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Chapter 5 GaaR is required for galacturonic acid utilization

Abstract

We identified the D-galacturonic acid (GA) responsive transcriptional activator GaaR of the
saprotrophic fungus Aspergillus niger, which was found to be essential for growth on GA and
polygalacturonic acid (PGA). Growth of the 4gaaR strain was reduced on complex pectins.
Genome-wide expression analysis showed that GaaR is required for the expression of genes
necessary to release GA from PGA and more complex pectins, to transport GA into the cell
and to induce the GA-catabolic pathway. Residual growth of AgaaR on complex pectins is
likely due to expression of pectinases acting on rhamnogalacturonan and subsequent

metabolism of the monosaccharides other than GA.

Keywords
polygalacturonic acid, pectinase, Zn,Cys¢ transcription factor, gene regulation,

transcriptomics

Abbreviations

AP apple pectin

CM Complete medium

CP citrus pectin

GA D-galacturonic acid
MM minimal medium
PGA polygalacturonic acid
RG rhamnogalacturonan
SBP sugar beet pectin

TF transcription factor

XGA xylogalacturonan
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Introduction

Pectins are complex heterogeneous polysaccharides found in plant cell walls. Four sub-
structures of pectin have been identified and include polygalacturonic acid (PGA) also known
as homogalacturonan, xylogalacturonan (XGA), rhamnogalacturonan [ (RG-I), and
rhamnogalacturonan II (RG-II) (Mohnen 2008). The backbones of PGA, XGA and RG-II are
made up of a-1,4-linked D-galacturonic acid (GA) residues. PGA, a linear polymer of GA, is
the most abundant polysaccharide present in pectin (Mohnen 2008). In XGA, B-D-xylose
residues are P-1,3-linked to GA residues of the PGA backbone. The backbone of RG-I is
made up of alternating GA and L-rhamnose residues (Mohnen 2008; Leijdekkers ef al. 2015).
Side chains of RG-II contain at least 12 different types of monosaccharides, whereas the side
chains of RG-I are mainly arabinan and arabinogalactan comprising of L-arabinose and D-
galactose residues (Mohnen 2008).

In nature, pectin is an important carbon source for many saprotrophic fungi, such as
Aspergillus niger. Previous studies demonstrated that A. niger can produce more pectin
degrading enzymes than other more specialized fungi such as Podospora anserina or
Neurospora crassa (Espagne et al. 2008; Coutinho et al. 2009; Martens-Uzunova and Schaap
2009). GA is the main product of pectin degradation. In 4. niger, GA is transported into the
cell by a GA-induced sugar transporter named GatA (Sloothaak et al. 2014). GA is then
catabolized into pyruvate and glycerol (Martens-Uzunova and Schaap 2008), through a
pathway consisting of four enzymes: GaaA, D-galacturonate reductase, GaaB, L-galactonate
dehydratase, GaaC, 2-keto-3-deoxy-L-galactonate aldolase, and GaaD, L-glyceraldehyde
reductase (Martens-Uzunova and Schaap 2008). Deletion of gaad, gaaB or gaaC abolished
growth on GA as the sole carbon source (Mojzita ef al. 2010b; Wiebe et al. 2010; Kuivanen et
al. 2012). gaaD, also known as the L-arabinose reductase gene, lar4, is involved in the L-
arabinose catabolic pathway and the AlarA strain showed a reduced growth on L-arabinose as
the sole carbon source (Mojzita et al. 2010a).

The production of extra- and intracellular enzymes in 4. niger is regulated by a network of
transcription factors (TFs) (Kowalczyk et al. 2014). Small sugar molecules (mono- and
disaccharides) act as inducers and stimulate TFs which can bind to conserved motifs in the
promoters of their target genes and activate or repress their expression. Expression of
pectinase genes is highly controlled and depends on both induction and carbon catabolite
repression (De Vries ef al. 2002; Niu et al. 2015). Induction of the genes required for pectin

degradation, GA transport and GA catabolism requires the presence of GA and it has been
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shown that GA or a derivative of GA induces the expression of pectinase genes (De Vries et
al. 2002; Wiebe et al. 2010; Kuivanen et al. 2012).

Coordination of the induction of genes encoding extracellular enzymes and sugar uptake
systems in fungi are often mediated by Zn,Cyss TFs that bind to conserved promoter
elements in the co-regulated genes (Chang and Ehrlich 2013; Kowalczyk et al. 2014; Tani et
al. 2014). TFs inducing the genes required for the utilization of L-rhamnose (RhaR),
arabinan/L-arabinose (AraR), xylan/D-xylose (XInR), D-galactose (GalX) and cellulose
(XInR, CIrA and CIrB) have been identified in A. niger (Van Peij et al. 1998; Battaglia et al.
2011; Gruben et al. 2012; Gruben et al. 2014; Raulo et al. 2016). Although L-rhamnose, L-
arabinose, D-xylose, and D-galactose are also present in complex pectins, knock out mutants
in these TFs display no signs of reduced growth on pectin (Battaglia et al. 2011; Gruben et al.
2012; Gruben et al. 2014), suggesting that the utilization of GA, the main component of this
substrate, is not affected.

Martens-Uzunova and Schaap have previously identified a set of GA-induced genes in 4.
niger, containing several pectinases (pgaX, pgxA4, pgxB, pgxC, paeA, pelA and abfC), sugar
transporter encoding genes (gat4, An03g01620 and An07g00780) and the GA catabolic
pathway genes (gaaAd-D) (Martens-Uzunova and Schaap 2008). These genes were suggested
as the GA-regulon and contain a common GA responsive element (GARE) in their promoter
regions. The consensus element was defined as CCNCCAA (Martens-Uzunova and Schaap
2008). Deletion and mutational analysis of GARE showed that the element is required for
GA-induced gene expression in both A. niger and Botrytis cinerea (Niu et al. 2015; Zhang et
al. 2016). A yeast one-hybrid study using a GA-responsive promoter in B. cinerea recently
identified a novel Zn,Cys¢ TF (BcGaaR) required for GA utilization (Zhang et al. 2016). In
this study, the GA-responsive transcriptional activator GaaR of 4. niger was identified by
homology to BcGaaR. Deletion analysis and transcriptomic profiling studies performed in this
study showed that the 4. niger GaaR ortholog is required for growth on GA and PGA and for

the induction of the GA-regulon when grown on sugar beet pectin (SBP).

Materials and Methods

Strains, media and growth conditions

A. niger strains MA234.1 (cspAl, kusA::DR-amdS-DR) and N593.20 (cspAl, pyrG,
kusA::amdS) were used to create the 4gaaR strains. N593.20 was made by transformation of
N593 (Goosen et al. 1987) with a deletion construct (kusA::amdS) (Meyer et al. 2007)
resulting in the deletion of kusA. Strain FP-1132.1 (cspAl, pyrG ::AOpyrG, kusA::amdS) was
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obtained by transformation of N593.20 with pyrG from Aspergillus oryzae. MA234.1 was
obtained by transformation of MA169.4 (kusA’, pyrG’) (Carvalho et al. 2010) with a 3.8 kb
Xbal fragment containing the 4. niger pyrG gene, resulting in the full restoration of the pyrG
locus.

Complementation studies were performed with JN35.1 (cspAl, kusA::DR-amdS-DR,
gaaR::hygB). To restore functionality of the kusA gene to allow ectopic integration of the
complementing fragment, the amdS marker was looped out of JN35.1 by FAA counter-
selection as described (Arentshorst et al. 2012) to give JN36.1. The gaaR complemented
strain JN37.4 was created using JN36.1, by transformation of the gaaR gene including
promoter and terminator regions (see below). All strains used are listed in Table S1.

Media were prepared as described (Arentshorst et al. 2012). For growth phenotype
analyses, strains were grown on minimal medium (MM) with 1.5% (w/v) agar and various
sole carbon sources: 25 or 50 mM glucose (VWR International), GA (Chemodex), L-
rhamnose (Fluka), L-arabinose (Sigma-Aldrich) or D-xylose (Merck), and 1% (w/v) PGA
(Sigma), SBP (Pectin Betapec RU301 Herbstreith & Fox KG), citrus pectin (CP) (Acros
Organics) or apple pectin (AP) (Pectin Classic AU2022 Herbstreith & Fox KG). pH was
adjusted to 5.8 with NaOH or HCI buffer. The plates were inoculated with 2 pl containing
1000 freshly harvested spores and cultivated at 30 °C for 4 days. For gene expression
analyses, freshly harvested spores were inoculated with a final concentration of 10° spores/ml
in 100 ml complete medium (CM) (pH 5.8) with 2% (w/v) D-fructose (Sigma-Aldrich) and
were pre-grown for 16h. For Northern blot analysis, mycelium was harvested by filtration
through sterile myracloth, washed twice with MM with no carbon sources (pH 4.5) and 1.5 g
(wet weight) mycelium was transferred and grown in 50 ml MM (pH 4.5) with 50 mM GA or
50 mM D-fructose for 2, 4 and 6h. For RNA-seq analysis, 2.5 g of pre-grown mycelia were
transferred to 50 ml MM (pH 4.5) with 25 mM GA and incubated for 2h or to 50 ml MM with
1% SBP and incubated for 2, 8 or 24h. All incubations were performed in rotary shaker at
30°C and 250 rpm.

Construction of gene deletion and complementation strains

Protoplast-mediated transformation of 4. niger, purification of the transformants and genomic
DNA extraction were performed as described (Arentshorst et al. 2012). To construct the
deletion cassettes, 5’ and 3’ flanks of the gaaR gene were PCR-amplified using the primer
pairs listed in Table S2 and N402 genomic DNA as template. To create JN35.1 strain, the

split marker fragments with hygB selection were created using fusion PCR (Arentshorst et al.
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2015) and transformed to MA234.1. To create FP-1126.1 strain, the flanking regions were
fused with a fragment containing the 4. oryzae pyrG gene using GoTaq® Long polymerase
(Promega) and transformed into N593.20 strain. Parental strains and gaaR deletion mutants
were deposited at the Centraal Bureau Schimmelcultures (CBS) under accession numbers
indicated in Table S1. To complement the gaaR gene, the gaaR gene together with its 5° and
3’ flanks was PCR-amplified using the primer pairs listed in Table S2, ligated into
pJET1.2/blunt cloning vector (Fermentas), amplified in the E. coli strain DH5a and
transformed in to strain JN36.1 together with plasmid pMA357. pMA357 contains the A.
nidulans amdS gene, cloned behind the A4. nidulans gdpA promoter (Mark Arentshorst,
unpublished vector). Deletion and complementation of gaaR were confirmed via Southern

blot analysis or diagnostic PCR.

Gene expression analysis

For Northern blot analysis, strains MA234.1 (reference strain) and JN35.1 (AgaaR) were pre-
grown in CM with D-fructose. At the time of transfer (t = 0) and 2, 4 and 6h after the transfer
to MM with GA or D-fructose, mycelium was harvested from cultures by filtration through
sterile myracloth and frozen immediately in liquid nitrogen. Mycelium samples were stored at
-80 °C. Total RNA was extracted from frozen mycelium samples after grinding in liquid
nitrogen, using NucleoSpin RNA Kit (Macherey-Nagel) following the protocol provided by
the supplier, including the rDNase treatment. Total RNA samples were stored at -80 °C.
Quantification and purity assessment of total RNA was done by spectrophotometric method
(NanoDrop 2000, Thermo Scientific). Standard molecular techniques were applied as
described (Sambrook and Russell 2001). 3.5 ng RNA was loaded per sample and hybridized
with [0-32P]-dCTP labelled probes after blotting (DecalLabel DNA Labelling Kit, Thermo
Scientific). Probes were PCR-amplified using the N402 genomic DNA and the primer pairs
are listed in Table S2. For RNA-seq analysis, the mycelium of FP-1132.1 (reference strain)
and FP-1126.1 (AgaaR) was ground in Tissue Lyser II (Qiagen) and RNA was extracted using
TRIzol reagent (Invitrogen) and purified with NucleoSpin RNA Clean-up kit (Macherey-
Nagel) with rDNase treatment. RNA quantity of the samples was checked with a NanoDrop-
1000 spectrophotometer and the quality by RNA gel electrophoresis. Single-read samples
were sequenced using Illumina HiSeq"™ 2000 platform (http://illumina.com). Purification of
mRNA, synthesis of cDNA library and sequencing reactions were conducted in the BGI Tech
Solutions Co., Ltd. (Hong Kong). Transfer experiments and subsequent RNA-sequencing

were performed in duplicates.
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Bioinformatics

Raw reads were produced from the original image data by base calling. On average, ~13
million read of 51 bp per sample were obtained. After data filtering, the adaptor sequences,
highly ‘N’ containing reads (> 10% of unknown bases) and low quality reads (more than 50%
bases with quality value of <5%) were removed. After data filtering, in average, ~97.5%
clean reads remained in each sample. Clean reads were then mapped to the genome of
Aspergillus niger  NRRL3 (http://genome.jgi.doe.gov/Aspni NRRL3 1) using Bowtie2
(Langmead et al. 2009) and BWA software (Li and Durbin 2009). In average, 63.8% total
mapped reads to the genome was achieved. The gene expression level was measured in
“fragments per kilobase of exon model per million mapped reads” (FPKM) (Trapnell et al.
2010) using RSEM tool (Li and Dewey 2011). Genes with expression value lower than 14
were considered low-expressed (approximately bottom 50%) and differential expression was
identified by Student’s t-test with a P-value cut-off 0.05. The RNA-seq data have been
submitted to Gene Expression Omnibus (GEO) (Edgar et al. 2002) with accession number:
GSE80227. Homology searches were performed using the blastp algorithm from NCBI
against the non-redundant database and proteins with an E-value < 1E-50 were defined as
homologous (Altschul et al. 1990). Hierarchical clusters using the average expression values
of genes were made via Genesis 1.7.7 (Sturn et al. 2002) with Pearson correlation and

complete linkage. Low-expressed pectinases in all conditions were not included.

Results and Discussion

Identification of the 4. niger GaaR by homology to B. cinerea BcGaaR

A putative 4. niger GA-responsive transcriptional activator was identified by homology to the
recently identified B. cinerea Zn,Cyses TF (BcGaaR) (Zhang er al. 2016). The A. niger
ortholog (named GaaR) is a 740 amino acid long protein encoded by gaaR
(An04g00780/NRRL3_08195) and the bidirectional best blast hit of the 817 amino acid long
BcGaaR (Bcin09g00170). Analysis of the presence of GaaR among 20 Aspergillus species
using the Aspergillus genome database (http://www.aspgd.org/) revealed that all Aspergilli,
except Aspergillus glaucus contain a GaaR ortholog in their genome (data not shown).
Interestingly, A. glaucus is not able to grow on GA as the sole carbon source
(http://www.fung-growth.org), indicating the requirement of GaaR for GA utilization. A.
niger GaaR and BcGaaR show 50.3% identity on the amino acid level throughout the entire
protein sequence (Figure S1). GaaR contains a typical Zn,Cyss DNA binding domain with
the pattern of CX,CXsCXcCX,CX6C close to its NH,-terminal end (residues 26-56) and a
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fungal specific TF domain (residues 139-518). Amino acid alignment and phylogenetic
analysis of GaaR revealed no significant similarity (an E-value cutoff < 1E-50) of GaaR to
other TFs involved in plant cell wall utilization such as XInR, AraR, RhaR, GalX, CIrA and
CIrB or to any other TF in 4. niger (data not shown).

Deletion and complementation of gaaR and growth analysis of the AgaaR in A. niger

To assess the function of gaaR in A. niger, several deletion strains (4gaaR) were created and
verified by Southern blot analysis (Figure S2 and data not shown). The growth phenotype of
the AgaaR strains was analyzed on different monomeric and polymeric carbon sources
(Figure 1A). Deletion of gaaR in the AB4.1 background (MA234.1, Figure S2) and N593
background (N593.20, Figure 1A) resulted in an identical phenotype. Disruption of gaaR
resulted in a strongly reduced growth on GA and PGA and in a reduced growth and
sporulation on SBP, CP and AP. No significant differences in growth and sporulation were
observed on other carbon sources tested (Figure 1A, Figure S2). The strongly reduced growth
of AgaaR on GA and PGA was fully complemented by reintroducing the gaaR gene
ectopically (Figure S2).

GaaR is required for the induction of genes related to D-galacturonic acid utilization
The presence of GA has been shown to induce genes involved in PGA degradation (e.g. pgxB,
pgxC), GA transport (gatA) and catabolism (gaaA-D) (Martens-Uzunova and Schaap 2008;
Niu et al. 2015). As a first indication for the involvement of GaaR in the induction of a subset
of these genes on GA, a Northern blot analysis was performed. The reference strain and
AgaaR made the AB4.1 background were pre-grown in D-fructose medium and transferred to
either GA or D-fructose medium. For the reference strain, transfer of mycelium to GA
resulted in a rapid induction of pgxB, pgxC, gatA, gaaB and gaaC, whereas this induction was
not observed in AgaaR (Figure 1B).

To analyze the expression of a larger number of genes involved in pectin degradation, GA
transport and catabolism, a genome-wide gene expression analysis was performed using
RNA-seq. The reference strain and 4gaaR in the N593 background were again pre-grown in
D-fructose medium and transferred to GA medium. RNA-seq analysis indicated that the GA-
induced expression of all genes that were previously identified as part of the GA-regulon
(Martens-Uzunova and Schaap 2008) is dependent on GaaR (Table 1 and Figure 2). The only
exception is a putative GA transporter (An03g01620) that is expressed more than 3-fold less

in AgaaR for which the p-value did not pass our significance level (0.05). In general, these
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observations show that the genes in the suggested GA-regulon (Martens-Uzunova and Schaap
2008) showed a significant reduction in 4gaaR compared to the reference strain on GA (Table

1) and that GaaR is required for the induction of those genes.

A Reference AgaaR B

Glucose

L-rhamnose Reference AgaaR

Time(h) 0 2 46 60 2 46 6

189 rRNA --.*

GA
pgxB | W :

PGA poxc |
gatA -

SBP gaab [N -
gaaC -

CP

AP

Figure 1 Phenotypic and gene expression analyses of A. niger AgaaR A) Growth profile of the reference strain
(FP-1132.1) and 4gaaR (FP-1126.1) on MM with 25mM monomeric and 1% polymeric carbon sources. Strains
were grown for 4 days at 30°C. B) Northern blot analysis of selected GA-induced genes in the reference strain
(MA234.1) and 4gaaR (JN35.1). Mycelia were transferred from D-fructose (pre-culture) to GA or D-fructose.
Total RNA was isolated at the time of transfer (Oh) from mycelia grown in CM with 2% D-fructose and at
different time points (2, 4 and 6h) after the transfer from mycelia grown in MM containing 50 mM GA (in bold)
or D-fructose.
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To identify additional pectinase genes controlled directly or indirectly by GaaR, the
expression of all 58 pectinolytic genes (Martens-Uzunova and Schaap 2009) was examined
(Table S3). An overview of the gene abbreviations and their (putative) function is given in
Martens-Uzunova and Schaap, 2009 (Martens-Uzunova and Schaap 2009). This analysis
resulted in the identification of several additional pectinase genes for which the expression on
GA is dependent of GaaR (Table 1 and Figure 2, Figure S3). This difference could be caused
by higher sensitivity of the RNA-seq analysis compared to the previously used Affymetrix
microarrays. In general, these newly identified genes were lower expressed compared to the
genes in the GA-regulon described previously (Martens-Uzunova and Schaap 2008). The
gene encoding the putative pectin methylesterase C (pmeC) was missing on the Affymetrix
chips, and therefore missed previously, but the RNA-seq study clearly indicated that induction
of pmeC on GA is GaaR dependent. Inspection of the promoter regions of the newly
identified members of the GA-regulon indicated the presence of putative GaaR binding sites
in the promoter regions of most genes (Table 1), enabling us to expand the GA-regulon to a

larger set of genes.
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Figure 2 Transcript levels of pectin utilization genes in 4. niger reference and 4gaaR on GA or SBP. A) GA
transporters and GA catabolic pathway enzymes, B) exo-polygalacturonases and pectin acetyl- and
methylesterases, C) endo-polygalacturonases, D) pectin lyases and endo-xylogalacturonan hydrolase, E) a-L-
arabinofuranosidases, arabinan endo-1,5-a-L-arabinofuranosidase, endo-arabinanases, ferulic acid esterases and
feruloyl esterase D, F) B-galactosidases, galactan 1.3-fB-galactosidase and f-1.4-ensogalactanase, G) the L-
rhamnose regulator 74aR and L-rhamnose catabolic pathway enzymes and H) the L-arabinose and D-xylose
catabolic pathway enzymes. Mycelia of the reference strain (FP-1132.1) and 4gaaR (FP-1126.1) were pre-grown
in CM with 2% D-fructose, washed and transferred to MM with 25mM GA or 1% SBP in and incubated for 2, 8
or 24h.

GaaR is required for the induction of genes related to polygalacturonic acid degradation
and D-galacturonic acid utilization on complex pectin

Both the strongly reduced growth phenotype on GA and PGA and the expression analysis in
AgaaR suggest that that GaaR is required for GA utilization in A. niger. Growth and
sporulation of AgaaR on complex pectins such as SBP was also reduced, but not as severe as
on GA and PGA (Figure. 1A). This could be explained by two (not mutually exclusive)
hypotheses. The first explanation could be that A4. nmiger has alternative mechanisms
(independent of GaaR) to induce genes involved in GA utilization. The second possibility is
that additional sugars such as L-arabinose, D-galactose, D-xylose or L-rhamnose that are
present in SBP are metabolized and used for growth. To gain insight in the expression of
pectinase genes in AgaaR on complex pectin, the reference strain and AgaaR were transferred
from D-fructose to SBP and grown for 2, 8 and 24h before harvesting mycelia and extraction
of RNA.

Expression profiles of pectinase genes in the reference strain and 4gaaR were pairwise
compared for identical time points (Table 2 and Figure 2, Figure S3). Most of the genes in the
GA-regulon, including those required for GA transport and catabolism, are dependent on
GaaR for induction on SBP (Figure 2A-D). This observation strongly suggests that 4gaaR is
not utilizing GA from SBP. FThe expression of gaaD/larA can be explained by the dual
activity of the enzyme encoded by this gene as both an L-glyceraldehyde reductase and an L-
arabinose reductase (Mojzita et al. 2010a) and the utilization of L-arabinose from SBP in
AgaaR (see below). The expression profile of exo-polygalacturonases, pectin acetyl- and
methylesterases, endo-polygalacturonases and pectin lyases (Table 2 and Figure 2B-D) all

acting on the PGA backbone support the conclusion that the GaaR target genes are not
induced during growth on SBP in 4gaaR.
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The results described above indicate that the residual growth of 4gaaR on SBP is due to
the utilization of other monosaccharides released from SBP. Analysis of the monosaccharide
composition of the SBP used in this study was performed as described previously (Santander
et al. 2013) and showed that it contains 55 mol% GA, as well as 17 mol% L-arabinose, 16
mol% D-galactose and 10 mol% L-rhamnose. Analysis of the expression of the genes
involved in the degradation of RG-I such as exo-rhamnogalacturonases (rgx),
rhamnogalacturonases (rg), rhamnogalacturonan acetyl esterases (rgae), rhamnogalacturonyl
hydrolases (urhg), arabinofuranosidases (abf), endo-arabinanases (abn), ferulic acid esterases
(fae) and B-galactosidases (lac), and the genes responsible for catabolism of L-rhamnose, L-
arabinose and D-xylose showed that these genes were still expressed in 4gaaR (Figure. 2E-H,
Figure S3), indicating that the degradation and metabolism of RG-I support the growth of
4gaaR on SBP.

A clustering analysis of the expression of genes encoding the (putative) GA transporters,
GA catabolic pathway genes and pectinases provided further insight in the groups of co-
regulated genes (Figure 3). Clusters E and G consist of genes that are members of the GA-
regulon (Table 1) and represent genes involved in the release and utilization of GA. Cluster F
also consists mostly of genes that are part of the GA-regulon (Table 1, 2). Genes in Cluster F,
like genes in Clusters E and G, are expressed in the reference strain on GA and SBP at 2 and
8h, but unlike genes in Clusters E and G also expressed in the 4gaaR strain on SBP at 2 and
8h. Cluster F mainly includes pectinases acting on RG-I side-chains. Their expression profile
indicates that they are regulated by GaaR as well as other TFs involved in pectin degradation.
Genes in Clusters A, B, C and D are generally expressed in a GaaR independent fashion and
represent pectinases acting on RG-I and XGA. Pectinase genes of Cluster D are
predominantly expressed in the 4gaaR strain on SBP at 2 and 8h. Genes in Clusters A, B and
C are expressed predominantly in the reference strain and 4gaaR on SBP at 24h or in AgaaR
on GA, suggesting that these genes are likely induced on starvation or derepressed conditions.

In conclusion, in this paper we showed that the conserved Zn,Cysgs TF GaaR of 4. niger is
required for the utilization of GA and PGA. We also showed that GaaR is essential for GA
utilization from complex pectic substrates and that residual growth of AgaaR on complex
pectins is likely due to induction of pectinases releasing L-rhamnose from the RG-I backbone
and L-arabinose and D-galactose from the RG-I “hairy regions”. These monosaccharides are
metabolized independently of gaaR. With the identification of the GaaR in 4. niger, we

identified the missing link to further understand the interplay between several TFs involved in
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plant cell wall degradation. Insight in the regulation of pectin degradation and GA utilization

in A. niger can help in exploiting A. niger for more efficient pectinase production.
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Figure 3 Hierarchical clustering of pectin utilization genes according to their expression in the reference strain
(FP-1132.1) and 4gaaR (FP-1126.1) on GA and SBP. The color code displayed represents the transcript levels of
the genes. Clusters E and G include genes that are members of the GA-regulon.
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Supporting information

The supplementary material of this chapter are available via

https://www.ncbi.nlm.nih.gov/pmc/articles/PMCS5111758/ and comprises the following:

Table S1 Strains used in this study

Table S2 Primers used in this study. Overlapping sequences for fusion PCR are written in bold.

Table S3A RNA-seq analysis of pectinases on GA and SBP. Expression values (FPKM) are averages of
duplicates. Fold changes >2 and p-values <0.05 are highlighted.

Table S3B RNA-seq analysis of pectinases on GA and SBP. Expression values (FPKM) are averages of
duplicates. Fold changes >2 and p-values <0.05 are highlighted.

Table S3C RNA-seq analysis of pectinases on GA and SBP. Expression values (FPKM) are averages of
duplicates. Fold changes >2 and p-values <0.05 are highlighted.

Table S3D RNA-seq analysis of pectinases on GA and SBP. Expression values (FPKM) are averages of
duplicates. Fold changes >2 and p-values <0.05 are highlighted.

Figure S1 Alignment of AnGaaR and BcGaaR using EMBOSS Needle with standard settings
(http://www.ebi.ac.uk/Tools/psa/emboss_needle/)

Figure S2 Verification of the gaaR deletion strain in the MA234.1 background. A) Strategy and primer design
for disruption the gaaR gene using the split marker method [27]. Primers P1 till P8 correspond to primers
gaaRP1f, gaaRP2r, gaaR3Pf, gaaRP4r, hygP6f, hygP9r, hygP8f and hygP7r in Table S2. B) Schematic
representation of the gaaR locus in the reference strain and after gaaR deletion. Predicted sizes of the DNA
fragment hybridizing with the indicated probes are shown. C) Southern blot analysis of genomic DNA of
MA234.1 (lane 1), IN35.1 (lane 2), IN35.2 (lane 3), JN36.1 (lane 4), JN37.4 (lane 5) and JN37.5 (lane 6). Left
panel: agarose gel stained with ethidium bromide. Marker size (M, in kb) is indicated. Right panel: Southern blot
after hybridization. D) Growth analysis of the reference strain MA234.1, gaaR deletion strains and
complemented strains on MM with 50 mM or 1% different carbon sources.

Figure S3 Transcript levels of pectinases acting on RG-I backbone in A. niger reference and AgaaR on GA or
SBP. A) exo-rhamnogalacturonases and rhamnogalacturonase A B) rhamnogalacturonan lyases,
rhamnogalacturonan acetyl esterases and rhamnogalacturonyl hydrolases. Mycelia of the reference strain (FP-
1132.1) and AgaaR (FP-1126.1) were pre-grown in CM with 2% D-fructose, washed and transferred to MM with
25mM GA or 1% SBP in and incubated for 2, 8 or 24h.
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