswere not recorded), whilemousemovements are con-
tinuous and made constantly. Indeed, in the NB87 condition faster me-
dian hit RTs on a training block had a significant negative correlation
with the number of errors in that block (for the 67 of 110 blocks con-
taining errors; r = −.56, t(65) = −5.48, p < .001), showing a speed-accuracy
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Figure 4.2 | Proportion of predictive movements (i.e. movements made during
the ITI) by block in each condition. Random condition participants
re-center, whereas NB87 participants move towards other stimuli.
By block 4, NB87 participants were making more than half of their
movement predictively, and continued to move more predictively:
up to 57% by the end of the experiment. Error bars show +/−1 SE.

tradeoff. This is likely due to the trajectory SRT paradigm encouraging
prediction, allowing participants tomove freely while performing the ex-
periment.

Indeed, an analysis of the proportion of distance traveled before arriving
at the next target during the 500 ms interval before the cue appeared
(i.e. predictive movement), shown in Figure 4.2, shows that participants
in the random condition level off at making half of their movement, on
average, during the pre-cue interval, whereas by block 10, participants in
the NB87 condition predictively completed over 57% of their movement
in the 500ms interval before the next location is highlighted. This shows
that participants in the NB87 are predicting the next target location and
alreadymoving towards–getting over halfway there–before the next cue
appears.

A two-way ANOVA with block as between-subject and serial position
as within-subject factors showed significant main effects for block (F(9,
210) = 32.3, p < .001 and serial position (F(9, 100) = 10.2, p < .01). To de-
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termine whether participants became faster at the entire sequence or
rather learned some chunks better than others, mean RT was calculated
for each serial position. Similar to the Nissen and Bullemer [107] results,
RTs on the second, fifth and eighth serial positions are slow, which may
indicate that participants chunk the full sequence into two small, well-
learned pieces.

Performance on the generating task was poor, as participants on aver-
age did not manage to reproduce the sequence withoutmakingmany er-
rors (M = 5.77 errors). This indicates that, although training performance
showed evidence of sequence learning, participants were not explicitly
aware of the sequence. It is possible that participants would eventually
be able to reproduce the sequence if training were extended, as in Will-
ingham et al. [170]. Nissen and Bullemer [107] originally found that par-
ticipants were able to score around 80% correct on the generating task
after two blocks of ten trials. Although the current study only required
participants to complete one block of ten trials during the generating
task, participants did not show any improvement during the task.

Trajectory results

Figure 4.3 shows an example of mouse movements during a character-
istic trial from each condition. Participants in the random condition
(e.g. Figure 4.3a) tended to re-center the cursor after hitting a target, dur-
ing the 500 ms ISI. This strategy is not unreasonable under conditions
of uncertainty, as it minimizes the distance to potential targets, and the
next target cannot be predicted in the random condition. Centering be-
havior is shown in Figure 4.4a. Centering behavior is defined as the pro-
portion of time spent in the center 100×100 pixels of the screen between
reaching the previous target and current target reached. We deemed the
distinction between reactive and predictivemovements (asmade byDale
et al. [34]) unsuitable for the current analyses due to the random condi-
tion used to compare. As the experiment progressed, participants in the
random condition adopted a centering strategy thatminimized distance
to potential targets, while participants in the predictableNB87 condition
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(a) A trial from the random condi-
tion, in which the next location
was chosen at random, without
repeats. All 11 random partici-
pants adopted a similar strategy
of re-centering the cursor after
each response. This is optimal in
the sense that it was impossible
to know which location will be
highlighted next.

(b) A characteristic trial of a par-
ticipant’s movements during
the NB87 sequence, beginning
at location 4 (lower right) and
ending at location 1 (upper left).
These isomorphic trajectories
can be compared for context ef-
fects. Only 4 NB87 participants
showed centering movements in
the last half of training.

Figure 4.3 | Characteristic movements in one trial from the random condition
(a) and the NB87 condition (b). 𝑡0 = red, 𝑡𝑒𝑛𝑑 = yellow.

did not show this behavior. Participants in the random condition spent
an increasingly larger proportion of time in the center of the screen com-
pared to NB87 participants, F(9, 180) = 2.51, p = .010 for the interaction
between block and condition. Similar centering behavior has been re-
ported, but not quantified in the current context by Duran andDale [38],
and Dale et al. [34]. Interestingly, not all participants in the random con-
dition displayed this centering strategy, as evidenced by the large stan-
dard errors, especially in the final half of the experiment. Instead, partic-
ipants seemed to employ either a non-centering strategy or a centering
strategy in which they spent almost 25% of the ISI in the center of the
screen.
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(a) Proportion of time spent in the
center of the screen, defined as a
100 × 100 pixel square in the cen-
ter of the screen. Centering be-
havior in the random condition
is clearly visible. Error bars show
+/−1 SE.

(b)Distribution of centering behav-
ior for the last half of the experi-
ment for the random condition.
Two groups of participants can
be identified: those who center
during the ISI and those who do
not.

Figure 4.4 | Centering behavior during the ISI.

With learning, targets are predictable in the NB87 sequence condition,
thus participants are expected to show faster reaction times (RTs) as train-
ing proceeds.

The NB87 sequence, 4–2–3–1–3–2–4–3–2–1, contains only one identical
transition (3–2, a diagonal movement), although other movements are
isomorphic (e.g. 4–2 and 3–1). We examined the development of sequen-
tial context effects–deflections in response trajectory caused by the prior
or subsequent location–by plotting the average trajectories for the iso-
morphic movements: 4–2 vs. 3–1. In the experiment, these movements
are vertical, and we were interested in investigating the average deflec-
tions from the direct path from one stimulus center to another. We av-
eraged position across subjects for these movements and plotted their
deviation from the direct path (y-axis) over time (x-axis) in Figure 4.5,
split by condition, and for each half of training. Early in training, some
centering behavior is apparent in both conditions, most notably in the
4–2movement. Thismovement also clearly shows the absence of center-
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(a)Horizontal deviation during
movement (i.e. over time) in
early training. Both conditions’
trajectories show some centering
behavior, bending towards the
middle (i.e. up for 3–1, down for
4–2). NB87 trajectories show less
deviation.

(b)Horizontal deviation during
movement in late training. The
random condition shows more
centering behavior, while the
NB87 trajectories show little
variation except at the end
of the movements when they
diverge, showing prediction of
the subsequent stimulus.

Figure 4.5 | Averaged trajectories for vertical movements 4–2 and 3–1.

ing behavior late in training for the NB87 condition. The 4–2movement
also shows participants tended tomove towards the left after completing
the movement. As the next target in the sequence is 3, which is situated
to the bottom left of the current target, this indicates they were begin-
ning to move towards the subsequent target. These trajectory analyses
corroborate that NB87 participants were making increasingly predictive
movements, bending towards the next stimulus position based on their
contextual knowledge.

4.2.3 Discussion

In summary, Experiment 1 replicated the results from the Nissen and
Bullemer [107] serial button-pressing task with a mouse-trajectory ver-
sion of the task, showing that participants learn regularities in the stim-
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ulus stream and exhibit speeded responding, even though they are bad
at explicitly reproducing the sequence. We have also demonstrated the
advantage of the trajectory-tracking SRT task: because participants can
move the mouse cursor during the interstimulus interval—before the
next cue has appeared—we can distinguish predictive movements (to-
wards the correct next stimulus) from post-cue speed-ups. Indeed, we
found that participants in theNB87 sequence conditionmade an increas-
ingly large proportion of their movement during the 500 ms pre-cue
interval. Also, we found centering behavior similar to Dale et al. [34].
However, in addition to their findings we compared centering behav-
ior between the random and NB87 condition, showing that participants
in the random condition show significantly more centering behavior,
which can be explained by uncertainty in prediction. Having established
that prediction plays a role in the speed-up seen in the SRT-trajectory
paradigm, in Experiment 2 we made prediction the essential goal of the
task, requiring learners to move to the next location without a cue, and
only giving feedback upon making a response.

4.3 Experiment 2

The results of Experiment 1 show that spatial sequences can be learned
through cued learning, replicating a huge body of literature on the SRT
task introduced by Nissen and Bullemer [107]. However, sequence learn-
ing in everyday action can hardly be considered cued. Instead, humans
are in constant interaction with their environment, exploring it and re-
ceiving positive or negative feedback on their taken actions. In Exper-
iment 2, we adapted the paradigm of the trajectory SRT into an explo-
ration paradigm in which participants actively try out the alternative op-
tions and receive feedback (reinforcement or punishment). More specif-
ically, the goal of Experiment 2 was to examine reinforcement learn-
ing within the trajectory SRT paradigm, and to compare human perfor-
mance to basic baseline models. The trajectory SRT task was adapted to
no longer cue participants with the next target position, forcing them to
instead explore the response alternatives until the correct onewas found.
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Moving the mouse cursor from the previous target to another response
alternative resulted in a reward (+1) or penalty (−1) that was accumulated
throughout the experiment and displayed continuously. Upon reaching
a valid target, it would change color to green, add to the score by 1, and al-
low the participant to continue exploring. Reaching for an invalid target
caused it to change to red, subtract from the score by 1, while the cur-
sor was relocated to the previously occupied target, effectively resetting
the participant’s progress. Target validity was determined by a recurrent
sequence, taken from the Nissen and Bullemer [107] study, and adapted
to fit the trajectory SRT paradigm. Designating the stimuli as numbers
from left to right, top to bottom, the sequence read 4–2–3–1–3–2–4–3–
2–1.

4.3.1 Methods

Participants

Participants in this experiment were 13 Leiden University students and
employees (agedM = 23.9, SD = 6.4) who participated in exchange for 3.50
euros or for course credit.

Procedure

Participants were instructed that they would be presented with four tar-
get squares in the corners of the screen which they were to explore by
moving the mouse, each time resulting in either a gain or loss of one
point. Participants were told to try to maximize their score, which was
displayed continuously at the top of the screen. Unbeknownst to the
participants, only one of the four targets would be valid at any given
moment, but all were colored blue, so the target could not be visually
distinguished. Upon reaching a valid target, its color would change to
greenmomentarily and the scorewould increase by one. The participant
would then be able to continue exploring for the next target. Arriving at
an invalid target caused it to change to red momentarily and the score
was decreased by one, while the cursor was relocated to the previously
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occupied target. Thus, although there were no instructions explicitly in-
dicating it, participants likely inferred that they had chosen the incorrect
stimulus, and should choose one of the remaining two—if they also as-
sumed the same target was never repeated immediately, which was true.
In the absence of a previous target (i.e. at the beginning of the experi-
ment or after a rest break) the cursor was moved back to the middle of
the screen.

Unbeknownst to the participants, each trial consisted of a series of 10 tar-
gets (labeled 1–4 left-to-right and top-to-bottom: 4–2–3–1–3–2–4–3–2–1)
that repeated continuously, with no indication where one trial stopped
and the next began. Participants completed eight blocks of 10 such tri-
als, with a short rest break after every two blocks (i.e. 200 correct move-
ments). A participant who somehow knew the sequence before enter-
ing the experiment and never made an error would therefore make 800
movements to valid targets, receiving the theoretical maximum of 800
points. At worst, a participant with no memory of even the previous tar-
get they had triedmaymake an infinite number of errors, andmay never
finish the experiment. Assuming enoughmemory to not repeat the same
invalid target more than once when seeking each target (i.e. an elimina-
tion strategy), a participant using this elimination strategy would expect
on average to score 0 points, as the expected value (EV) of completing
one movement successfully is 0.¹ Note that participants were not told
that there was a single deterministic sequence, let alone details such as
how long the sequence was.

4.3.2 Results

The data from all 13 participants were analyzed. The distribution was
bimodal, with four participants collecting less than 300 points and all
but one of the rest accumulating more than 500 points each. Given the
bimodal score distribution, a median split was used to divide the par-
ticipants into high-performing (≥ 526; 7 people) and low-performing (<

¹33% of chance success in one try (+1), 33% chance of success in two tries (−1+1), and
33% chance of success in three tries (−1−1+1).
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526; 6 people) groups. In the high-scoring group, participants achieved
almost flawless performance after only approximately 30 trials, with a
final mean score of 652 (max: 725), while the low-scoring group only
gradually increased their score (final mean score: 287). The remaining
analyses were carried out for each group in an attempt to understand
the great variability in performance—and the impressive success of the
high-scoring group.

Response times

The overall median response time (RT) for all stimulus arrivals was 1,401
ms (SD = 4,980). Of 10,400 correct target arrival times (median = 1,078
ms, SD = 2,216), 317 (3%) were trimmed for being too slow (median + 2
⋅ SD). Of the 4,117 incorrect stimulus arrival times (median = 2,397 ms,
SD = 8,401), 100 were trimmed for being too slow (2.4%). Each subject’s
median RT for correct and incorrect movements was computed for each
10-trial block. Figure 4.6 shows themean of subjects’ median correct and
incorrect RTs over the experiment, split into high- and low-performing
group. RTs for correct movements improve in both groups during the
first few blocks, but the high-scoring group speeds up more than the
low-scoring group. Figure 4.6 also shows that the rare incorrect RTs for
the high-performing group get slower over the course of the experiment,
whereas the low-performing group’s incorrect RTs only increase a bit.
The strikingly slow errors of high-performing participants, compared to
errors that are barely slower than correct movements for the low per-
formers may indicate a different mode of behavior. A possible explana-
tion is that low performers are simply not trying to learn a sequence, or
do not expect it to to be deterministic, whereas high performers explic-
itly learn the sequence, and when they are uncertain they must pause to
try to recall the next target.

Accuracy

The mean number of errors made over the entire experiment was 19.8
(SD = 21.3) for the high-scoring group, and 63.5 (SD = 11.9) for the low-
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Figure 4.6 | The mean of subjects’ median correct RTs by block shows that high-
performers’ (left panel) RTs improvedmore than the low-performers’
(right panel) RTs over training. The mean of subjects’ median incor-
rect RTs by block shows that the high-performing group’s incorrect
RTs actually increased, whereas the low-performing group’s stayed
roughly the same across the experiment. Error bars show +/−1 SE.

scoring group. Over time, the number of errors decreased especially for
the high scoring group. Examining the errors made by each group of
participants according to where they were in the sequence revealed that
for both groups the fifth stimulus was particularly challenging. This is
reflected in the mean number of errors for each group (see Figure 4.7b,
as well as in the mean RT to the target by sequence position (see Fig-
ure 4.7a).

Comparison to Experiment 1

The pattern we observe in the accuracy and response time data bears
some resemblance to the pattern observed in Experiment 1, despite the
use of cues in that experiment. Although the RL SRT task in Experiment
2 was fundamentally different from the cued SRT task in Experiment
2, the same sequence was used in both experiments. We can therefore
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(a)Mean of subjects’ median correct
response times by median split
and sequential position. The cor-
rect RTs for the two performance
groups were not significantly cor-
related, r(8) = .17, p = .65.

(b) The mean number of errors
made at each position in the
sequence split by performance
group. The errors are highly
correlated, r(8) = .79, p < .01.

Figure 4.7 | RTs and error rates by median split and sequential position. Note
how much worse sequence position 5 was for the low-performing
group relative to the next-worst position (8). Low-performers
showed twice as many errors in position 5 as in 8, while the high-
performing group showed only a 25% increase in errors. Error bars
reflect +/−1 SE.

compare the scaled response time and accuracy data from the two exper-
iments in Figure 4.8, which shows a similar pattern across experiments.

We examined errors and correct response times by their sequential posi-
tion, and compared these to RTs from Experiment 1. Overall, there is a
significant correlation r(8) = .88, p < .001, between correct RTs from the
RL experiment and RTs from the cued SRT experiment. Comparing the
cued RTs to the high- and low-scoring groups separately, revealed a dif-
ference between the groups. The cued SRT RTs do not correlate signifi-
cantlywith the high-scoring group’s RTs, r(8) = .51, p = .13, but do correlate
significantly with the number of errors made in the RL experiment, r(8)
= .83, p < .01. The low-scoring group shows the opposite pattern. The
cued SRT RTs correlated significantly with the RL correct RTs, r(8) = .80,
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4.4. Models

Figure 4.8 | Scaled mean number of errors in Experiment 2 (RL) against scaled
correct RTs from Experiment 1’s cued SRT paradigm (NB87) by se-
quence position. The number of errors per position and the correct
RTs are significantly correlated, r(8) = .64, p < .05. Error bars show
+/−1 SE.

p < .01, but not with the RL errors, r(8) = .57, p = .09. Comparing the two
groups with each other revealed a significant correlation in errors, r(8) =
.79, p < .01, but no significant correlation in RT, r(8) = .17, p > .05.

4.4 Models

Modeling environment

To compare human sequence acquisition with existing reinforcement
learning models, we implemented three reinforcement learning models
and a simple negative recency biased model (SCM; [19]) using PyBrain
[139]. The environment contains all data regarding the targets, which
it passes to the task, which in turn passes the current state of the envi-
ronment to the agent, which selects the relevant action. The action is
evaluated by the environment, which updates itself and passes a reward
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Experiment

Task
Environment

Agent

rewardactionobservation

Figure 4.9 | Overview of the experimental setup for the reinforcement learning
models. Each plated component is a PyBrain class, which interact
with each other according to the arrows to simulate the same trial-
and-error learning process that humans undergo.

to the agent. The reward is used to update the agent’s strategy, and the
model continueswith the next step. Wedefined the reinforcement learn-
ing SRT task in this framework for our simulations, see Figure 4.9 for the
specific design.

As in the human experiment, the data regarding the targets was only
partially visible to the agent. The task acted as a veil through which a
certain state would be observable. To a human participant, the current
position in the sequence would be obvious, as it was colored differently
from the other stimuli. At a minimum, the immediately prior occupied
position was probably obvious as well, readily available in memory. Posi-
tions preceding that, however, might not be reliably accessible in mem-
ory. In the sequence we used (4–2–3–1–3–2–4–3–2–1), following Nissen
and Bullemer [107], each position’s identity is fully determined by the
previous two positions. That is, one could perfectly predict the next po-
sition given only the two prior to it—assuming one has determined that
there is a deterministic, periodically repeating sequence. The RL mod-
els we use rely on a set of third-order observations, assuming that the
models know their current position and the two prior positions.
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On-policy vs. off-policy learners

The reinforcement learning models differ in their learning component,
which is contained within the agent and maintains a mapping between
input states and action-values. For each given input state there are three
action-values, corresponding to the number of movements that can be
madeby the agent. After receiving a reward, the agent updates the action-
values using its learning algorithm. We tested three learning algorithms:
SARSA [133], standard Q-learning, and Q(𝜆)–Q-learning with eligibility
traces [168].

Off-policy learners such as Q-learning learn the value of the optimal pol-
icy independently of the agent’s actions. They learn about the greedy pol-
icy, updating old action-values using the maximum of all action-values
for the current state, while—depending on the action selection policy—
it can stochastically select actions and explore.

The update rule in Q-learning updates Q for any state-action pair <𝑠, 𝑎>
using an experience tuple <𝑠, 𝑎, 𝑠′, 𝑟>, with learning rate 𝛼 ∈ [0, 1] and
discount factor 𝛾 ∈ [0, 1]:

𝑄′(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑄[𝑠′, argmax
𝑎′

(𝑄[𝑠′, 𝑎′])]) (4.1)

In contrast, on-policy learners (e.g. SARSA) learn the value of the policy
actually being carried out by the agent: instead of the maximum, they
also take into account the action that was selected for the current state.
In other words, it does not use the maximum attainable reward in state
𝑠′ to update the Q-table, but instead chooses 𝑎′ using the same policy it
used to choose 𝑎. It therefore needs the experience tuple <𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′>:

𝑄′(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑄[𝑠′, 𝑎′]) (4.2)

The eligibility traces in Q(𝜆) are temporary records of an event (e.g. an
action or state) that help with temporal credit assignment by adding a
trace to events that are eligible for learning updates. Theoretically, eli-
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gibility traces link RL temporal difference methods (like Q-learning and
SARSA) to Monte Carlo methods.

Simple condensator model

To investigate if perhaps an even more elementary mechanism could be
responsible for participants’ behavior, we also included a condensator
model, introduced by Boyer et al. [19], and inspired by Dominey [37]. In
this model, each target is assigned a corresponding unit, with activation
ranging from .0 to 1.0. Summed activation across units is always 1.0, and
all units were initialized at .25. Each step, the unit with the highest acti-
vation is chosen, and its activation is then distributed equally among the
other three units.

These reinforcement learning models were chosen as simple baselines
that differ somewhat in exploratory behavior and learning speed, and
thusmay be suitable to compare to human behavior which varied widely.
As with the human participants, the simulated SARSA and Q-learners
were tasked with iterating over the repeated sequence until the success-
ful completionof 800movements. For eachmodel, a grid search over the
parameters (learning rate 𝛼 and discounting factor for future rewards 𝛾)
was used to find optimal values.

Modeling results

Thebest parameters found for the SARSAmodel (𝛼 = .01, 𝛾 = .98) achieved
a mean final score of 183 (SD = 292). The best parameters found for Q-
learning (𝛼 = .38, 𝛾 = .98) yielded amean final score of 346 (SD = 75), while
Q(𝜆) reached a mean final score of 369 (SD = 53, parameters: 𝛼 = .001, 𝛾 =
.95, 𝜆 = .99). However, despite considerable learning by the end of the ex-
periment, none of the models performed as well as the high-performing
human learners, who averaged a final score of 652. Even the maximum
scores achieved by the models were below the high-scoring humans av-
erage or maximum (human = 725; Q-learning = 473, Q(𝜆) = 440; SARSA
= 477).
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Figure 4.10 | RL task scores of the different models tested. A hybrid Q(𝜆)–SCM
model performs better than all of the other RLmodels, but none of
the models reach human performance.

We hypothesized that an RL model combined with a negative recency
bias in early learning (with high levels of uncertainty) could perhaps yield
better results. Using this technique, humans may be using a recency
avoidance strategy in early learning, which would become less necessary
after the sequence has been acquired. To investigate, we tested a hybrid
model in which the SCMmodel would choose the next target when cer-
tainty (expected action value) of the RLmodel was low (defined by an op-
timized parameter: .61). This hybrid Q(𝜆)–SCM model averaged a final
score of 604 (SD = 4). Results from allmodels are displayed in Figure 4.10.

Although these common RL models were unable to reach human-level
performance, we thought it worthwhile to examine whether their error
patterns resemble those of people. the mean number of errors made by
each model at each position in the sequence, as was done earlier for hu-
mans. The errorsmade by the SARSA andQ-learning algorithms did not
vary much by sequence position. Q(𝜆) made more errors in the middle
of the sequence, but still did not resemble human error patterns.
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4.5 General discussion

This paper introduced the trajectory serial reaction time task and found
that it replicates the results of Experiment 1 ofNissen andBullemer [107].
Thus, while the trajectory SRT paradigm retains the essence of the orig-
inal SRT, it also affords the opportunity to measure a variety of more
detailed statistics about subjects’ continuous motions. Response trajec-
tories can reveal uncertainty, predictive movements, reversals in deci-
sion, and other phenomena that may reveal the dynamics of the learn-
ing mechanisms at work. The present study examined the average tra-
jectories of two isomorphic vertical movements that appear in the NB87
sequence, as well as in the random condition. The twomovements have
different subsequent stimuli in the NB87 condition, and were thus ex-
pected to show a sequential context effect: as participants learn where
the next stimulus will be, they may start to move towards this response
even as they finish the previous movement–as a piano player may reach
for the next key while the current one is being sustained [145].

We found not only that the expected context effects had developed by
late training, but also evidence of possibly strategic adaptive behavior
in the random condition. Many participants in the random condition
developed a re-centering approach after each response, waiting for the
next (unpredictable) stimulus to appear. In a way this behavior is opti-
mal, since the center of the screen is as close as possible to all stimuli.
Some participants in both conditions showed this behavior to a limited
extent early in training, but those trained on theNB87 sequence lost this
behavior over time as they learned to predict the location of the subse-
quent stimulus–hinted at by the decrease in reaction times in this con-
dition, and confirmed by the deviation in average trajectory towards the
subsequent stimuli. Of the participants in the random condition, two
groups could be identified: a centering group and a non-centering group.
This might reflect differences in strategy similar to Tubau et al.’s [160]
stimulus-based vs. plan-based control mode, or Dale et al.’s [34] reactive
vs. predictive movements. How these different behavioral strategies are
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related could be the focus of future research.

Overall, the behavioral results show a striking similarity to the Nissen
and Bullemer [107] results. The pattern of reaction times over sequence
position was strikingly similar to the pattern observed in the original
study, although the movement reaction times were higher throughout
training and participants showed less overall improvement. This can be
explained through the mechanics of the paradigm: mouse movements
require more time to be executed than single keypresses, and require
some fine motor control and error correction. The sensitivity of the
mouse can be adjusted to achieve a balance between RT and error; we
used a very low sensitivity to reduce overall noise. Participants in the
NB87 sequence condition nonetheless showed an increased number of
errors during training, indicative of a speed-accuracy trade-off which
was not present in the Nissen and Bullemer [107] results. It is possible
that extending the training would eventually lead to a reduction of er-
rors, as participants would gradually become aware of the sequence.

In Experiment 2, we adapted the trajectory SRT paradigm to be a rein-
forcement learning task. The task proved to be more challenging for
some than for others, as indicated by differences in response times and
accuracy. Those data also suggest that participants adopt different strate-
gies, and tried to adapt when they were not learning. These findings are
similar to those in Experiment 1: RT and accuracywere correlated across
experiments. In particular, data from the high-performing participants
compared remarkably well to Experiment 1, despite the task differences.
The most notable similarity was the difficulty participants experienced
with the fifth stimulus position.

A bimodal distribution of scores showed that half of the participants did
really well, as they made very few errors after roughly 10 repetitions of
the sequence. Block-by-block analysis of the response times showed a
difference in speed-up across the experiment between groups, indicat-
ing the high-performing group learned the sequence much better than
the low-performing group. The difference in response times to incorrect
targets suggests the two groupsmight have used different strategies. The
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rare but increasingly slow errors in the high-performing group suggest
more time was spent figuring out the next stimulus, while the persis-
tent and relatively fast errors of the low-performing group suggest par-
ticipants may have adopted a probabilistic view of the task, randomly
trying options instead of trying to learn a deterministic pattern.

Despite the major difference of the absence of cueing of the next re-
sponse, performance in the RL experiment was quite comparable to per-
formance in the cued SRT experiment. The pattern of correlations in-
dicated a difference between the low- and high-performing groups that
was not immediately obvious. Overall, the cued SRT response times are
correlated to RTs and accuracy data from the RL experiment, whereas
this is not true for both the low- and high-performing groups separately.
We expect this is due to different strategies among groups, leading to a
different pattern of speed and accuracy at different sequence positions.

In addition to our behavioral analyses, we tested three different rein-
forcement learning models to see if human behavior could be explained
by simple, model-free responses to sequential stimuli. High-performing
humans were still far better than the models, which on average scored
roughly as well as the low-performing humans. SARSA had quite vari-
able performance, but was lowest on average, while Q-learning with el-
igibility traces fared the best. Examining the models’ performance by
sequence position showed they did not correspond well with human er-
rors in either group. This suggests that simplemodel-free reinforcement
algorithms do not capture the process by which humans learn action
sequences, even though they eventually converge on a proper solution.
One explanation for this is the fact that the task andmodels used in stud-
ies like this do not fully capture the essence of human action learning,
which is goal-directed by nature. Interestingly, a hybrid model in which
a simple negative recency bias guides behavior in early training outper-
forms all reinforcement learningmodels. Future studies could shed light
on the role of goals in the acquisition of such action sequences, and the
way learning shifts from simple to more complex mechanisms, as has
been shown to exist for single-step action (see, for example, Hommel
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et al. [65] for one proposedmechanism of goal-directed action). The pro-
cess by which humans acquire action sequences is subtle, can yield quite
variable performance, and is not easily captured by simple learning algo-
rithms. However, studying it is important, as most of human behavior
is essentially sequential in nature.
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CHAPTER5
Predicting action plan formation

in sequential reactive and
reinforcement learning

Almost all types of everyday action can be considered sequential.
From making coffee to using the bathroom, these complex ac-
tions consist of subactions that are completed one after another.

The mechanisms by which we learn such action sequences and execute
them has been the subject of investigation for many decades. An early
theory by James [69] argued that elementary action units in a sequence
are triggered by the sensory effects of the preceding unit. However,Mün-
sterberg [102] noted that such an associative account is insufficient to
explain sequential action because a directional element is required to
successfully execute subactions in the correct order. Instead, he argued
that the learning of action sequences relies on the acquisition of a mo-
tor program. Tubau et al. [160] suggested that these two approaches are

This chapter is an adaptation of the article de Kleijn, R., Kuipers, M., Kachergis, G., &
Hommel, B. (in preparation). Predicting action plan formation in sequential reactive and rein-
forcement learning.
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notmutually exclusive, but in fact reflect two different executive control
modes that—under specific circumstances—can be strategically chosen.

5.1.1 Stimulus-based and plan-based control

Tubau et al. [160] compared James’s stimulus-driven account of sequen-
tial action with the prepared reflex concept of Hommel [61], and referred
to it as stimulus-based control. This type of executive control is charac-
terized by the automaticity by which stimuli are attended to. Due to the
highly automatized response to stimuli, the sequence itself is often not
learned. Instead, what is learned is a strategy of delegating control to ex-
ternal stimuli [160]. In other words, people learn how to respond quickly
to incoming information. Plan-based control, on the other hand, is as-
sumed to rely on action plans, which are structured sequences of action
effects [62, 96]. In contrast to stimulus-based control, representations in
plan-based control are internally generated.

There is evidence to suggest that sequence learning does not rely on the
prediction of sequences of external stimuli, but the prediction of themo-
tor action to be performed. In other words, participants do not learn
stimulus–event sequences, but in fact learn sequences of responses. As
such, it is thought that sequence learning involves a shift from stimulus-
based control to plan-based control, implying the generation of action
plans by which participants can predict a sequence of responses even in
the absence of stimuli [60, 104].

Tubau et al. [160] investigated this shift and its modulators in a compre-
hensive study consisting of five experiments. In a serial reaction time
paradigm in which participants had to respond to the letter X appearing
on the left or right side of the screen and responding with the appro-
priate hand, they presented participants with a repeating sequence of
stimuli. In this sequence, location switches occurred four timesmore of-
ten than location repetitions, but stimuli were equally often presented
to the left or right. They found that participants’ controlmodewas influ-
enced by instruction type, where intentional instruction (i.e. telling par-
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ticipants that the shown sequence is deterministic, and is to be learned
explicitly) induced plan-based control. Participants’ control mode was
assessed by the size of the frequency effect, which should be smaller un-
der plan-based control. Participants having received intentional instruc-
tions showed a smaller frequency effect, which was attributed to the for-
mation of an action plan. Also, these participants were more likely to
have acquired explicit knowledge of the sequence, as they were able to
verbally report the correct sequence at the end of the experiment¹.

However, plan-based control is not just a strategy that participants em-
ploy at their own choosing—task structure and demands have a large in-
fluence. For example, removing stimulus–response compatibility by us-
ing symbolic stimuli instead of spatially compatible stimuli seems to lead
to plan-based control, as is evidenced by the elimination of the frequency
effect. Also, playing irrelevant sounds that hamper symbolic encoding of
the sequence prevents the successful formation of an action plan, leaving
stimulus-based control the only viable mode of executive control [160].
In some circumstances (for example the exploratory paradigm discussed
later), stimulus-based control is not a feasible strategy due to the lack of
stimuli.

5.1.2 Studying sequence learning

The acquisition of action sequences has been the subject of study in do-
mains ranging from linguistics [41, 136] to everyday action [18, 32], with
perhaps the serial response time task (SRT, [107]) being the most popular
paradigm.

In the SRT task, a visual stimulus appears in one of four locations, hori-
zontally distributed on a computer screen. Four buttons are located be-
low the four possible stimulus locations, and participants are asked to
press the button below the visual stimulus that appears as quickly as pos-
sible. In their original study, Nissen and Bullemer [107] compared a con-

¹Although it should be noted that explicit sequence knowledge is not at all necessary
for learning (see e.g. [89, 107])
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dition using random stimulus locations with a condition using a repeat-
ing, deterministic sequence, and found evidence for implicit sequence
learning: participants in the deterministic sequence showed larger re-
duction in response times than participants in the random condition.

Most of the sequence learning literature has focused on cued paradigms
such as the SRT task, in which participants have to respond to sequences
of stimuli that appear. However, it seems clear that sequence learning
in daily life is often not learned by simply chaining stimulus–response
associations [87]. Instead, acquiring new action sequences is better char-
acterized as exploratory, in which people try several alternatives before
discovering the correct one.

In one recent study, Kachergis et al. [77] adapted the SRT task to a re-
inforcement learning paradigm. In this task, participants were not cued
by the stimuli, but had to explore the four alternatives to find out which
one was correct. Participants could collect points by predicting the next
stimulus correctly. A strong correlation was observed between behavior
on the SRT task and its reinforcement learning adaptation in terms of re-
sponse time and accuracy per sequence position. Interestingly, the final
scores were bimodally distributed, suggesting that participants used dif-
ferent strategies. Although purely stimulus-based control is impossible
in this paradigm, it is clear that the accuracy of participants’ action plans
showed a large range of variance. Although their study investigated both
the SRT task and its reinforcement learning adaptation, the study had a
between-subject design, making it impossible to examine characteristics
of participants that produce effects that are common to both tasks.

5.1.3 The current study

In scenarios where both stimulus-based control and plan-based control
are possible, participants may strategically (or perhaps even randomly)
choose an executive control mode. In the current study, we investigated
predictors of executive control mode in an SRT task and action plan for-
mation in a reinforcement learning task in which plan-based control is
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the only control mode available.

Earlier research has shown that visuospatial working memory capacity
predicts both implicit and explicit sequence learning performance [16,
17]. In this study, we will look at visuospatial working memory capac-
ity and IQ measurements as predictors of executive control mode that
reflect cognitive limitations. One possibility would be that some partic-
ipants simply do not have the cognitive capacity to form (long enough)
action plans. Another possibility would be that control modes are cho-
sen strategically or preferentially. The formation of an action planmight
reflect individual differences in the need for structure. That is, some
people may prefer to actively predict the future according to a plan or
schema instead of waiting for stimuli to arrive, while others might want
to delegate control to the external environment [105].

5.2 Method

5.2.1 Participants

Forty undergraduate and graduate students (13 males, 27 females) were
recruited from Leiden University. Participants either received course
credit or were paid 6.50 euro for participation. All participants had nor-
mal or corrected-to-normal vision. The total duration of the experiment
was approximately 90 minutes.

5.2.2 Materials

In order to assess possible predictors of participant behavior, several tasks
and questionnaires were administered.

Fluid intelligence

Fluid intelligencewas estimated using a shortened, 10-minute version of
the Raven’s Standard Progressive Matrices (SPM) test [124]. It measures
the individual’s ability to formperceptual relations and for analogical rea-
soning. It is awidely used test tomeasure fluid intelligence, independent

89



5. Predicting action plan formation

of language and schooling, and is considered to have excellent reliability
[24]. The number of correct responses in 10minutes over all participants
are normalized to a distribution with mean 100 and SD 15, resulting in
an estimated IQ score.

Locus of control

To investigate the influence of an individual’s locus of control on control
mode, we administered the Levenson Multidimensional Locus of Con-
trol Scales [88], a 24-item questionnaire consisting of three subscales: (1)
internality, (2) powerful others, and (3) chance. People who have an in-
ternal locus of control tend to perceive reinforcement as a result of one’s
behavior, while people with an external locus of control tend to perceive
it as a result of factors beyond one’s control. It could be hypothesized
that people with an internal locus of control are more likely to engage
in plan-based control, while people with an external locus of control are
more environment-driven.

Personal need for structure

To assess participants’ tendency to seek out structured ways of dealing
with the world, we administered the Personal Need for Structure scale
[158]. This questionnaire quantifies people’s need for simple structure,
and consists of 12 statements (e.g. “I enjoy having a clear and structured
mode of life.”) which the participant can either agree or disagree with,
rated on a 6-point scale. It has been shown to have good reliability and
validity [105]. It has been hypothesized that personal need for structure
reflects a strategy for simplifying the world due to a general lack of intel-
lectual abilities, but the correlation between the PNS scale and IQ seems
to be minimal [105]. It is therefore more likely to reflect a strategy that
participants can choose to employ, and participants who score high on
this measure could be more likely to actively search for structure in ac-
tion sequences.
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Visuospatial working memory

Weassessed visuospatial workingmemory using the computer task from
Bo et al. [17]. In their study, which used an adaptation of the visual work-
ing memory task used by Luck and Vogel [92], a relationship was found
between visuospatial working memory capacity and performance on a
serial reaction time task. In this task, participants were presented with a
sample array for 100ms followed by a blank screen delay of 900ms, after
which a test array was presented for 2000ms. Participants were asked to
determine whether the test array was different or similar to the sample
array by pressing either D or S. Arrays consisted of 2–8 colored circles,
and for each trial the test array was either the same as the sample array
or different with one of the colors changed. Visuospatial working mem-
ory capacity was calculated as K = array size × (hit rate − false alarm rate).
The average K across all array sizes was computed to estimate visuospa-
tial working memory capacity [17]. Participants completed 140 trials in
total.

Trajectory SRT task

The trajectory SRT task is an adaptation of Nissen & Bullemer’s serial
response time task [107]. It maps the four buttons of the original SRT
task to four squares located on the corners of a computer screen, requir-
ing participants to move the mouse cursor to each square that lights up
[74, 75]. Unbeknownst to participants, the sequence is a repeating se-
quence of 10 items. Speed-up over time compared to a condition with a
random sequence is thought to reflect implicit learning of the sequence.
In the current study, we used a different sequence (3–2–4–2–1–4–3–4–2–
1) than in the original SRT task to prevent carryover effects between this
task and the RL task. The complete task consisted of 800 movements
(80 repetitions of the 10-item sequence).

In order to assess first-order frequency effects, the sequencewas designed
in such a way that it consisted of 8 straight movements, and 2 diagonal
movements. After completing the 800 movements, participants were
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asked if they noticed any structurewithin the experiment, and if so, were
asked to reproduce the sequence.

Reinforcement learning task

The RL task is an adaptation of the trajectory SRT task (see above), with
the difference being that the next stimulus is not cued, but to be discov-
ered by the participant through trial-and-error [77]. Participants moved
to one of the four squares, and received feedback by the square turning
green in the case of a correctmovement, andbeing returned to the center
of the screen in the case of an incorrectmovement. Points were awarded
for correctmovements (+1 point), anddeducted for incorrectmovements
(−1 point), and participants were instructed tomaximize their amount of
points. The amount of points collected was continuously visible to the
participant, their progress in the task, however, was not. The task ended
after 800 correct movements of the original SRT sequence (4–2–3–1–3–
2–4–3–2–1).

A participant having knowledge of the sequence before starting andwho
never made a mistake would therefore make 800 movements directly to
valid targets, receiving a theoretical maximum score of 800 points. A
participant with no memory of even the previous target they had tried
could make an infinite number of mistakes, never finishing the experi-
ment. If participantswould not repeat the same invalid targetmore than
oncewhen seeking each target (i.e. an elimination strategy), a participant
would expect on average to score 0 points, as the expected value of com-
pleting onemovement successfully is 0 using this strategy². Participants
were not told that therewas a repeating deterministic sequence, let alone
details such as how long the sequence was.

²33% chance of success in one try (+1), 33% chance of success in two tries (−1+1), and
33% chance of success in three tries (−1−1+1).
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5.2.3 Design and procedure

All participants performed both the trajectory SRT task, as well as the
reinforcement learning task. The order of the two tasks was counterbal-
anced over participants, and the two tasks used different sequences to
prevent carryover effects.

Participants were seated at a computer after having given their informed
consent. All subsequent tasks were performed on the computer. First,
the Personal Need for Structure questionnaire was completed, followed
by the Levenson Multidimensional Locus of Control questionnaire, the
visuospatial working memory task, and Raven’s SPM. After this, partici-
pantswere given a 5-minute break. Participants then completed, in coun-
terbalanced order, the trajectory SRT task and the reinforcement learn-
ing task.

5.3 Results

5.3.1 Trajectory SRT task

Data preparation

Prior to analysis, movement times >1500 ms were removed, and the ex-
periment was divided into 10 blocks of 8 sequence repetitions. As an
analysis of data collected earlier (described in Chapter 4) using a random
sequence showed no significant difference in movement times between
straight and diagonal movements, there was no correction applied for
the somewhat larger distance required to make diagonal movements.

Response times

Comparative analyses were performed using the means of participants’
median movement time, with the movement time defined as the time
between cue onset (stimulus changing color) to touching any part of the
stimulus with themouse cursor. Medianmovement time to a target was
464 ms (SD = 223 ms). Participants’ movement time decreased from 546
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5. Predicting action plan formation

(a) Participants’ movement time
decreased over time, indicating
learning of the sequence.

(b) Error rates increased during the
first three blocks, but remained
relatively stable during the rest
of the task.

Figure 5.1 | Movement times and accuracy for the trajectory SRT task. Error bars
indicate within-subject 95% CI.

ms in the first block to 413 ms in the tenth block, indicating learning of
the sequence, F(9, 360) = 15.80, p < .001, 𝜂2

𝐺 = .126.

Accuracy was high across all blocks of the experiment, but especially so
during the first two blocks. There was an effect of time on accuracy, F(9,
360) = 4.50, p < .001, 𝜂2

𝐺 = .042, indicating some degree of speed-accuracy
tradeoff. However, after the third block movement times are still de-
creasing, while accuracy remains stable. Both movement times and ac-
curacy are shown in Figure 5.1.

Explicit sequence knowledge

Participants were grouped into an implicit knowledge group and an ex-
plicit knowledge group. Only those 13 participants who could correctly
recall the complete repeating sequence after having completed the task
were considered to have explicit knowledge. Participants with explicit
sequence knowledge had a significantly larger working memory capac-
ity (2.87 vs. 2.25, t(28.08) = 2.95, p = .006, d = 1.11), but did not differ on
estimated IQ, the Levenson Multidimensional Locus of Control scales,
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Factor df F 𝜂2
𝐺 p

Block 9, 342 23.94 .17 < .001
Block × Knowledge 9, 342 8.37 .07 < .001
Frequency 1, 38 106.00 .09 < .001
Frequency × Knowledge 1, 38 4.43 .004 .042
Frequency × Block 9, 342 2.75 .005 .004
Knowledge 1, 38 6.44 .089 .015

Table 5.1 | Results of analysis of variance on movement times.

or Personal Need for Structure scales (ts < .81, ps > .42).

Modes of executive control

Similar to Tubau et al. [160], we used frequency effects (i.e. the facilita-
tion of responses to frequent (straight) compared to infrequent (diag-
onal) transitions) to determine whether participants engaged in either
stimulus-based or plan-based control. An analysis of variance revealed
main effects of block, frequency, and knowledge onmovement time (see
Table 5.1). Overall, participants with explicit sequence knowledge had
faster movement times (M = 398 ms) than participants without (M = 485
ms), and frequent (straight) movements were performed faster (M = 417
ms) than infrequent (diagonal) movements (M = 496 ms).

Predictive movements

As the task progressed, participantsmade an increasing amount ofmove-
ment during the ITI—in the absence of a stimulus, F(9, 342) = 6.53, p <
.001, 𝜂2

𝐺 = .053. Total ITI (predictive) movement, defined as the distance
from the previous target at the onset of the next target, increased from
171 pixels in block 1 to 305 pixels in block 10. There was no main effect
of knowledge. Results are shown in Figure 5.2a.

Similar to Dale et al. [34], we can then define correct predictive move-
ment as the distance to the next target at target onset. An analysis of
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(a) Participants made increasingly
largermovements during the ITI.

(b) Larger movements during the
ITI reflect correct prediction of
the next stimulus, as initial dis-
tance to the stimulus decreased
over time.

Figure 5.2 | Predictive movements in the trajectory SRT task. Participants made
increasingly larger predictivemovements, which reflects correct pre-
diction of the next stimulus. This effect was stronger for explicit
than for implicit learners. Error bars indicate 95% CI.

variance using block and knowledge as factors shows a main effect of
block, meaning that distance to next target decreased from 609 pixels to
474 pixels, or that correct predictive movement increased over time, F(9,
342) = 32.36, p < .001, 𝜂2

𝐺 = .22.

In the final block of the task, predictive movements (defined as move-
ments larger than 300 pixels during the ITI, but not necessarily toward
the correct target) appeared to show a mixed distribution over partici-
pants. Where some participants hardly showed any movement during
the ITI, others had almost half of all their movements classified as pre-
dictive. Hartigan’s dip test of unimodality [58] confirms this observation,
D = .079, p = .038.

While implicit learners hardly increased their correct predictive move-
ments, explicit learners showed a strong increase over time, as evidenced
by a block × knowledge interaction, F(9, 342) = 14.00, p < .001, 𝜂2

𝐺 = .11. Re-
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sults are shown in Figure 5.2b.

Centering behavior

In Chapter 4, participants in the random condition showedmore center-
ing behavior than those in the deterministic condition. This finding sug-
gested that centering is a strategy that can be employed in the absence
of reliable sequence knowledge, minimizing the distance to possible tar-
gets. Indeed, centering behavior, defined as the proportion of the ISI
spent in the center 100 × 100 pixels of the screen, was highest for partic-
ipants without explicit sequence knowledge, t(30.46) = 2.34, p = .026, d =
.85.

5.3.2 Reinforcement learning task

As explained in Section 5.2.2,maximumscore on the reinforcement learn-
ing task was 800, with the most basic elimination strategy leading to 0
points. Mean score was 525, ranging from 140 to 774 points. Distribu-
tions of scores was non-normal, with a large group of participants scor-
ing 700 points, and a group scoring quite low. For subsequent analyses,
a midpoint split on 457 points was performed, dividing the participants
into low and high performers.

Predicting task performance

Low performers on the reinforcement learning task had a significantly
lower estimated IQ of 91.4, compared to high performers with an esti-
mated IQ of 104.9, t(39) = 3.06, p = .004, d = .98. Also, low performers
had a significantly lower visuospatial workingmemory capacity of 2.13 vs.
the high performers’ 2.65 capacity, t(39) = 2.40, p = .021, d = .77. Results
are shown in Figure 5.3. IQ and visuospatial working memory capacity
were uncorrelated, r(39) = .213, p = .181.

There was no difference between the two groups on the Levenson Mul-
tidimensional Locus of Control scales, t(39) = .27, p = .790, and no differ-
ence on the Personal Need for Structure scale, t(39) = .28, p = .780.
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Figure 5.3 | Differences in estimated IQ and visuospatial working memory ca-
pacity between low and high performers on the reinforcement learn-
ing task. Error bars indicate 95% CI.

Explicit sequence knowledge was strongly related to task performance,
as the 23 participants with explicit sequence knowledge had a far higher
final score (M = 634) than participants without explicit knowledge (M =
375), t(24.67) = 4.61, p < .001, d = 1.86.

Stimulus- vs. plan-based control In the SRT task, two measures of ex-
ecutive control mode are used. First, explicit knowledge of the sequence
is considered to be an indicator of a plan-based control mode. Second,
the amount of correct predictivemovements is evidence of the existence
of an action plan, implying a plan-based control mode.

Participantswith explicit sequence knowledge in the SRT taskweremore
likely to have acquired explicit sequence knowledge in the reinforcement
learning task, McNemar’s 𝜒2(1,N = 40) = 4.5, p = .034. This suggests that
the acquisition of explicit knowledge in both tasks relies on a common
mechanism or dependency. However, the amount of correct predictive
movements in the SRT task was not related to the final score in the re-
inforcement learning task, r(38) = −.025, p = .880, nor did explicit knowl-
edge in the reinforcement learning task relate to correct predictivemove-
ments in the SRT task, t(38) = 1.32, p = .195.
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In summary, participants using plan-based control in the SRT task did
not score higher on the reinforcement learning task, but participants
with explicit knowledge formation in the SRT task were more likely to
acquire explicit knowledge on the RL task. This suggests that predictive
movements and explicit knowledge do not similarly reflect successful
plan formation, andmay not be equally good indicators for a plan-based
control mode.

5.4 Discussion

5.4.1 Movement trajectories

Learning was evident in both the trajectory SRT task and the reinforce-
ment learning task. In the trajectory SRT task, the findings of Tubau
et al. [160] were replicated. The trajectory paradigm allowed us to find
further evidence for a plan-basedmode of control: participants made in-
creasingly large movements toward the next stimulus, but participants
with explicit knowledge of the sequence did more so than those with
implicit knowledge. Instead, participants without explicit knowledge
showed centering behavior during the ITI, moving the mouse to a po-
sition equidistant to all possible targets.

This centering strategy has been described in the literature (e.g. [34]), but
has not before been associated with quality of prediction or sequence
knowledge. Our results show that this behavior is a function of explicit
sequence knowledge. It has been suggested that this centering behavior
is an artifact of the spatial layout of the task, but we hypothesize that
the centroid of any polygon defined by response locations should be a
preferred (optimal) resting place whenwaiting for an uncertain stimulus.
Future studies should be able to shed light on this theory.

5.4.2 Limitations preventing plan formation

In the reinforcement learning task, final scores showed a bimodal distri-
bution, similar to what has been reported in [77]. The low-performing
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and high-performing groups differed in IQ and working memory capac-
ity, but did not differ in personal need for structure or locus of con-
trol. This suggests that sequence learning performance in an exploratory
paradigm is not determined by personal characteristics or preferences,
but by cognitive limitations.

In both the SRT task and the reinforcement learning task, explicit se-
quence knowledgewas predicted by visuospatialworkingmemory capac-
ity. Earlier research by Bo et al. [17] showed a relationship between visu-
ospatial workingmemory capacity and performance on a non-trajectory
SRT task, but the current study shows that this holds in an exploratory
paradigmaswell and predicts explicit sequence knowledge. The observa-
tion that participants who were more likely to acquire explicit sequence
knowledge in the SRT task were also more likely to acquire it in the re-
inforcement learning task further corroborates this finding.

5.4.3 Suggestions for future research

A promising approach to investigating this relationship is by modeling
the learning process in the reinforcement learning task (seeChapter 4 for
an example). IQ and visuospatial working memory could be compared
to the learning rate and state space in reinforcement learning models
that are fit to the performance of individual participants. This may shed
further light on the exact mechanisms that explain the wide range of
performance on exploratory sequence learning.

Another possible explanation of the diverse learning outcomes could be
rooted in different beliefs about the task. Participants were not told
that the response locationswould be a repeating, deterministic sequence.
They may have instead believed it was to some extent probabilistic—as
many psychological tasks are. Different assumptions about the task may
lead participants to arrive at different strategies, with variable success
in the task. Participants expecting a random sequence may be less in-
clined to predict the next stimulus and are—in the current paradigm—
indistinguishable from participants expecting a deterministic sequence
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but unable to learn it due to intellectual limitations. However, manipu-
lating these variables is straightforward and could be an interesting av-
enue for future research.
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CHAPTER6
Optimized behavior in a robot

model of sequential action

Sequential action is one of the cornerstones of human everyday
action. Most of our everyday activities, such as coffee making or
driving a car, can be regarded as complex but sequential actions.

How humans perform these sequential actions has been the subject of
study for at least a century. As described in Chapter 2, sequential action
can be represented on a symbolic (what will my next action be?) level,
as well as a subsymbolic, sensorimotor (what motor parameters should
I use?) level [173]. Interaction effects between the two levels of represen-
tation have been observed, and integration between the two is necessary
to produce smooth sequential action. Due to their embeddedness (i.e. an
implementation in a physical environment), (virtual, humanoid) robots
are suitable subjects for developing and investigatingmodels of behavior
in which interaction with the environment is important (see [9] for an
extensive overview). Robot paradigms have been successfully used to in-
vestigate psychological phenomena that require such embeddedness like
hand–eye coordination [84], object handling [67], and imitation learning

This chapter is an adaptation of the article de Kleijn, R., Kachergis, G., & Hommel, B. (in
preparation). Optimized behavior in a robot model of sequential action.
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[138]. Used in the proper way, they hold promise to investigate the rela-
tion between symbolic planning of actions and the subsymbolic execu-
tion of these actions.

6.1.1 Optimization of motor control

The specificmotor parameters used in the executionofmotor commands
is influenced by several effects and constraints. A good example is the
end-state comfort effect [30], in which the grasp location of an object is a
function of the expected end state of the arm. In other words, the arm
end state is optimized. Other optimization is seen in the form of con-
textual lip rounding [35], where the lips are rounded in preparation for
pronouncing the /u/ sound well in advance, and bending of mouse tra-
jectories when sequentially reaching for stimuli with a mouse cursor by
predicting its future location [75].

Other authors have investigated such predictive movements using sim-
ilar measures. In earlier work, Dale et al. [34] used a paradigm similar
to the one used in Chapters 4 and 5, with different levels of sequence
complexity¹. As sequence complexity decreased, participantswere found
to make larger predictive movements (i.e. movements toward the next
stimulus) and be more likely to have explicit sequence knowledge. Par-
ticipants notmaking predictivemovements were observed tomove their
mouse cursor to the center of the screen, equidistant from all stimuli.
The authorsmention that “even participantswith low pattern awareness
engaged in this form of behavior” (p. 204), but our findings described in
Chapter 5 show that it is specifically this groupwithout explicit sequence
awareness that engages in this type of behavior. Duran and Dale [38]
agree with this finding, and report that this centering strategy is likely
employed to compensate for lack of sequence knowledge, making it im-
possible to accurately predict the next target. In those circumstances,
moving the mouse cursor to a position equidistant to all alternatives
would be an effective strategy.

¹More specifically, a measure of grammatical regularity was used inverse to the first-
order entropy of the sequence, as used in [70].
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6.1.2 The current study

In the current study, we directly manipulated prediction quality in a se-
quential reaching taskwith a virtual robot hand controlled by an artificial
neural network. The task was similar in nature to the task described by
Dale et al. [34] andKachergis et al. [77]: reaching for targets that appeared
or changed color in a repeating sequence.

In any modeling problem using artificial neural networks, the connec-
tion weights between the artificial neurons (or units) have to be opti-
mized. In other words, the goal is to find those connection weights that
cause the artificial agent to produce the behavior that most closely ap-
proaches the required behavior as measured by a fitness or cost function
determined by the researcher. One of the most popular methods for de-
termining suitable connectionweights is knownas backpropagation [132],
in which the network is presented with an input vector, after which the
output produced by the network is compared to the desired output, and
network weights are then updated according to their error value, start-
ing with the output units and working back through the network.

Evolutionary algorithms such as neuroevolution (e.g. [5]) can find suitable
network weights not by directly calculating an error measure for each
input–output pair presented to the network, but by quantifying the per-
formance of agents controlled by the network. In its most simple form,
the method of neuroevolution generates a large number of agents with
randomly initialized networks and quantifies how well they perform on
the required task during a fixed period of time. Next, the best performing
agents are allowed to “reproduce”, and are copied to the following gener-
ation in a slightly modified way (e.g. by adding random noise to the con-
nection weights). In subsequent generations, this procedure is repeated
until some predefined fitness criterion is reached. Neuroevolution is
considered an efficient approach to solving reinforcement learning prob-
lems. Past studies have shown neuroevolution to be faster and more
efficient than reinforcement learning methods such as Q-learning (see
Chapter 4) on several tasks, including robot arm control [99, 100, 150].
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Evolutionary algorithms have been used to simulate a wide range of psy-
chological phenomena, ranging from reciprocity [4] to selective atten-
tion [114] and category learning [101].

6.2 Method

6.2.1 Task design

The task used for the virtual robots was analogous to the task described
by Kachergis et al. [77]. It was designed as an environment of size 50 ×
50 represented in continuous space (i.e. as floating-point values). Over
the course of one run of 500 discrete time steps, target stimuli appeared
sequentially in one of the four corners of the environment (distance 10
from the environment border), following a simple repeating 1–2–3–4 se-
quence. In one condition, networks were provided with accurate infor-
mation about the next stimulus. In a second condition, the information
was not predictive of the next stimulus. In a third condition, no infor-
mation about the next stimulus was provided to the network. The exact
implementation is described below under Network design.

A virtual robot arm was to touch the target (come within a square of
size 6 × 6 centered on the target) as quickly as possible. After touching
a target, no targets were visible for 20 time steps as an inter-stimulus
interval (ISI), after which the next target would appear. Every run (one
network-controlled virtual robot arm performing the task for 500 time
steps), the starting location was initialized to the center of the screen.
During each run, the amount of targets touched and the total distance
moved was calculated. Also, to encourage fast movement, a reward with
decaying value was associatedwith each target. Rewards were initialized
to value 100, decreasing by 1with each time step. After completion of the
run, network fitness was calculated by

fitness = touched stimuli + total reward − (.0001 × distance moved)

An agent with perfect prediction capability (i.e. immediately touching
the stimulus that just appeared by already being in its location) would
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therefore be able to reach a theoretical maximum fitness score of 2525.

6.2.2 Network design

The virtual robot arm was controlled by a two-layer feedforward neu-
ral network with four sensory neurons, two prediction neurons, eight
internal (hidden) neurons, and two motor neurons (see Figure 6.1). All
sensory and prediction neurons were normalized in the range [0.0, 1.0],
with Gaussian noise sampled from 𝑁(0, .05) added to the input. The
twomotor neurons were truncated to the range [−2.0, 2.0], and allowed
for movement in the two-dimensional plane. For simplicity we did not
model the kinematics of an articulated effector.

The input to the two prediction neurons was constant (i.e. also present
during the ISI) and represented either (1) the correct location of the next
stimulus, (2) the location of one of the four stimuli, randomly chosen, or
(3) a constant input of [0.0, 0.0]. So although in the second condition the
prediction neurons were provided with the location of a stimulus, this
location was not informative of the actual location of the next stimulus.
These conditions will be referred to as accurate prediction, random pre-
diction, and no prediction, respectively.

The output 𝑂𝑗 of a hidden or motor neuron 𝑗 was determined by the
sigmoid activation function

𝑂𝑗 = 1
1 + exp(− ∑𝑁

𝑖=1 𝑤𝑖𝑗𝑂𝑖 − 𝑏𝑗)
(6.1)

in which 𝑁 represents the number of input neurons 𝑖, 𝑂𝑖 their output,
𝑤𝑖𝑗 the connectionweight from 𝑖 to 𝑗, and 𝑏𝑗 the bias. Of the four sensory
neurons, two were used for sensing the target, and two for sensing the
location of the agent.
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Figure 6.1 | Two-layer feedforward network architecture used. Six input units
(twopredictionunits and four sensory units), eight hiddenunits, and
two output units controlled the virtual robot arm.

6.2.3 Evolution of the network

Network weights were optimized using a neuroevolution algorithm us-
ing a direct encoding scheme (i.e. there was a one-to-one mapping of
genotype to phenotype) similar to Nolfi et al. [109]. Although direct en-
coding schemes have been criticized for being biologically implausible
[108], and having difficulties with scalability², direct encoding provided a
good trade-offbetween simplicity andperformance for the relatively sim-
ple networks used in this study. The initial population consisted of 100
networks with weights uniformly random ∈ [−2.0, 2.0]. For each sub-
sequent generation, the twenty networks with the highest fitness value
were allowed to reproduce by generating four copies each, withGaussian
noise sampled from 𝑁(0, .3) added to the network weights. In addition,
each of the twenty best networks was kept unmodified and added to the
next generation, keeping the population size a constant 100. In pseu-

²The search space in direct encoding schemes increases exponentially with network
size.
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docode, the evolutionary algorithm was:

Algorithm 1:High-level description of neuroevolution algorithm

initialize 100 networks with random weights;
for 1000 generations do

foreach network do
evaluate fitness;

end
sort networks by fitness;
for 20 best networks do

generate 4 mutated copies;
generate 1 identical copy;

end
end

All simulations were run 30 times per condition, so a total of 90 simula-
tions were run.

6.3 Results

Maximumfitness of the networks differed between conditions, F(2, 87) =
9.29, p < .001, 𝜂2

𝐺 = .176. Post-hoc pairwise t-tests showed that networks
with accurate predictions fed into the prediction neurons developed a
higher maximum fitness (M = 1868) than networks with no prediction
(M = 1262), t(58) = 2.76, p = .008, d = .72, and than networks with random
prediction (M = 947), t(58) = 4.12, p < .001, d = 1.08. These differences
remained significant after Holm–Bonferroni correction.

Figure 6.2 shows the evolution of fitness over time. Although the net-
works with no prediction evolved somewhat faster than networks with
accurate prediction, maximum fitness leveled off after ~250 generations.
For the networks with accurate prediction the network weights evolved
slower, but surpassed the fitness of the non-predicting networks after
320 generations and continued to increase. Networks with random pre-
diction evolved slower overall, and attained lowest maximum fitness.
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Figure 6.2 | Networks with accurate prediction attained higher maximum fit-
ness than networks with no prediction or random prediction. These
networks evolved to make efficient use of the information from the
prediction neurons. Displayed are means over 30 simulations per
condition.

Centering behavior differed between conditions, F(2, 86) = 8.09, p < .001,
𝜂2

𝐺 = .158. Post-hoc pairwise t-tests showed that networks with accurate
prediction spent a smaller proportion of ITI time in the center 10 × 10
units (M = .195) than both networks with no prediction (M = .415), t(57) =
4.64, p < .001, d = 1.23, and networks with random prediction (M = .340),
t(58) = 2.96, p = .004, d = .778. These differences remained significant
after Holm–Bonferroni correction. The networks with no prediction
and random prediction did not differ significantly, p = .277. Results are
shown in Figure 6.3.

Movement across the environment is displayed in Figure 6.4. The net-
workswith randomprediction (Figure 6.4b) learned that the information
provided was not informative, and reached their maximum fitness by re-
turning to the center of the environment after touching each stimulus,
whereas networks with accurate prediction (Figure 6.4a) moved toward
the next target, waiting for it to appear.
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Figure 6.3 | The mean proportion of ITI time spent in the center of the screen
for all three conditions. Networks with accurate prediction spent
less time in the center. Error bars indicate 95% CI.

(a) In the condition with accurate
prediction, position density is
clustered around the stimuli,
indicating active movement
toward stimuli.

(b)With randomprediction, the net-
works evolve to produce center-
ing behavior. Most time is spent
in a position equidistant to all
targets.

Figure 6.4 | Density heat map showing the relative amount of time spent across
locations in the accurate prediction and random prediction condi-
tions, ranging from blue (little time spent) to red (most time spent).
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6.4 Discussion

In this study, we investigated the behavior found in earlier work by Du-
ran and Dale [38], Dale et al. [34], and the work described in Chapters
4 and 5. These studies describe a centering behavior in which partici-
pants moved their mouse to the center of the screen under some cir-
cumstances. In Chapter 5, we describe how this seems to be related to
the quality of the action plan, or the capability to predict the next stim-
ulus. This also makes sense on a theoretical level, as a centered posi-
tion, equidistant to all possible stimuli is optimal under maximum un-
certainty.

In the current studywe evolved artificial neural networks that controlled
a robotic arm, with a task analogous to the one used in Chapters 4 and
5. In one condition, an accurate prediction of the next stimulus was pro-
vided to the network as part of the input. In the second condition, the in-
put given was randomly determined, and unrelated to the next stimulus.
In a third condition, input to the prediction neurons was kept constant
at zero. Under the last two conditions, centering behavior developed,
with the networks that were provided random input and networks that
were given no input developing the same centering strategy as human
participants inChapters 4 and 5 that hadnot developed explicit sequence
knowledge. In summary, we showed that centering behavior evolved in
a robotic arm controlled by an artificial neural network as a function of
prediction quality, analogous to the findings described in Chapters 4 and
5.

Future research could shed light on the differences between the random
prediction condition and the no prediction condition. From our results,
it seems that performance was worse under the random prediction con-
dition (although not significantly so), and developed more slowly. Ap-
parently, the networks had trouble ignoring the dynamic, but uninfor-
mative input. In comparative studies with human participants, it would
be interesting to distinguish between participants who know that they
are unaware of the sequence (no prediction), and participants who are
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actively, but unsuccessfully, trying to predict the sequence (random, or
at least partly incorrect prediction).
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CHAPTER7
Summary and general discussion

7.1 Summary of this dissertation

The research described in this dissertation tried to shed light on the rela-
tion between complex action control in humans and robots. Taking the
acquisition of action sequences as an example, a paradigm for the study
of sequential action was introduced, and several models were discussed
that can account for sequence learning and execution.

7.1.1 How human and robotic complex action control are related

First, the main obstacles in the way of autonomous, everyday action ex-
ecution by robots were discussed from a cognitive psychological view-
point in Chapter 2. Four main categories of problems are identified that
need to be dealt with in order tomake truly flexible, autonomous robots:
(1) the integration of symbolic and subsymbolic planning; (2) the integra-
tion of feedforward and feedback planning and execution mechanisms;
(3) the structure of action representation; and (4) the contextualization
of action control.

Early ai planners, such as strips [47], were designed to reach an intended
goal state from an initial state through symbolically represented subac-
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tions. This symbolic nature of action representation has many advan-
tages: it allows, for example, for easy manipulation of action compo-
nents leading to efficient planning. Early approaches in the study of hu-
man sequential action also assumed a symbolic representation of action
sequences, with subsymbolic (sensorimotor) triggers responsible for tim-
ing. Both James [69] and Washburn [167] suggested a chaining theory of
sequential action, in which the sensory feedback produced by executing
the subaction at t0 would trigger the execution of the subaction at time
t1. However, several empirical findings seem to be incompatible with a
chaining account of sequential action. For example, such models can-
not account for context effects as found in studies into anticipatory lip
rounding, in which facial muscles adapt to sounds that are to be pro-
duced later in time [14] or Gentner’s typewriting studies that showed a
large amount of movement in anticipation of subactions several units
ahead [51]. Instead, models that integrate symbolic and subsymbolic rep-
resentations such as the typewriting model suggested by Rumelhart and
Norman [131], seem to bemore promising. In thismodel, the correct tem-
poral order of subaction execution is ensured by feedforward inhibition.

As the field of robotics advances from repetitive, predictable actions such
as factory work to highly dynamic and complex actions in everyday life,
feedforward control systems alone are no longer sufficient. On the other
hand, feedback systems are often slow as they require information from
the environment to be produced and detected. Successful integration
of feedforward and feedback control systems is needed to create agents
that are both fast and adaptive. The existence of feedforward planning
mechanisms in humans is demonstrated by the relation between onset
delay and sequence complexity in finger and arm movements [59], as
well as Eriksen et al.’s [44] linguistic studies on number pronunciation.
However, feedback controlmechanisms are essential for filling in param-
eters unavailable or unreliable at planning time, such as object weight
and required grip strength. Hybrid architectures, in which skeleton ac-
tion plans are generated by feedforward mechanisms, and where param-
eters are filled in by feedback processes seem to combine the best of both
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worlds [53, 64].

Another difficulty in complex action planning is that the meaning and
purpose of subactions vary with the goal that they serve to accomplish.
In ai planners, the function of goals is to guide the selection of task com-
ponents, and in cognitive processing models such as act-r goals reduce
the search space, making task preparation more efficient [33]. Some au-
thors have argued against the representation of goals for two reasons [18].
First, goals themselves may be context-dependent, and as such require
different subactions to accomplish them. Second, many everyday activi-
ties such as taking a walk do not always have clearly defined goals. Oth-
ers, however, emphasize that it is the representation of goals that makes
useful action plan manipulation such as subaction substitution or skip-
ping possible [33]. Alternatively, implicit goal representation from a tec
viewpoint can be viewed as a kind of “intentional weighting”mechanism
in which relevant features are activated more than others, priming the
agent to execute different subactions [65, 95]. Whatever the exact nature
of goal representation, it is clear that some form of end-state representa-
tion is necessary to generate flexible behavior.

Chapter 3 discussed how the relationship between cognitive psychology
and cognitive robotics developed over time. After breaking away from
philosophy, psychology found itself depending on unreliable, subjective
information. In a push toward reliable, empirical observation as the basis
of a scientific psychology, behaviorismemerged as themethod that could
put psychology on par with the natural sciences. However, behaviorism
proved untenable as a general theory of human behavior as it could not
account for fundamental cognitive processes such as language andmem-
ory, leading towhat is nowknown as the neocognitive revolution. Mean-
while, in the 1950s the field of artificial intelligence arose from cybernet-
ics, mathematics, and computer science, and over the following decades
expert systems such asmycin and symbolic ai (nowknownas gofai, good
old-fashioned ai) were able to show impressive results. Also, computers
were slowly beginning to gain public interest. Cognitive psychologists
started to wonder if humans are like computers: input–output devices
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with sensory information as input and behavior as output, known as the
so-called computer analogy. Meanwhile, roboticists were considering
animal behavior as a foundation for robot control. Some early cognitive
robots were roughly inspired by biology [21], but even more specific par-
allels could be drawn between humans and robots.

The problemof integrating feedforward and feedback control in robotics
had gained interest as task demands for robots became less predictable.
Where the absence of a feedback loop in a factory environment may not
be a big problem as long as all manipulanda are in the correct location
and orientation, feedback is required in almost all situations in the out-
side world. Brooks’ subsumption architecture [21] was a response to tradi-
tional gofai and showed that complex behavior could emerge without
the traditional separation of feedforward and feedback systems. How-
ever, this architecture worked for rather low-level behavior such as wan-
dering, avoiding, and homing, and it is unclear how well it would scale
up to more complex situations. More complex, goal-directed behavior
in robots is usually the product of a planner¹. This component takes an
intended state, compares it with the initial state, and determines the ac-
tions to take in order to successfully reach the intended state. Tradi-
tional planners such as strips fail when one of the subactions cannot be
successfully completed, and backtrack to try alternative subactions.

7.1.2 Empirical studies on sequence learning

One of themost widely used paradigms in sequence learning is the serial
reaction time (SRT) task [107]. In this task, participants are asked to press
the button associated with one of four horizontally distributed stimuli.
Unbeknownst to the participants the four stimuli appear in a repeating,
deterministic sequence. Over time, participants show a larger decrease
in response times compared to a random sequence, indicating learning
of the sequence. However, due to the discrete nature of this task it is

¹Although both Brooks [22] and Braitenberg [20] are excellent examples of apparent
complex behavior without a planner.
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impossible to investigate interstimulus processes such as prediction or
context effects [146].

In Chapter 4, we described an adaptation of the SRT task into the con-
tinuous domain. Instead of four discrete buttons associatedwith stimuli,
we presented four squares in the corners of a computer screen, with the
instruction of moving the mouse cursor as fast as possible to the square
that changes color. This type of data collection allows researchers to
capture the temporal dynamics of cognitive processes and the interac-
tion between them [48, 146, 148]. First, we were able to replicate Nissen
& Bullemer’s [107] original findings: more speedup in the deterministic,
repeating sequence than in a random sequence. Second, we showed that
this speedup was due to predictive responses made during the ITI, and
that participants employed different strategies. While some participants
actively moved the cursor to the next target during the ITI, others used
a centering strategy in which they moved cursor to a central location
equidistant from all possible alternatives, a phenomenon reported ear-
lier in the literature [34, 38].

Due to the questionable ecological validity of the SRT task—after all, ev-
eryday sequence learning is not often characterized by merely respond-
ing to attention-grabbing stimuli—we adapted the SRT task to a rein-
forcement learning paradigm. In this task, participants no longer could
respond to squares changing color but had to actively explore the alterna-
tives, receiving a 1-point reward when choosing the correct alternative,
and a reward of −1 for choosing an incorrect alternative. Participants
varied widely in the amount of points collected. To investigate possi-
ble causes, we fit three model-free reinforcement learning models: (1)
Q-learning, (2) SARSA, and (3) Q-learning with eligibility traces.

Reinforcement learning models are a class of machine learning models
that learn what to do in order to maximize reward, roughly inspired by
operant conditioning in cognitive psychology. As such, the learner is not
told explicitly what to do—as is the case in supervised learning—but has
to discover which actions produce the highest reward through trial-and-
error. In traditional reinforcement learningmodels, each possible action
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that can be taken in a given state has a certain value: the immediate re-
ward the action will yield plus the total amount of reward that can be
expected in the future. In order to keep track of these values, they are
often stored in a table², mapping discrete actions in discrete states to
Q-values.

The models as used in their current form were not able to approach the
final scores of the best human participants. However, Q-learning per-
formed better than SARSA, and Q(𝜆) produced even better results. The
relatively bad performance of Q-learning—which was quite surprising
given the relative simplicity of the task—could be due to the specific ac-
tion selection policy used. This is further explained in Section 7.2.2.

In the study described in Chapter 4, we found centering behavior to be
a function of uncertainty, and a large variance in scores attained on the
reinforcement learning task. To further examine these phenomena, the
study described in Chapter 5 used a larger sample and a within-subject
design. Wewanted to investigate the factors that predict successful plan
formation, and compare performance between the responsive SRT task
and the exploratory reinforcement learning task. Participants in an SRT
task can rely on two modes of executive control: stimulus-based con-
trol and plan-based control [160]. Under stimulus-based control, partici-
pants are prepared to respond to stimuli in an automatized fashion, del-
egating control to the external stimulus. Under plan-based control, an
internal representation of the motor plan is made. These two modes of
executive control can be strategically chosen under some circumstances.
In a reinforcement learning paradigm, stimulus-based control is not a vi-
able strategy, as there are no external stimuli to respond to. Participants
were asked to perform both tasks described in Chapter 4 in randomized
order, as well as completemeasures of IQ, visuospatial workingmemory,
need for structure, and locus of control.

For the SRT task, we used three measures of plan-based control: (1) the

²The action–value function need not necessarily be represented as a table. In fact,
much progress has beenmade in the last years using (deep) neural networks as action-value
function approximators, see e.g. [98].
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acquisitionof explicit knowledge about the sequence, (2) predictivemove-
ment toward the correct target in the inter-stimulus interval, and (3) the
magnitude of frequency effects. Participants who acquired explicit se-
quence knowledge made increasingly larger predictive movements over
the course of the task, whereas participants without explicit sequence
knowledge hardly did so. Of all predictors, only visuospatial working
memory predicted the acquisition of explicit sequence knowledge.

For the reinforcement learning task, both visuospatial working mem-
ory and IQ predicted final score. This suggests that the formation of
an action plan in the current paradigm is limited by cognitive capacity,
although another explanation could be that people with high IQ orWM
are more likely to actively look for structure in sequential tasks.

In Chapter 6, we investigated the centering behavior described in Chap-
ters 4 and 5 in more detail. We used a simulated robotic arm controlled
by an artificial neural network to perform the same task as the one de-
scribed in the earlier chapters: moving the mouse toward a stimuli that
appear in a deterministic, repeating order. In one condition, the net-
works were providedwith accurate information about the next stimulus,
similar to human participants that have learned the sequence and are
able to predict the next one. In another condition, the networks were
given a random stimulus location as a prediction, making the prediction
uninformative in that it contains no useful information about the next
stimulus. In a third condition, we did not provide any stimulus location
as a prediction, i.e. the input to the prediction units were fixed at zero.

We found that thenetworks thatwere given accurate predictions evolved
predictive behavior. They moved toward the next stimulus after touch-
ing the current one, but before the next one appeared. The networks
with either random or no prediction developed a centering strategy sim-
ilar to the one described in Chapters 4 and 5: they moved the cursor to
the center of the screen, an optimal location towait for the next stimulus
to appear.
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7.2 Discussion and future directions

7.2.1 Sequential action under stimulus-based and plan-based control

Two modes of executive control were discussed and studied in this dis-
sertation: stimulus-based and plan-based control. Our paradigm was a
hybrid between our earlier trajectory SRT work and Tubau et al.’s [160]
study into stimulus-based vs. plan-based control. In our design, we used
a sequencewith straight (left–right or up–down)movements beingmore
frequent than diagonal movements in order to examine frequency ef-
fects, which were found by Tubau et al. [160] to decrease under plan-
based control. However, due to the increased dimensionality of our para-
digm there are many more possible frequency effects in play: horizontal
repeat or switch, vertical repeat or switch, diagonal or straight, stimulus
location, etc. This reduced the usability of frequency effects as ameasure
of plan-based control.

Other shortcomingswith the used paradigm can be identified. Although
the use of the original SRT sequence allows for a straightforward com-
parison with earlier work (e.g. [107]), this sequence is not specifically de-
signed for the analyses conducted in our work. For example, with four
alternatives the distances between alternatives are not identical, as di-
agonal movements require longer distances than straight movements.
Although an analysis of response times between diagonal and straight
movements in the random condition did not show an effect of move-
ment type on response times, other properties of thesemovements could
affect our results. For example, Burk et al. [23] found that movement dis-
tance affects decision making, and this could have made diagonal move-
ments a less attractive choice for participants because they require more
effort to perform. Additionally, location and transition probabilities are
not balanced in the standard SRT sequence. A similar, balanced three-
alternative paradigm could be used in future research to remove these
confounds.

Another interesting avenue of research would be the role of stimulus
probability on centering behavior. If the centering behavior described in
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this dissertation is indeed due to minimization of mean travel distance
to stimuli, altering stimulus probabilities would cause the centering lo-
cation to shift toward more probable stimuli. This can be investigated
both by using human participants as subjects, or in a simulated robotics
paradigm such as the one described in Chapter 6.

7.2.2 Reinforcement learning: action selection and parameter fitting

The studies described in this dissertation compared humanperformance
on a sequential reinforcement learning task with the performance of
three reinforcement learningmodels: Q-learning, SARSA, andQ(𝜆). For
a reinforcement learning model to perform well, the method of action
selection it uses needs to balance between exploitation, using the infor-
mation it has gathered from experience and that is stored in its Q-table,
and exploration, allowing the model to try other and possibly better ac-
tions. At the start of any task or learning process, the Q-table may have
been initialized to zero, or filled with small, random values. Either way,
the information it contains is uninformative, and therefore should not
be used for action selection. Different action selection policies deal dif-
ferently with this problem. Several different action selection policies are
used in the literature:

• greedy: the agent always selects the action that maximizes the
value estimate;

• random: the agent always selects an action at random;

• 𝜖-greedy: the agent selects the action that maximizes the value
estimate Q with probability 1 − 𝜖, otherwise it selects an action at
random;

• softmax: the agent selects an action based on weighted probabil-
ities by applying a softmax function over the value estimates. A
temperature parameter 𝜏 can be used to control the spread of the
softmax distribution.
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The greedy policy could be considered purely exploitative, while the ran-
dom policy is purely explorative. It should be clear that neither policy
will provide good results in the paradigms described in this dissertation,
as the greedy policy will always choose the action that happens to have
the associated highest random value at Q-table initialization, while the
random policy will never use the information stored in the Q-table. In
the study described in Chapter 4, an 𝜖-greedy policy was used. However,
preliminary analyses of the data (not described in this dissertation) show
that both softmax and another policy have the potential of outperform-
ing even humans. The policy involves temporal decay of random action
rate 𝜖 in the 𝜖-greedypolicy. 𝜖 is initialized to a relatively high value at the
start of the sequence, exploring all possible actions and updating the Q-
table with associated rewards. As the Q-values stabilize over the course
of the experiment, 𝜖 decreases, making use of the informative Q-values
that now populate the Q-table.

Also, the learning rule and action selection policy interact, as is clear
from their definitions. The update rule in Q-learning updates Q for any
state-action pair <𝑠, 𝑎> using an experience tuple <𝑠, 𝑎, 𝑠′, 𝑟>, with learn-
ing rate 𝛼 ∈ [0, 1] and discount factor 𝛾 ∈ [0, 1]:

𝑄′(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑄[𝑠′, argmax
𝑎′

(𝑄[𝑠′, 𝑎′])]) (7.1)

SARSA, on the other hand, does not use the maximum attainable re-
ward in state 𝑠′ to update the Q-table, but instead chooses 𝑎′ using the
same policy it used to choose 𝑎. It therefore uses the experience tuple
<𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′>:

𝑄′(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑄[𝑠′, 𝑎′]) (7.2)

Under a greedy action selection policy, Q-learning and SARSA are equiv-
alent³, and will update Q with the maximum attainable reward in state
𝑠′: Q-learning by definition, and SARSA by virtue of always selecting

³Although note that Q-learning first updates Q, and selects the next action based on
the updated Q, while SARSA chooses the action first and then updates Q.
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the action that will yield the maximum attainable reward. Future stud-
ies should investigate the influence of action selection policies and their
parameters on model performance in the paradigms discussed in this
dissertation.

Also, if these reinforcement learningmodels are shown to be able to out-
perform humans in the task described in Chapters 4 and 5, parameter
fitting could shed light on the nature of individual differences between
human participants if the models turn out to be identifiable using spe-
cific cost metrics. For example, a final score of only 200 points could be
due to either a low value of learning rate 𝛼, placing too little weight on
the latest reward, or a too high value of random action rate 𝜖, taking too
many exploratory actions instead of exploiting the information in the
Q-table. Instead, by looking at the learning trajectory, and using it as an
error function, it could be possible tomake thesemodels identifiable. As
another interesting manipulation, the reward schedule of the reinforce-
ment learning task could be manipulated. By making certain rewards
contingent on (a series of) earlier actions, differences in discount rate 𝛾
could be investigated, making this paradigm quite versatile for explain-
ing individual differences.

7.3 Conclusion

This dissertation concerned itself with everyday action, and the mech-
anisms by which humans and robots are able to perform it. First, we
described the fundamentals of everyday action, and explained that it is
not as simple as the word implies. Also, we described the capacities a
robot should have in order to perform everyday action. Next, we investi-
gated the similarities and differences between human and robotic action
control. Several mechanisms by whichmotor control is learned (e.g. mo-
tor babbling and reinforcement learning) are already common to both
human and robotic action control.

The adaptation of the SRT task into a trajectory paradigm allows for
the observation of predictive processes in sequential action control, and
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shows that participants tend to adopt either a predictive or reactive strat-
egy. Our results suggest that the quality of the action plan that is formed
is a function of individual limitations in IQ and visuospatial working
memory. The reinforcement learning models investigated did not per-
form as well as humans, but we suspect that the specific action selection
policy used was partly to blame.

Participantswho did not generate a reliable action plan tended to engage
in centering behavior: moving the cursor to the center of the screen in
anticipation of the next stimulus. We showed, using an evolutionary
robotics approach, that this behavior evolves in an artificial neural net-
work that controls a robot arm as a function of prediction quality. This
suggests that this behavior is an emerging strategy caused by task con-
straints. The optimality of this behavior should be investigated further
by manipulating target frequency and location.

Overall, the paradigms presented in this dissertation are well-suited to
investigate both symbolic sequential action in the formof reinforcement
learning, as well as sensorimotor action control in the form of evolved
motor behavior in a robot arm controlled by an artificial neural network.
Both paradigms provide ample opportunity for manipulation to further
investigate the commonalities between complex human and robot ac-
tion control.
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Summary in Dutch
Nederlandse samenvatting

Robots en kunstmatige intelligentie zijn de afgelopen jaren een
steeds belangrijkere rol gaan spelen in zowel ons alledaagse leven
(bijvoorbeeld zelfrijdende auto’s) als in het bedrijfsleven. Maar

naarmate de taken die robots moeten uitvoeren complexer worden, en
uiteindelijk zelfs alledaagse, menselijke taken zouden moeten overne-
men, wordt de aansturing van deze robots steeds lastiger.

Hoewel alledaagse taken zoals koken en stofzuigen op het eerste gezicht
niet erg ingewikkeld klinken, blijkt het behoorlijk uitdagend om robots
te ontwikkelen die deze taken succesvol kunnen uitvoeren. Het ontwik-
kelen van zo’n robot was het doel van het RoboHow-project. Het proef-
schrift dat voor u ligt is het resultaat van dit project, uitgevoerd door
een internationaal consortium van robotici, computerwetenschappers
en cognitief psychologen verbonden aan vijf universiteiten en twee on-
derzoeksinstituten verspreid over Europa.

De wisselwerking tussen cognitief-psychologisch onderzoek en kunst-
matige intelligentie werd goed duidelijk tijdens de neo-cognitieve revolu-
tie. Behaviorisme, het standpunt dat alleen meetbare en observeerbare
gedragingen van mens en dier onderwerp zouden moeten zijn van on-
derzoek, bleek niet houdbaar vanwege de beperkte verklaringscapaciteit.
Typisch “menselijke” fenomenen zoals taal en geheugen konden vanuit
een puur behavioristisch framework niet onderzocht worden; zij verei-
sen een onobserveerbare mentale toestand. De neo-cognitieve revolutie
opende de deur voor theorieën die dezementale toestand—of cognitieve
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processen—probeerden te beschrijven en te begrijpen. Maar hoe wordt
die mentale inhoud nu precies gerepresenteerd?

Cognitie in mensen en robots

In de kunstmatige intelligentie wordt er in deze gevallen vaak gebruikt
gemaakt van een planner. In planners worden subacties vaak symbolisch
gerepresenteerd als losse eenheden waarop bewerkingen kunnen wor-
den toegepast, en zo kan worden berekend welke subacties er in welke
volgorde nodig zijn om vanuit een beginpositie een eindpositie te berei-
ken. Bijmensenwerd lange tijd gedacht dat een soort actieketting verant-
woordelijkwas voor het uitvoeren van zulke sequentiële actie; de zintuig-
lijke waarneming van de effecten van een actie zouden functioneren als
een trigger voor het uitvoeren van de volgende actie.Halverwege de twin-
tigste eeuw werd echter duidelijk dat deze theorieën niet correct kon-
den zijn, onder meer omdat bleek dat sequentiële actie ook kan worden
uitgevoerd door mensen waarbij zintuiglijke terugkoppeling verstoord
is. Naarmate het bewijs tegen deze symbolische theorieën zich opstapel-
de werd duidelijk dat het subsymbolische, sensorimotorische aspect van
motoracties essentieel was voor sequentiële actieplanning.

Na het plannen van een actie moet deze ook uitgevoerd worden door het
motorsysteem. Een robot die aan de lopende band werkt kan voorge-
programmeerde acties uitvoeren met een feedforward-systeem, waarin
informatie uit het programma (bijvoorbeeld “roteer motor 12 naar posi-
tie 82,5°”) direct wordt omgezet in een motorbeweging. Hoewel dit een
zeer snelle manier van aansturing is, kan dit echter voor problemen zor-
gen in minder voorspelbare omgevingen: wanneer het te manipuleren
object zich in positie 83,5° bevindt zal de actie mogelijk mislukken. Een
feedback-systeem gebruikt informatie uit de omgeving om de actie mo-
duleren. Dit vergroot de kans op een succesvol uitgevoerde actie, maar
afhankelijk van de snelheid van de feedback-loop zal de uitvoer minder
snel zijn. Menselijk gedrag is het product van een hybride feedforward-
feedback-systeem, waarbij een feedforward actieplanwordt gegenereerd
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waarin onbekende parameters online kunnenworden ingevuld door een
feedback-mechanisme.

Het leren van sequentiële actie

Een manier om deze actieplanning en -uitvoer te onderzoeken is de se-
rial response time (SRT)-taak, geïntroduceerd door Nissen & Bullemer
[107]. In deze taak zit de proefpersoon tegenover een beeldscherm waar
aan de onderkant een visuele stimulus verschijnt op één van viermogelij-
ke posities. Wanneer een stimulus verschijnt, drukt de proefpersoon zo
snel mogelijk op een knop die onder deze stimulus is gepositioneerd. De
proefpersonen weten niet dat de stimuli verschijnen in een vaste, herha-
lende volgorde. Hoewel deze taak veelvuldig in de literatuur is gebruikt,
heeft het als groot nadeel dat de informatie die verzameld wordt gelimi-
teerd is door de discrete vorm van de respons. Hierdoor is het niet mo-
gelijk om informatie te verzamelen over processen die actief zijn tijdens
het inter-trial interval (ITI), zoals voorspellende bewegingen.

In hoofdstukken 4 en 5 worden studies beschreven die een continue va-
riant van de SRT-taak gebruiken, waarbij de vier stimuli en knoppen zijn
omgezet in vier zwarte vierkanten op een beeldscherm. Analoog aan de
originele SRT-taak worden proefpersonen gevraagd om zo snel mogelijk
te reageren op een oplichtende stimulus (het target) door de muiscur-
sor erheen te bewegen. In deze studie werden twee condities gebruikt:
een deterministische conditie waarin de stimuli oplichtten in een vaste,
herhalende reeks van 10 targets, en een conditie waarin de volgorde van
targets willekeurig werd bepaald. In totaal werden 800 targets gepresen-
teerd. Deze variant van de SRT-taak produceerde dezelfde effecten als
de originele taak, waarin proefpersonen sneller worden naarmate het
experiment vorderde, maar dit effect was sterker voor de deterministi-
sche conditie. Dit duidt op het impliciet leren van de reeks in de deter-
ministische groep, een conclusie eerder getrokken door Nissen & Bulle-
mer [107]. Dankzij de continue aard van de adaptatie die in onze studie is
gebruikt, kon duidelijk worden gemaakt dat deze versnelling niet kwam
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door een simpele versnelling van de motoractie, maar (mede) werd ver-
oorzaakt door voorspellende bewegingen richting de volgende stimulus
tijdens het ITI.

Ook werd duidelijk dat proefpersonen twee strategieën kunnen gebrui-
ken om zo snel mogelijk te reageren. Eén groep proefpersonen maakte
actief een voorspelling van de volgende target, en bewoog demuiscursor
al voordat de target zichtbaar werd in de juiste richting. De tweede groep
proefpersonen bewoog de muiscursor naar het midden van het scherm,
op gelijke afstand van alle stimuli. Dit is een optimale positie als er geen
voorspelling kan worden gemaakt van de volgende target. Dit bleek ook
bij het uitvragen van de reeks na afloop van het experiment: proefperso-
nen die de reeks expliciet hadden geleerd maakten meer voorspellende
bewegingen, proefpersonen die de reeks niet expliciet hadden geleerd
waren meer geneigd om de muiscursor naar het midden van het scherm
te bewegen. Dit laat zien dat mensen—onafhankelijk van hun kennis—
een strategie hanteren die optimaal is gegeven hun kennis.

Het modelleren van reinforcement learning

De SRT-taak heeft een beperkte ecologische validiteit, omdat mensen in
het dagelijks leven niet simpelweg reageren op stimuli, maar hun om-
geving exploreren en leren van interactie met objecten. Om deze reden
hebbenwe een tweede variant vande SRT-taak gemaakt, gebruikmakend
van een reinforcement learning-paradigma. In deze taak werd niet langer
gereageerd op één van de vier oplichtende stimuli, maar moesten de ver-
schillende alternatieven worden uitgeprobeerd waarna feedback werd
gegeven over de correctheid van de keuze. Op deze manier werd dezelf-
de reeks als in de deterministische conditie van de SRT-taak afgewerkt,
opnieuw samengesteld uit een 80 maal herhalende reeks van lengte 10.
Voor iedere correcte beweging verdiende de proefpersoon 1 punt, voor
iedere foutieve beweging verloor de proefpersoon 1 punt. Er bleek verras-
send veel variatie te zitten in het aantal behaalde puntenna het voltooien
van 800 correcte bewegingen.
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Reinforcement learning is een techniek uit machine learning die kan le-
ren welke actie moet worden genomen in welke staat om een beloning
te maximaliseren, geïnspireerd door operante conditionering. Reinfor-
cement learning-modellen onderscheiden zich van andere technieken
zoals supervised learning doordat zij geen gebruik maken van gelabel-
de trainingsdata, maar door een proces van trial-and-error leren welke
acties demeeste beloning opleveren. Dit doen zij door een verwachte be-
loning, eenQ-value, toe te kennen aan combinaties van states en actions.

Om het gedrag van proefpersonen beter te onderzoeken hebben we ge-
probeerd drie bestaande reinforcement learning-modellen toe te passen
op de verzamelde data: (1) Q-learning, (2) SARSA, en (3) Q-learning met
eligibility traces. Geen van de onderzochtemodellen kon de hoogste sco-
res van proefpersonen evenaren. Dit heeft vermoedelijk temakenmet de
gebruikte actie-selectiestrategie. Bij het gebruik van een softmax actie-
selectiestrategie zouden mogelijk betere resultaten kunnen worden ver-
kregen, dit is onderwerp van vervolgonderzoek.

Inter-individuele verschillen in prestatie

Hierna hebben we een grotere groep proefpersonen getest, en hebben
we een aantal additionele taken afgenomen om te onderzoeken of de
verschillen tussen proefpersonen werden veroorzaakt door het al dan
niet moedwillig kiezen van verschillende strategieën of beperkingen in
werkgeheugen of IQ. Uit eerder onderzoek is bekend dat proefpersonen
onder sommige omstandigheden een strategische keuze kunnen maken
tussen verschillendemanieren van handelen [160]. In stimulus-based con-
trol delegeert de proefpersoon controle aan de externe stimulus. Versnel-
ling zal hier veroorzaakt worden door het versneld reageren op de stimu-
lus. In plan-based controlmaakt de proefpersoon een interne representa-
tie van eenmotorplan. Hier kan de proefpersoon actief een voorspelling
maken van de volgende stimulus.

In de SRT-taakwerd leerprestatie, gemeten door de hoeveelheid explicie-
te kennis van de reeks, voorspeld door de capaciteit van het visuospatieel
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werkgeheugen. In de reinforcement learning-taak werd prestatie, geme-
ten door de totale score aan het einde van de taak, voorspeld door zowel
IQ als de capaciteit van het visuospatieel werkgeheugen. Dit suggereert
dat de verschillen in prestatie niet veroorzaakt werden door het kiezen
van verschillende strategieën, maar door cognitieve beperkingen.

Het modelleren van optimale bewegingen

Om de geoptimaliseerde muisbewegingen die zichtbaar waren in hoofd-
stukken 4 en 5 nader te onderzoeken, hebben we in hoofdstuk 6 een
robotarm gesimuleerd, aangestuurd door een kunstmatig neuraal net-
werk. Deze robotarm kreeg dezelfde SRT-taak als proefpersonen, en de
netwerken werden met een evolutionair algoritme getraind om zo snel
mogelijk de stimulus die actief werd aan te raken. Er werden drie con-
dities gebruikt: (1) een conditie waarin het netwerk nauwkeurige infor-
matie kreeg over de volgende target (perfecte voorspelling), (2) een con-
ditie waarin het netwerk willekeurige informatie kreeg over de volgende
target (niet-informatieve voorspelling), en (3) een conditie waarin geen
informatie werd verstrekt aan het netwerk (geen voorspelling).

De beste prestatie, gemeten door snelheid en nauwkeurigheid, werd ge-
leverd door de netwerken die perfecte informatie over de volgende tar-
get kregen. Deze netwerken stuurden de robotarm naar de volgende tar-
get, nog voordat deze target actief werd. Zij leerden dus gebruik te ma-
ken van de informatie die aan ze werd verstrekt. De netwerken met niet-
informatieve en geen voorspellingen scoordenminder goed. Zij evolueer-
den een strategie analoog aan die van mensen zonder expliciete kennis
van de reeks: ze bewogen de robotarm naar het midden van de stimu-
li, op gelijke afstand van alle potentiële targets. Ook was zichtbaar dat
de netwerkenmet niet-informatieve voorspellingen langzamer evolueer-
den dan de netwerken zonder voorspellingen. Het kost blijkbaar tijd om
de willekeurige invoer te negeren. Vervolgonderzoek zou kunnen uitwij-
zen of dit vergelijkbaar ismet proefpersonen die denken expliciete kennis
over de reeks te bezitten, maar dit in feite niet hebben.
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