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1. Filamentous fungi and Aspergillus niger

1.1 Filamentous fungi

Filamentous fungi refer to organisms that produce multi-cellular filaments called hyphae 

which are, with the exception of the Zygomycetes, regularly septated. About 60,000 

filamentous fungi species (excluding yeasts) had been known by 1990s, and the number in 

nature was estimated to exceed 250,000 (Hawksworth and Kirsop 1988). Current estimates (T. 

Boekhout, personal communication) reach to several million species altogether. Most of the 

biochemical properties of these fungi have not been exploited at all. With more and more of 

these properties coming to light, an increasing number of filamentous fungi have been shown 

to be useful in industrial biotechnology (Meyer et al. 2011; Pessoa et al. 2017).

Filamentous fungi have been used for a long time in various applications. The most well-

known filamentous fungi are probably those connected with food for humans. It is estimated 

that over 500 species are editable, but only less than 20 have been exploited commercially, 

including Agaricus bisporus (common mushroom), Lentinula edodes (shii-take), Tricholoma 

matsutake (matsu-take), Volvariella volvacea (paddy straw mushroom) (Chang and Hayes 

1978). Another category of filamentous fungi is traditionally used to produce fermented food 

and drinks. The most prominent fungi in this category include species of Aspergillus,

Monascus, Mucor, Rhizopus (Hesseltine 1965; Batra and Millner 1974; Steinkraus 1983) as 

well as certain Penicillium species (e.g. P. camembertii and P. roqueforti), which have long 

been used in cheese production (Pitt 1980). The third category of filamentous fungi 

constitutes of fungi known to produce interesting metabolites including antibiotics and 

organic acids (Turner 1971; Turner and Aldridge 1983). The species in this category include 

those that produce antibiotics, e.g. Penicillium rubens, which produces penicillin (Houbraken

et al. 2011), and Penicillium griseofulvum, which produces anti-fungal griseofulvin 

(Macmillan 1954); those that produce ergot alkaloids, e.g. Claviceps purpurea (Amici et al.

1969); and those that produce growth hormones, e.g. Fusarium moniliforme (Meleigy and 

Khalaf 2009) and Fusarium graminearum (Mirocha and Devay 1971). The fourth category of 

filamentous fungi is a source for production of non-protein compounds with that serve as food 

additive such as vitamins (Eremothecium ashbyii: (Goodwin and Pendlington 1954), or 

polysaccharides (Aureobasidium pullulans: (Heald and Kristiansen 1985). The fifth category 

of filamentous fungi includes important producers of industrial enzymes such as A. niger

(amylases and pectinases) (Pandey et al. 1999), Aspergillus oryzae (proteases) (Chutmanop et 
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al. 2008), Trichoderma reesei (cellulase) (Montenecourt and Eveleigh 1977) and Penicillium 

roquefortii (lipase) (Eitenmiller et al. 1970). In the remaining part of this introductionairy 

chapter, I focus on the filamentous fungus A. niger in relation to its enzyme producing 

characteristics.

1.2 Aspergillus niger

A. niger, commonly known as black mold, is an asexual reproducing filamentous fungus that 

is ubiquitous in the environment. It is a common species of the fungal genus Aspergillus. A.

niger can grow in a wide range of temperature conditions, with an optimal temperature for 

growth between 35–37°C (Schuster et al. 2002). A typical A. niger colony consists of the 

youngest, actively extending hyphae at the edge of the colony and the oldest, non-extending, 

sporulating mycelium at the center. During A. niger conidial development, the vegetative 

mycelium of the air-exposed colonies forms aerial hyphae, whose tips may swell to form a 

vesicle. Buds are formed on the vesicle that develops into metulae. Then on top of the metulae 

formed phialides, which give rise to chains of conidia (Krijgsheld et al. 2013). These conidia 

are the asexual reproductive structures. 

A. niger has no known sexual life cycle. The asexual life cycle of A. niger goes through 

different stages and starts with spore swelling, followed by germtube outgrowth, germ-tube 

elongation and branch formation. On plates, but also in liquid cultures (Jorgensen et al. 2010),

carbon starvation leads to the induction of the process of asexual development and the 

formation of conidiospores. In A. niger, conidia are black because of the present of melanin. A.

niger is a biotechnologically important filamentous fungus and is used as an industrial cell 

factory for the production of organic acids and enzymes (Pel et al. 2007; Andersen et al.

2011). The oldest and most well-known application of A. niger is the production of citric acid. 

The bioprocess of citric acid production by A. niger is highly efficient, and over one million 

metric tons of citric acid being produced each year (Karaffa et al. 2001). As a soil saprobe, A. 

niger is also important for global carbon recycling. Like many other saprophytic fungi, A. 

niger can secrete a variety of hydrolytic and oxidative enzymes to degrade plant biomass. 

Moreover, A. niger is also an important model organism for studying some basic processes in 

life science, e.g. eukaryotic protein secretion (Baker 2006). Comparing with other 

microorganisms, A. niger has some attractive properties to be used for industrial fermentation. 

It can secrete enzymes efficiently and in large scale, and is generally regarded as a safe 

(GRAS) production organism. Due to long-standing experience with fermentation, many A.
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niger strains with improved production have been generated and used by companies (Das and 

Roy 1978; Schuster et al. 2002).

2. Functional Genomics to understand gene function and regulation

In any organism, it is the regulated pattern of gene expression that determines the phenotype. 

Gene regulation is the means by which cells orchestrate gene activities to ensure that the right 

genes are expressed at the right time. The proper control of gene expression is important for 

cells to adapt to changing conditions such as nutrient availability, temperature and 

environmental stress. The aim of studying the control of gene expression is to understand how 

different regulatory networks exert their function. In this chapter, I will describe functional 

genomics approaches to study fungal gene function and gene regulation in relation to carbon 

source availability in more detail. These approaches include the rapid developments in 

(genome) sequencing, construction of gene editing and gene-knockout methods, which in 

combination allow new and efficient transcriptome analysis and forward genomics 

approaches required for studying gene regulation.

2.1 Genome sequencing technologies

Sequencing DNA molecules contributes greatly to research progress in biology and medicine. 

During the last 10 years, considerable progress has been made in genome sequencing 

technologies, allowing individual researchers to sequence fungal genomes within a few weeks 

and allow transcriptome analysis to study gene regulation without the need to generate 

microarrays. 

DNA sequencing techniques have been going through three generations. Sanger 

sequencing is the most important first-generation sequencing technique. It has been the most 

widely used sequencing technique before being replaced by the next generation sequencing, 

such as Roche 454, Illumina, ABI/SOLiD which allows sequencing DNA samples in high-

throughput. Most recently, the third-generation sequencing techniques was developed for 

single molecule sequencing. Table 1 shows the characteristics of different DNA sequencing 

methods. 
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The first-generation DNA sequencing technologies include Maxam-Gilbert sequencing 

and Sanger sequencing. Maxam and Gilbert developed chemical cleavage method for DNA 

sequencing in 1977 (Maxam and Gilbert 1977). The basic principle is using hydrazine to 

selectively remove bases from pyrimidines (cytosine and thymine), while hydrazine can only 

remove bases from cytosine in the presence of high salt concentrations; using acid to remove 

bases from purines (adenine and guanine) and to attack guanine with dimethyl sulfate. The 

resulting backbone is then cleaved at the abasic sites by piperidine, yielding fragment of 

different length, which can be visualized via polyacrylamide gel electrophoresis, and the order 

of nucleotides can be deduced by reading up the gel (Maxam and Gilbert 1977). This 

technique is considered the start of “first-generation” sequencing. A major breakthrough in 

DNA sequencing was made in late 1977, when Sanger and colleagues developed the “Sanger 

chain termination” method. Sanger chain termination is also called dideoxy chain termination 

(Sanger et al. 1977). The principle is adding four types of radiolabeled dideoxynucleotides 

(ddATP, ddTTP, ddGTP, ddCTP) instead of chemicals to four polymerase reactions 

respectively. Due to lack of the 3’OH group, which is required for DNA polymerase-mediated 

strand elongation, random incorporation of ddNTPs in a PCR reaction can terminate DNA 

extension at different positions, resulting in the generation of 3’ truncated sequence fragments 

of different sizes in each of the four reactions. The fragments can be visualized by 

polyacrylamide gel electrophoresis and the order of nucleotides can be inferred after 

autoradiograph (Sanger et al. 1977) . This technique has improved with time, such as using 

fluorescent labelled dNTP which can read DNA sequence without gel electrophoresis. Whole 

genome sequencing became possible with this technique (e.g. E. coli genome, yeast genome), 

although still very expensive and time consuming. Towards this purpose, the invention of new 

sequencing techniques was therefore required to lead the way.

The second-generation DNA sequencing (or next generation sequencing) represents the 

first high-throughput DNA sequencing approach. The beginning of the second-generation 

sequencing techniques was marked by pyrosequencing, which was first introduced in 1996

(Ronaghi et al. 1996). This approach uses a luminescent method to measure pyrophosphate 

release on nucleotide incorporation. The basic principle is an enzymatic cascade reaction 

catalyzed by four enzymes (DNA polymerase, ATP sulfurylase, luciferase and 

bisphosphatase). During the reaction, if the added dNTP can be paired with the template DNA 

at a given position, the dNTP will be incorporated under the help of DNA polymerase, 

releasing equal amount of pyrophosphate. ATP sulfurylase then converts pyrophosphate to 
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ATP, which, in turn, drives the conversion of luciferin to oxyluciferin mediated by luciferase. 

Oxyluciferin produces light signals proportional to the number of pyrophosphates (Nyren and 

Lundin 1985). This finding evolved into the first “next generation sequencing” technology, 

and was used to sequence the Mycoplasma genitalium genome (Margulies et al. 2005).

Pyrosequencing was initially licensed to 454 Life Science and later purchased by Roche. It 

allows parallel production of sequence reads from a large number of wells, and is therefore 

called high-throughput DNA sequencing. Several parallel sequencing techniques sprung up 

following the application of Roche-454. Among them, the most important one is 

Solexa/Illumina sequencing. Solexa/Illumina sequencing uses fluorescent reversible-

terminator, and sequencing results are visualized by detection of fluorescent signals. These 

second generation approaches have some significant advantages over the first generation 

approaches, e.g. they can sequence DNA in high-throughput and can be observed in real time. 

Albeit these advantages, the short read length in NGS makes it difficult to assemble large 

genomes or those with lots of repeats.

The third-generation DNA sequencing is featured by single molecule sequencing (SMS), 

real time sequencing and long-read sequencing. Currently, the most widely used third-

generation approach is the single molecule real time (SMRT) platform from Pacific 

Biosciences (PacBio). SMRT sequencing takes place in nano photonic visualization chambers 

called zero-mode waveguides (ZMWs). During SMRT sequencing, a DNA template is 

replicated by a DNA polymerase immobilized at the bottom of the ZMW. As the DNA 

template passes through the polymerase during synthesis, nucleotides that are phospho-

labelled with four different fluorescents are incorporated into the newly synthesized strand 

one by one and are illuminated from below by an excitation beam, emitting four different 

bright light pulses. This process occurs in parallel in thousands of ZMWs that make up the 

SMRT cell (Goodwin et al. 2016; Heather and Chain 2016).

Another promising third-generation DNA sequencing technique is the Oxford nanopore 

sequencing (MinIon). This technique can directly detect the nucleotide composition of a 

ssDNA, negating the need for incorporation or hybridization of nucleotides guided by 

template DNA strand. The principle behind nanopore sequencing is that ssDNA can be passed 

through a protein nanopore by electrophoresis. The nanopore protein is embedded in a 

membrane. During sequencing, a constant voltage is applied to each side of the membrane, 

which drives the translocation of DNA through the pore. As the DNA passes through the pore, 

the nucleotides will change the ionic conductivity of the nanopore, resulting in nucleotide-
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specific shifts in the magnitude and duration of the ion current. These shifts can then be 

recorded by a sensitive ammeter and serve as a read out to determine the nucleotide sequence 

(Goodwin et al. 2016; Heather and Chain 2016).

Starting from the second-generation approaches, these different sequencing technologies 

provide a powerful tool for research on functional genomics of fungi. One important 

application of these technologies is whole genome sequencing. There has been substantial 

investment in sequencing of filamentous fungi genomes, with a clear focus on sequence 

analysis of a very important class of fungi, the Aspergilli. The first sequenced filamentous 

fungus was N. crassa, a well-established filamentous fungus for basic fundamental research 

(Galagan et al. 2003; Mannhaupt et al. 2003). The first sequenced Aspergillus genomes 

include the model organism Aspergillus nidulans, as well as Aspergillus fumigatus and A. 

oryzae in 2005 (Galagan et al. 2005; Machida et al. 2005; Margulies et al. 2005).

Subsequently, genomes of Aspergillus flavus, Aspegillus fischeri, Aspergillus clavatus and 

Aspergillus terreus were also sequenced (Payne and Loomis 2006; Fedorova et al. 2008; 

Arnaud et al. 2012). Two A. niger strains CBS513.88 and ATCC1015 were sequenced at 

2007 and 2011, respectively (Pel et al. 2007; Andersen et al. 2011). In a recent study 

contributed by global consortium, ten more Aspergillus strains were sequenced and annotated. 

They are Aspergillus luchuensis, Aspergillus tubingensis, Aspergillus brasiliensis, Aspergillus 

carbonarius, Aspergillus aculeatus, Aspergillus versicolor, Aspergillus sydowii, Aspergillus 

glaucus, Aspergillus wentii and Aspergillus zonatus (De Vries et al. 2017). In the meantime, 

the complete genus Aspergillus has been sampled for genome sequencing, leading to the 

sequencing of almost 46 genomes 

(http://genome.jgi.doe.gov/eurotiomycetes/eurotiomycetes.info.html) with even more 

Aspergillus genomes underway (M. Andersen, personal information). These genome sequence 

data provide a resource-rich platform for evolutionary and functional genomics studies and 

provide reference genomes for transcriptomic studies via RNA sequencing. In the following 

chapters, the use of these platforms will be described in relation to the genetic characterization 

of mutants and to study gene functions. 

2.2 Methods to genetically characterize mutant genes from forward genetic screens

During the last decades, forward genetic screens have identified many new genes in various 

species and contributed greatly to our understanding of gene functions. The essence of a 

forward genetic screens is to make random mutations to create mutants with specific 
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phenotypes and to identify the genetic basis of the mutations responsible for these phenotypes. 

In forward genetic screens, chemicals (e.g. ethyl methanesulfonate, EMS) or radiation-based 

mutagens (e.g. UV) are commonly used to generate random mutants, which are then screened 

for interesting mutant phenotypes. For the genetic identification of mutations from a forward 

screen, different approaches can be used. In the pre-genomic era, genetic linkage analyses in 

combination with chromosome walking and complementation approaches with cosmid 

libraries were generally used. 

2.2.1 Genetic linkage analysis based methods

Genetic linkage analysis utilizes genetic markers to map the mutation of interest. Depending 

on the genetic background of the species, a variety of crossing schemes can be used to map 

the mutation that causes the phenotype of interest to a specific region of the genome (mapping 

interval). During the crossing process, markers which are closely linked to the causal mutation 

will be co-segregated with the causal mutation due to infrequent recombination between them. 

Therefore, there is a distinct allele distribution of the mutation and the closely linked markers 

in the progeny from a cross. Once the mutation region is mapped, a targeted search e,g, via 

chromosome walking can be conducted to find the actual causal mutation within that region 

by sequence analysis (see for review (Schneeberger 2014). Genetic mapping by this method is 

largely dependent on the density of the polymorphic markers genotyped. Moreover, as this 

method can only locate the genomic region that contains the causal mutation, further 

sequencing within this region is required (Schneeberger 2014).

2.2.2 Complementation analysis based methods

Confirmation of the mutated candidate gene responsible for the phenotype can also be 

achieved by complementation analysis. In this approach, a cosmid library is constructed by 

ligating genomic DNA fragments into the cosmid vector. Introduction of the cosmid library 

into the mutant strain allows selection of transformants functionally complementing the causal 

mutation. If the cosmid clone contains a wild-type allele of the mutated gene, it can rescue the 

phenotype by complementing the endogenous disrupted allele. Further analysis of 

complementing cosmid clones will reveal the gene contained in the complementing sequences 

(Damveld et al. 2008; Punt et al. 2008; Meyer et al. 2009). This method has been successfully 

used in A. niger, for example for the identification of PrtT, a unique regulator of extracellular 

protease encoding genes (Punt et al. 2008). However, the complementation method is time 
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and labor intensive and has some limitations, such as that the gene might be lacking in the 

library, and that certain mutant phenotypes are difficult to screen for complementation among 

thousands of transformants. The next generation sequencing approaches provides a promising 

alternative method for identifying specific gene mutations.

2.2.3 Next-generation sequencing based methods

With the advent of next generation sequencing (NGS) techniques it is possible to directly 

sequence individual mutant genomes to identify causal mutations (Srivatsan et al. 2008).

However, multiple mutations might be found in mutants and requiring a lot of research to 

identify the mutation responsible for the phenotype. Therefore, several approaches have been 

developed to facilitate identification of the mutation related to the phenotype of the mutant. 

Recently, the combination of the classical bulk segregant analysis (BSA) (Michelmore et al.

1991) with NGS has proven to greatly accelerate this process, leading to the development of 

an approach named mapping-by-sequencing (Schneeberger et al. 2009; Niu et al. 2016).

BSA is traditionally used to identify makers linked to gene(s) of interest (Michelmore et al.

1991). It involves comparing the pooled DNA sample of mutant segregants with that of wild-

type segregants. Both segregants are resulted from a single cross of the parental strains. The 

individuals in each pool have the same version of the target gene (either wild-type or mutated), 

but are arbitrary in all the other genes. By genome sequencing, single-nucleotide 

polymorphisms (SNPs) are analyzed between the two parental strains and serve as markers. 

Markers that are homozygously polymorphic between the two segregant pools are within 

physical proximity of the mutation and thus genetically linked to the locus of the target 

mutation (Michelmore et al. 1991; Lister et al. 2009). This approach, combining BSA with 

NGS, allows simultaneous mapping and identification of the target mutation. In our lab, we 

used bulk segregant analysis in combination with high-throughput genome sequencing to 

identify the mutation gene laeA, which is responsible for the non-acidifying phenotype in A. 

niger (Niu et al. 2015). In case of a very specific mutant selection approach, spontaneous 

mutants with the same mutant phenotype can be directly used to identify the causal mutations 

without bulk segregant analysis, as there are less non-targeted mutations and the selection 

scheme only results in one phenotype in multiple mutants. In our lab, directly sequencing of 

several individual A. niger mutants revealed a transcriptional repressor which control 

expression of genes for D-galacturonic acid utilization (Niu et al., 2017). 
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2.3 Aspergillus niger functional genomics 

The availability of high quality genome sequence of A. niger in combination with improved 

annotations of the genome has resulted in the identification of 11800 potential genes 

(http://genome.fungalgenomics.ca/new_gene_model_pages/species_search_page.php?predna

me=Aspni_NRRL3 ), of which most still await further functional analysis. In this thesis we 

focus on functional analysis of regulatory genes in particular. There are two common ways to 

study the function of a (regulatory) gene in vivo: deletion analysis or overexpression analysis. 

In this chapter, I will focus on two more recent and highly efficient technologies for making 

gene deletion mutants: the split marker approach and the CRISPR-Cas9 system.

2.3.1 NHEJ mutants combined with the split marker approach

Although in unicellular fungi random integration of DNA via the non-homologous end 

joining (NHEJ) pathway does occur, targeted integration is already much more efficient than 

in filamentous fungi (Kooistra et al. 2004). In particular in filamentous fungi, new approaches 

were required to make targeted integration more efficient. An important breakthrough in 

fungal genetics was the discovery of gene YKu70 encoding protein responsible for NHEJ in

yeast Saccharomyces cerevisiae (Van Attikum et al. 2001). Making NHEJ-deficient mutants 

was first performed in yeast S. cerevisiae, and thereafter in N. crassa via deletion of the ku70

gene, and deletion of the ku70 gene was shown to lead high frequencies of HR and 

consequently high efficiencies of obtaining targeted mutants (Van Attikum et al. 2001; Van 

Attikum and Hooykaas 2003; Ninomiya et al. 2004). In addition to ku70, deleting other 

components of the NHEJ machinery, such as ku80 and lig4 resulted in fungal NHEJ-deficient 

recipient strain for gene targeted deletion (for reviews see (Meyer and Bailis 2008; Kuck and 

Hoff 2010) and references therein). 

Gene targeted deletion is normally performed by constructing a linear DNA fragment that 

contains the 5’and 3’flanks of the gene of interest (GOI) and a selection marker between them.

The easiest way to generate these fragments is by fusion PCR in which the three fragments 

(5’flank, selection marker and 3’flank) are fused together by primer overlap extension. 

Although these methods work in general well, the full length PCR fragments are quite large in 

size (4-5 kb, depending on the size of the flanking sequence and selection marker used) with 

sometimes leads to PCR problems and low yields. To circumvent amplification of these large 

fragments the split marker approach was developed. In split marker approach, the gene 
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deletion cassette consists of two fragments. The first fragment contains the 5’flank of the GOI 

fused with a 3’ truncated version of the selection marker. The second fragment contains a 5’ 

truncated version of the selection marker that still overlaps with the first one and is fused with 

3’flank of the GOI (Fairhead et al. 1996; Nielsen et al. 2006; Goswami 2012). Using this 

approach, PCR fragments are smaller in size (3 kb) thereby increasing success rate and yield 

of the PCR reaction. Both fragments are transformed simultaneously to the strain of choice. 

Strategies using the split marker approach lead to more efficient gene deletion in strains with 

an intact NHEJ-machinery (Nielsen et al. 2006). We have used the spilt marker approach in 

combination with NHEJ mutants for generating in an even more efficient way gene deletion 

mutants. In chapter 2, efficient generation of A. niger knockout strains by combining NHEJ 

mutants and a split marker approach is described in detail. Although these two methods can 

be used separately, the NHEJ mutants help to significantly increase the frequency of 

homologous recombination when using the split marker approach.

2.3.2. CRISPR-Cas9 approaches

Genome editing technologies that allow us to delete, insert, and modify DNA sequences have 

greatly accelerated our understanding of the functional organization of the genome. Currently, 

the most rapidly developing genome editing technique is the CRISPR-Cas9 system, a RNA-

guided DNA editing technique that originates from type II CRISPR-Cas systems. In bacteria, 

CRISPRs (clustered regularly interspaced short palindromic repeats) provide acquired 

immunity against viruses and plasmids (Horvath and Barrangou 2010; Wiedenheft et al.

2012). Typical CRISPR loci consist of a CRISPR array of repeated sequences separated by 

variable sequences called spacers, which match the sequences within the invading foreign 

DNA (protospacer), and are often adjacent to CRISPR associated (Cas) genes that encode 

RNA-guided DNA nucleases (Hsu et al. 2014). During adaptive immunity, certain Cas 

enzymes incorporate segments of the invading DNA into the CRISPR array as spacers. In 

type II CRISPR-Cas systems, the CRISPR array is firstly transcribed into pre-CRISPR RNA 

(pre-crRNA). A trans-activating crRNA (tracrRNA) then hybridizes with pre-crRNA to form 

a RNA duplex, which can be cleaved and processed by RNAase III to produce mature 

tracrRNA:crRNA hybrids. In the hybrid, the small crRNA contains a repeat portion that 

hybridizes with tracrRNA and a spacer portion that can recognize the target DNA sequence 

by base pairing. The tracrRNA:crRNA duplex then pairs with the target DNA sequence and 

directs the Cas protein to introduce a site-specific double strand break (DSB) in the DNA 

(Doudna and Charpentier 2014; Hsu et al. 2014; Sander and Joung 2014).
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In the CRISPR-Cas9 genome editing system, the tracrRNA:crRNA duplex is engineered 

as a single guide RNA (sgRNA). By redesigning crRNA, the CRISPR-Cas9 system can target 

any region of interest in the genome as long as it is adjacent to a protospacer adjacent motif 

(PAM). Due to ease of use and efficiency of this technique, it holds great promise to help us 

understand gene function. The CRISPR-Cas9 system has been tested in several Aspergillus 

species and has been shown to be effective in targeting genes. For example, CRISPR-Cas9 

can efficiently introduce directed mutations into the yA gene in A. nidulans, the albA and 

pyrG gene in A. aculeatus, and albA homologs in five Aspergilli (A. brasiliensis, A. 

carbonarius, A. luchuensis, A. niger and A. tubingensis) (Nodvig et al. 2015). Moreover, it 

has been reported that a strain generated by CRISPR-Cas9 and containing a pyrG marker is 

capable for iterative gene targeting (Nodvig et al. 2015). Combining CRISPR-Cas9 gene 

targeting with transformation with “repair DNA” allows not only disrupting a gene but also 

specific gene editing. Together, it is clear that CRISPR-Cas9 is a promising technique to 

employ genetic engineering in these fungi and holds great potential in helping us understand 

their biology. 

2.3.3. Overexpression analysis

Yet another way to study gene function is by overexpressing the GOI and study the 

phenotypic effects of overexpression. The most common strategy of overexpressing a gene is 

to put the gene under control of a strong constitutive promoter (Zhang 2003) or using an 

inducible promoter system such as the Tet-on system (Vogt et al. 2005; Meyer et al. 2011).

The Tet system is involving the repressor protein TetR from Escherichia coli, which binds to 

the operator sequence (tetO) of the Tn10 in the absence of tetracyclines and prevents the 

transcription of the operon. In the presence of tetracycline, TetR dissociates from tetO,

initiating the transcription of the operon (Beck et al. 1982). This system was modified to 

generate a hybrid transactivator tTA by combining the TetR with the minimal transcriptional 

activation domain derived from the herpes simplex virus protein 16 (VP16) for application in 

eukaryotic systems. In this system (Tet-off system), tTA stimulates gene expression in the 

absence of tetracycline. Alternatively a Tet-on system has been developed. In the Tet-on 

system, the reverse hybrid transactivator rtTA was generated by introduction of mutations to 

TetR, which lead to induction of gene expression in the presence of tetracycline instead of 

repression. The Tet-on system can be used for maximum expression levels by placing several 

copies of the tetO sequence upstream of a minimal promoter. Both the Tet-ON system and the 

Tet-OFF system has been adapted to be functional in A. niger (Meyer et al. 2011; Wanka et al.
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2016). Overexpression using these strategies often gives rise to an exaggerated phenotype due 

to overexpression of the targeted genes of the regulatory network, which directly imply the 

function of the gene. 

2.4 Transcriptomics and related technologies 

As described above, to dissect the role of regulatory proteins such as transcriptional activators 

in the regulatory networks, overexpression and deletion strategies are frequently used to study 

their effects on the expression of their target genes. The set of genes that are regulated as a 

unit or controlled by the same regulatory gene comprise a regulon (Anderson 2010). The 

regulon includes genes whose expression is collectively controlled and likely to be involved 

in a specific functional program. The approaches described below allow us to study gene 

regulation on a large scale to identify these regulons. In this thesis, these technologies have 

been studied to understand the role of a transcription al activator (GaaR) and repressor protein 

(GaaX) in relation to polygalacturonic acid utilization in A. niger.

2.4.1 First generation genome wide transcriptome analysis: Microarrays 

Traditional approaches of detecting gene expression include northern blot, in situ

hybridization and quantitative PCR (Q-PCR). While they are useful for studying single or a 

few genes, it is not possible to systematically survey genome wide gene expression using 

these traditional methods. The invention of DNA microarrays has greatly transformed the 

traditional way of studying gene expression, and allowed to detect and quantify tens of 

thousands of genes simultaneously (Kurella et al. 2001). The basic principle behind DNA 

microarrays is to immobilize a large number of known DNA sequences (probes) on a solid 

surface (e.g. nylon membrane, microscope slides and silica gel etc.) in an ordered array. These 

probes are used to specifically hybridize complementary DNA (sometimes termed the ‘target’) 

that is present in a sample (Schena et al. 1995; Huang et al. 2007). In case of transcriptional 

profiling the fluorescently labelled target DNA is generated from RNA samples by RT-PCR 

based approaches. After hybridization, the fluorescently labelled target sequences that bind to 

a probe generate a signal, which can be detected by laser-scanning and fluorescence detection 

devices such as CCD cameras. The hybridization patterns generated on the microarray can be 

read and the results can be quantitatively analyzed. In a previous study, researchers made use 

of gene expression profiling of A. niger grown on various carbon sources using Affymetrix 

DNA microarrays, and found several genes that were specifically induced by galacturonic 
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acid (Martens-Uzunova and Schaap 2008). The results of these studies allowed us to search 

for regulation factors involved in the co-regulation of these genes (Chapter 4). 

Since its conception in 1995, DNA microarrays have developed into a powerful tool for 

surveying gene expression efficiently and comprehensively on a genomic scale. At the start of 

my thesis, microarrays were a state of the art technology that was available for A. niger and 

was therefore used most often. Although alternative gene expression techniques, among 

which is the next generation sequencing (NGS), are available today, these technologies were 

expensive at that time and as microarrays had been designed, production costs of arrays are 

relatively low. An increasing amount of knowledge about gene regulation in Aspergillus has 

been gained from studies using microarrays. A trispecies Aspergillus microarray was also 

developed for transcriptome analysis of A. nidulans, A. niger, and A. oryzae (Andersen et al.

2008). Despite their wide spread use, DNA microarrays continue to have some limitations, 

which include: inflexible probe design and strain variations which may influence 

hybridization signals of genes containing multiple DNA polymorphisms. Moreover, DNA

microarrays can only be developed for species whose genome sequence has been determined. 

With the advent of even cheaper high-throughput DNA sequencing technology, DNA 

microarray is rapidly replaced by RNA sequencing (RNA-Seq).

2.4.2. RNA-Seq 

RNA-Seq is an emerging technology that uses next generation sequencing to map and 

quantify transcriptomes. It provides a powerful tool to reveal many different properties of the 

transcriptome and to accurately measure all transcripts of an organism, including messenger

RNAs, microRNAs, small interfering RNAs, and long noncoding RNAs (Wang et al. 2009).

The typical protocol for RNA-Seq is to extract RNA, convert it into a library of cDNA 

fragments and attach them to sequencing adaptors, and sequence the cDNA library using 

high-throughput sequencing technology. After sequencing, the resulting reads, including 

exonic reads, junction reads, and poly(A) end-reads can be mapped to a reference genome or 

de novo assembled if the genome is unknown. This generates a base-resolution expression 

profile for each gene in the genome. Comparing with microarrays, RNA-seq has several key 

advantages (Wang et al. 2009). First, it can be used for species whose genomic sequences 

have not yet been determined and does not require an optimal genome annotation to predict 

open reading frames. Second, it can actually reveal transcript structure to a single-base 

resolution. Many properties of transcript structure (e.g. the precise location of transcription 
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boundaries, the connectivity of exons etc.) can therefore be accurately determined, making it 

useful for studying complex transcriptomes. Third, it has much lower background signals for 

sequence mapping and a higher dynamic range for measurement of transcriptional levels than 

microarrays. Fourth, RNA-seq is highly accurate for measurement of expression levels and 

the results have high levels of reproducibility. Finally, RNA-seq needs less RNA sample due 

to that no cloning steps are required. Due to these advantages, most researchers, including our 

own group, have completely shifted form (Affymetrix) microarray analysis to perform 

transcriptomic studies using RNA-seq based technology. In Chapter 4 and 5, RNA-seq has 

been used to perform transcriptomic studies to identify the genes controlled by the 

transcriptional activator and repressor module that control the expression of galacturonic acid 

induced gene expression in A. niger.

2.4.3 CHIP-seq analysis 

Essential components of any gene regulatory network are DNA-binding proteins, such as 

transcription factors. Transcription factors can be activators, that is activation of the 

transcription factor stimulate gene expression, but transcription factor can also bind to DNA 

and act as repressor. DNA binding transcription factors (either acting as an activator or 

repressor) often bind to specific transcription factor binding sites in the promoter of target 

genes, thereby controlling their expression. Therefore, DNA-protein interactions play a 

fundamental role in the regulation of gene expression. 

Historically, DNA-protein interactions can be identified by chromatin 

immunoprecipitation (CHIP) experiments. In CHIP studies, proteins are binding to DNA, 

followed by immunoprecipitation of the protein of interest with a protein-specific antibody, 

the precipitated protein-DNA complexes are then purified and the bound DNA is 

characterized. In early stages, the bound DNA was characterized by dot blot or Southern blot 

analysis. Further development of CHIP combines this technique with genome wide 

microarrays, leading to the invention of CHIP-chip method which allows hybridizing 

fluorescently labeled bound-DNA to an appropriate microarray at a relatively high-throughput 

(Ren et al. 2000). With recent advances in the next-generation sequencing, CHIP sequencing 

(CHIP-seq) was developed to sequence the released bound-DNA with short reads at a higher 

throughput. The short reads delivered in CHIP-seq allow identification of interaction sites 

with more precision. CHIP-seq has first been applied to identify the binding sites of STAT1 

and NRSF at the genome-wide scale (Johnson et al. 2007; Robertson et al. 2007) and has 
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been used in several studies to define direct binding sites. The DNA binding targets of the 

Clr-1, Clr-2 and Xlr-1 transcription factors in N. crassa that are involved in the regulation of 

genes involved in plant cell wall biomass deconstruction have been identified via Chip-seq 

(Craig et al. 2015). The CHIP-seq technology represents a powerful tool to verify direct 

binding of a transcription factor to a promoter element.  

2.5 Functional Genomics to understand gene regulation 

With the rapid development of DNA and RNA sequencing technologies, more and more 

genomic sequences and transcriptional data of fungi are available. Bioinformaticians assemble 

whole genomic sequence for each species and create websites to store the sequences 

information and related protein information and other information as soon as they are 

available. Several websites are accessible such as JGI (http://genome.jgi.doe.gov/), fungal 

special database FungiDB (http://fungidb.org/fungidb/) or Aspergillus genome database 

AspGD (http://www.aspgd.org/) to view or download information. The study of gene 

regulation is clearly focused on studying the role of pathway specific and wide domain 

regulatory proteins, which in the majority of cases are DNA binding proteins governing 

transcription. These so-called transcription factors consist of two or more domains. One is a 

DNA binding domain (DBD), which attaches to a specific DNA sequence that is present 

upstream to the translational start site of a regulated gene. The second is a transactivation 

domain (TAD), to which other proteins (co-regulatory proteins) bind. DBD domains are 

commonly classified into different type including Zinc finger, helix-turn-helix, leucine zipper 

and helix-loop-helix based on the secondary structure. Zinc finger are categorized into three 

main classes Cys2His2 (C2H2), Cys4 (C4) and Cys6 (C6) (Macpherson et al. 2006; Shelest 

2017). Proteins with a Zn(II)2Cys6 domain are found exclusively in fungi and yeasts. Chang 

et al., conducted genome-wide analysis of the Zn(II)2Cys6 zinc cluster-encoding gene family 

in Aspergillus flavus resulting in 199 genes encoding proteins with a Cys6 domain (Chang 

and Ehrlich 2013). Detailed genome mining in A. niger revealed the presence of 694 putative 

DNA-binding transcription factor of which 453 belong to the Zn(II)2Cys6 zinc cluster family 

(A. Ram, personal communication).  

3. A. niger as an industrial important enzyme producer 

A. niger is an industrial important enzyme producer, it can produce a wide range of enzymes 

involved in modification and degradation of plant polysaccharides, such as starch, inulin, 

cellulose, hemicellulose (mainly xylan and arabinan), galactomannan and pectin (De Vries 
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and Visser 2001). In this paragraph, I will focus on the structure and regulation of gene 

expression in relation to starch, xylan and pectin utilization by A. niger.

3.1 Major polysaccharides starch, xylan and polygalacturonic acid

Polysaccharides are polymeric carbohydrates, composed of 10 to up to several thousand

monosaccharides linked together by glycosidic linkages. The most common 

monosaccharides that appear as parts of polysaccharides are glucose, fructose, xylose, 

arabinose, galactose, rhamnose and mannose. In addition, galacturonic acid (GA) is the most 

important sugar acid in plant cell wall and present as the main component of pectin. Plant 

cell wall polysaccharides can be classified into storage components (starch and inulin) and 

structure components such as cellulose, hemicellulose, and pectin. 

3.1.1. Starch

Starch or glycogen are multi-branched polysaccharides consisting of α-1,4 and α-1,6-linked 

glucose residues that serves as a form of energy storage in humans, animals, and fungi. It is 

one of the most abundant storage polysaccharides in nature, functioning as a short- and long-

term reserve carbohydrate. Starch is produced in the plastids of higher plants and 

accumulated as granules in chloroplasts of source organs such as leaves (transitory starch) or 

in amyloplasts of sink organs such as seeds, tubers and roots (storage starch). Some plants 

with high starch content include corn, potato, rice, sorghum, wheat, and cassava. Starch is 

made up of two substructures including amylose and amylopectin. Amylose is a linear chain 

composed of 100-10000 glucose units with α-1,4-glucosidic bonds. Amylopectin consists 

not only the linear backbone of glucose units with α -1,4-glucosidic bonds but also branches 

composed of α -1,6- glucosidic linkages. The number of branches and the length of the side 

chains vary among different sources of starch. A complete amylopectin molecule contains on 

average about 2,000,000 glucose units (Myers et al. 2000). Starch granules consist of tightly 

packed glucan chains resulting in a semicrystalline, water–insoluble structure, which is 

suitable for long-term storage. In general, the more the chains are branched, the more the 

starch is soluble. Glycogen is very similar in structure in relation to starch but containing an 

average a higher portion of α-1, 6- glucosidic linkages and is therefore more branched. 

Glycogen is found in fungi and as well in mammalian cells and also functions as a storage 

carbohydrate (Gilbert 2000).
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3.1.2. Xylan

Xylan is a major constituent of plant cell wall hemicellulose. The content of xylan comprises 

10 - 35 % of the hemicellulose in hardwoods and 10 - 15 % of the hemicellulose in 

softwoods. After cellulose, xylans are the second most abundant structural polysaccharides 

in plants. The deposition of xylan in the secondary cell wall contributes to the construction 

of a strong and flexible plants cell wall and hence helps to defend against herbivores and 

pathogens. Therefore, xylan is important for normal plant growth and development. The 

structure of xylan is characterized by a backbone composed of a linear polymer of β-1,4-

glycoside-linked xylose residues. Xylans of all higher plants possess this backbone, which is 

usually substituted with acetyl, glucuronic acid, 4-O-methylglucuronic acid, and arabinose 

residues. Despite the common features, variations in xylan structures also among different 

species and even among different tissues in the same species (Rennie and Scheller 2014).

3.1.3 Pectin

Pectin is the main constituent of the middle lamella of plant cell wall. The middle lamella is 

found as the outermost layer of the plant cell wall which consists of up to three layers. The 

layer formed between the middle lamella and plasma membrane is called primary cell wall. 

The primary cell wall is mainly composed of cellulose microfibrils contained within a gel-

like matrix of hemicellulose fibers and pectin polysaccharides. The third layer is called 

secondary cell wall, and is formed between the primary cell wall and plasma membrane in 

some plants. In addition to polysaccharides, plant cell walls also contain lignin as structural 

component and many proteins with enzymatic functions and (hydroxyproline-rich) 

glycoproteins with structural functions (Rose and Lee 2010).

Galacturonic acid (GA) is the most abundant component of pectin. Pectin is a collective 

name for GA-rich structures and four substructures have been defined which include: i)

homogalacturonan (HGA) or polygalacturonic acids (PGA), ii) xylogalacturonan (XGA), iii)

rhamnogalacturonan I (RG-I) and iv) rhamnogalacturonan II (RG-II) (reviewed in (Mohnen 

2008). PGA is a linear polymer, consisting of α-1,4-linked D-galacturonic acid residues. The 

backbones of XGA and RG-II are made up of α-1,4-linked D-galacturonic acid residues. In 

XGA, β-D-xylose residues are β-1,3-linked to GA residues of the PGA backbone. The 

backbone of RG-I is made up of alternating GA and L-rhamnose residues (reviewed in 

(Mohnen 2008; Leijdekkers et al. 2015). The side chains of RG-I are mainly arabinan and 

arabinogalactan comprising of L-arabinose and D-galactose residues (Mohnen 2008). RG-II
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is the most complex structure and side chains of RG-II are composed of up to twelve 

different types of monosaccharides in >20 different linkages (Mohnen 2008). The abundance 

of each substructure varies with plant species, but typically homogalacturonan is the most 

abundant polysaccharide in pectin (65%) followed by rhamnogalacturonan I (25-30%). 

Xylogalacturonan and rhamnogalacturonan II comprise less than 10% of the total pectin 

(Mohnen 2008).

3. 2 Degradation of polysaccharides by A. niger

A. niger is a typical saprophytic fungus feeding on plant litter. Saprophytic fungi convert the 

plant polysaccharides into mainly monosaccharides before uptake of the monosaccharides 

into the cell for further catabolism. They degrade plant litter by secreting substrates-specific 

enzymes (mainly hydrolytic enzymes). The expression and consequent secretion of these 

enzymes is tightly controlled and dependent on which carbon source is available. Like many 

other filamentous fungi, A. niger has a rich arsenal of different enzymes able to plant 

polysaccharides. In the introduction I will focus on the enzymes and their regulation on 

relation to starch, xylan and pectin. 

The storage polysaccharide starch/glycogen is the principle carbon reserve in many 

plants as well as for microorganisms (both bacteria and fungi), and higher eukaryotes, 

including humans. A variety of enzymes participate in the hydrolysis of starch (Steup 1988).

Bacteria and fungi are also specialized in the extracellular degradation of plant-derived 

starch by secreting starch-degrading enzymes. These enzymes are categorized into three 

major glycoside hydrolase (GH) families (Coutinho and Henrissat 1999): α-amylases 

belonging to the GH13 family of endo-amylases, glucoamylase type enzymes (exo-acting 

enzymes) of family GH15 for releasing α-(1,4)- and α-(1,6)-glucose, and additionally α-

(1,4)-glucosidases of family GH31 for releasing α-glucose from the non-reducing end of 

starch. A detailed annotation of starch degrading enzymes in A. niger was performed 

previously (Yuan et al. 2008b).

Most fungi are also capable of degrading xylan and metabolizing the resulting xylose. 

Since S. cerevisiae cannot naturally convert xylose into ethanol, The uptake and intracellular 

metabolism of xylose has received a lot of attention to construct recombinant S. cerevisiae

strains, which containing the intracellular enzymes involved in xylose metabolism. As a 

result the xylose part in the plant cell wall could not be metabolized by natural S. cerevisiae

strains to produce ethanol. Xylose fermenting yeasts have been developed to also utilize the 
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xylose form plant biomass (Azhar et al. 2017). To degrade xylans, several hydrolytic 

enzymes need to work synergistically. Among these enzymes, the most important one is 

endo-1,4-β-xylanase, which cleaves the xylosyl backbone and releases short 

xylooligosaccharides, and xylan 1,4-β-xylosidase, which hydrolyzes xylooligosaccharides 

into xylose units (Shallom and Shoham 2003). Depending on the type of xylan, various 

auxiliary enzymes, such as α-arabinofuranosidases, β-galactosidases, α-galactosidases, α-

glucuronidases and feruloyl esterases, are also required for efficient deconstruction of xylan 

sidechains. Many microorganisms, including bacteria, yeasts and filamentous fungi, are 

important producers of these xylanolytic enzymes (Biely et al. 2016). Filamentous fungi like 

Aspergillus and Penicillium species are particularly important xylanase producers because 

they secrete the enzyme into media at higher levels than other microorganisms (De Vries and 

Visser 2001; Chavez et al. 2006).

Pectin degrading enzymes are mainly produced in nature by saprophytes and many 

bacterial and fungal pathogens of plants for degradation of plant cell wall. Commercial 

pectinase preparations are primarily derived from A. niger (Voragen and Pilnik 1989).

Genome mining has revealed a large array of extracellular pectinolytic enzymes in A. niger

(Coutinho et al. 2009; Martens-Uzunova and Schaap 2009). Pectin degrading enzymes can 

be grouped in two major classes “pectinases” and “accessory enzymes” according to the 

complex structure of pectin. The “pectinases” attack the backbone of pectin, and “accessory 

enzymes” degrade the side chains of pectin. Homogalacturonan (HGA) is most abundant 

component in pectin (Harholt et al. 2010). During HGA degradation, pectin methylesterases 

hydrolyze methoxy groups in pectin to yield pectate and methanol. Endo-polygalacturonases 

and exo-polygalacturonases are hydrolytic enzymes that hydrolyze pectate, producing 

oligogalacturonic acid and GA respectively. Pectate lyases are endo-acting enzymes that 

catalyze pectate to unsaturated oligogalacturonides with an eliminative cleavage mechanism. 

Pectin lyases are endo-acting enzymes with an eliminative cleavage mechanism on naturally 

methylated pectin (Hsiao et al. 2008). The backbone XGA can be degraded by endo-

xylogalacturonan and exo-polygalacturonan hydrolases, whereas RGI requires the additional 

activity of rhamnogalacturonan hydrolases and rhamnogalacturonan lyases.

3.3 Galacturonic acid metabolism in A. niger.

To utilize GA as a carbon source, GA have to be taken up into the cell by specific sugar 

transporters (Sloothaak et al. 2014). GA can be metabolized both by bacteria and in 
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eukaryotes using different enzymatic pathways. In bacteria, GA is metabolized in a five-step 

pathway via D-tagaturonate, D-altronate, 2-keto-3-deoxy-gluconate and 2-keto-3-deoxy-6-

phospho-gluconate resulting in the formation of pyruvate and glyceraldehyde-3-phosphate 

(Ashwell et al. 1960; Huisjes et al. 2012). In eukaryotes, the metabolism of GA takes a 

different metabolic route. Metabolism of GA in fungi is well studied and involves four 

enzymatic reactions to convert GA into glycerol and pyruvate. The genes encoding these 

enzymes (gaaA, gaaB, gaaC, and gaaD) have been identified and the biochemical properties 

of the enzymes have been determined (Kuorelahti et al. 2005; Kuorelahti et al. 2006; Liepins

et al. 2006; Hilditch et al. 2007; Mojzita et al. 2010; Wiebe et al. 2010; Zhang et al. 2011; 

Kuivanen et al. 2012). Specific sugar transporters that are able to transport GA over the 

plasma membrane have recently been identified and characterized in N. crassa (Benz et al.

2014) as well as in A. niger (Sloothaak et al. 2014) and Botrytis cinerea (Zhang et al. 2014).

4.1 Transcriptional regulation of genes encoding polysaccharides degrading enzymes

As described above, A. niger can secret wide range of enzymes to synergistically degrade 

plant cell wall polysaccharides. The expression of these enzymes is tightly regulated in 

filamentous fungi including A. niger. In many cases, the expression is under the control of 

substrate specific transcriptional activators, which belong to the fungal specific transcription 

factors with a Zn(II)2Cys6 DNA binding motif (Todd and Andrianopoulos 1997). Their 

expression of the genes encoding the extracellular enzymes, sugar transporters, intracellular 

metabolic enzymes, and in some cases also the transcriptional activator is also controlled by 

wide-domain regulators, such as carbon catabolite repressor CreA and the ambient pH 

regulator PacC which are both members of the C2H2 family of transcription factors. Table 2

shows the main pathway specific transcription factors from Aspergilli involved in the 

degradation of various plants derived polysaccharides known to date (see review (Benocci et 

al. 2017)). Here, I will focus on the transcription factors AmyR, XlnR and the carbon 

catabolite repressor CreA as an introduction to our study on the search for regulatory factors 

involved in controlling the expression of enzymes related to PGA utilization.

4.2 AmyR

Aspergillus spp can produce different types of amylolytic enzymes to degrade starch. The 

expression of genes encoding these synergistically acting amylolytic enzymes is regulated by 

a transcription activator AmyR. AmyR was first cloned and characterized in A. oryzae

(Petersen et al. 1999), and encodes a 604 amino acids protein containing a zinc binuclear 
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cluster motif (Zn(II)2Cys6) (Petersen et al. 1999; Gomi et al. 2000). AmyR was also cloned 

and sequenced in A. nidulans and A. niger by heterologous hybridization of the A. oryzae

amyR gene (Tani et al. 2001). The A. nidulans AmyR protein comprises 662 amino acids and 

shares 72% overall amino acid identity to the AmyR of A. oryzae (Tani et al. 2001). The A. 

niger AmyR protein is 610 amino acids long and shows 66.18% identity to the AmyR of A. 

oryzae.

The regulatory mechanism of expression of the amylolytic genes mediated by AmyR is 

relatively well studied in A. nidulans by subcellular localization studies using a green 

fluorescent protein (GFP)-labeled AmyR fusion protein (GFP-AmyR). Unfortunately, these 

localization studies were performed by placing the GFP-AmyR fusion protein under control 

of the inducible alcR promoter which could affect the conclusions related to AmyR 

localization under inducing and non-inducing conditions (Makita et al. 2009). AmyR possess

five conserved domains with S. cerevisiae Mal regulators (Tani et al. 2001) (Figure 1) which 

include the Zn(II)2Cys6 domain (Zn) and four domains, named MH1-4. The N-terminal

Zn(II)2Cys6 domain is the DNA- binding domain, which binds to the proposed AmyR

binding site (CGGN8CGG) which is present in the promoter regions of the various amylolytic 

genes (Petersen et al. 1999; Tani et al. 2001; Ito et al. 2004). An alternative binding site 

(CGGN8AGG) in the Taka-amylase A (taaG2) promoter in A. oryzae has been shown to be 

functional (Ito et al. 2004). The N-terminus also contains the nuclear localization signal (NLS) 

sequences which is responsible for the nuclear localization of AmyR (Makita et al. 2009). The 

nuclear localization of AmyR which is required to activate amylolytic gene expression, is 

inducer-dependent. Interestingly, deletion of the MH4 domain results in inducer independent 

localization of GFP-AmyR and constitutive expression of amylolytic genes (Makita et al.

2009). The physiological role of the MH1 domain is currently unknown. The MH2 domain is 

required for the transcriptional activation, as truncation of the C-terminal half from the MH2 

domain onwards leads to a defect in transactivation of taaG2 expression, while it does not 

affect nuclear localization. Simultaneous deletion of MH3 and the MH4 domains also leads to 

reduced transactivation activity (Makita et al. 2009).

AmyR localizes to the nucleus in response to various inducers which include isomaltose, 

maltose, kojibiose and pentose in both A. oryzae and A. nidulans (Kato et al. 2002). These 

inducers are α-linked glucobioses and glucotrioses. In A. nidulans isomaltose has the strongest 

inducing activity and is proposed to be the physiological inducer (Kato et al. 2002). Studies in 

A. oryzae and A. niger have shown that D-glucose also acts an inducer of α-amylase 
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production in a AmyR-dependent manner (Carlsen and Nielsen 2001; Murakoshi et al. 2012; 

Vankuyk et al. 2012). Whether glucose is directly inducing or whether the glucose needs to be 

converted by intracellular (trans)glycosylation or glycosyltransferase reactions is currently not 

known.
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Figure1. Schematic diagram of the AmyR protein domains in A. nidulans. This figure was adapted from (Suzuki
et al. 2015)

In A. oryzae, two Zn(II)2Cys6 transcription factors, AmyR and MalR are involved in the 

regulation of amylolytic enzymes. MalR is the ortholog of yeast maltose utilizing (MAL) 

activator (Hasegawa et al. 2010). Similar to the yeast MAL activator, the malR gene in A. 

oryzae is part of a small cluster together with genes encoding putative maltose permease 

(MalP) and maltase (MalT). MalR controls the expression of maltose-utilizing (MAL) cluster 

genes independent of AmyR (Hasegawa et al. 2010). The activation of AmyR and MalR is 

regulated in a different manner and illustrates well that even related transcription factor can be 

activated by different mechanisms. AmyR translocates from cytoplasm to nucleus under the 

induction of glucose, maltose or isomaltose, and subsequently triggers the expression of 

amylase genes (Suzuki et al. 2015). Different to AmyR, MalR is constitutively localized in 

nucleus and the expression of MAL cluster genes was induced by maltose, but not by glucose 

or isomaltose. Amino acid sequences analysis shows that MalR is homologous to AmyR, but 

MalR seems to lack the MH4 domain which could explain the constitutive nuclear 

localization of MalR (Suzuki et al. 2015). Deletion of malR indicates that MalR is essential 

for maltose utilization, and evidence was provided that MalR is essential for the activation of 

AmyR (Suzuki et al. 2015). As a working model, these authors suggest that the transport of 

maltose into the cell is mediated via MalR controlled expression of malT. In the cell, the 

maltose is converted into isomaltose via transglycosylation mediated by intracellular alpha-

glucosidases. The isomaltose subsequently triggers the activation and translocation of AmyR 

into the nucleus. This model explains why the preceding activation of MalR is essential for 

the utilization of maltose as an inducer for AmyR activation (Suzuki et al. 2015). A. niger and 

A. nidulans do not have orthologs of MalR (Niu, unpublished). 
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Regulation of amylolytic gene expression is not only regulated via the AmyR mediated 

activation mechanism, the expression of these genes are also controlled by carbon catabolite 

repression mechanisms. The carbon catabolite repressor protein CreA has been shown to bind 

to the promoter sequence of amylolytic genes in the presence of glucose in order to repress 

transcription (Tsukagoshi et al. 2001). Binding affinities experiments of the recombinant 

CreA protein produced in E. coli suggested two CreA binding sites at around -145 to -150 and 

-90 to -95 within the promoter region of the Taka-amylase A gene (taaG2) to be involved in 

glucose repression (Kato et al. 1996).

In A. niger, AmyR has been shown to regulate the expression of genes encoding α-

amylases, α-glucosidases and glucoamylases (Yuan et al. 2008b). By using deletion and 

multicopy strains, a later study in A. niger showed that AmyR also regulates the expression of 

additional genes encoding α- and β-glucosidases, and α- and β- galactosidases (Vankuyk et al.

2012). When grown on D-glucose, lactose, maltose and starch, the activities of α- and β-

glucosidases and α- and β- galactosidases were lower in the amyR deletion strain and higher 

in the amyR multicopy strain. Consistent with these enzyme activity assays, gene expression 

analysis suggests that AmyR controls a small subset of genes encoding two β-glucosidases, 

two α-amylases, two α-glucosidases, two glucoamylases, two α-galactosidases, and one β-

galactosidases. These results were further supported by growth profiling, which showed 

reduced growth on starch, maltose, melibiose, melezitose, raffinose, sucrose) and β-linked D-

glucose (cellobiose) as well as α- (melibiose, raffinose, carrageenan) and β-linked D-galactose 

(lactose, carrageenan) for the amyR deletion strain, while improved growth on several of these 

substrates for the amyR multicopy strain (Vankuyk et al. 2012). Together, these results 

indicate that AmyR has a broader physiological role not only in starch degradation but also in 

regulation of the production of enzymes not directly related to starch. AmyR is commonly 

suggested to be induced by maltose. However, A. niger secretes high levels of glucoamylase 

when exposed to maltose or starch (Barton et al. 1972; Schrickx et al. 1995; Gouka et al.

1997b; Gouka et al. 1997a; Pedersen et al. 2000), leading to high glucose levels in the 

medium. It is suggested that all maltose is hydrolyzed extracellularly to D-glucose, which still 

is a condition to activate AmyR. Therefore, D-glucose or a metabolic product rather than 

maltose may be the inducer of the AmyR system in A. niger. This explanation is supported by 

the induction of AmyR regulated genes during growth on low levels of D-glucose (Vankuyk

et al. 2012).
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4.3 XlnR

The expression of genes encoding xylan degrading enzymes is under the control of a 

transcriptional activator XlnR. The xlnR gene was first isolated and characterized by 

complementation of an A. niger mutant lacking xylanolytic activity (Van Peij et al. 1998b).

The XlnR protein is 875 amino acids long and regulates both xylanolytic and endo-glucanases 

gene expression in A. niger (Van Peij et al. 1998a; Van Peij et al. 1998b). Later, researchers 

found that pentose catabolic genes and are also under regulation of XlnR in A. niger

(Battaglia et al. 2014). XlnR is highly conserved among Aspergilli. In A. oryzae, the homolog 

of A. niger XlnR is 971 amino acids long and shows 77.5% identity to the A. niger XlnR 

(Marui et al. 2002b). The A. oryzae XlnR was also found to control expression of xylanolytic 

and cellulolytic genes (Marui et al. 2002a; Marui et al. 2002b; Noguchi et al. 2009). A. 

nidulans XlnR is a 875 amino acids long protein and shows 76% identity to the A. niger XlnR,

73% identity to the A. oryzae XlnR (Tamayo et al. 2008).

The XlnR contains a Zn(II)2Cys6 domain in the N-terminal region responsible for DNA-

binding (Van Peij et al. 1998a). The XlnR-binding site (5’-GGCTAAA-3’) was identified by 

electrophoretic mobility shift assays (EMSA) in A. niger (Van Peij et al. 1998a). The 5’-

GGCTAG-3’ sequence was found to be functional in the α-glucuronidase gene (aguA)

promoter (De Vries et al. 2002). In A. oryzae, two XlnR-binding sites (5’-GGCTAA-3’ and 

5’-GGCTGA-3’) were shown to be functional (Marui et al. 2002a). Prediction using in silico

analysis suggested a putative coiled-coil domain directly C-terminal to the DNA-binding 

domain, and a second coiled-coil domain at the C-terminal part of XlnR (Hasper et al. 2004).

The function of each part of XlnR was studied by cellular localization studies using C-

terminal GFP-tagged XlnR and xylanase activity of various truncated versions of XlnR 

(Hasper et al. 2004). When GFP was fused with full-length wild-type XlnR, the XlnR-GFP 

was translocated to the nucleus after the strain was grown on 10 mM D-xylose for 24h 

(Hasper et al. 2004). A stop codon mutation between the DNA-binding sites (amino acid 

numbers 51 to 86) and the putative basic cluster nuclear localization signal (amino acid 

numbers 87 to 90) at position 83 (Tyr83stop) of XlnR abolished xylanase activity and caused 

cytoplasmic localization of XlnR. A stop codon mutation located upstream of the predicated 

C-terminal coiled-coil region (Asp635stop) within XlnR also resulted in cytosolic localization

of XlnR-GFP and a low GFP signal in the nucleus. These results indicate that also the C-

terminal coiled-coil domain is involved in the nuclear import of XlnR (Hasper et al. 2004). A 

stop codon mutation located downstream of the predicated C-terminal coiled-coil region 
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(Leu668stop) within XlnR resulted in nuclear localization of XlnR as in the wild-type and 

strongly increased xylanase activity compared to the wild-type under non-inducing conditions,

indicating that this region is important to support XlnR activity when no inducer is present.

Deletion of the putative coiled-coil region (△636-666) of XlnR resulted in a total loss of 

xylanase activity, Moreover, the △636-666 mutant and two other mutants containing mutation 

in the coiled-coil region (Leu650Pro and Tyr664stop) showed no fluorescence signal,

suggesting that the XlnR protein may be rapidly degraded (Hasper et al. 2004). These results 

indicate the C-terminal coiled-coil domain is important as an activation domain and important 

for protein stability. 

Finally, in the same study by (Hasper et al. 2004), it was found a mutation at position 756 

(Val756Phe) in XlnR, as well as a missense mutation at position 668 (Leu668stop), resulted 

in increased xylanase activity under non-inducing conditions. Deletion of the last 78 amino 

acids from the C-terminus by introducing a stop codon at position Gly797 resulted in 

increased xylanase activity com=pared to the wild-type under inducing conditions (Figure 2). 

Because mutations downstream of the C-terminal coiled-coil region increased the expression 

of xylanases, it was suggested that this region inhibits XlnR activity under non-inducing 

condition and that certain mutations or deletion in this region leads to constitutive activation 

of XlnR. However, two other mutations in this region (Leu823Ser and Tyr864Asp) and 

deletion of amino acids 802-836 within the last 60 amino acids of XlnR resulted in complete 

loss of xylanase activity on D-xylose as in the △xlnR mutant, indicating this region also 

contains an activation domain (Figure 2).

Figure 2. Schematic diagram of the XlnR protein domains in A. niger. This figure was adapted from Hasper et 
al., 2004. Zn domain was analyzed manually. The two coiled-coil regions were predicted on line by website: 
http://www.bioinformatics.nl/cgi-bin/emboss/pepcoil.
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The exact mechanism by which XlnR is activated is currently unknown. Overexpression 

of XlnR in A. nidulans by fusing xlnR to the strong promoter gpdA from A. nidulans did not 

result in expression of XlnR target genes (xlnA, xlnB and xlnD) under non-inducing condition 

(Tamayo et al. 2008). These results indicate that the presence of xylose is required for XlnR 

and additional post-transcriptional modifications of XlnR are required for activation. 

Regulation of XlnR via phosphorylation has been postulated as an important mechanism to 

control XlnR activity in A. oryzae (Noguchi et al. 2011). The A. oryzae XlnR was found to be 

present as a mixture of variously phosphorylated forms in the absence of D-xylose, and D-

xylose triggered additional phosphorylation (Noguchi et al. 2011). However, it is still unclear 

where these phosphorylation sites are located within XlnR and which proteins mediate the 

hyperphosphorylation of XlnR. 

The expression of xylanolytic genes is not only controlled by induction via XlnR, but also 

by repression via the carbon catabolite repressor CreA on xylose (De Vries et al. 1999; Mach-

Aigner et al. 2012). CreA controls not only the expression of xylanase genes but also the 

expression of xlnR itself in the presence of glucose (Tamayo et al., 2008). CreA indirectly 

represses xlnA and xlnB genes via repression of xlnR as well as exerting direct repression on 

xlnA and xlnD expression (Tamayo et al. 2008). The repression mechanism of the xlnA and 

xlnD genes is different; whereas glucose repression of xlnA is mostly repressed indirectly, 

repression of xlnD is mediated via direct repression of CreA by binding to the xlnD promoter 

region (Tamayo et al. 2008). This could be explained by the observation that there are three 

more CreA binding sites within the promoter region of xlnD than that of xlnA.

Hemicellulose are heterogeneous polysaccharides including xylans, xyloglucans, 

galactoglucomannan, and arabinogalactan. Full and efficient degradation of hemicellulose 

requires coordinated action of several transcription factors. In A. nidulans, XlnR acts together 

with AraR and GalR to in regulating genes expression involved in efficient degradation of 

complex hemicelluloses (Kowalczyk et al. 2015).

4.1.3 CreA

In their natural environment, microorganisms select the most energetically favorable carbon 

source and simultaneously repress the use of less favorable carbon sources. This process is 

known as carbon catabolite repression (CCR), which supports rapid growth and development 

required for colonizing diverse habitats (for reviews on carbon repression in fungi see (Kelly 

1994; Scazzocchio et al. 1995; Ruijter and Visser 1997). CCR is mediated by the transcription 
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factor CreA, a C2H2 zinc finger DNA-binding protein which was first identified and 

characterized in A. nidulans (Dowzer and Kelly 1989; Dowzer and Kelly 1991). Thereafter 

CreA was also identified in A. niger by screening of mutants relieved of carbon repression 

(Ruijter et al. 1997; Ruijter and Visser 1997). Subsequent studies showed that CreA acts as a 

repressor to control the expression of genes encoding enzymes required for degradation of 

different carbon sources including starch, xylan and pectin (De Vries et al. 2002; Tamayo et 

al. 2008; Ichinose et al. 2014).

CreA has been studied extensively in A. nidulans. The consensus binding motif of CreA is 

5’ SYGGRG (Kulmburg et al. 1993; Cubero and Scazzocchio 1994; Cubero et al. 2000). By 

analysing the conserved domains and special features of the amino acid sequence, five 

different regions in CreA have been defined (Figure 3) (Roy et al. 2008). The two C2H2 zinc 

fingers DNA-binding domains (region I) are followed by a conserved region containing seven 

alanine residues (region II). Region III contains an acidic acid–rich region that is located 

adjacent to a highly conserved region (region IV). Region IV is a highly conserved between A. 

niger and T. reesei (Roy et al. 2008). This conserved region is followed by region V which 

has been shown to be important for repression (Roy et al. 2008). Except for the two C2H2 

zinc fingers region, the function of each region was studied by individual deletion of CreA 

regions and studying the functionality of CreA and by analyzing the localization of CreA 

using CreA-GFP fusion proteins (Roy et al. 2008; Ries et al. 2016). Roy et al., found that the 

C2H2 domain and the C-terminal repression domain (region V) of CreA are required for 

repressing function of CreA (Roy et al. 2008).

Figure 3. Schematic diagram of different regions in CreA (Roy et al. 2008).

Western blot analysis of HA:CreA:GFP showed that the expression levels of CreA were

similar in mycelia grown in repressing or depressing conditions, indicating that there was

little or no transcriptional/translation control on CreA. Similarly, constitutive over-expression 

of CreA did not affect normal repression or depression, indicating carbon catabolite 
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repression was independent on the transcription level of creA (Roy et al. 2008). Analysis of 

the cellular localization of CreA under repressing and non-repressing conditions revealed that 

there was not strictly correlation between CreA localization and it is activity. In a range of 

glucose concentrations (from 1% to 0.01%), GFP-CreA was mainly localized in the nucleus. 

However, fluorescence was not exclusively in the nucleus as GFP was also present in the 

cytoplasm (Roy et al. 2008).

Ubiquitination/deubiquitination processes are important components of gene post-

translational regulation mechanisms in eukaryotes. Once a protein is identified for 

degradation, it will be marked for degradation by the attachment of a ubiquitin moiety, a small 

regulatory protein that has been found in almost all eukaryotes (Lecker et al. 2006). The 

ubiquitinated protein will be delivered to proteasome for degradation. There is evidence that 

deubiquitination (DUB) carried out by the CreB-CreC DUB complex plays a role in CCR, and 

it was suggested that CreA was deubiquitinylated by the CreB-CreC complex (Hynes and 

Kelly 1977; Lockington and Kelly 2002).

CreB is the deubiquitinating enzyme (Lockington and Kelly 2002) and CreC is the 

scaffold protein containing WD-40 repeats (Todd et al. 2000). The genetic evidence for this is 

that mutants in creB or creC are, like creA mutants, unable to perform CCR. Thus, it is 

expected that in creB and creC mutants, CreA protein is always ubiquinated (no 

deubiquitination) resulting in low levels of CreA. In addition, the interaction of CreD with a 

ubiquitin protein ligase HulA may also be involved in the ubiquitination process (Boase and 

Kelly 2004). Kelly proposed a model that in derepressing conditions, CreA or a protein that 

acts in a complex with CreA might be ubiquitinated by CreD/HulA complex. This action 

would target CreA to the proteasome and thus prevent repression. In the presence of a 

repressing carbon source however, the repressing activity of CreA or a CreA-complex might 

be restored by deubiquitination that is mediated by CreB and CreC (Kelly 2004). Results of 

co-immunoprecipitation using CreA and CreB antibodies, indicated that CreA and CreB are 

not present in the same complex (Alam et al. 2016). Studies with antibodies against 

phosphorylated proteins (Phos-tag system) as well as antibodies against unbiquitin, showed 

that CreA is a phosphorylated protein, but not an ubiquinated protein. This conclusion was 

further supported by mass spectrometry and indicates that CreA is not a direct target of CreB 

(Alam et al. 2016). Alam and Kelly (Alam and Kelly 2016) further conducted experiments to 

identify possible proteins that may be of a CreA/CreB complex and thereby form a bridge 

between CreA and CreB under repressing and derepressing conditions, and they found Hir3 to 

14980 - J-Niu_BNW.indd   38 19-09-17   11:27



General introduction Chapter 1

 

39 

be present in both repressing and derepressing conditions for CreB, suggesting that Hir3, or 

proteins interacting with Hir3, could be a possible target of CreB. Further research and the 

possible role of CreC as a scaffold protein is needed to illuminate the regulatory mechanism 

involved in CCR.

4.4 State of the art of understanding research on the regulation of pectinolytic genes at 

the start of this thesis

At the start of my thesis, it was well established that the expression of polygalacturonic or 

pectin degrading enzymes was highly regulated. Early studies in A. nidulans performed by 

Dean and Timberlake showed that the pelA mRNA (encoding a pectate lyase) was detectable 

on polygalacturonic acid as carbon source and undetectable on glucose or acetate as carbon 

source (Dean and Timberlake 1989). Similarly, it was shown in A. niger that several 

pectinases are specifically induced on GA or pectin (De Vries et al. 2002). In addition, it was 

found that the expression of polygalacturonase and pectate lyase in A. nidulans is completely 

repressed by glucose due to carbon catabolite repression (Dean and Timberlake 1989; De 

Vries et al. 2002), suggesting that the expression of enzymes involved in 

pectin/polygalacturonic acid degradation is also under the carbon catabolite repression. With 

the possibility of performing genome-wide expression studies using Affymetrix gene arrays, it 

was shown that at least 11 genes were specifically induced on galacturonic acid (Martens-

Uzunova and Schaap 2008). Analysis of the promoter region of these 11 genes identified a 

conserved promoter element “YCCNCCAAT” (Martens-Uzunova and Schaap 2008) which 

was suggested to play an important role in the regulation and co-expression of these genes. 

These results indicate that the expression of genes encoding enzymes involved in pectin 

degradation is specifically induced by polygalacturonic acid or galacturonic acid. Taken 

together, genes encoding enzymes involved in pectin/polygalacturonic acid degradation are 

specifically induced on polygalacturonic acid or galacturonic acid and are under carbon 

catabolite repression control.

5. Aim and outline of the thesis

A. niger is an important industrial enzyme producer. These enzymes find their way in a broad 

spectrum of industrial applications in food and non-food products or processes. Highly 

efficient production of enzymes mediated by modulating transcriptional regulation is 

meaningful. In this thesis I focus on the complex regulation of the expression of pectinolytic 

genes in A. niger.
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The co-regulation of pectin degrading enzymes and the conserved promoter element in the co-

regulated genes (Martens-Uzunova and Schaap 2008) strongly suggested the existence of a 

transcriptional activator coordinating the activation of gene expression of these GA-induced 

genes in response to GA or pectin. Whereas over the last few years several new transcription 

factors involved in plant cell wall degradation have been identified (Kowalczyk et al. 2014), a 

possible transcription factor involved in the regulation of pectinases was not identified. 

With the start of the project, I first developed two important new tools for functional 

genomics in A. niger. The first tool is an efficient system for making gene deletion mutants by 

combining non-homologous end joining (NHEJ) mutants and a split marker approach 

(Chapter 2). This system was used to make (in collaboration with DSM) a library of 240 A. 

niger transcription factor mutants (Arentshorst, Arendsen, van Peij, Pel, Ram, unpublished 

data). Unfortunately, screening of this collection did not yield a mutant with a specific growth 

defect on GA indicating that the specific transcription factor mutant was not present in the 

collection.

The second important new tool was to construct auxotrophic mutants in which multiple 

gene deletions could be made easily as we anticipated that maybe multiple transcription factor 

encoding genes should be deleted to obtain a pectin-non-utilizing mutant. With the aim to 

combine whole genome sequencing of mutants in combination with parasexual crosses to 

facility mutant identification via next generation sequencing techniques (Ram 2013), isogenic, 

auxotrophic colour mutants were constructed via targeted deletion approaches. Genome 

sequencing of two auxotrophic colour mutants showed a high level of isogenicity between 

them, which could facilitate the selection of diploids and the isolation of haploid segregants 

from the diploid using the parasexual cycle (Chapter 3).

Since the targeted approach by constructing gene deletion mutants in selected transcription 

factors was not successful, a non-targeted approach was designed for a forward genetic screen 

to isolate mutants with constitutive expression of pectinases. First of all, I selected promoter 

region of five genes (pgaX, pgxB, pgxC, gatA and gaaB) that were specifically induced by GA 

based on available genome-wide expression profiles from literature to construct promoter-

amdS reporter strains. These reporter strains were used to analyze gene expression in vivo by 

assaying the growth of these strains on acetamide. The rationale of the screen is that high 

expression of the amdS gene allows the fungal strain to grow on acetamide as the nitrogen 

source and as such the ability to grow on acetamide is a direct measurement of promoter 
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activity. Growth analysis of the reporter strains indicated the promoter regions of first four 

genes (pgaX, pgxB, pgxC, gatA) were specifically induced on GA even under the carbon 

catabolite derepression condition, allowing forward genetic screens for inducer-independent 

mutants (Chapter 4 and Chapter 6).

In Chapter 5, I identified the transcriptional activator required for GA-induced gene 

expression (GaaR) by homology to BcGaaR (Zhang et al. 2016). Growth phenotype and 

genome-wide expression analysis of the A. niger ΔgaaR strain showed that GaaR is required 

for the expression of genes involved in releasing GA from PGA and more complex pectins, in 

transporting GA into the cell, and in inducing the GA catabolic pathway.

Subsequently, the reporter strain containing the PpgaX-amdS reporter construct (Chapter 4) 

was selected to screen for inducer-independent mutants which constitutively expressed

pectinases. Whole genome sequencing of five constitutive mutants revealed the gene 

NRRL3_08194, named gaaX, that was responsible for the constitutive expression of 

pectinases when deleted (Chapter 6). GaaX is located next to gaaR (NRRL3_08195) in the 

genome. In this Chapter, we provide the first evidence that gaaX is likely to encode a 

repressor protein that controls the activity of GaaR and keeps GaaR inactive under non-

inducing conditions. In Chapter 7, I summarize that main findings obtained in the thesis, 

discuss the current working model, and propose some future experiments to further 

understand the molecular details on how the repressor (GaaX) and the activator (GaaR) and 

the inducer molecule (2-keto-3-deoxy galactonate) (Alazi et al. 2017) might interact to control 

GA-specific gene expression.
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Abstract

To generate gene deletion mutants in Aspergillus niger, we combined the use of Non-

Homologous End Joining (NHEJ) mutants (ku70 mutant) and the split marker approach. The 

combination of both tools resulted in efficient PCR amplification because of the reduced 

length of the PCR fragments and efficient homologous recombination frequencies. A set of 

five selection markers, two dominant selection markers (hph; hygromycin B resistance and 

BLE; phleomycin resistance) and three auxotrophic markers (pyrG, argB and nicB) were 

successfully used in a split marker approach to obtain amyR knock outs with high efficiency.

AmyR encodes a transcription factor that is required for the expression of starch degrading 

enzymes and disruption of amyR results in the inability to grow on starch. The strategy to 

generate the gene deletion constructs is such that with one set of four gene specific primers, a 

gene deletion mutant can be generated with either one of the five selection markers. The 

strategy is based on fusion PCR and omits the necessity for cloning the disruption cassettes. 

This accelerates the process of generating gene deletion cassettes which can now be 

accomplished within eight hours. The split marker approach can also be used to make gene 

deletions in a wild-type background instead of a Δku70 background. In this chapter, we 

present protocols and considerations that we used to generate gene knock out constructs by 

fusion PCR and to obtain and verify gene knock outs with any of the five marker genes using 

the split marker approach. The method is easily transferable to other filamentous fungi. 

Keywords

Aspergillus niger, ku70, split marker approach, five available selection markers. 
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1. Introduction

Targeted deletion of a Gene of Interest (GOI) is a powerful method to address gene functions 

and requires a double crossover homologous recombination event to exchange the GOI with a 

selection marker. In filamentous fungi, DNA integrates preferably via the Non-Homologous 

End Joining (NHEJ) pathway, which results in low frequencies of homologous recombination 

and consequently, in low efficiencies in obtaining gene deletion mutants. A successful 

approach to obtain gene deletion mutants with high efficiency has been the construction of 

mutants in the NHEJ-pathway, first described for Neurospora crassa (Ninomiya et al. 2004),

and followed up by numerous other filamentous fungi including Aspergillus niger (Meyer et 

al. 2007; Carvalho et al. 2010; Arentshorst et al. 2012). Most often the fungal gene 

homologous to the gene encoding the Ku70 is used to generate a NHEJ mutant, but also Ku80 

and Lig4 homologs have been disrupted to obtain NHEJ-deficient mutants (for reviews see 

(Meyer 2008), (Kuck and Hoff 2010) and references therein). The use of NHEJ mutants has 

greatly reduced time and effort to generate gene deletion mutants. The construction of a gene 

deletion cassette is also an important and time consuming factor. In principle, a gene deletion 

construct consists of a selection marker, flanked by upstream (5’) and downstream (3’) 

sequences of the GOI. Several approaches to generate gene deletion cassettes include 

traditional restriction enzyme and ligation based cloning, GATEWAY cloning, fusion PCR, 

or in vivo assembly either in E. coli or S. cerevisiae.

An additional tool for improving gene targeting efficiencies is making use of the split 

marker technology. In this approach the gene deletion construct is split in two parts and each 

part contains the flanking region and a truncated form of the selection marker (Fairhead et al.

1996; Nielsen et al. 2006; Goswami 2012).

For the selection of transformants in A. niger (and also other filamentous fungi) the 

number of available markers is limited. Dominant selection markers for A. niger include 

markers giving resistance to hygromycin (pAN7.1) (Punt et al. 1987) or phleomycin 

(pAN8.1) (Punt and Van Den Hondel 1992), which are well established and commonly used. 

The uridine and arginine markers (pyrG (An12g03570) and argB (An14g03400), 

respectively), have been described earlier and are used in this study (Buxton et al. 1985; Van 

Hartingsveldt et al. 1987; Lenouvel et al. 2002). The pyrG gene encodes for the enzyme 

orotidine-5'-phosphate-decarboxylase and is required for uracil biosynthesis. The argB gene, 

encoding for an ornithine carbamoyltransferase, is essential for arginine biosynthesis. In 

addition, a new auxotrophic mutant which requires nicotinamide for growth based on the nicB

gene (An11g10910) was made. The A. niger nicB gene encodes a nicotinate-nucleotide 
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pyrophosphorylase. Identification and the construction of a gene deletion cassette to disrupt 

nicB is based on a previous work by (Verdoes et al. 1994), and will be described elsewhere in 

detail (Niu et al. manuscript in preparation). The ΔnicB strain is auxotrophic for nicotinamide 

and needs supplementation of nicotinamide to be able to grow. In addition, we reconstructed 

an argB deletion mutant (Niu et al. manuscript in preparation) to have all auxotrophic strains 

in the same strain background (Table 1).

Table 1. Strains used in this study.

Strain Genotype Description Reference
N402 cspA1 derivative of N400 (Bos et al. 1988)
AB4.1 cspA1, pyrG378 UV mutant of N402 (Van Hartingsveldt et al. 1987)
MA169.4 cspA1, pyrG378, kusA::DR-amdS-DR ku70 deletion in AB4.1 (Carvalho et al. 2010)
MA234.1 cspA1, kusA::DR-amdS-DR ku70 deletion in N402 Arentshorst (unpublished)
JN1.17 cspA1, pyrG378, kusA::DR-amdS-DR 

argB::hph 
argB deletion in 
MA169.4

Niu et al. unpublished

JN4.2 cspA1, pyrG378, kusA::DR-amdS-DR
nicB::hph 

nicB deletion in 
MA169.4

Niu et al. unpublished

Growth of all three auxotrophic strains (pyrG-, argB- and nicB-) on minimal medium 

requires the addition of uridine, L-arginine or nicotinamide, respectively1, and no growth is 

observed in the absence of the relevant supplements (data not shown). To minimize 

homologous recombination of the selection markers used in the disruption cassettes, the argB

and nicB homologs from A. nidulans (ANID_04409.1 and ANID_03431.1 respectively) and 

the pyrG homolog from A. oryzae (AO090011000868) were PCR amplified. All genes are 

able to complement the auxotrophy of the relevant strain. The hygromycin and phleomycin 

cassettes also contain only non-homologous sequences as both resistance genes are flanked by 

the A. nidulans gpdA promoter (PgpdA) and trpC terminator (TtrpC) (Table 2).

Table 2. Plasmids to amplify selection markers.

Plasmid Selection marker Remark Reference
pAN7.1 Hygromycin; hph Pgpd and TtrpC from A.nidulans (Punt et al. 1987)
pAN8.1 Phleomycin; BLE Pgpd and TtrpC from A.nidulans (Punt and Van Den Hondel 1992)
pAO4-13 pyrG pyrG from A.oryzae (De Ruiter-Jacobs et al. 1989)
pJN2.1 argB argB from A. nidulans Niu et al. unpublished
pJN4.1 nicB nicB from A. nidulans Niu et al. unpublished

1 The argB and nicB auxotrofic mutants are also pyrG- and therefore the growth medium for these strains needs 
to be supplemented with uridine.
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2. General Methods

2.1 General split marker approach

The split marker approach used for deleting the GOI is schematically depicted in Figure 1 and 

consists of two overlapping DNA fragments to disrupt the GOI. The first fragment contains 

the 5’flank of the GOI and a truncated version of the selection maker. The second DNA 

fragment contains an overlapping, but truncated version of the selection marker and the 

3’flank of the GOI. Both fragments are generated by fusion PCR as described below and 

transformed simultaneously to the recipient A. niger strain. The truncation of the selection 

marker at either site of the construct results in a non-functional marker and as a consequence 

transformation of only a single split marker fragment does not result in any transformants 

(data not shown). 

Figure 1. Schematic representation of the split marker gene deletion approach. 5’ and 3’seqences flanking the 
GOI (5’and 3’) are transformed simultaneously to the recipient strain. By recombination of the selection maker 
and homologous integration of the cassette in the genome, a successful gene deletion mutant can be obtained.

2.2 Generation of split marker fragments for Aspergillus niger transformation

In this section the experimental design for creating the split marker fragments is discussed. 

The split marker DNA fragments can be obtained in three steps (Figure 2). Each step is 

described in detail below.

14980 - J-Niu_BNW.indd   55 19-09-17   11:27



Chapter 2 Split marker approach combined with NHEJ mutants

56

Figure 2. Experimental design for creating split marker fragments.

2.2.1 Experimental design for amplification of flanking regions of the GOI (Step 1)

Once the GOI has been identified, primers need to be designed for making gene deletion 

cassettes. First, two primers are required for the amplification of the 5’ flank of the GOI. The 

first primer (P1) is chosen between 700 and 900 bases upstream of the start codon. The 

reverse primer (P2) is as close to the start codon as possible and contains a 5’-

CAATTCCAGCAGCGGCTT-3’ sequence, which is overlapping with all five selection 

markers and included for the subsequent fusion PCR. Also, two primers are required for the 

amplification of the 3’ flank of the GOI (P3 and P4). Again, the aim is to generate a 700-900 

base pair long flank. In this case, the forward primer (P3) needs a 5’-

ACACGGCACAATTATCCATCG-3’ sequence, which is also overlapping with all five 

selection markers for the subsequent fusion PCR (Step3). 

2.2.2 Experimental design for amplification of suitable selection marker (Step 2)

For the amplification of the PCR fragments containing the appropriate selection marker the 

following plasmids can be used (see also Table 2): 

The plasmid pAN7.1 (Punt et al. 1987) is used as template to amplify the hygromycin 

resistance cassette, containing the hph gene from E. coli, coding for hygromycin B 

phosphotransferase. Expression of the hph gene is driven by the A. nidulans gpdA promoter, 

and terminated by the A. nidulans trpC terminator. The plasmid pAN8.1 (Punt and Van Den 

Hondel 1992) is used as template to amplify the phleomycin resistance cassette, containing 

the BLE gene from Streptoalloteichus hindustanus, coding for a phleomycin binding protein. 
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Expression of the BLE gene is also driven by the A. nidulans gpdA promoter and terminated 

by the A. nidulans trpC terminator. The plasmid pAO4-13 (De Ruiter-Jacobs et al. 1989) is 

used as template to amplify the A. oryzae pyrG gene (AO090011000868), including promoter 

and terminator region. The argB gene (ANID_04409.1) and the nicB gene (ANID_03431.1) 

of A. nidulans, including promoter and terminator region, were amplified using primer pairs 

argBnidP5f and argBnidP6r or nicBnidP5f and nicBnidP6r, and genomic DNA of A. nidulans

strain FGSC A234 (yA2, pabaA1, veA1), obtained from the Fungal Genetics Stock Center, as 

template. The resulting PCR products were ligated into PCR-cloning vector pJet1.2 (K1231, 

Thermo Fisher), to give plasmids pJN2.1 and pJN4.1 respectively (Table 2). Plasmid pJN2.1 

and pJN4.1 can be used to amplify the argB gene or the nicB gene.

We developed a generic split marker approach in such a way that with a single set of four 

GOI primers, all five different selection markers can be used to generate the deletion cassette. 

Each primer, used to amplify a specific selection marker (Figure 3, Table 3), contains 

sequences which are overlapping with the GOI primer sequences (see section 2.2.1) to create 

gene deletion mutants with either one of the different selection markers.

Figure 3. PCR products for all five selection markers. Overlapping sequences of the primers are indicated by 
bold lines. The size of the PCR products is indicated for each selection marker. 
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2.2.3 Experimental design for the generation of split marker fragments (Step 3)

Once both flanks of the GOI (Fig. 2, step 1) and the required selection marker (Fig. 2 step 2 

and Fig. 3) have been amplified, the split marker fragments can be obtained by fusion PCR 

(Fig. 2, step 3). Exact details are described in section 3.2.3. After column purification, the 

resulting split marker fragments can directly be used to transform A. niger2.

3. Detailed procedure description

As proof of principle, the A. niger amyR gene (An04g06910), encoding the amylase 

transcriptional regulator, has been used. The ΔamyR strain cannot grow on starch, allowing an 

easy screen for ΔamyR transformants (Petersen et al. 1999). This section contains a detailed 

description of the whole procedure of deleting amyR, using all five selection markers, 

illustrated with results of the experiments. Sequences of all primers used are listed in Tables 3, 

4, and 5.

Table 3. Primers used to generate selection markers.

Primer name Sequence (5’-3’) Remark Template
hygP6for AAGCCGCTGCTGGAATTG-

GGCTCTGAGGTGCAGTGGAT
Amplification of hph marker pAN7.1

hygP7rev CGATGGATAATTGTGCCGTGT-
TGGGTGTTACGGAGCATTCA

Amplification of hph marker pAN7.1

phleoP4for AAGCCGCTGCTGGAATTG -
CTCTTTCTGGCATGCGGAG

Amplification of BLE marker pAN8.1

phleoP5rev CGATGGATAATTGTGCCGTGT-
GGAGCATTCACTAGGCAACCA

Amplification of BLE marker pAN8.1

AOpyrGP12f AAGCCGCTGCTGGAATTG Amplification of pyrG marker pAO4-13
AOpyrGP13r CGATGGATAATTGTGCCGTGT Amplification of pyrG marker pAO4-13
argBnidP5f AAGCCGCTGCTGGAATTG -

TTTCGACCTCTTTCCCAATCC
Amplification of argB marker pJN2.1

argBnidP6r CGATGGATAATTGTGCCGTGT-
TCCTGTGGGTCTTTGTCCG

Amplification of argB marker pJN2.1

nicBnidP5f AAGCCGCTGCTGGAATTG-
CGTTATGCACAGCTCCGTCTT

Amplification of nicB marker pJN4.1

nicBnidP6r CGATGGATAATTGTGCCGTGT-
GCGCATACACAGAAGCATTGA

Amplification of nicB marker pJN4.1

Note: overlapping sequences for fusion PCR are indicated in bold.

2 A small sample of PCR fragments is routinely analyzed for purity and size. Optional is to confirm PCR product 
integrity by restriction analysis or sequencing. 

14980 - J-Niu_BNW.indd   58 19-09-17   11:27



Split marker approach combined with NHEJ mutants Chapter 2

59

Table 4. GOI (amyR) specific primers to amplify 5’and 3’flanks.

Primer name Sequence (5’-3’) Remark
amyRP7f ATCGTCAGCGAGCCTCAGA Amplification of amyR 5’flank
amyRP8r CAATTCCAGCAGCGGCTT-

TTGTATGCGGAGACAAGTGTGAC
Amplification of amyR 5’flank

amyRP9f ACACGGCACAATTATCCATCG-
CCCTCATGAACAAGAAGCAGC

Amplification of amyR 3’flank

amyRP10r GAGGACGCCATCATTGACG Amplification of amyR 3’flank

Note: overlapping sequences for fusion PCR are indicated in bold.

Table 5. Generic primers used to amplify bipartite fragments.

Primer name Sequence (5’-3’) Remark
hygP9r GGCGTCGGTTTCCACTATC reverse primer split marker fragment 1 hph
hygP8f AAAGTTCGACAGCGTCTCC forward primer split marker fragment 2 hph
phleoP7r CACGAAGTGCACGCAGTTG reverse primer split marker fragment 1 BLE
phleoP6f AAGTTGACCAGTGCCGTTCC forward primer split marker fragment 2 BLE
AOpyrGP15r CCGGTAGCCAAAGATCCCTT reverse primer split marker fragment 1 pyrG
AOpyrGP14f ATTGACCTACAGCGCACGC forward primer split marker fragment 2 pyrG
argBnidP8r TGGTTTGCAGAAGCTTTCCT reverse primer split marker fragment 1 argB
argBnidP7f ACTCCTCGCAAACCATGCC forward primer split marker fragment 2 argB
nicBnidP8r GAACAGCCTTCGGGATTGC reverse primer split marker fragment 1 nicB
nicBnidP7f CGCCTTATATCCGATTGGCT forward primer split marker fragment 2 nicB

3.1 Materials and Reagents

For the medium composition of minimal medium, the preparation of stock solutions for the 

medium and for a detailed protocol of genomic DNA isolation of A. niger we refer to the 

Materials and Reagents section in Arentshorst et al. 2012.

1. PCR enzyme (we routinely use Phire Hot start II DNA Polymerase (F-122L, Thermo 

Fisher).

2. dNTPs (1.25 mM): Add 0.25 mL of all 4 dNTPs (dNTP Set 100 mM Solutions (4 x 

0.25 mL, R0181, Thermo Fisher)) to 19 mL of MQ, mix well, make aliquots of 0.5 mL 

and store at -20˚C.

3. PCR purification Kit (we routinely use Genejet Gel Extraction Kit (K0692, Thermo 

Fisher), also for PCR purifications).

4. Hygromycin (100 mg/mL): Dissolve 1 g of hygromycin (InvivoGen, ant-hg-10p) in 10 

mL of MQ, sterilize by filtration, make aliquots of 500 μL and store at −20°C. The 

final concentration in the medium is 100 μg/mL, except for transformation plates, then 

use 200 μg/mL. 

5. Phleomycin (40 mg/mL), for 10 mL: add 400 mg of phleomycin (InvivoGen, ant-ph-

10p) to 8 mL of warm MQ (~60˚C) in a 15 mL tube. When phleomycin is dissolved, 

add MQ up to 10 mL and filter sterilize. Make aliquots and store at -20˚C. 
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6. Uridine (1 M), for 100 mL: add 22.4 g of uridine (Acros, 140775000) to 50 mL of 

warm MQ (~60˚C) in a 100 mL cylinder. When uridine is dissolved, add MQ up to 

100 mL, sterilize by filtration and store at 4°C. Final concentration in medium is 10 

mM.

7. Arginine (2%), for 100 mL: add 2 g of L-arginine monohydrochloride (Sigma, A5131) 

to 50 mL of warm MQ (~60˚C) in a 100 mL cylinder. When arginine is dissolved, add 

MQ up to 100 mL, sterilize by filtration and store at 4˚C. 

8. Nicotinamide (0.5%), for 100 mL: add 0.5 g of nicotinamide (Sigma, N0636) to 50 

mL of warm MQ (~60˚C) in a 100 mL cylinder. When nicotinamide is dissolved, add 

MQ up to 100 mL, sterilize by filtration and store at 4˚C. 

9. Transformation media + phleomycin: Prepare MMS and Top agar according to 

Arentshorst et al. 2012. After autoclaving, and cooling down to 50ºC, add phleomycin 

to a final concentration of 50 μg/mL, to both the MMS and the Top agar. 

10. MM + agar + L-arginine: Prepare 500 mL of MM + agar according to Arentshorst et al. 

2012. Add 5 mL of 2% L-arginine after autoclaving (100 x dilution).

11. MM + agar + nicotinamide: Prepare 500 mL of MM + agar according to Arentshorst 

et al. 2012. Add 0.25 mL of 0.5% nicotinamide after autoclaving (2000 x dilution).

12. MM + agar + starch: For 500 mL: Dissolve 5 g of starch (soluble, extra pure, Merck, 

1.01253) in 450 mL of warm MQ (~60˚C). Add 10 mL of 50 x ASP+N, 1 ml of 1M 

MgSO4, 50 mL of trace element solution, 15 mg of yeast extract (YE)3 (Roth, 2363.2) 

and 7.5 g agar bact. (Scharlau, 07-004-500), and autoclave.

3.2 Methods

3.2.1 Amplification of the amyR 5’- and 3’ flank

1. AmyR primers were designed (Fig. 2, Step 1 and Table 4), and subsequently used in 

PCR reactions to amplify both the amyR 5’ flank and 3’ flank. 

2. The PCR mix, total volume of 50 μL, contained 1 μL genomic DNA of A. niger wt 

strain N402 (1μg/μL), 8 μL dNTP’s (1.25 mM), 10 μL 5x Phire buffer, 1 μL Primer F 

(20 pmol/μL), 1 μL Primer R (20 pmol/μL), 0.5 μL Phire Hot start II DNA 

Polymerase and 28.5 μL of MQ. 

3 YE is added to a final concentration of 0.003% to stimulate germination of A.niger. On MM + starch without 
YE, the wt strain also does not grow very well.
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3. PCR was performed under the following conditions: initial denaturation for 5 min at 

98˚C, 30 cycles of 5 sec at 98˚C, 5 sec at 58˚C, and 15 sec per 1 kb of template at 

72˚C, followed by final extension of 5 min at 72˚C. 

4. PCR reactions were analyzed by loading 5 μL PCR reaction on a 1% agarose gel. 

5. After column purification and elution with 30 μL of MQ, DNA concentration for both 

flanks was ~37 ng/μL.

3.2.2 Amplification of the selection markers

1. Primers for all five selection markers were designed (Fig 3, Table 3) and used for PCR. 

In these PCR reactions 1 ng of plasmid (pAO4-13, pAN7.1, pAN8.1, pJN2.1 and 

pJN4.1, respectively) was used as template. For PCR mix and PCR conditions see 

section 3.2.1.

2. After confirmation on agarose gel, selection marker PCR products were column 

purified, yielding DNA concentrations of ~50 ng/μL. The markers were stored at -

20˚C and used repeatedly.

3.2.3 Amplification of the split marker fragments

1. Fusion PCR fragments were amplified according to Figure 2, step 3 (see also Table 5 

and 6). Both amyR flanks and all selection markers (section 3.2.1 and 3.2.2) were 

diluted to 2 ng/μL. 

2. For each PCR reaction, 2 ng of amyR flank and 2 ng of selection marker PCR were 

used as template (Table 6). For PCR mix and PCR conditions see section 3.2.1.

3. Two identical fusion PCR reactions were performed, in order to increase the yield of 

PCR product. 

4. Fusion PCR products were analyzed on agarose gel, followed by column purification. 

The DNA concentration for all fragments varied between 120-160 ng/μL in a total 

volume of 20 μL (Table 6, column DNA Yield)4.

4 The split marker fragments are not purified from gel and template DNA ( pyrG, hygB, Ble , argB , and nicB 
genes, respectively) used for amplification of the split marker might remain present in the next steps. We 
therefore include control transformations with both split markers separately. As no transformants are obtained in 
the transformation with only one flank (data not shown), the purification of the split marker fragment is not 
required, but is optional.
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3.2.4 Transformation of split marker fragments to Aspergillus niger Δku70 strains

1. Split marker fragments were combined and transformed to different A. niger strains 

(Table 6, column Transformed strain), according to Arentshorst et al. 2012. Results of 

these transformations are shown in Figure 4.

2. As a control, also separate split marker fragments were transformed. None of the 

separately transformed split marker fragments yielded any transformants (data not 

shown).

3. Four transformants were purified for each selection marker tested5. For purification 

protocol, see Arentshorst et al. 2012.

4. After the second purification, all purified transformants were tested for growth on MM 

+ starch (Fig.4). All transformants analyzed showed a ΔamyR phenotype.

5. Purified transformants can be further analyzed by isolating genomic DNA, followed 

by both Southern blot analysis and diagnostic PCR (Arentshorst et al. 2012).

Figure 4. Phenotypic analysis of putative amyR disruptant strains using five different selection markers (hph =
hygromycin resistance; BLE = phleomycin resistance; pyrG = uridine requiring; argB = arginine requiring; nicB
= nicotinamide requiring). A) Transformation plates after transforming split marker fragment combinations for 
each of the five amyR deletion cassettes to the relevant recipient strain (Table 6). B, C) Purified transformants 
were analysed for their ability to grow on starch. The inability to grow on starch is indicative for the deletion of 
the amyR gene. 

5 Only the sporulating transformants on the phleomycin transformation plate (see Fig. 4) can grow on MM + 
phleomycin. The non-sporulating transformants do not grow, and are probably transient transformants, in which 
the split marker fragments have not integrated into the genome.
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3.2.5 Transformation of split marker fragments to Aspergillus niger wt strains
For some experimental set-ups, it is preferred to analyze gene deletions in a ku70 wild type 

strain. In order to show that the split marker approach also can be applied to a wild type (ku70

plus) strain, both A. niger strains AB4.1 (Van Hartingsveldt et al. 1987) (pyrG-) and MA169.4 

(Δku70, pyrG-) were transformed with ΔamyR::pyrG split marker fragments. After 

purification and screening on MM + starch, 25 out of 60 AB4.1-transformants (41%) showed 

a ΔamyR phenotype6. For MA169.4, 39 out of 40 transformants (98%) showed a ΔamyR

phenotype. This result clearly shows that the split marker approach can also be used to make 

gene deletions in a wt background instead of a Δku70 background. 

6 The percentages of Homologous Recombination (HR) for the amyR gene are very high (41% for wt, 98% for 
Δku70). Usually we find 5-10% HR for wt, and 80-100% for Δku70Meyer, V., M. Arentshorst, A. El-Ghezal, A. 
C. Drews, R. Kooistra et al., 2007 Highly efficient gene targeting in the Aspergillus niger kusA mutant. J 
Biotechnol 128: 770-775, ibid. ibid.(Meyer et al. 2007).
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Abstract

To construct a set of isogenic auxotrophic strains in Aspergillus niger suited for creating 

multiple gene deletion mutants and executing parasexual crossings, we have combined 

mutations in genes involved in colour pigmentation (fwnA, and olvA) with well selectable 

auxotrophic markers (pyrG, nicB, argB and adeA). All markers, except for the pyrG marker, 

were introduced by targeted deletion, omitting UV mutagenesis of the strains. Aspergillus 

oryzae orthologous genes of the argB, nicB and adeA markers were used as heterologous

selection markers and all markers were shown to complement to respective auxotrophic A. 

niger mutants. A quadruple auxotrophic marker was further constructed for suitable multiple 

gene deletions. Genome sequencing of two auxotrophic colour mutants JN3.2 (olvA::pyrG,

argB::hygB) and JN6.2 (olvA::pyrG, nicB::hygB) revealed four SNPs between them in non-

coding regions, indicating a high level of isogenicity between both strains. The availability of 

near isogenic complementary auxotrophic colour mutants facilitates the selection of diploids 

and the isolation of haploid segregants from the diploid using the parasexual cycle.

Keywords: isogenic strains, auxotrophy, multiple markers, parasexual crossing
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Introduction

Aspergillus niger has attracted considerable interest as cell factories for the production of 

organic compounds (citric acid and secondary metabolites) or (recombinant) proteins (Pel et 

al. 2007; Ward 2012; Andersen et al. 2013; Meyer et al. 2015). A. niger is not only an 

important cell factory, it also has become an important model system for fungal development 

(Krijgsheld et al. 2013; Wosten et al. 2013). System biology-based approaches in 

combination with targeted metabolic engineering techniques are important tools to study and

optimize production processes (Jacobs et al. 2009; Caspeta and Nielsen 2013). With relative 

ease gene knock outs can be made using the ku70 mutants (Meyer et al. 2007; Carvalho et al.

2010) in combination with split marker approach (Nielsen et al. 2006; Goswami 2012;

Arentshorst et al. 2015b). Together with tools for controlled overexpression of genes using 

the tetracycline promoter system (Meyer et al. 2011), metabolic engineering can be efficiently 

performed. A limiting factor for metabolic engineering in A. niger is the limited number of 

isogenic auxotrophic mutants with multiple auxotrophic markers, in which multiple gene 

deletion mutants can be made quickly without the need to recycle the selection markers. 

Selection markers such as the pyrG marker or the amdS marker are counter selectable, but

when multiple deletions need to be made, these markers need to be recycled, which is time 

consuming. To overcome this limitation, we have selected the nicB gene (encoding nicotinate 

mononucleotide pyrophosphorylase) (Verdoes et al. 1994), the argB gene (encoding ornithine 

carbamoyltransferase) (Lenouvel et al. 2002) and the adeA gene (encoding 

phosphoribosylaminoimidazole-succinocarboxamidesynthase) (Ugolini and Bruschi 1996; Jin

et al. 2004) of A. niger to construct near isogenic auxotrophic marker strains containing four 

auxotrophic markers (pyrG, nicB, adeA and argB). In combination with dominant selection 

markers such as hygromycin resistance (Punt and Van Den Hondel 1992), phleomycin 

resistance (Punt and Van Den Hondel 1992) and AmdS selection (Kelly and Hynes 1985),

seven different markers are available for strain construction.

The lack of a sexual cycle in A. niger limits easy crossing of two strains to combine 

interesting properties or to construct double mutants. Despite the lack of a sexual cycle, the 

parasexual cycle can be used to combine genetic traits in A. niger (Pontecorvo et al. 1953;

Swart et al. 2001a). The parasexual cycle includes the selection of a heterokaryon and 

subsequently the selection of a diploid strain. The frequency by which diploids are formed 

from a heterokaryotic mycelium in A. niger is very low and selection of diploids can be

accomplished by crossing strains that have complementary auxotrophic and complementary 
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spore colour markers. Only when a diploid is formed, the resulting colony will produce solely

black conidiospores which can be easily detected by eye. The genes encoding proteins 

involved in spore melanin production in A. niger have been identified (Jorgensen et al. 2011).

Several studies, mainly conducted by Bos et al., have reported on the isolation of A. niger

colour and auxotrophic mutants (see for review (Swart et al. 2001b)). However, most of these 

mutants were isolated by UV treatment. Although carried out with caution and relative high 

survival rates, unwanted random mutations are inevitable, leading to possible growth defects. 

By targeted deletion of spore colour genes and auxotrophies, we constructed a set of near-

isogenic strains suitable for parasexual crossings. We performed genome sequencing of two 

auxotrophic colour mutants and confirmed the near isogenicity between these auxotrophic 

mutants.

Materials and methods

Strains and growth conditions

The Aspergillus niger strains used in this study are listed in Table 1. Auxotrophic strains are 

deposited at the Fungal Genetic Stock Centre. A. niger strains were grown on minimal 

medium (MM) (Bennet and Lasure 1991) or on complete medium (CM) consisting of 

minimal medium with the addition of 5 g l-1 yeast extract and 1 g l-1 casamino acids. When 

required, 10 mM uridine, 200 μg/ml L-arginine, 2.5 μg/ml nicotinamide, 100 μg/ml 

hygromycin or 40 μg/ml phleomycin was added. Adenine was directly added from the solid 

stock to the medium to a final concentration of 200 mg/L after autoclaving and dissolved by 

mixing. Fluoroacetamide (FAA) and 5-fluoro-orotic acid (5-FOA) counter selection was

performed as described (Carvalho et al. 2010) to remove the amdS marker and the pyrG

marker respectively.
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Table 1. Strains used in this study

Molecular biological techniques

Transformation of A. niger and chromosomal DNA isolation of A. niger and A. oryzae was 

performed according to (Meyer et al. 2010). Southern blot analysis was performed according 

to (Sambrook and Russell 2001). α-32P-dCTP-labelled probes were synthesized using the 

Rediprime II kit (Amersham, GE Healthcare), according to the instructions of the 

manufacturer. Restriction and ligation enzymes were obtained from Thermo Scientific and 

used according to instructions of the manufacturer. PCR was performed with Phire Hot Start 

II DNA polymerase or Phusion DNA polymerase (Thermo Scientific). Sequencing was 

performed by Macrogen.

Name Genotype/description Reference/source

N402 cspA1, derivative of N400 Bos et al. 1988

A. oryzae ATCC16868 -

MA169.4 kusA::amdS, pyrG- Carvalho et al. 2010

MA100.1 cspA1, fwnA::hygB, kusA::amdS, pyrG- Jørgensen et al., 2011

AW8.4 cspA1, olvA::AopyrG in MA169.4 Jørgensen et al. 2011

JN3.2 argB::hygB, olvA::AopyrG (derived from AW8.4) This study

JN6.2 nicB::hygB, olvA::AopyrG (derived from AW8.4) This study

JN1.17.1 argB::hygB in MA169.4 This study

OJP3.1 nicB::phleo in MA169.4 This study

OJP1.1 adeA::pyrG in MA169.4 This study

MA322.2 ku70::amdS, nicB::AopyrG in MA169.4 This study

MA323.1 ku70::amdS, ΔnicB-, pyrG- This study

MA328.2 ku70::amdS, ΔnicB-, adeA::AopyrG This study

MA329.1 ku70::amdS, ΔnicB-, ΔadeA-, pyrG- This study

MA334.2 ku70::amdS, ΔnicB-, ΔadeA-, argB::AopyrG This study

MA335.3 ku70::amdS, ΔnicB-, ΔadeA-, ΔargB-, pyrG- This study
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Construction of plasmids and deletion cassettes

The deletion cassettes for the argB, nicB and adeA genes of A. niger were constructed with 

the hygB, phleo and pyrG selection marker respectively. The plasmid used to disrupt the argB

gene (An14g03400) with the hygromycin selection marker was constructed as follows: ~ 0.8 

kb DNA fragments flanking the argB ORF were amplified by PCR using N402 genomic 

DNA as template, with primers listed in Supplementary Table 1. The PCR products were 

cloned into pJet1.2 (Thermo Scientific). The 5’flank of argB was excised from pJet1.2 using 

KpnI/HindIII and inserted into the same site of pBlueScript II sk(+) to obtain plasmid pJN3.3.

Subsequently, pJN3.3 was digested with HindIII/NotI and used in a three way ligation with 

the 3’flank of argB excised from pJet1.2 using XhoI/NotI and the 3 kb HindIII/XhoI fragment 

containing the hygB gene, obtained from plasmid pΔ2380 (Damveld et al. 2008), resulting in 

the argB disruption plasmid pJN4.5. The argB gene deletion cassette was amplified by PCR 

using pJN4.5 DNA as template with primer argBKO1 and argBKO4 and the purified linear 

PCR fragment was used for subsequent transformation to A. niger strain MA169.4 (ku70-,

pyrG-) to give JN1.19.1 (ku70-, pyrG-, ΔargB::hygB) or to A. niger strain AW8.4 (ku70-,

ΔolvA::AOpyrG), resulting in JN3.2 (ku70-, ΔolvA::AOpyrG, ΔargB::hygB).

The same approach was used to construct the disruption cassettes of the nicB gene

(An11g10910) of A. niger with either the phleomycin or hygromycin marker. The DNA 

fragments flanking the nicB ORF were amplified from N402 genomic DNA, with primers 

listed in Supplementary Table 1. After cloning in pJet1.2, the 5’flank of nicB was isolated as a

KpnI/XhoI fragment and inserted into KpnI/XhoI opened pBlueScriptII SK(+) to obtain 

plasmid pJN8.1. Subsequently, the 1.9 kb XhoI-HindIII fragment containing phleo expression 

cassette, obtained from plasmid pMA299, or the 3.1 kb XhoI-HindIII fragment containing 

hygB expression cassette, obtained from plasmid pΔ2380 (Damveld et al. 2008), together with 

the HindIII/NotI isolated 3’flank of nicB, were ligated into XhoI/NotI opened pJN8.1,

resulting in the nicB::phleo disruption plasmid pJN10.1 or nicB::hygB disruption plasmid 

pJN9.1. The nicB gene deletion cassettes were amplified by PCR using pJN10.1 or pJN9.1 as 

template with primer NicBKO1 and NicBKO4 and used for transformation to A. niger strain 

MA169.4 (ku70-, pyrG-) to give OJP3.1 (ku70-, pyrG-, ΔnicB::phleo) or to A. niger strain 

AW8.4 (ku70-, ΔolvA::AOpyrG), resulting in JN6.2 (ku70-, ΔolvA::AOpyrG, ΔnicB::hygB).

To construct the disruption cassette of adeA gene (An11g10150), the flanking regions of 

the gene were amplified by PCR from N402 genomic DNA with primers Fw_adeA_5’ and
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Rev_adeA_5’ to obtain the 0.9 kb 5’flanking region and Fw_adeA_3’and Rev_adeA_3’ to 

obtain the 0.7 kb 3’flanking region (Supplementary Table 1). The 1.8 kb A. nidulans pyrG

selection marker was amplified by PCR from the plasmid pCRpyrGAN (Ouedraogo et al.

2015) with the primers Fw_pyrG_adeA and Rev_pyrG_adeA which contain complementary 

sequence of Rev_adeA-5’and Fw_adeA-3’ respectively (Supplementary Table 1). The

adeA::Anid_pyrG deletion cassette was obtained by a fusion PCR reaction of the three 

purified PCR products, followed by cloning of the 3.4 kb fusion PCR product into pJet1.2, 

resulting to plasmid pOJP1. Proper deletion of the nicB, adeA and argB genes was confirmed 

by Southern blot analysis (Supplementary Figures 1-3). 

For complementation studies, argB, nicB and adeA genes, including their promoter and 

terminator regions, were amplified from wild type A. oryzae and A. niger genomic DNA with 

appropriate primer pairs described in the Supplementary Table 1. The respective 

complementing gene fragments were cloned into pJet1.2 (Thermo Scientific) and sequenced

(Table 2). The plasmids pOJP5 (pJet1.2_Anig.argB), pOJP4 (pJet1.2_Anig.nicB), pOJP3 

(pJet1.2_Anig.adeA), pJN29 (pJet1.2_Aory.argB), pJN30 (pJet1.2_Aory.nicB) and pJN31 

(pJet1.2_Aory.adeA) were used to complement the respective auxotrophic mutants.

Recyclable split marker strategy for creation of a strain with multiple auxotrophies

To construct an A. niger strain with multiple auxotrophies, it was necessary to use a 

recyclable split marker approach. Therefore, auxotrophic marker specific direct repeats (DR) 

surrounding the AOpyrG selection marker were introduced by PCR. By selecting on 5-FOA 

the AOpyrG marker was removed. The recyclable split marker approach is outlined in Figure 

1; see Supplementary Table 1 for primer sequences. Strain MA169.4 (ku70-, pyrG-) was used 

as starting strain to first delete the nicB gene, and subsequently, adeA and the argB marker. 

All strains containing single, double, triple and the quadruple auxotrophic strain (MA335.5 

ku70-, ∆nicB, ∆adeA, ∆argB, pyrG-) are listed in Table 1. Correct integration of split marker 

fragments and successful loop out of the AOpyrG was confirmed by Southern blot analysis for 

all strains and shown for MA335.5 in Supplementary Figures 1-3).
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Table 2. Plasmids used in this study

Name Description Reference/source

pJN3.3 5’flank of argB in pBluescript II SK(+) This study

pΔ2380 ΔugmB::hygB deletion cassette Damveld et al. 2008

pJN4.5 pBluescript_argB::hygB This study

pJN8.1 5’flank of nicB in pBluescript II SK(+) This study

pMA299 pBluescript_phleo This study

pJN10.1 pBluescript_nicB::phleo This study

pCRpyrGAN Containing the full gene of A. nidulans pyrG DuPont Bioscience

pOJP1 pJet1.2_adeA::pyrG This study

pOJP5 pJet1.2_Anig.argB This study

pOJP4 pJet1.2_Anig.nicB This study

pOJP3 pJet1.2_Anig.adeA This study

pJN29 pJet1.2_Aory.argB This study

pJN30 pJet1.2_Aory.nicB This study

pJN31 pJet1.2_Aory.adeA This study

pAO4-13 Containing full pyrG gene of A. oryzae (De Ruiter-Jacobs et al. 1989)

14980 - J-Niu_BNW.indd   74 19-09-17   11:27



Auxotrophic strains for multiple gene deletion and parasexual crossings Chapter 3

 

75 
 

Figure 1. Schematic representation of the recyclable split marker approach for multiple gene deletion mutants. 
Deletion of the gene of interest (GOI) by split marker approach with recycling of the Aspergillus oryzae pyrG 
marker. The split marker fragments 1 and 2 are used during transformation to knock out the GOI by homologous 
recombination which generates a uridine prototroph (pyrG+) strain. The pyrG marker is subsequently looped out 
by 5-FOA selection and the resulting pyrG- strain is suitable for a second gene deletion with the pyrG marker. 
The split marker approach is described previously (Arentshorst et al., 2014).

A. niger parasexual cycle

Heterokaryon formation and selection for diploids was performed as described (Pontecorvo et 

al. 1953; Pontecorvo and Sermonti 1953). Segregation of diploids by benomyl was performed 

essentially as described (Bos et al. 1988) with slight modifications (Niu et al. 2016).
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Sequencing and analysis

Genome sequencing of JN3.2 (olvA::pyrG, argB::hygB) and JN6.2 (olvA::pyrG, nicB::hygB)

was performed using NGS platform (Illumina GA) as described (Park et al. 2014).

Sequencing was performed at ServiceXS, Leiden, The Netherlands. SNPs between JN3.2 and 

JN6.2 were identified using A. niger strain ATCC1015 (http://genome.jgi-

psf.org/pages/search-for-genes.jsf?organism=Aspni5) as reference genome. For each SNP it 

was verified whether the SNP was in a predicted protein encoding region using the A. niger

3.0 genome at JGI using the SNP coordinates (Park et al., 2014).

Results and Discussion

Construction and characterization of argB, nicB and adeA auxotrophic mutants

Deletion constructs nicB::hygB, argB::phleo and adeA::pyrG were transformed to strain 

MA169.4 (ku70-, pyrG-) and hygromycin, phleomycin resistant or uridine prototrophic 

transformants were obtained and purified. Proper deletion of the respective markers was 

verified by diagnostic PCRs (data not shown) and by testing the growth on MM-plates 

containing the relevant supplements. As shown in Figure 2, the nicB, argB and adeA mutants

required the addition of the nicotinamide, L-arginine or adenine to allow growth.

To determine the minimal concentrations of nicotinamide, arginine or adenine for full 

supplementation, spores of the auxotrophic mutants were spotted on plates containing a

concentration series of the respective supplements and the growth was monitored over time. 

The results in Figure 2 show the necessity to use at least 800 mg/L of arginine and 1.25 mg/L 

of nicotinamide to fully supplement the ∆argB and ∆nicB strains respectively. For the ∆adeA

mutant, the supplementation test shows that a concentration of adenine between 10 and 50 

mg/L lead to the accumulation of red pigment. At this range of adenine concentrations, the 

strain is not forming conidia. Further analysis showed that this red pigment was accumulated 

into the vacuole when cells were grown in liquid medium (data not shown). To fully 

supplement the ∆adeA mutant, at least 150 mg/L of adenine in the growth medium was 

required.
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Figure 2. Supplementation test of the auxotrophic A. niger mutants. 10 µl of a spore stock (1x107 conidia/ml) of 
each auxotrophic strain and the parental strain (MA169.4) was inoculated on an MM plate without and with 
serial concentrations of the respective supplement and incubated at 30 °C for 3 days for arginine and 
nicotinamide supplementation test and for 4 days for adenine supplementation test. 
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Construction and characterization of a quadruple auxotrophic strain (∆nicB, ∆argB,

∆adeA, pyrG-)

We have constructed a quadruple auxotrophic strain based on the recyclable split marker 

approach described in Figure 1 and in materials and methods. This approach allows iterative 

construction of gene knockouts in A. niger by subsequent recycling of the pyrG marker using 

counter selection on 5-FOA, due to the presence of the direct repeated sequences flanking the 

selection marker. The proper deletion and absence of ectopic copies of the deletion cassettes 

in the quadruple auxotrophic strain MA335.3 was confirmed by Southern blot analysis 

(Supplemental Figures 1-3) and characterized by the inability to growth in absence of 

arginine, nicotinamide, adenine or uridine (Figure 3). This quadruple auxotrophic strain offers 

the possibility to delete multiple genes without the need to recycle the selection marker. 

Figure 3. Growth analysis of the quadruple auxotrophic A. niger strain. MA335.3 (∆nicB, ∆argB, ∆adeA, pyrG-)
was plated on solid MM with and without the different supplements at 30 °C and growth was analyzed after 3 
days. The parental strain MA169.4 was taking along the analysis for comparison.
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Figure 4. Growth analysis of the complemented transformants. Spores of JN1.17.1 (ΔargB, pyrG-) OJP3.1 
(ΔnicB, pyrG-) and OJP1.1 (ΔadeA) and complemented strains were spotted on selective medium to test 
complementation of the argB, nicB and adeA respectively from A. niger (An) or A. oryzae (Ao). Pictures were 
taken after 3 days of growth at 30 °C.

The nicB, argB and adeA genes from A. oryzae are suitable markers for A. niger

transformation

To prove that auxotrophic mutants can be complemented by heterologous and homologous 

markers, DNA fragments containing the argB, the nicB and the adeA genes from A. oryzae

and A. niger, including their promoters and 3’ untranslated sequences, were used for the 

complementation of the respective A. niger auxotrophic mutants. Protoplasts of JN1.17.1

(ΔargB::hygB), OJP3.1 (ΔnicB::phleo) and OJP1.1 (ΔadeA::pyrG) were transformed with 

plasmids containing the corresponding marker genes from A. oryzae or A. niger.

Transformants were obtained for the A. oryzae heterologous markers, which demonstrated 
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that nicB, argB and adeA of A. oryzae complemented the auxotrophy and therefore are

suitable markers for A. niger transformations. As expected, also all A. niger genes (argB, nicB

and adeA) were able to complement the respective auxotrophic A. niger mutants. The 

obtained transformants were further analysed to determine whether the A. oryzae marker also 

complemented the auxotrophies. As shown in Figure 4, all heterologous genes complement 

similarly to the homologous A. niger genes. A heterologous marker for gene disruption 

experiments is preferred as it reduces the homologous integration of the marker gene in the 

disruption cassette at the homologous site. We have compared the DNA sequence of the 

different genes markers of A. niger to those of A. oryzae by BLASTN

(http://blast.ncbi.nlm.nih.gov/) using standard settings. The identity of the coding regions 

between the different gene markers was 73.3%, 72.0% and 77.8% for argB, nicB and adeA

genes respectively. These values are comparable to the value obtained when comparing the 

pyrG genes markers of both Aspergillus species. The pyrG gene of A. oryzae is identical to 

the pyrG gene of A. niger at 78.6% and has been so far successfully used to transform A. niger

and vice versa (Mattern et al. 1987; Carvalho et al. 2010). It should be noted that 

complementation analysis in the ∆ku70 background is not efficient because of the low 

frequencies of ectopic integration the complementing fragment. To circumvent this limitation, 

we constructed a curable ku70 deletion strategy (Carvalho et al., 2010). The presence of ku70

repeats around the AmdS selection marker used to disrupt the ku70 gene allow efficient loop 

out of the AmdS marker via fluoro-acetamide counter selection as described (Arentshorst et 

al. 2012). An alternative method for easy complementation, which omits the need for curing 

the ku70 locus, is the use of a second auxotrofic marker which can be used to target the 

complementing gene to this locus. For the pyrG marker, an efficient gene targeting method

has recently become available (Arentshorst et al. 2015a) with allows targeted integration when 

the complementing fragment is cloned in the pyrG targeting vector. For example, one could 

start with a nicB-, pyrG- strain and use the nicB selection marker for initial deletion of the 

gene of interest, followed by a complementation experiment in which the complementing 

fragment is cloned in the pyrG targeting vector which is that transformed to the deletion 

strain.

Isogenic auxotrophic colour mutants for parasexual crossing in A. niger

Combining mutations by crossing strains is a powerful genetic tool for strain construction. In 

Aspergillus nidulans this method is well established and used in many studies to construct 

double mutants (Todd et al. 2007). The lack of a sexual cycle in A. niger has limited the use 
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of crossings to combine mutations. However, the use of the parasexual cycle in A. niger

(Pontecorvo et al. 1953) has been used extensively for linkage studies in A. niger and can be 

used to combine mutations (Bos et al. 1988). Straightforward crossing in A. niger requires 

complementing auxotrophies to select for a heterokaryotic mycelium and preferably colour

makers to select for a diploid strain. The frequency by which A. niger forms diploids is 

generally very low (1 in 106 to 107 spores) and diploids are not easily detected if wild-type 

strains are used that produce black conidia. By using complementing colour markers a diploid 

can be selected as only this diploid will produce black spores, whereas a heterokaryotic

mycelium will produce a mix of heterogeneously coloured spores (Pontecorvo et al. 1953).

By combining colour mutants (fwnA and olvA) with complementary auxotrophic markers such 

as pyrG, nicB or argB, heterokaryons and diploids can be easily selected. We constructed 

several auxotrophic colour mutant strains including MA100.1 (fwnA::hygB, pyrG-, JN3.2 

(olvA::pyrG, argB::hygB), and JN6.2 (olvA::pyrG, nicB::hygB (Table 1). In a recently 

conducted study JN3.2 has been used for parasexual crossings to obtain haploid segregants

(Niu et al. 2016). With these segregants, a bulk segregant analysis was performed to identify 

SNPs that are closely linked or responsible for the mutant phenotypes (Niu et al. 2016).

To test the isogenicity between two auxotrophic colour mutants JN3.2 (olvA::pyrG, 

argB::hygB) and JN6.2 (olvA::pyrG, nicB::hygB), the genomes of these strains were 

sequenced and compared to the genome of the reference ATCC strain. In total, 155 SNPs 

were found for JN3.2 and JN6.2 respectively when compared to the ATCC reference strain

(Suppl. Table 2). Two SNPs were found to be specific for JN3.2, and two SNPs were specific

for JN6.2. None of them were found in predicted open reading frames (Table 3), 

demonstrating that JN3.2 and JN6.2 are likely to have no mutation affected its phenotype and 

that they are near isogenic. 

Table 3. SNP comparison JN6.2 and JN3.2

Position Allel ATCC JN6.2 JN3.2 Details mutation

chr_1_2 726573 T T C Intergenic

chr_3_4 45864 T T A Intergenic

chr_8_2 2725044 G A G Intergenic 

chr_8_2 2725045 T A T Intergenic
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In conclusion, new auxotrophic strains carrying targeted deletions in the argB, nicB and

adeA genes of A. niger were constructed. The orthologous genes argB, nicB and adeA of A. 

oryzae complemented the arginine, nicotinamide and adenine auxotrophic mutants similar to 

the endogenous genes and are therefore suitable selection markers for A. niger

transformations. The quadruple auxotrophic strain MA335 (argB-, nicB-, adeA- and pyrG-)

allows rapid deletion of multiple genes deletion without the need to recycle selection markers. 

The targeted deletion of auxotrophic markers instead of selection of auxotrophic strains after 

UV mutagenesis significantly reduces the occurrence of mutations as genome sequencing of 

two auxotrophic mutants (JN3.2 and JN6.2) revealed only four SNP between them. 
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Supplementary Table 1. Primers used in this study. 

Supplemental Table 2. Comparison of SNP positions between ATCC1028 and JN3.2/JN6.2. 

Supplemental Fig. 1. Verification of the nicB deletion in OJP3.1 (nicB::phleo in MA169.4) and quadruple 
auxotrophic strain MA335. A) Schematic representation of the nicB locus of the wild-type and after nicB::phleo 
deletion and after loop out of the pyrG gene after disrupting nicB in MA335. Predicted sizes of the DNA 
fragment hybridizing with the indicated probe are shown. B) Southern blot analysis of genomic DNA of 
MA169.4 (lane 1), OJP3.1 (lane 2) and MA335.4. (lane 3), and MA335.4 (lane 4). Left panel: agarose gel 
stained with ethidium bromide. MW = molecular weight marker size (in kb) are indicated. Right panel: Southern 
blot after hybridization with nicB probe. 

Supplemental Fig. 2. Verification of the adeA deletion in OJP1.1 (adeA::pyrG in MA169.4) and quadruple 
auxotrophic strain MA335. A) Schematic representation of the adeA locus of the wild-type and after adeA::pyrG 
deletion and after loop out of the pyrG gene after disrupting adeA in MA335. Predicted sizes of the DNA 
fragment hybridizing with the indicated probe are shown. B) Southern blot analysis of genomic DNA of 
MA169.4 (lane 1), MA335.3 (lane 2), MA335.4 (lane 3), and OJP1.1 (lane 4). Left panel: agarose gel stained 
with ethidium bromide. MW = molecular weight marker size (in kb) are indicated. Right panel: Southern blot 
after hybridization with adeA probe. 

Supplemental Fig. 3 Verification of the argB deletion in JN17.1 (arg::hygB in MA169.4) and quadruple 
auxotrophic strain MA335. A) Schematic representation of the argB locus of the wild-type and after argB::hygB 
deletion and after loop out of the pyrG gene after disrupting argB in MA335. Predicted sizes of the DNA 
fragment hybridizing with the indicated probe are shown. B) Southern blot analysis of genomic DNA of 
MA169.4 (lane 1), JN1.17.1 (lane 2), MA335.3 (lane 3), and MA335.4 (lane 4). Left panel: agarose gel stained 
with ethidium bromide. MW = molecular weight marker size (in kb) are indicated. Right panel: Southern blot 
after hybridization with argB probe. 
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Abstract

Aspergillus niger is an important industrial fungus expressing a broad spectrum of 

pectinolytic genes. The main constituent of pectin, polygalacturonic acid (PGA), is degraded 

into galacturonic acid (GA) by the combined activity of endo- and exo-polygalacturonases 

some of which are specifically induced by GA. The regulatory mechanisms that control the 

expression of genes encoding PGA-degrading enzymes are not well understood. Based on 

available genome-wide expression profiles from literature, we selected five genes that were 

specifically induced by GA. These genes include three exo-polygalacturonases (pgaX, pgxB

and pgxC), a GA transporter (gatA), and an intracellular enzyme involved in GA metabolism 

(gaaB). These five genes contain a conserved motif (5'-TCCNCCAAT-3') in their promoter 

regions, which we named GARE (galacturonic acid-responsive element). Promoter deletion 

studies and site-directed mutagenesis of the conserved motif of the pgaX gene showed that the 

conserved element is required for GA-mediated induction. A set of promoter reporter strains 

was constructed by fusing the promoter region of the five above-mentioned genes to the amdS

reporter gene. Expression of the amdS gene is quantitatively correlated with ability to utilize 

acetamide as an N-source, hence higher expression of amdS improves growth of the strain on 

acetamide and therefore can be used as an in vivo reporter for gene expression. Growth 

analysis of the reporter strains indicated that four genes (pgaX, pgxB, pgxC, and gatA) are 

specifically induced by GA. The in vivo promoter reporter strains were also used to monitor 

carbon catabolite repression control. Except for gaaB, all promoter-reporter genes analysed 

were repressed by glucose in a glucose concentration-dependent way. Interestingly, the 

strength of glucose repression was different for the tested promoters. CreA is important in 

mediating carbon catabolite repression as deletion of the creA gene in the reporter strains 

abolished carbon catabolite repression for most promoters. Interestingly, the pgxC promoter 

was still repressed by glucose even in the creA null background, suggesting a role for 

alternative repression mechanisms. Finally, we showed that low concentrations of GA are 

required to induce gene expression of pgaX, pgxB, and pgxC even under derepressing 

conditions. The results obtained are consistent with a model in which a GA-specific 

transcription factor is activated by GA or a GA-derivative, which binds to the conserved 

motif, possibly in combination with the HAP-complex, to drive GA-specific gene expression.

Keywords: pectin, pectinolytic genes, gene regulation, reporter genes, acetamidase, carbon 

catabolite repression, CreA
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Introduction

Pectin represents a group of complex heterogeneous polysaccharides that are primarily 

present in the middle lamella of plant cell walls. The backbone consists mainly of α-1,4-

linked D-galacturonic acid residues part of which are methyl-esterified. The polygalacturonic 

acid backbone can be further modified to form substructures with increasing complexity. 

Pectin is classified into four substructures: homogalacturonan (HGA), xylogalacturonan 

(XGA), rhamnogalacturonan-I (RG-I), and rhamnogalacturonan-II (RG-II) (Mohnen 2008).

RG-II is the most complex structure and composed of up to twelve different types of sugars in 

>20 different linkages.

Aspergillus niger is an important industrial micro-organism and used as a cell factory for 

the production of enzymes and organic acids (Pel et al. 2007; Andersen et al. 2011). Genome 

mining has revealed a large array of extracellular pectinolytic enzymes in A. niger (Coutinho

et al. 2009; Martens-Uzunova and Schaap 2009). The majority of the pectinolytic enzymes 

that act on the polygalacturonic acid backbone belong to the GH28 family of glycoside 

hydrolases, and include endo- and exo-polygalacturonases (Bussink et al. 1992a; Bussink et 

al. 1992b; Benen et al. 1996; Parenicova et al. 1998; Parenicova et al. 2000; Martens-

Uzunova et al. 2006).

Metabolism of GA in fungi is well described and involves four enzymatic reactions to 

convert GA into glycerol and pyruvate. The genes encoding these enzymes (gaaA, gaaB,

gaaC, and gaaD have been identified and the biochemical properties of the enzymes have 

been determined (Kuorelahti et al. 2005; Kuorelahti et al. 2006; Liepins et al. 2006; Hilditch

et al. 2007; Mojzita et al. 2010; Wiebe et al. 2010; Zhang et al. 2011; Kuivanen et al. 2012).

Specific sugar transporters that are able to transport GA over the plasma membrane have 

recently been identified and characterized in Neurospora crassa (Benz et al. 2014) as well as 

in A. niger (Sloothaak et al. 2014) and Botrytis cinerea (Zhang et al. 2014). The transporters 

identified in these studies are phylogenetically related and probably represent a subfamily of 

GA-specific transporters (Zhang et al. 2014).

Several studies have focused on understanding the transcriptional regulation of 

pectinolytic genes (Bussink et al. 1990; Bussink et al. 1992a; Maldonado and Strasser De 

Saad 1998; De Vries et al. 2002) and have shown that most pectinolytic genes are specifically

induced by GA. In combination with a genome-wide expression study in A. niger (Martens-

Uzunova and Schaap 2008) a conserved promoter element has been identified that is present 

in the promoter region of GA-induced genes. A promoter deletion study of the pgaII gene 

(encoding an endo-polygalacturonase) showed that this element is important for high level 
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expression of pgaII (Bussink et al. 1992b). The element (5'-TCCNCCAAT-3') is present in 

genes encoding extracellular enzymes that are specific for polygalacturonic acid hydrolysis 

(both exo- and endo-activities), in putative GA-transporter genes, and in genes encoding the 

enzymes for GA metabolism (gaaA to gaaD) (Martens-Uzunova and Schaap 2008). We 

propose to name this element GARE for galacturonic acid-responsive element. Benen and co-

workers identified a second region (CCCTGA), which is present in promoters of many 

pectinolytic genes that might be important in activation of pectinolytic gene expression and 

has been named PecR (Benen et al. 1996; Coutinho et al. 2009). The GARE motif (5'-

TCCNCCAAT-3') is similar to the binding site of the HAP2/3/4 complex. The HAP complex 

(as it is named in Saccharomyces cerevisiae) is a conserved multimeric transcription factor 

that regulates gene expression by binding to the consensus sequence CCAAT. In the 

filamentous fungi, the HAP complex consists of four subunits (HapB/C/E and HapX). The 

complex is required for the regulation of gene expression not only related to carbon or 

nitrogen source utilization (Van Heeswijck and Hynes 1991; Kato et al. 1997; Kato et al.

1998; Steidl et al. 1999) but also to other cellular processes like secondary metabolite 

production (Litzka et al. 1996), iron homeostasis (Hortschansky et al. 2015), and oxidative 

stress responses (Thon et al. 2010).

Several studies have shown that GA-induced genes are repressed by the presence of 

glucose (Bussink et al. 1991; De Vries et al. 2002) through carbon catabolite repression 

control (CCR). In filamentous fungi, the C2H2 type transcription factor CreA/CRE1, which is 

related to Mig1/Mig2/Mig3 proteins that mediate glucose repression in S. cerevisiae

(Westholm et al. 2008), has been shown to act as a repressor mediating CCR (Dowzer and 

Kelly 1991; Ruijter and Visser 1997). CreA/CRE1 binds to the promoters of the respective 

target genes via the consensus motif 5'-SYGGRG-3' to repress expression. Disruption mutants 

in creA are viable in A. nidulans (Shroff et al. 1997) and A. niger (Yuan et al. 2006) and can 

be used to analyse transcriptional regulation under derepressed conditions. 

For the efficient degradation and utilization of polymeric substrates, a synergistic and 

coordinated expression of the hydrolysing enzymes, sugar transporters, and enzymes involved 

in the intracellular metabolism is required. In filamentous fungi several substrate-specific 

transcription factors have been identified, which function as key regulators to control gene 

expression in response to the presence of a particular substrate (Kowalczyk et al. 2014).

However, a specific GA-responsive transcription factor has not yet been identified. We 

suggest that an as yet unidentified transcription factor is responsible for GA-dependent 
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induction of the genes encoding the extracellular PGA-degrading enzymes as well as 

activation of genes that encode the intracellular enzymes involved in GA metabolism. 

In this study, we show the importance of the GARE motif (5'-TCCNCCAAT-3') for GA-

induced gene expression. We also constructed promoter-reporter constructs to analyse the 

regulation of these promoters in vivo. Using these reporter strains, we show that induction and 

repression of GA-induced genes is differentially fine-tuned in response to inducing and 

repressing conditions. 

Material and methods

2.1 Strains and growth conditions

The A. niger strains used in this study are listed in Table 1. Strains were grown in liquid or on 

solidified (by addition of 2 % agar) minimal medium (MM), which contained 7 mM KCl, 8 

mM KH2PO4, 70 mM NaNO3, 2 mM MgSO4 (pH adjusted to pH 5.5) as described by 

Bennett and L.L. 1991 (Bennett and L.L. 1991). MM was supplemented with a specific 

carbon source to a final concentration of 50 mM as indicated. Standard complete medium 

(CM) was also used and consisted of MM supplemented with 0.1% casamino acids and 0.5% 

w.v-1 yeast extract and 50 mM glucose. MM agar plates containing 10 mM acetamide as sole 

nitrogen source were made as previously described (Arentshorst et al. 2012). Transformation 

of A. niger strains was also carried out as described in (Arentshorst et al. 2012). Targeted 

integration of reporter constructs to the pyrG* locus was carried out as described previously 

by (Van Gorcom and Van Den Hondel 1988) or through via a recently developed pyrG-

targeting vector pMA334 (named pyrG**) (Arentshorst et al. 2015). Fungal chromosomal

DNA isolation was performed as described by Meyer et al. 2010 (Meyer et al. 2010). Two 

strains were used as a recipient for transformation and include AB4.1 and MA299.2 (Table 1). 

MA299.2 is derived from the Δku70 mutant strain MA70.15 (kusA::amdS, pyrG-) after curing

the amdS marker by fluoro-acetamide selection (Arentshorst et al. 2012). The resulting strain 

MA299.2 (kusA-, pyrG-) was checked for proper removal of the amdS marker by diagnostic 

PCR. The growth of transformants was assayed by point-inoculating 4 µl of spore suspension 

(1 x 105 spores/µl) in the centre of the agar plate and incubating the plates for 7 days at 30º.
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Table 1. Strains used in this study
Strain Genotype Reference
N402 cspA Bos et al. 1988
AB4.1 pyrG− derivatie of N402 van Hartingsveldt et al. 1987
XY1.1 ΔcreA::pyrG in AB4.1 Yuan et al. 2006
MA70.15 ΔkusA::amdS, pyrG− in AB4.1 Meyer et al. 2007
MA299.2 ΔkusA-, pyrG− derivative of MA70.15 This study
MA211.15 PpgaX(1203)-uidA-pyrG* in AB4.11,2 This study
MA212.2 PpgaX(1005)-uidA-pyrG* in AB4.1 This study
MA213.10 PpgaX(688)-uidA-pyrG* in AB4.1 This study
MA214.14 PpgaX(409)-uidA-pyrG* in AB4.1 This study
MA215.8 PpgaX(380)-uidA-pyrG* in AB4.1 This study
CR01.6 PpgaX (1210) (TTTACCTTT)-uidA-TtrpC-pyrG* in AB4.13 This study
CR02.8; CR02.9 PpgaX (688) (TTTACCTTT)-uidA-TtrpC-pyrG* in AB4.1 This study
CR03.1 PpgaX (1210) (TTTACCTTT)-amdS-TtrpC-pyrG* in AB4.1 This study
CR04.2 PpgaX (688) (TTTACCTTT)-amdS-TtrpC-pyrG* in AB4.1 This study
CR05.31 PpgaX (1210) (TTTACCAAT)-uidA-TtrpC-pyrG* in AB4.1 This study
CR06.4; CR06.5 PpgaX (688) (TTTACCAAT)-uidA-TtrpC-pyrG* in AB4.1 This study
CR09.1; CR09.20 PpgaX (1210) (TCCACCTTT)-uidA-TtrpC-pyrG* in AB4.1 This study
CR10.1; CR10.6 PpgaX (688) (TCCACCTTT)-uidA-TtrpC-pyrG* in AB4.1 This study
JC1.5; JC1.7; JC1.8 PpgaX(1210)-amdS-pyrG**in MA299.24 This study
JC3.6; JC3.7; JC3.9 PpgxB(1250)-amdS-pyrG** in MA299.2 This study
JC4.2; JC4.3; JC4.4 PpgxC(1201)-amdS-pyrG** in MA299.2 This study
JC5.1; JC5.2; JC5.3 PgaaB(1194)-amdS-pyrG** in MA299.2 This study
JC6.6; JC6.7; JC6.8 PgatT(1208)-amdS-pyrG** in MA299.2 This study
JN11.2 PabfA(1266)-amdS--pyrG* in AB4.1 This study
JN29.2 creA::hygB in JC1.5 This study
JN31.3 creA::hygB in JC3.6 This study
JN32.1 creA::hygB in JC4.2 This study
JN33.1 creA::hygB in JC5.1 This study
JN34.3 creA::hygB in JC6.6 This study
JN16.1 creA::hygB in JN11.2 This study

1 number in brackets indicates length of the promoter region. 
2 pyrG* refers to targeting integration method of DNA constructs using the pyrG targeting method described by 
van Gorcom et al., 1988
3 Underlined regions indicate mutations compared to the wild-type motif (TCCACCAAT). 
4 pyrG** refers to targeting integration method to the pyrG locus described by Arentshorst et al., 2015
(Arentshorst et al. 2015).

2.2 General DNA procedures

PCR amplifications were performed using phusion DNA polymerase (Finnzymes) and were 

carried out according to the manual provided by the manufacturer. Escherichia coli strain 

DH5α was used for all recombinant DNA experiments. E. coli was transformed using 

standard heat shock protocols as described by (Inoue et al. 1990). All endonuclease restriction 

enzymes were purchased from Fermentas or Sigma. DNA sequence analysis was carried out 

by Macrogen, Korea. Ligations were performed using the Rapid DNA ligation kit 

(Fermentas). 
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2.3 Construction of recombinant vectors

The plasmids used in this study are listed in Supplemental Table 1. PgaX promoter fragments 

with different lengths (1203, 1005, 688, 409 and 380 bp) were PCR amplified (see 

Supplemental Table 2 for primers) and cloned as NotI/EcoRI fragments in PagsA(30-bp)-

uidA-pyrG* (Damveld et al. 2005) to give pMA211, pMA212, pMA213, pMA214 and 

pMA215. Promoter fragments mutated in the CCNCCAAT box were constructed in either the 

large pgaX promoter fragment (1202 bp) or the short promoter (409 bp). Mutations were 

introduced by using oligonucleotides (Supplemental Table 2). PCR fragments were again 

cloned as NotI/EcoRI fragments in PagsA(30-bp)-uidA-pyrG* to construct the pCRO 

plasmids (Supplemental Table 1).

Promoter regions of pgxB, pgxC, gaaB, gatA and abfA were amplified by PCR using the 

primers listed in Supplemental Table 2 and using A. niger N402 genomic DNA as template,

and ligated into pJET1.2 (Fermentas). To construct the pgaX-amdS reporter constructs with 

the mutated CCNCCAAT box, primers Mut1-for and Mut1-rev were used (Supplemental 

Table 2). The promoter fragments containing the mutations were subsequently cloned in 

pJET1.2. From these intermediate vectors the promoter fragments were re-isolated as 

SalI/EcoRI and subsequently ligated into the 3,662 bp SalI/EcoRI-digested backbone of 

vector PagsA(2010)-AmdS (Damveld et al. 2008) to construct the amdS reporter constructs.

For the PabfA-amdS reporter construct, the pyrG* gene was cloned into this vector as a XbaI

fragment to produce the final vector (Table 2). For the construction of promoter reporter 

plasmids for targeted integration through homologous integration via pMA334, a NotI site 

was introduced at the SalI restriction site by inserting a NotI restriction site oligonucleotide 

(Supplemental Table 2) at the SalI site. The promoter fragments were subsequently isolated as 

NotI fragments and cloned into pMA334 and transformed to MA299.2. Proper integration of 

the constructs was verified by Southern blot. For each promoter reporter construct three 

independent transformants were analysed by Southern blot and analysed phenotypically. For 

each construct a single strain was selected and the creA gene was deleted using the split 

marker method (Arentshorst et al. 2015) using primers listed in Supplemental Table 2 for 

amplification of creA 5' and 3' split marker fragments. For each reporter construct, three creA

mutants were purified, analysed by diagnostic PCR and analysed phenotypically. All PCR 

amplified promoter regions and final constructs were verified by sequencing (Macrogen).
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Table 2. Putative GA-responsive and putative CreA-binding site in GA induced genes.

Gene number Gene name Promoter 
length (bp) 

Promoter element

GA-responsive element 
(CCNCCAAT)

CreA binding site
(SYGGRG) 

An12g07500 pgaX 1210 -389 3 (+) *a

5 (-)

An16g05390 gaaB 1194 -327 10 (+)
5 (-)

An03g06740 pgxB 1250 -299 7 (+)
3 (-)

An02g12450 pgxC 1201 -279 5 (+)
5 (+)

An14g04280 gatA 1208 -334*b 2 (+)
4 (-)

An01g00330 abfA 1266 Not present 8 (+)
6 (-)

*a + and - indicates a putative CreA in the forward (+) or reverse (-) orientation. The exact positions of the 
different putative creA binding sites are given in Supplemental Table 3.
*b GARE site in gatA does not perfectly matches consenses (TCCAGCAAT).

2.4 Analysis of transformants expressing GUS

The PpgaX-uidA-TtrpC-pyrG* vector variants (pMA211-pMA215 and pCRO plasmids) were 

transformed to A. niger AB4.1. Transformants were screened based on glucuronidase activity 

as described (Damveld et al. 2005). For each construct, two transformants expressing GUS 

from the pyrG locus were selected for further analysis. To perform expression analysis of 

uidA and to perform β-glucuronidase enzymatic assay (GUS assay). RNA and protein was

isolated from mycelium that was grown for 18 hours at 30˚C in 100 ml CM supplemented 

with 50 mM GA as the sole carbon source. After growth, mycelium was harvested, frozen in 

liquid nitrogen, grinded and subsequently used for RNA isolation using TRIzol (Damveld et 

al. 2005) or for protein isolation. For protein isolation 200 mg of mycelium was resuspended 

in 1 ml Z-buffer (see above) to which a protease inhibitor cocktail (Sigma P8215) was freshly

added. Fifty μl of the supernatant was mixed with 1 ml Z-buffer and 200 μl p-nitrophenyl α-

D-glucuronic acid solution (PNP-Gluc, Sigma N-1377). Samples were incubated at 37˚C for 

15 min or one hour after which the reaction was stopped by addition of two ml 100 mM 

Na2CO3. The ODs at 415 and 550 nm were determined using an Ultraspec 2100 pro 

(Amersham) spectrophotometer. The specific activity was determined in triplicate as 

described by (Roberts et al. 1989).
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Results

3.1. A conserved motif in promoters of galacturonic acid-induced genes is required for 

pgaX induction

Genome-wide expression analysis of A. niger grown on various carbon sources has revealed 

specific induction of pectinolytic genes on galacturonic acid (GA) (Martens-Uzunova and 

Schaap 2008). These genes include among others exo-polygalacturonidases (pgaX, pgxB,

pgxC), a putative galacturonic acid transporter (gatA) (Sloothaak et al. 2014), and genes 

involved in the intracellular metabolism of GA (gaaA, gaaB and gaaC). Promoter analysis of 

these co-regulated genes identified a conserved motif comprising the consensus sequence 5’-

YCCNCCAAT-3’ (Martens-Uzunova and Schaap 2008) to which we will refer to as GARE 

(galacturonic acid responsive element) in this manuscript. To assess the importance of GARE,

promoter deletion and site-directed mutagenesis studies were performed using the pgaX

promoter as representative example. As schematically depicted in Figure 1, promoter 

deletions and promoter mutations were made in the pgaX promoter and these promoter 

fragments were cloned in front of the β-glucuronidase (GUS) reporter. All promoter reporter 

constructs were targeted to the pyrG locus using the pyrG* method (Van Gorcom and Van 

Den Hondel 1988) and Southern blots were performed to show single-copy, targeted 

integration of the reporter constructs (data not shown). For each reporter, two independently 

obtained single-copy transformants were analysed for uidA expression and β-glucuronidase 

activity when grown on GA. The promoter deletion studies showed that the conserved GARE 

motif is required for expression of the pgaX gene leading to GUS activity (Figure 1, and data 

not shown for the uidA expression analysis). As GARE (5'-TCCNCCAAT-3') contains a 

putative HAP-binding site (CCAAT), the role of the element was determined in more detail 

by introducing mutations in the specific motifs of the element. Mutations that abolish HAP 

complex binding (CCAAT to CCTTT mutations) eliminated the expression and induction of 

the pgaX gene. Importantly, also mutating the CC motif upstream of the CCAAT motif (CC 

to TT) abolished pgaX expression, indicating that it is not only the HAP binding site which is 

important for induction. Mutations in GARE were made either in the large pgaX promoter 

fragment (2012 bp) or the short pgaX promoter fragment (409), but in both cases no GUS 

activity could be detected. The results strongly suggest that both the CC motif and the 

CCAAT motif in the 5'-TCCACCAAT-3' box are necessary for pgaX expression. PecR 

(CCCTGA) is a second element which has been identified in promoter of GA-induced genes 

(Bussink et al. 1992b; Benen et al. 1996). The results presented in Fig.1 indicate that the pecR 

element is not necessary for pgaX induction by GA.

14980 - J-Niu_BNW.indd   95 19-09-17   11:27



Chapter 4 The interaction of induction and repression mechanisms in the regulation of galacturonic acid-induced genes

96

Figure 1. Schematic strategy to analyse the role of conserved promoter elements in the pgaX promoter. A) 
Promoter fragments with decreasing length were PCR-amplified and cloned in front of the β-glucuronidase 
(GUS) reporter. Mutations in the galacturonic acid-responsive element (GARE) in either the long promoter 
(1203 bp) or the shortened (409 bp) promoter version are indicated by the gray circle. For either the long or short 
promoter fragment three mutations were made (CCACCAAG to TTACCAAG, CCACCTTG or TTACCTTG) 
which all abolished expression if the uidA gene. On the right - GUS activity in mycelia of transformants grown 
on galacturonic acid as a sole carbon source. 

3.2. Construction and analysis of in vivo promoter-reporter constructs to assess 

promoter activity

The acetamidase gene (amdS) of A. nidulans (Kelly and Hynes 1985) was used as a reporter 

for gene expression in A. niger (e.g. (Damveld et al. 2008; Punt et al. 2008) To analyse GA-

specific expression in vivo on agar plates, we constructed several amdS reporter constructs, in 

which promoter sequences of GA-induced genes (pgaX, pgxB, pgxC, gaaB and gatA) were 

selected (Table 2). In addition, we included a promoter of abfA which is known to be an 

arabinose-induced gene (De Groot et al. 2003). The rationale of the assay is that expression of 

amdS from the various promoters can be assessed by the ability of the transformant to grow 

on medium containing acetamide as N-source. To allow comparison of promoter activity all 

promoter-reporter constructs were targeted to the pyrG locus either by the pyrG* method 

(abfA) (Van Gorcom and Van Den Hondel 1988) or through a recently developed pyrG**

targeting method ((pgaX, pgxB, pgxC, gaaB and gatA) (Arentshorst et al. 2015). Correct 

integration of the reporter constructs was verified by Southern blot analysis (data not shown). 

For each construct, three independent single-copy transformants with the expected integration 
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pattern were analysed for growth. Transformants were point-inoculated on minimal medium 

agar plates containing acetamide as a sole N-source and various carbon sources (Figure 2). 

Growth of the transformants containing the AmdS reporter fused to the promoter of pgaX,

pgxB, and pgxC, was specific for GA, polygalacturonate (PGA) and pectin. On all other 

carbon sources these strains did not grow, indicating that pgaX, pgxB, and pgxC are 

specifically induced by GA. The growth of the transformant harbouring the pgxC-amdS

reporter construct is reduced compared to the other strain, indicating that the expression from 

the pgxC promoter might be lower than expression from the other promoters. Growth of the 

gaaB-amdS reporter strain was less specific for GA, indicating that the gaaB gene is also 

expressed under non-inducing conditions. Growth analysis of gatA-amdS reporter suggests 

that the gene is not only expressed in the presence of GA, but also in the presence of 

rhamnose, arabinose, and fructose. As described in more detail in the next paragraph, the 

ability of the gatA-amdS reporter strain to grow on rhamnose, arabinose, and fructose is likely 

due to derepression. Growth of the abfA-amdS reporter strain nicely confirmed previous 

reports that abfA is specifically induced by arabinose (De Groot et al. 2003). The abfA

promoter does not contain a GARE or pecR element. The abfA-amdS reporter strain also 

grows well on PGA and pectin indicating the abfA is also induced under these conditions. 

Whether the induction by pectin and PGA is AraR-dependent awaits further studies. 

The pgaX-amdS reporter was also used to show the importance of the 5'-TCCACCAAT-3' 

motif. Mutating the GARE promoter in the wild type pgaX promoter (5'-TCCACCAAT-3' to 

5'-TTTGTTGAT-3') and placing the mutated promoter in front of the amdS reporter abolished 

the ability of transformant containing the mutated reporter construct to grow on GA (data not 

shown). Collectively, by using both the uidA and amdS reporter constructs we show that pgaX

induction is specific on GA and requires the GARE motif.
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Figure 2. Growth analysis of promoter-reporter strains on various carbon sources. The wild-type (N402) and 
reporter strains were grown on MM-acetamide supplemented with 50 mM of a monomeric carbon source, or 1% 
w/v polymeric substrate. 

3.3 Expression of galacturonic acid-induced genes is under carbon catabolite repression 

control and CreA-dependent

The reporter strains described above also offer the possibility to analyse in vivo the role of 

carbon catabolite repression on the GA-induced genes. First, in silico analysis of the promoter 
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sequences of all five reporter constructs for putative CreA binding sites (SYGGRG) showed 

that all promoters contain several putative CreA binding sites (Table 2 and Supplemental 

Table 3). To analyse the influence of glucose repression on the expression of the promoter-

reporter genes, spores of the reporter strains were inoculated on MM-acetamide plates 

containing 50 mM GA and increasing concentrations of glucose (up to 50 mM) (Figure 3,

columns A, C, E, G, I). Expression of pgaX, pgaxB, and pgxC was strongly repressed by the 

addition of glucose. Whereas expression of pgxB and pgxC was strongly repressed by the 

addition of 0.5 mM glucose, this concentration had less effect on pgaX expression. At glucose 

concentrations between 5 mM and 50 mM, however, pgaX, pgxB, and pgxC were all three 

fully repressed. The repression of gatA was only partial at the higher glucose concentrations 

(>5 mM) and the expression of gaaB was apparently not affected as growth of the reporter 

strains was not reduced on GA plates supplemented with glucose (Figure 4, column G).

To investigate whether CreA is responsible for carbon catabolite repression of GA-induced 

genes, the creA gene was deleted in the different AmdS-reporter strains. For efficient deletion 

of the creA gene in the reporter strains a ku70 mutant (kusA) was used as a recipient strain 

(see material and methods). Deletion of creA in the reporters was very efficient (80-90%) and 

proper deletion of creA in all five reporter strains was verified through diagnostic PCR (data 

not shown). Growth and glucose repression of the strains were analysed as described above by 

inoculating spores on a GA/acetamide plate containing increasing concentrations of glucose.

As shown in Figure 3 (columns B, D, F, H and J) deletion of creA abolished glucose 

repression in most of the reporter strains. Glucose repression of the pgaX, pgxB and gatA 

genes was completely lost (Figure 3; columns B, D, and J, respectively). Repression was still 

observed, although only at higher glucose concentrations (≥10 mM) in the pgxC reporter 

strain. The reduced growth of the gaaB reporter in the creA background at glucose 

concentration higher than 5 mM (compare in Figure 3, column G and H) is probably not 

directly related to amdS expression from the gaaB promoter but results from the general 

reduction in growth of the creA mutant compared to the wild-type strain as previously 

reported (Yuan et al. 2006). The analysis of the reporter strains indicates that for the pgaX,

pgxB and gatA promoters CreA is required for glucose repression. The expression of amdS

from the pgxC promoter is more complex as repression is still observed, only at high glucose 

concentration (Figure 3, column F). It will be of interest to discover the molecular basis for 

glucose repression in the pgxC gene at high concentrations as its repression seems to be 

independent of CreA.
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3.4 GA-induced gene expression requires a specific activator

The promoter-amdS reporter strains in the creA mutant background also made it possible to 

assess the role of inducer molecules. In most cases, transcriptional regulation of networks 

involved in utilization of a specific carbon source is mediated via a network-specific 

transcription factor such as XlnR, AraR or AmyR (see introduction). These transcriptional 

activators are often activated via specific sugars derived from the substrate. For GA, it has 

been suggested that GA itself or a derivative of GA acts as an inducer (Mojzita et al. 2010).

To establish if the presence of GA as an inducer was required to support growth, spores of the 

reporter strains in which the creA gene was deleted were point-inoculated on glucose medium 

(Figure 4, upper row). The reporter strains expressing amdS from the pgaX, pgxB, and gaaB

promoters, still required the presence of GA as an inducer to activate gene expression. The 

pgxC-amdS reporter strain did not grow, indicating that the expression from the pgxC

promoter is rather low, which was also observed in the wild-type background (Figure 2). The 

gatA-amdS reporter strain also grows on glucose/acetamide plates even without inducer 

indicating that derepression by deleting creA results in sufficient expression of amdS from the 

gatA promoter to support growth. As shown in Figure 4, an extracellular concentration of 100 

μM GA was sufficient to induce expression of the GA promoter reporter constructs and to 

support growth.
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Figure 3. Galacturonic acid-induced gene expression is repressed by glucose in a creA dependent way. Growth 
of A. niger reporter strains was monitored on MM containing galacturonic acid/acetamide and increasing 
concentrations of glucose. Columns A, C, E, G, I represent promoter constructs in the wild-type background; 
columns B, D, F, H, J represent promoter constructs in the ΔcreA null background.
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Figure 4. Galacturonic acid is required as an inducer. Growth analyses of the reporter strains on MM containing 
glucose/acetamide and increasing concentrations of galacturonic acid. No growth is observed for the reporter 
strains on MM containing glucose/acetamide without the addition of galacturonic acid, except for the PgatA-
amdS reporter strain.
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Discussion

The regulation of pectinolytic enzymes is likely to be complex and searches for transcription 

factor mutants that are unable to utilize galacturonic acid by targeted deletion of selected 

transcription factors have so far been unsuccessful (our unpublished data). The genome of A. 

niger harbours around 660 genes encoding transcription factors (Pel et al. 2007). We recently 

constructed a A. niger transcription factor knock-out mutants in which 240 transcription factor 

encoding gene were deleted. None of the transcription factor mutants in our collection showed

a specific growth defect on GA, PGA or pectin (unpublished results). Besides the possibility

that we missed so far a GA specific transcription factor, a possible explanation for why it is so 

difficult to obtain such mutants is genetic redundancy and/or overlapping GA degradation and 

utilization networks. In both cases, deletion of a single transcription factor does not result in 

strongly reduced growth on GA, PGA, or pectin. The co-regulation of a particular set of 

pectinolytic genes in A. niger supports however the idea that a specific GA-responsive 

transcriptional activator is involved (De Vries et al. 2002; Martens-Uzunova and Schaap 

2008).

To study the regulation of pectinolytic genes, several promoters of GA-induced genes 

were selected based on their expression profile in microarray studies (Martens-Uzunova and 

Schaap 2008). By fusing these promoter regions to either the uidA or amdS marker gene, we 

could show that the induction of most of these genes was specific for GA and that the 

promoter was not induced on other monomeric carbon sources including those that are found 

in pectin, such as xylose, rhamnose and arabinose. Thus, it is likely that these promoters are 

not under control of e.g. the XlnR, RhaR and AraR transcription factors. The reduced growth

of the pgxC-amdS reporter on GA/acetamide plates suggests a lower expression of pgxC

compared to pgaX and pgxB (Figure 2). As the expression in liquid cultures of pgaX, pgxB

and pgxC are comparable (Martens-Uzunova and Schaap 2008) it is well possible that the 

expression of pgxC is also dependant on the mode of cultivation (plate vs submerged) as has 

been shown for other genes encoding extracellular enzymes (Te Biesebeke et al. 2005) or 

sugar transporters (Fekete et al. 2012).

An important finding for future research is that the pgaX, pgxB and pgxC genes require 

GA as an inducer for expression (Figure 4). Even under derepressing conditions (in the creA

mutant), the expression of amdS was not sufficient to allow growth. The pgaX, pgxB or pgxC

reporter strains in the creA background can now be used in a genetic screen to isolate mutants 

that no longer require the presence of an inducer. Such mutants might contain a mutation that 
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causes constitutive activation of a GA-specific transcription factor. Identification of 

transcription factors involved in the activation of GA-responsive genes is important to 

optimize production of pectin-degrading enzymes in filamentous fungi. 

Previous studies related to GA-induced gene expression identified two conserved 

promoter elements that could be involved in induction. The pecR site (CCCTGA) was 

identified by Benen and co-workers and it has been suggested that this element might bind a 

pectin-specific regulator (Benen et al. 1996; Coutinho et al. 2009). This element is present in 

the pgaX promoter at position -695 to -690. Our promoter deletion analysis showed, however,

that this element is not required for the induction by GA. We also noticed the 50% reduction 

in GUS activity between transformants with the largest transcript (1203) and the 

transformants with the shorter transcripts (1005, 688 and 409 bp (Fig. 1). The reason for this 

difference and whether it has biological significance is currently not known. 

Both the deletion study and the site-directed mutagenesis of the second conserved element 

( 5'-TCCNCCAAT-3' ) indicate that this promoter element is important for induction and 

therefore we named this element GARE for galacturonic acid-responsive element. As

previously noted (Bussink et al. 1992b; Martens-Uzunova and Schaap 2008), this motif 

includes a putative binding site (CCAAT) for the CCAAT-binding factor (CBF) complex, 

also known as AnCF or the HAP-complex(Kato et al. 1998; Steidl et al. 1999). The HAP 

complex is an important factor in activating gene expression as the complex is involved in 

recruiting specific transcription factors to their target sites. In A. nidulans the AmdR 

transcription factor is a Zn(II)2Cys6 binuclear cluster DNA- binding protein that is required 

for omega-amino acid induction of the amdS gene and the genes for omega-amino acid 

utilization (Andrianopoulos and Hynes 1988). Deletion of the hapB or hapE genes results in 

loss of omega-amino acid induction of amdS expression. The most likely explanation for the 

interaction between AmdR and the HAP-complex is that the HAP-complex facilitates AmdR 

binding to DNA in vivo. It has been suggested that HAP binding to its target sequence is a 

prerequisite for a change in chromatin structure necessary for AmdR binding (Steidl et al.

1999). A similar mode of action can be attributed to the regulation of agdA and taaG2 in A. 

nidulans by AmyR. The gene amyR encodes a Zn(II)2Cys6 transcription factor specific for the 

induction of starch-degrading enzymes. Unlike AmdR, the AnCF-binding site and AmyR-

binding site (starch-responsive element; SRE) are spaced by 100 nucleotides (Tani et al.

2001a; Tani et al. 2001b), suggesting that no direct interaction between AnCF and AmyR is 

necessary for activation. The binding of AmyR to the SRE is necessary for induction of gene 
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expression of both genes, whereas AnCF binding seems to be responsible for high affinity 

binding of AmyR. Our observation that a mutation in the CCAAT motif completely abolishes 

GA-induced gene expression, favours a mechanism similar to the AmdR example. In the case 

of GA-induced gene expression, the binding of a hypothetical GA-specific transcriptional 

activator (tentatively named GaaR) might require HAP for DNA binding. To examine the role 

of the HAP complex in A. niger, we disrupted the hapB gene. However, the deletion mutant 

has a very severe growth phenotype on a variety of different carbon and nitrogen sources 

tested (data not shown). Because of the very poor growth of the hapB mutant, no expression 

studies could be performed to analyse whether pgaX (or other pectinolytic genes) was induced 

in the hapB mutant. A additional example in which HAP binds to another transcription factor 

that binds in close proximity of the HAP complex, has recently been discovered for the 

HAP2/3/5-HapX complex. Both the HAP complex and the HapX protein interact with each 

other as well as with their DNA binding sites and both the protein-protein and DNA-protein 

interactions are required to regulate gene expression in order to maintain iron homeostasis 

(Hortschansky et al. 2015). HapX requires the minimal motif 5'-GAT-3', which is localized in 

a distance of 11 to 12 base pairs downstream of the respective CCAAT box (Hortschansky et 

al. 2015). To examine the possibility that additional conserved elements surrounding GARE 

were previously missed (Martens-Uzunova and Schaap 2008), we aligned promoter sequences 

of GA-induced genes and looked for conserved regions in regions including 45 bp up- and 45 

bp downstream of the GAREs. The results are shown in Supplemental Figure 1A. As shown 

in this alignment, no additional motif was identified. We noted however, the preference of a

TT motif 2 nucleotides upstream of the 5'-TCCnCCAAT-3 region. However, this motif was 

not entirely conserved, but could be relevant. To analyse the possible relevance of this TT 

motif, a cross Aspergillus analysis was performed. Since orthologous genes for gaaA, gaaB 

and gaaD are readily identified in Aspergillus species analysed (A. nidulans, A. fumigatus and 

A. oryzae), we performed our analyses on the promoter for these genes. Please note that gaaA

and gaaC are expressed form the same promoter and therefore gaaC was not included

separately. The analysis is shown in Supplemental Figure 1B and shows that the TT motif is 

conserved in the gaaB promoters among the four Aspergilli, but not conserved in the others 

genes (gaaA and gaaD). It should be noted that the GARE alignment as shown by Martens-

Uzunova and Schaap 2008 (Martens-Uzunova and Schaap 2008), includes a putative GARE 

site in which the CCAAT motif in not completely conserved. For example, the GARE in the 

promoter of gatA 5'-TCCNGCAAT-3' or pelA 5'-TCCNCCTAT-3' do not match perfectly 

with the 5'-TCCNCCAAT-3' consensus. This suggests that small variants in CCAAT motif 
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are tolerable. Although the abfA promoter does not contain a perfect 5'-TCCNCCAAT-3' 

match, it does contain three variants (- 214 5'-TCCTCCACT, -470 5'-CCCTCCATT, -5'-899 

TCCTCCGAT). Given the observation that the amdS gene us not expressed from the abfA

promoter on GA (Fig. 2) we assume these variations are not allowed to mediate GA-induced 

gene expression. Further mutagenesis studies are required to clarify whether the TT motif, 

variations in the CCAAT motif, or other sequences surrounding the 5'-TCCNCCAAT-3' are 

required to function as GA-responsible elelements. 

To address the question whether the 5'-TCCNCCAAT-3' motif was sufficient to induce 

GA-specific gene expression, the 5'-TCCACCAAT-3' motif, including four additional base

pairs flanking the motif, was cloned upstream of the A. nidulans gpdA minipromoter. This 

system has been successfully used to identify a benzoate-responsive element from the cprA

promoter (Van Den Brink et al. 2000). Two constructs were made consisting of either the 

empty mini-promoter (pMini-GUS) or the mini-promoter containing the motif 5'-

TCCACCAAT-3' and transformed to the pyrG locus using the pyrG* method. Transformants 

with targeted integration of the reporter constructs were verified by Southern blot analysis 

(data not shown). Expression analysis of the transformants revealed no specific induction of 

the GUS reporter in the presence of GA, indicating that the 5'-TCCACCAAT-3' domain is not 

sufficient to induce GA-specific gene expression. 

Recently, the transcriptomes of A. niger grown on lignocellulose and during carbon 

starvation have been studied in detail (Delmas et al. 2012; Van Munster et al. 2014). This

showed that a subset of genes involved in the degradation of lignocellulose is not only 

induced in the presence of an inducer (in this case xylose), but also by carbon starvation. The 

response to carbon starvation was shown to be dependent on CreA derepression, and 

independent of the xylanolytic regulator XlnR. The authors proposed a model in which carbon 

starvation induced the expression of scouting enzymes, independently of carbon source-

specific inducers (Van Munster et al. 2014). These scouting enzymes are expressed with the 

purpose to sense the presence of plant cell walls by releasing small amounts of inducing 

sugars, to which the fungus can then respond by secreting additional hydrolases. Our in vivo

reporter strains could well be used to verify the predictions based on the transcriptomic data. 

From our analysis using the promoter reporters, it is interesting to note that the GA-

transporter gene is expressed under derepressing conditions even in the absence of GA as the 

inducer (Figure 4). The other promoters (pgaX, pgxB, pgxC) are not highly enough expressed 
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under derepressing conditions to sustain growth and this suggests that the corresponding 

enzymes will most likely not act as scouting enzymes.

As a working model (Figure 5), we postulate the existence of a GA-specific transcription 

factor (GaaR) that binds to the promoter of GA-induced genes. This transcription factor is

most likely post-translationally activated by GA or a GA-derivative. Extensive co-expression 

network analysis based on a large collection of microarray data did not identify co-regulated 

transcription factors that upon disruption affected growth on GA or pectin (Homan, Alazi, de 

Vries and Ram, unpublished data), indicating that the activity of the proposed transcription 

factor is post-translationally regulated. The HAP complex is most likely involved DNA 

binding of the hypothetical GaaR transcription factor. Whether this directly involves the 

GARE box (5'-TCCNCCAAT-3') or whether GaaR requires HAP binding to bind to another 

motif(s) is currently unknown. Since the CC motif is essential for GA-induced gene 

expression, we considered it unlikely that induction by GA depends only on the HAP

complex. We can not exclude the possibility that HAP interacts with some other non-DNA

binding protein that gives specificity towards HAP to mediate GA-induced gene expression. 

We also provided further evidence for the role of CreA to mediate glucose repression of 

pgaX, pgxB and to some extent of pgxC. As pgxC is still partially repressed by glucose even

in de creA mutant, an alternative repression mechanism might play a role. Although we could 

not link the TupA general repressor protein to glucose repression in A. niger (Schachtschabel

et al. 2013), we cannot exclude a possible involvement of TupA in pgxC repression and this 

possibility will be addressed in future experiments. Finally, the promoter reporter strains in 

the ΔcreA background that still require an inducer for growth (pgaX, pgxB and pgxC) allow 

forward genetic screens for inducer-independent mutants. One possible explanation for such a 

mutant is a mutant in which a galacturonic acid sensor protein or a galacturonic acid specific 

transcription factor is constitutively active, and experiments are ongoing to isolate and 

characterize such mutants.
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Figure 5. Speculative model for the regulation of galacturonic-acid induced gene expression in A. niger. GA-
induced genes, poly-galacturonase X (pgaX) as an example, are regulated via competing inducing and repressing 
mechanisms. Induction of GA-responsive genes requires the presence of an inducer molecule (GA, or a 
metabolic derivative thereof, red circle) which is required for the activation of the putative GA-specific 
transcription factor (GaaR). The presence and importance of the HAP binding site as part of the GA responsive 
element (GARE, green/blue circle) suggests that HAP is also required for the expression, possibly by interacting 
with GaaR. Induction of pgaX is repressed by the presence of glucose and possibly other repressing sugars via 
CreA and putative CreA binding sites in the promoter region (brown triangles). Induction or repression of the
pgaX gene under the conditions indicated in either the wild type (WT) or ΔcreA mutant are indicated by the red 
arrow or black symbol respectively.
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van Gorcom et al., 1988, 2 pyrG** refers to targeting integration method to the pyrG locus described by 
Arentshorst et al., 2015. 
 
 
Supplemental Table 2. Primers used in this study 
 
*Restriction sites are underlined; **Letters in bold indicate mutations in the GARE element ((Mut1-3), ***bold 
letter indicate overlapping sequences for fusion PCR. 
 
 
Supplemental Table 3. Positions of putative CreA bindingsites (SYGGRG) in the GA-induced promoters and 
abfA. Number of putative CreA binding sites in given in brackets. Distance from the ATG start codon in bp) is 
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Supplemental Figure 1. A) Promoter alignment of sequences surrounding the GARE motif of GA-induced 
genes in A. niger. GA-motifs were taken from Martens-Uzunova et al., 2008. B) Promoter alignments of gaaA, 
gaaB and gaaD orthologs in A. niger, A. nidulans, A. fumigatus and A. oryzae. Orthologs were taken from 
AspGD. (+) or (-) indicate whether the GARE motif was in forward or reverse orientation. The GARE motif, as 
well as the partially conserved TT-motif 5' upstream of GARE, are highlighted in yellow. * indicates that no 
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Abstract

We identified the D-galacturonic acid (GA) responsive transcriptional activator GaaR of the 

saprotrophic fungus Aspergillus niger, which was found to be essential for growth on GA and 

polygalacturonic acid (PGA). Growth of the ΔgaaR strain was reduced on complex pectins. 

Genome-wide expression analysis showed that GaaR is required for the expression of genes 

necessary to release GA from PGA and more complex pectins, to transport GA into the cell 

and to induce the GA-catabolic pathway. Residual growth of ΔgaaR on complex pectins is 

likely due to expression of pectinases acting on rhamnogalacturonan and subsequent 

metabolism of the monosaccharides other than GA.

Keywords

polygalacturonic acid, pectinase, Zn2Cys6 transcription factor, gene regulation, 

transcriptomics

Abbreviations

AP apple pectin

CM Complete medium

CP citrus pectin

GA D-galacturonic acid

MM minimal medium

PGA polygalacturonic acid

RG rhamnogalacturonan

SBP sugar beet pectin

TF transcription factor

XGA xylogalacturonan
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Introduction

Pectins are complex heterogeneous polysaccharides found in plant cell walls. Four sub-

structures of pectin have been identified and include polygalacturonic acid (PGA) also known 

as homogalacturonan, xylogalacturonan (XGA), rhamnogalacturonan I (RG-I), and 

rhamnogalacturonan II (RG-II) (Mohnen 2008). The backbones of PGA, XGA and RG-II are 

made up of α-1,4-linked D-galacturonic acid (GA) residues. PGA, a linear polymer of GA, is 

the most abundant polysaccharide present in pectin (Mohnen 2008). In XGA, β-D-xylose 

residues are β-1,3-linked to GA residues of the PGA backbone. The backbone of RG-I is 

made up of alternating GA and L-rhamnose residues (Mohnen 2008; Leijdekkers et al. 2015).

Side chains of RG-II contain at least 12 different types of monosaccharides, whereas the side 

chains of RG-I are mainly arabinan and arabinogalactan comprising of L-arabinose and D-

galactose residues (Mohnen 2008).

In nature, pectin is an important carbon source for many saprotrophic fungi, such as 

Aspergillus niger. Previous studies demonstrated that A. niger can produce more pectin 

degrading enzymes than other more specialized fungi such as Podospora anserina or 

Neurospora crassa (Espagne et al. 2008; Coutinho et al. 2009; Martens-Uzunova and Schaap 

2009). GA is the main product of pectin degradation. In A. niger, GA is transported into the 

cell by a GA-induced sugar transporter named GatA (Sloothaak et al. 2014). GA is then 

catabolized into pyruvate and glycerol (Martens-Uzunova and Schaap 2008), through a 

pathway consisting of four enzymes: GaaA, D-galacturonate reductase, GaaB, L-galactonate 

dehydratase, GaaC, 2-keto-3-deoxy-L-galactonate aldolase, and GaaD, L-glyceraldehyde 

reductase (Martens-Uzunova and Schaap 2008). Deletion of gaaA, gaaB or gaaC abolished 

growth on GA as the sole carbon source (Mojzita et al. 2010b; Wiebe et al. 2010; Kuivanen et 

al. 2012). gaaD, also known as the L-arabinose reductase gene, larA, is involved in the L-

arabinose catabolic pathway and the ΔlarA strain showed a reduced growth on L-arabinose as 

the sole carbon source (Mojzita et al. 2010a).

The production of extra- and intracellular enzymes in A. niger is regulated by a network of 

transcription factors (TFs) (Kowalczyk et al. 2014). Small sugar molecules (mono- and 

disaccharides) act as inducers and stimulate TFs which can bind to conserved motifs in the 

promoters of their target genes and activate or repress their expression. Expression of 

pectinase genes is highly controlled and depends on both induction and carbon catabolite 

repression (De Vries et al. 2002; Niu et al. 2015). Induction of the genes required for pectin 

degradation, GA transport and GA catabolism requires the presence of GA and it has been 
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shown that GA or a derivative of GA induces the expression of pectinase genes (De Vries et 

al. 2002; Wiebe et al. 2010; Kuivanen et al. 2012).

Coordination of the induction of genes encoding extracellular enzymes and sugar uptake 

systems in fungi are often mediated by Zn2Cys6 TFs that bind to conserved promoter 

elements in the co-regulated genes (Chang and Ehrlich 2013; Kowalczyk et al. 2014; Tani et 

al. 2014). TFs inducing the genes required for the utilization of L-rhamnose (RhaR), 

arabinan/L-arabinose (AraR), xylan/D-xylose (XlnR), D-galactose (GalX) and cellulose 

(XlnR, ClrA and ClrB) have been identified in A. niger (Van Peij et al. 1998; Battaglia et al.

2011; Gruben et al. 2012; Gruben et al. 2014; Raulo et al. 2016). Although L-rhamnose, L-

arabinose, D-xylose, and D-galactose are also present in complex pectins, knock out mutants 

in these TFs display no signs of reduced growth on pectin (Battaglia et al. 2011; Gruben et al.

2012; Gruben et al. 2014), suggesting that the utilization of GA, the main component of this 

substrate, is not affected. 

Martens-Uzunova and Schaap have previously identified a set of GA-induced genes in A. 

niger, containing several pectinases (pgaX, pgxA, pgxB, pgxC, paeA, pelA and abfC), sugar 

transporter encoding genes (gatA, An03g01620 and An07g00780) and the GA catabolic 

pathway genes (gaaA-D) (Martens-Uzunova and Schaap 2008). These genes were suggested 

as the GA-regulon and contain a common GA responsive element (GARE) in their promoter 

regions. The consensus element was defined as CCNCCAA (Martens-Uzunova and Schaap 

2008). Deletion and mutational analysis of GARE showed that the element is required for 

GA-induced gene expression in both A. niger and Botrytis cinerea (Niu et al. 2015; Zhang et 

al. 2016). A yeast one-hybrid study using a GA-responsive promoter in B. cinerea recently 

identified a novel Zn2Cys6 TF (BcGaaR) required for GA utilization (Zhang et al. 2016). In 

this study, the GA-responsive transcriptional activator GaaR of A. niger was identified by 

homology to BcGaaR. Deletion analysis and transcriptomic profiling studies performed in this 

study showed that the A. niger GaaR ortholog is required for growth on GA and PGA and for 

the induction of the GA-regulon when grown on sugar beet pectin (SBP).

Materials and Methods

Strains, media and growth conditions

A. niger strains MA234.1 (cspA1, kusA::DR-amdS-DR) and N593.20 (cspA1, pyrG-,

kusA::amdS) were used to create the ΔgaaR strains. N593.20 was made by transformation of 

N593 (Goosen et al. 1987) with a deletion construct (kusA::amdS) (Meyer et al. 2007)

resulting in the deletion of kusA. Strain FP-1132.1 (cspA1, pyrG-::AOpyrG, kusA::amdS) was 
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obtained by transformation of N593.20 with pyrG from Aspergillus oryzae. MA234.1 was 

obtained by transformation of MA169.4 (kusA-, pyrG-) (Carvalho et al. 2010) with a 3.8 kb 

XbaI fragment containing the A. niger pyrG gene, resulting in the full restoration of the pyrG

locus.

Complementation studies were performed with JN35.1 (cspA1, kusA::DR-amdS-DR, 

gaaR::hygB). To restore functionality of the kusA gene to allow ectopic integration of the 

complementing fragment, the amdS marker was looped out of JN35.1 by FAA counter-

selection as described (Arentshorst et al. 2012) to give JN36.1. The gaaR complemented 

strain JN37.4 was created using JN36.1, by transformation of the gaaR gene including 

promoter and terminator regions (see below). All strains used are listed in Table S1. 

Media were prepared as described (Arentshorst et al. 2012). For growth phenotype 

analyses, strains were grown on minimal medium (MM) with 1.5% (w/v) agar and various 

sole carbon sources: 25 or 50 mM glucose (VWR International), GA (Chemodex), L-

rhamnose (Fluka), L-arabinose (Sigma-Aldrich) or D-xylose (Merck), and 1% (w/v) PGA 

(Sigma), SBP (Pectin Betapec RU301 Herbstreith & Fox KG), citrus pectin (CP) (Acros 

Organics) or apple pectin (AP) (Pectin Classic AU2022 Herbstreith & Fox KG). pH was 

adjusted to 5.8 with NaOH or HCl buffer. The plates were inoculated with 2 µl containing 

1000 freshly harvested spores and cultivated at 30 °C for 4 days. For gene expression 

analyses, freshly harvested spores were inoculated with a final concentration of 106 spores/ml 

in 100 ml complete medium (CM) (pH 5.8) with 2% (w/v) D-fructose (Sigma-Aldrich) and 

were pre-grown for 16h. For Northern blot analysis, mycelium was harvested by filtration 

through sterile myracloth, washed twice with MM with no carbon sources (pH 4.5) and 1.5 g 

(wet weight) mycelium was transferred and grown in 50 ml MM (pH 4.5) with 50 mM GA or 

50 mM D-fructose for 2, 4 and 6h. For RNA-seq analysis, 2.5 g of pre-grown mycelia were 

transferred to 50 ml MM (pH 4.5) with 25 mM GA and incubated for 2h or to 50 ml MM with 

1% SBP and incubated for 2, 8 or 24h. All incubations were performed in rotary shaker at 

30°C and 250 rpm.

Construction of gene deletion and complementation strains

Protoplast-mediated transformation of A. niger, purification of the transformants and genomic 

DNA extraction were performed as described (Arentshorst et al. 2012). To construct the 

deletion cassettes, 5’ and 3’ flanks of the gaaR gene were PCR-amplified using the primer 

pairs listed in Table S2 and N402 genomic DNA as template. To create JN35.1 strain, the 

split marker fragments with hygB selection were created using fusion PCR (Arentshorst et al.
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2015) and transformed to MA234.1. To create FP-1126.1 strain, the flanking regions were 

fused with a fragment containing the A. oryzae pyrG gene using GoTaq® Long polymerase 

(Promega) and transformed into N593.20 strain. Parental strains and gaaR deletion mutants 

were deposited at the Centraal Bureau Schimmelcultures (CBS) under accession numbers 

indicated in Table S1. To complement the gaaR gene, the gaaR gene together with its 5’ and 

3’ flanks was PCR-amplified using the primer pairs listed in Table S2, ligated into 

pJET1.2/blunt cloning vector (Fermentas), amplified in the E. coli strain DH5α and 

transformed in to strain JN36.1 together with plasmid pMA357. pMA357 contains the A. 

nidulans amdS gene, cloned behind the A. nidulans gdpA promoter (Mark Arentshorst, 

unpublished vector). Deletion and complementation of gaaR were confirmed via Southern 

blot analysis or diagnostic PCR.

Gene expression analysis

For Northern blot analysis, strains MA234.1 (reference strain) and JN35.1 (ΔgaaR) were pre-

grown in CM with D-fructose. At the time of transfer (t = 0) and 2, 4 and 6h after the transfer 

to MM with GA or D-fructose, mycelium was harvested from cultures by filtration through 

sterile myracloth and frozen immediately in liquid nitrogen. Mycelium samples were stored at 

-80 °C. Total RNA was extracted from frozen mycelium samples after grinding in liquid 

nitrogen, using NucleoSpin RNA Kit (Macherey-Nagel) following the protocol provided by 

the supplier, including the rDNase treatment. Total RNA samples were stored at -80 °C. 

Quantification and purity assessment of total RNA was done by spectrophotometric method 

(NanoDrop 2000, Thermo Scientific). Standard molecular techniques were applied as 

described (Sambrook and Russell 2001). 3.5 μg RNA was loaded per sample and hybridized 

with [α-32P]-dCTP labelled probes after blotting (DecaLabel DNA Labelling Kit, Thermo 

Scientific). Probes were PCR-amplified using the N402 genomic DNA and the primer pairs 

are listed in Table S2. For RNA-seq analysis, the mycelium of FP-1132.1 (reference strain) 

and FP-1126.1 (ΔgaaR) was ground in Tissue Lyser II (Qiagen) and RNA was extracted using 

TRIzol reagent (Invitrogen) and purified with NucleoSpin RNA Clean-up kit (Macherey-

Nagel) with rDNase treatment. RNA quantity of the samples was checked with a NanoDrop-

1000 spectrophotometer and the quality by RNA gel electrophoresis. Single-read samples 

were sequenced using Illumina HiSeqTM 2000 platform (http://illumina.com). Purification of 

mRNA, synthesis of cDNA library and sequencing reactions were conducted in the BGI Tech 

Solutions Co., Ltd. (Hong Kong). Transfer experiments and subsequent RNA-sequencing 

were performed in duplicates.
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Bioinformatics

Raw reads were produced from the original image data by base calling. On average, ~13 

million read of 51 bp per sample were obtained. After data filtering, the adaptor sequences, 

highly ‘N’ containing reads (> 10% of unknown bases) and low quality reads (more than 50% 

bases with quality value of < 5%) were removed. After data filtering, in average, ~97.5% 

clean reads remained in each sample. Clean reads were then mapped to the genome of 

Aspergillus niger NRRL3 (http://genome.jgi.doe.gov/Aspni_NRRL3_1) using Bowtie2 

(Langmead et al. 2009) and BWA software (Li and Durbin 2009). In average, 63.8% total 

mapped reads to the genome was achieved. The gene expression level was measured in 

“fragments per kilobase of exon model per million mapped reads” (FPKM) (Trapnell et al.

2010) using RSEM tool (Li and Dewey 2011). Genes with expression value lower than 14 

were considered low-expressed (approximately bottom 50%) and differential expression was 

identified by Student’s t-test with a P-value cut-off 0.05. The RNA-seq data have been 

submitted to Gene Expression Omnibus (GEO) (Edgar et al. 2002) with accession number: 

GSE80227. Homology searches were performed using the blastp algorithm from NCBI 

against the non-redundant database and proteins with an E-value ≤ 1E-50 were defined as 

homologous (Altschul et al. 1990). Hierarchical clusters using the average expression values 

of genes were made via Genesis 1.7.7 (Sturn et al. 2002) with Pearson correlation and 

complete linkage. Low-expressed pectinases in all conditions were not included.

Results and Discussion

Identification of the A. niger GaaR by homology to B. cinerea BcGaaR

A putative A. niger GA-responsive transcriptional activator was identified by homology to the 

recently identified B. cinerea Zn2Cys6 TF (BcGaaR) (Zhang et al. 2016). The A. niger

ortholog (named GaaR) is a 740 amino acid long protein encoded by gaaR

(An04g00780/NRRL3_08195) and the bidirectional best blast hit of the 817 amino acid long 

BcGaaR (Bcin09g00170). Analysis of the presence of GaaR among 20 Aspergillus species 

using the Aspergillus genome database (http://www.aspgd.org/) revealed that all Aspergilli, 

except Aspergillus glaucus contain a GaaR ortholog in their genome (data not shown). 

Interestingly, A. glaucus is not able to grow on GA as the sole carbon source 

(http://www.fung-growth.org), indicating the requirement of GaaR for GA utilization. A. 

niger GaaR and BcGaaR show 50.3% identity on the amino acid level throughout the entire 

protein sequence (Figure S1). GaaR contains a typical Zn2Cys6 DNA binding domain with 

the pattern of CX2CX6CX6CX2CX6C close to its NH2-terminal end (residues 26-56) and a 
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fungal specific TF domain (residues 139-518). Amino acid alignment and phylogenetic 

analysis of GaaR revealed no significant similarity (an E-value cutoff < 1E-50) of GaaR to 

other TFs involved in plant cell wall utilization such as XlnR, AraR, RhaR, GalX, ClrA and 

ClrB or to any other TF in A. niger (data not shown).

Deletion and complementation of gaaR and growth analysis of the ∆gaaR in A. niger

To assess the function of gaaR in A. niger, several deletion strains (ΔgaaR) were created and 

verified by Southern blot analysis (Figure S2 and data not shown). The growth phenotype of 

the ΔgaaR strains was analyzed on different monomeric and polymeric carbon sources 

(Figure 1A). Deletion of gaaR in the AB4.1 background (MA234.1, Figure S2) and N593 

background (N593.20, Figure 1A) resulted in an identical phenotype. Disruption of gaaR

resulted in a strongly reduced growth on GA and PGA and in a reduced growth and 

sporulation on SBP, CP and AP. No significant differences in growth and sporulation were 

observed on other carbon sources tested (Figure 1A, Figure S2). The strongly reduced growth 

of ΔgaaR on GA and PGA was fully complemented by reintroducing the gaaR gene 

ectopically (Figure S2).

GaaR is required for the induction of genes related to D-galacturonic acid utilization

The presence of GA has been shown to induce genes involved in PGA degradation (e.g. pgxB, 

pgxC), GA transport (gatA) and catabolism (gaaA-D) (Martens-Uzunova and Schaap 2008; 

Niu et al. 2015). As a first indication for the involvement of GaaR in the induction of a subset 

of these genes on GA, a Northern blot analysis was performed. The reference strain and 

ΔgaaR made the AB4.1 background were pre-grown in D-fructose medium and transferred to 

either GA or D-fructose medium. For the reference strain, transfer of mycelium to GA 

resulted in a rapid induction of pgxB, pgxC, gatA, gaaB and gaaC, whereas this induction was 

not observed in ΔgaaR (Figure 1B).

To analyze the expression of a larger number of genes involved in pectin degradation, GA 

transport and catabolism, a genome-wide gene expression analysis was performed using 

RNA-seq. The reference strain and ΔgaaR in the N593 background were again pre-grown in 

D-fructose medium and transferred to GA medium. RNA-seq analysis indicated that the GA-

induced expression of all genes that were previously identified as part of the GA-regulon 

(Martens-Uzunova and Schaap 2008) is dependent on GaaR (Table 1 and Figure 2). The only 

exception is a putative GA transporter (An03g01620) that is expressed more than 3-fold less 

in ΔgaaR for which the p-value did not pass our significance level (0.05). In general, these 
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observations show that the genes in the suggested GA-regulon (Martens-Uzunova and Schaap 

2008) showed a significant reduction in ΔgaaR compared to the reference strain on GA (Table 

1) and that GaaR is required for the induction of those genes. 

Figure 1 Phenotypic and gene expression analyses of A. niger ΔgaaR A) Growth profile of the reference strain 
(FP-1132.1) and ΔgaaR (FP-1126.1) on MM with 25mM monomeric and 1% polymeric carbon sources. Strains 
were grown for 4 days at 30°C. B) Northern blot analysis of selected GA-induced genes in the reference strain 
(MA234.1) and ΔgaaR (JN35.1). Mycelia were transferred from D-fructose (pre-culture) to GA or D-fructose. 
Total RNA was isolated at the time of transfer (0h) from mycelia grown in CM with 2% D-fructose and at 
different time points (2, 4 and 6h) after the transfer from mycelia grown in MM containing 50 mM GA (in bold) 
or D-fructose.
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To identify additional pectinase genes controlled directly or indirectly by GaaR, the 

expression of all 58 pectinolytic genes (Martens-Uzunova and Schaap 2009) was examined 

(Table S3). An overview of the gene abbreviations and their (putative) function is given in 

Martens-Uzunova and Schaap, 2009 (Martens-Uzunova and Schaap 2009). This analysis

resulted in the identification of several additional pectinase genes for which the expression on 

GA is dependent of GaaR (Table 1 and Figure 2, Figure S3). This difference could be caused 

by higher sensitivity of the RNA-seq analysis compared to the previously used Affymetrix 

microarrays. In general, these newly identified genes were lower expressed compared to the 

genes in the GA-regulon described previously (Martens-Uzunova and Schaap 2008). The 

gene encoding the putative pectin methylesterase C (pmeC) was missing on the Affymetrix 

chips, and therefore missed previously, but the RNA-seq study clearly indicated that induction 

of pmeC on GA is GaaR dependent. Inspection of the promoter regions of the newly 

identified members of the GA-regulon indicated the presence of putative GaaR binding sites 

in the promoter regions of most genes (Table 1), enabling us to expand the GA-regulon to a 

larger set of genes.
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Chapter 5 GaaR is required for galacturonic acid utilization

128 
 

Figure 2 Transcript levels of pectin utilization genes in A. niger reference and ΔgaaR on GA or SBP. A) GA 
transporters and GA catabolic pathway enzymes, B) exo-polygalacturonases and pectin acetyl- and 
methylesterases, C) endo-polygalacturonases, D) pectin lyases and endo-xylogalacturonan hydrolase, E) α-L-
arabinofuranosidases, arabinan endo-1,5-α-L-arabinofuranosidase, endo-arabinanases, ferulic acid esterases and 
feruloyl esterase D, F) β-galactosidases, galactan 1.3-β-galactosidase and β-1.4-ensogalactanase, G) the L-
rhamnose regulator rhaR and L-rhamnose catabolic pathway enzymes and H) the L-arabinose and D-xylose 
catabolic pathway enzymes. Mycelia of the reference strain (FP-1132.1) and ΔgaaR (FP-1126.1) were pre-grown 
in CM with 2% D-fructose, washed and transferred to MM with 25mM GA or 1% SBP in and incubated for 2, 8 
or 24h. 

GaaR is required for the induction of genes related to polygalacturonic acid degradation 

and D-galacturonic acid utilization on complex pectin

Both the strongly reduced growth phenotype on GA and PGA and the expression analysis in 

ΔgaaR suggest that that GaaR is required for GA utilization in A. niger. Growth and 

sporulation of ΔgaaR on complex pectins such as SBP was also reduced, but not as severe as 

on GA and PGA (Figure. 1A). This could be explained by two (not mutually exclusive) 

hypotheses. The first explanation could be that A. niger has alternative mechanisms 

(independent of GaaR) to induce genes involved in GA utilization. The second possibility is 

that additional sugars such as L-arabinose, D-galactose, D-xylose or L-rhamnose that are 

present in SBP are metabolized and used for growth. To gain insight in the expression of 

pectinase genes in ΔgaaR on complex pectin, the reference strain and ΔgaaR were transferred 

from D-fructose to SBP and grown for 2, 8 and 24h before harvesting mycelia and extraction 

of RNA. 

Expression profiles of pectinase genes in the reference strain and ΔgaaR were pairwise 

compared for identical time points (Table 2 and Figure 2, Figure S3). Most of the genes in the 

GA-regulon, including those required for GA transport and catabolism, are dependent on

GaaR for induction on SBP (Figure 2A-D). This observation strongly suggests that ΔgaaR is 

not utilizing GA from SBP. FThe expression of gaaD/larA can be explained by the dual 

activity of the enzyme encoded by this gene as both an L-glyceraldehyde reductase and an L-

arabinose reductase (Mojzita et al. 2010a) and the utilization of L-arabinose from SBP in 

ΔgaaR (see below). The expression profile of exo-polygalacturonases, pectin acetyl- and 

methylesterases, endo-polygalacturonases and pectin lyases (Table 2 and Figure 2B-D) all 

acting on the PGA backbone support the conclusion that the GaaR target genes are not

induced during growth on SBP in ΔgaaR.
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The results described above indicate that the residual growth of ΔgaaR on SBP is due to 

the utilization of other monosaccharides released from SBP. Analysis of the monosaccharide 

composition of the SBP used in this study was performed as described previously (Santander

et al. 2013) and showed that it contains 55 mol% GA, as well as 17 mol% L-arabinose, 16 

mol% D-galactose and 10 mol% L-rhamnose. Analysis of the expression of the genes 

involved in the degradation of RG-I such as exo-rhamnogalacturonases (rgx), 

rhamnogalacturonases (rhg), rhamnogalacturonan acetyl esterases (rgae), rhamnogalacturonyl 

hydrolases (urhg), arabinofuranosidases (abf), endo-arabinanases (abn), ferulic acid esterases 

(fae) and β-galactosidases (lac), and the genes responsible for catabolism of L-rhamnose, L-

arabinose and D-xylose showed that these genes were still expressed in ΔgaaR (Figure. 2E-H, 

Figure S3), indicating that the degradation and metabolism of RG-I support the growth of 

ΔgaaR on SBP.

A clustering analysis of the expression of genes encoding the (putative) GA transporters, 

GA catabolic pathway genes and pectinases provided further insight in the groups of co-

regulated genes (Figure 3). Clusters E and G consist of genes that are members of the GA-

regulon (Table 1) and represent genes involved in the release and utilization of GA. Cluster F 

also consists mostly of genes that are part of the GA-regulon (Table 1, 2). Genes in Cluster F, 

like genes in Clusters E and G, are expressed in the reference strain on GA and SBP at 2 and 

8h, but unlike genes in Clusters E and G also expressed in the ΔgaaR strain on SBP at 2 and 

8h. Cluster F mainly includes pectinases acting on RG-I side-chains. Their expression profile 

indicates that they are regulated by GaaR as well as other TFs involved in pectin degradation. 

Genes in Clusters A, B, C and D are generally expressed in a GaaR independent fashion and 

represent pectinases acting on RG-I and XGA. Pectinase genes of Cluster D are 

predominantly expressed in the ΔgaaR strain on SBP at 2 and 8h. Genes in Clusters A, B and 

C are expressed predominantly in the reference strain and ΔgaaR on SBP at 24h or in ΔgaaR

on GA, suggesting that these genes are likely induced on starvation or derepressed conditions.

In conclusion, in this paper we showed that the conserved Zn2Cys6 TF GaaR of A. niger is 

required for the utilization of GA and PGA. We also showed that GaaR is essential for GA 

utilization from complex pectic substrates and that residual growth of ΔgaaR on complex 

pectins is likely due to induction of pectinases releasing L-rhamnose from the RG-I backbone 

and L-arabinose and D-galactose from the RG-I “hairy regions”. These monosaccharides are 

metabolized independently of gaaR. With the identification of the GaaR in A. niger, we 

identified the missing link to further understand the interplay between several TFs involved in 
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plant cell wall degradation. Insight in the regulation of pectin degradation and GA utilization 

in A. niger can help in exploiting A. niger for more efficient pectinase production.

Figure 3 Hierarchical clustering of pectin utilization genes according to their expression in the reference strain 
(FP-1132.1) and ΔgaaR (FP-1126.1) on GA and SBP. The color code displayed represents the transcript levels of 
the genes. Clusters E and G include genes that are members of the GA-regulon.
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111758/ and comprises the following: 

 
 
Table S1 Strains used in this study 

Table S2 Primers used in this study. Overlapping sequences for fusion PCR are written in bold. 
 
Table S3A RNA-seq analysis of pectinases on GA and SBP. Expression values (FPKM) are averages of 
duplicates. Fold changes ≥2 and p-values ≤0.05 are highlighted. 
 
Table S3B RNA-seq analysis of pectinases on GA and SBP. Expression values (FPKM) are averages of 
duplicates. Fold changes ≥2 and p-values ≤0.05 are highlighted. 
 
Table S3C RNA-seq analysis of pectinases on GA and SBP. Expression values (FPKM) are averages of 
duplicates. Fold changes ≥2 and p-values ≤0.05 are highlighted. 
 
Table S3D RNA-seq analysis of pectinases on GA and SBP. Expression values (FPKM) are averages of 
duplicates. Fold changes ≥2 and p-values ≤0.05 are highlighted. 
 
Figure S1 Alignment of AnGaaR and BcGaaR using EMBOSS Needle with standard settings 
(http://www.ebi.ac.uk/Tools/psa/emboss_needle/) 
 
Figure S2 Verification of the gaaR deletion strain in the MA234.1 background. A) Strategy and primer design 
for disruption the gaaR gene using the split marker method [27]. Primers P1 till P8 correspond to primers 
gaaRP1f, gaaRP2r, gaaR3Pf, gaaRP4r, hygP6f, hygP9r, hygP8f and hygP7r in Table S2. B) Schematic 
representation of the gaaR locus in the reference strain and after gaaR deletion. Predicted sizes of the DNA 
fragment hybridizing with the indicated probes are shown. C) Southern blot analysis of genomic DNA of 
MA234.1 (lane 1), JN35.1 (lane 2), JN35.2 (lane 3), JN36.1 (lane 4), JN37.4 (lane 5) and JN37.5 (lane 6). Left 
panel: agarose gel stained with ethidium bromide. Marker size (M, in kb) is indicated. Right panel: Southern blot 
after hybridization. D) Growth analysis of the reference strain MA234.1, gaaR deletion strains and 
complemented strains on MM with 50 mM or 1% different carbon sources. 
 
Figure S3 Transcript levels of pectinases acting on RG-I backbone in A. niger reference and ΔgaaR on GA or 
SBP. A) exo-rhamnogalacturonases and rhamnogalacturonase A B) rhamnogalacturonan lyases, 
rhamnogalacturonan acetyl esterases and rhamnogalacturonyl hydrolases. Mycelia of the reference strain (FP-
1132.1) and ΔgaaR (FP-1126.1) were pre-grown in CM with 2% D-fructose, washed and transferred to MM with 
25mM GA or 1% SBP in and incubated for 2, 8 or 24h. 
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Abstract 

The expression of genes encoding extracellular polymer-degrading enzymes and the 

metabolic pathways required for carbon utilization in fungi are tightly controlled. The control 

is mediated by transcription factors that are activated by the presence of specific inducers, 

which are often monomers or monomeric derivatives of the polymers. A D-galacturonic acid-

specific transcription factor named GaaR was recently identified and shown to be an activator 

for the expression of genes involved in galacturonic acid utilization in Botrytis cinerea and in 

Aspergillus niger. Using a forward genetic screen, we isolated mutants that constitutively 

express GaaR-controlled genes. Reasoning that mutations in the gaaR gene would lead to a 

constitutively activated transcription factor, the gaaR gene in eleven of the constitutive 

mutants was sequenced, but no mutations in gaaR were found. Full genome sequencing of 

five constitutive mutants revealed allelic mutations in one particular gene encoding a 

previously uncharacterized protein (NRRL3_08194). The protein encoded by NRRL3_08194 

shows homology to the repressor of the quinate utilization pathway identified previously in 

Neurospora crassa (qa-1S) and Aspergillus nidulans (QutR). Deletion of NRRL3_08194 in 

combination with RNA-seq analysis showed that the NRRL3_08194 deletion mutant 

constitutively expresses genes involved in galacturonic acid utilization. Interestingly, 

NRRL3_08194 is located next to gaaR (NRRL3_08195) in the genome. The homology to the 

quinate repressor, the chromosomal clustering, and the constitutive phenotype of the isolated 

mutants suggest that NRRL3_08194 is likely to encode a repressor, which we name GaaX. 

The GaaR-GaaX module and its chromosomal organization is conserved among ascomycetes 

filamentous fungi, resembling the quinate utilization activator-repressor module in amino-acid 

sequence and chromosomal organization. 

Key words: gene regulation; galacturonic acid; repressor protein; genomics; transcriptomics;

pectin
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Introduction

The filamentous fungus Aspergillus niger is an important producer of pectin-degrading 

enzymes that are used in industrial applications including in food and feed processing 

(Kashyap et al. 2001; Khan et al. 2013). In nature, A. niger is a saprotrophic fungus that feeds 

on organic matter from decaying plants. The major carbon sources in plant cells are the 

storage polysaccharides starch, and less frequently inulin, as well as the cell wall polymers 

cellulose, hemicelluloses and pectin. Of the different plant polysaccharides, pectin has the 

most complex structure. Pectin is made up of four substructures including homogalacturonan, 

xylogalacturonan, rhamnogalacturonan I and rhamnogalacturonan II. The abundance of each 

substructure varies with plant species, but typically homogalacturonan is the most abundant 

polysaccharide in pectin (65%) followed by rhamnogalacturonan I (25-30%). 

Xylogalacturonan and rhamnogalacturonan II comprise less than 10% of the total pectin 

(Mohnen 2008).

Utilization of plant polysaccharides by fungi, including A. niger, is accomplished by 

tightly controlled secretion of extracellular enzymes that degrade the polymers into 

monosaccharides or oligosaccharides that are taken up and catabolised by the fungus. The 

controlled regulation is not only confined to the expression of genes encoding extracellular 

proteins. It also includes the controlled expression of genes encoding specific sugar 

transporters to guarantee efficient uptake of the liberated sugars and the intracellular catabolic 

pathway enzymes. The precise induction of the network of genes encoding substrate-specific 

enzymes, transporters and catabolic pathway enzymes has so far been shown to be mediated 

via Zn(II)2Cys6 transcription factors. Specific transcription factors in A. niger regulating the 

utilization of the major polysaccharides have been characterized. They include AmyR, the 

regulator for starch utilization (Petersen et al. 1999; Yuan et al. 2008a, vanKuyk et al. 2012); 

InuR for inulin (Yuan et al. 2008b); ManR, ClrA and ClrB for cellulose (Raulo et al. 2016); 

XlnR for xylan (Van Peij et al. 1998; Battaglia et al. 2014); AraR for arabinan (Battaglia et 

al. 2014); RhaR for rhamnose (Gruben et al. 2014); and GaaR for polygalacturonic acid 

(PGA) (Alazi et al. 2016). These transcription factors exert coordinated regulation of the 

target genes by interacting with conserved binding sites that are located upstream of the target 

genes. Computational analysis has been used to identify the galacturonic acid responsive 

element (GARE) of GA-induced genes (Martens-Uzunova and Schaap 2008). The predicted 

sequence (CCNCCAA) was shown to be required for the induction of GA-responsive genes in 

A. niger (Niu et al. 2015) and Botrytis cinerea (Zhang et al. 2016). Furthermore, using the 
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yeast one-hybrid method, it was shown in B. cinerea that the GaaR transcription factor 

interacts specifically with the GARE (Zhang et al. 2016). 

Phenotypic characterization of mutants lacking the GA-regulator in both B. cinerea and A. 

niger has shown that GaaR is required for growth on GA (Zhang et al. 2016; Alazi et al.

2016). Expression analysis in both fungi confirmed that GaaR is required for the induced 

expression of GA-responsive genes. On complex pectins, growth of B. cinerea and A. niger

gaaR deletion mutants was severely reduced and genome-wide expression analysis in A. niger

revealed that the residual growth on pectin is likely due to the GaaR-independent expression 

of pectinases acting on arabinofuranosyl- and galactopyranosyl-containing side chains in 

rhamnogalacturonan (Alazi et al. 2016).

In addition to the transcription regulation via GaaR, GA-responsive genes are also under 

carbon catabolite repression (CCR) control (de Vries et al. 1999; de Vries et al. 2002). In 

filamentous fungi, CreA mediates CCR (Dowzer et al. 1991; Ruijter and Visser, 1997). In A. 

niger, CreA also exerts CCR control on GA-responsive genes (de Vries et al. 1999; Niu et al.

2015). Using an ‘in vivo’ reporter construct consisting of the promoter of the GA-inducible 

pgaX gene (PpgaX) and the acetamidase (amdS) gene as a reporter, both the specific induction 

of pgaX on GA as well as the carbon repression of pgaX via CreA had been demonstrated 

(Niu et al. 2015). In this study, we have used the PpgaX-amdS reporter strain to isolate 

mutants displaying constitutive expression of GA-responsive genes. Analysis of the mutants 

resulted in the identification of a protein that likely acts as a repressor that specifically inhibits 

GaaR transcription activation activity under non-inducing conditions. 

Materials and Methods

Strains, media and growth conditions

All strains in this study are listed in Table 1. Strains were grown in liquid or solidified (1.5% 

agar) minimal medium (MM) containing 7 mM KCl, 8 mM KH2PO4, 70 mM NaNO3, 2 mM 

MgSO4 (pH adjusted to pH 5.5) as described (Bennett and Lasure, 1991). MM was 

supplemented with 50 mM glucose, 50 mM D-galacturonic acid, 50 mM fructose or 50 mM 

sorbitol as carbon source. Complete medium (CM) was also used and consists of MM 

supplemented with 0.1% casamino acids and 0.5% w.v-1 yeast extract and 50 mM glucose. 

MM agar plates containing acetamide as sole nitrogen source were made as described 

previously (Arentshorst et al. 2012)
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Table 1. Aspergillus niger strains used in this study.

Name Genotype/description Reference/source
N402
AB4.1
MA234.1
MA70.15

cspA1, derivative of N400
pyrG- ,derivative of N402
Δku70::DR_amdS_DR in MA169.4
Δku70::amdS in AB4.1

Bos et al. 1988
van Hartingsveldt et al. 1987
Alazi et al. 2016
Meyer et al., 2007

MA299.2
MA323.1
JC1.5

Δku70 in MA70.15
Δku70::amdS, ΔnicB-, pyrG-

pgaX-amdS in MA299.2, pyrG+

Niu et al. 2015
Niu et al. 2016
Niu et al. 2015

JN29.2 ΔcreA::hygB in JC1.5 Niu et al. 2015
JN38 
JN39
JN42

spontaneous mutation S1in JN29.2
spontaneous mutation S2 in JN29.2
spontaneous mutation S5 in JN29.2

This study
This study
This study

JN44 spontaneous mutation S7 in JN29.2 This study
JN52 UV1 in JN29.2 This study
JN53 UV2 in JN29.2 This study
JN54 UV3 in JN29.2 This study
JN55 UV4 in JN29.2 This study
JN56 UV5 in JN29.2 This study
JN57 UV6 in JN29.2 This study
JN58 UV7 in JN29.2 This study
JN59 UV8 in JN29.2 This study
JN60 UV9 in JN29.2 This study
JN61 UV10 in JN29.2 This study
JN62 UV11 in JN29.2 This study
JN63 UV12 in JN29.2 This study
JN64
JN122.1, JN122.1, JN122.1,

UV13 in JN29.2
ΔgaaX::phleo in JN29.2

This study
This study

JN123.1, JN123.2, JN123.3
JN125.1

ΔgaaX::hygB in JC1.5
ΔgaaX::nicB in MA323.1

This study
This study

JN126.2, JN126.5, JN126.6 PgaaX::GaaX::GFP::TgaaX in JN125.1 This study
JN127.1, JN127.2, JN127.3 PgaaX::GFP::GaaX::TgaaX in JN125.1 This study

Isolation of mutants with constitutive expression of genes involved in polygalacturonic 

acid utilization 

A. niger strain JN29.2 (Table 1) was used for the selection of mutants with constitutive 

expression of genes involved in PGA utilization. Spontaneous mutants were obtained by 

plating out freshly harvested and myracloth filtered conidia (1 x 104 conidia per plate) on MM 

glucose/acetamide plates and incubated at 30℃ for 5 days. In addition, mutants were obtained 

after mild UV mutagenesis (80% survival) as described (Damveld et al. 2008). Individual 

mutants growing on the primary MM-glucose/acetamide selection plates were purified twice 

on the MM-glucose/acetamide agar plates. In total, 14 spontaneous mutants and 59 UV-

mutants were isolated that grew well on MM-glucose/acetamide agar plates and they were 

considered to be potential mutants with constitutive expression of genes involved in PGA 

utilization. To identify mutants constitutively producing PGA degrading enzymes, all 73 

mutants were grown by inoculating 5 x 107 spores in 50 ml MM-glucose medium for 36 h at 
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30℃ with shaking (150rpm). Supernatant of each culture was harvested by filtration. The 

extracellular culture fluid and the mycelia were stored at -80 ℃ for enzymatic assays and 

RNA extraction, respectively. Ten microlitres supernatant of each sample were spotted on 

PGA plates made by dissolving 0.2 % PGA (Sigma) in NaAc buffer (pH 4.2) with 1% agarose 

(Sphaero). The PGA plate assay was modified from the protocol used to detect cellulase 

activity (Teather and Wood 1982). Plates were incubated at 37℃ for 17 hours after spotting. 

PGA was stained by flooding the plates with a filter-sterile 0.05% solution of Congo Red 

(Sigma) dissolved in Milli-Q water for 15 min. The Congo Red solution was then poured off 

and the plates were washed with Milli-Q water, further treated by flooding with 1 M NaCl for 

15 min. The formation of a clear zone of hydrolysis indicated PGA degradation. 

The constitutive expression of genes involved in PGA degradation was further determined 

by northern blot analysis. Total RNA was isolated from eleven UV-mutants and two 

spontaneous mutants from frozen mycelia using TRIzol® reagent (Invitrogen). Quantification 

and purity assessment of total RNA was done by spectrophotometric method (NanoDrop 

2000, Thermo Scientific). Total RNA, 3.5 μg, was loaded per sample and blotted to a 

HybondTM-N+ nylon membrane (Amersham, GE Healthcare) followed by hybridization with 

[α-32P]-dCTP labelled probes (Rediprime II kit, Amersham, GE Healthcare). Probes were 

PCR-amplified using the N402 genomic DNA and the primer pairs are listed in Table S1.

Standard molecular techniques were applied as described (Sambrook and Russell 2001).

DNA sequencing and data analysis 

Sequencing of the gaaR gene from eleven constitutive mutants was performed by PCR 

amplification of the gaaR gene including 137 bp upstream and 152 bp downstream sequences 

using genomic DNA of the mutants as template and primers gaaRP7f and gaaRP8r (Table 

S1). Genomic DNA was isolated as described (Arentshorst et al. 2012). The PCR fragment 

(2765 bp in size) was sequenced in both directions using gaaR sequencing primers (Table S1). 

Sequencing was performed by Macrogen Europe (Amsterdam, The Netherlands).

Genomic DNA of three spontaneous mutants and two UV mutants was isolated as 

described (Arentshorst et al. 2012) and was further purified with DNA Isolation Kit (MO BIO 

Laboratories) for whole-genome DNA sequencing. The mutant genomes were sequenced at 

the McGill University Génome Québec Innovation Centre (Montreal) using the Illumina 

HiSeq platform to about 50-fold coverage. The DNA reads were aligned to the NRRL3 
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genome with Bowtie2 (Langmead and Salzberg 2012) and sequence differences were detected 

with Freebayes (Garrison and Marth 2012). 

Deletion of gaaX gene

Deletion of the gaaX gene (NRRL3_08194) in the JC1.5, JN29.2 and MA323.1 backgrounds 

(Table 1) was carried out using the split marker approach (Arentshorst et al. 2015). The 869 

bp 5’-flank and 870 bp 3’-flank regions were PCR amplified with the primers listed in Table 

S1 using N402 genomic DNA as template. These PCR fragments were used in fusion PCRs 

with hygromycin, phleomycin resistance genes or the nicB gene (Niu et al., 2016) to generate 

the split marker fragments. After amplification, the 5´flank-hyg and 3’flank-hyg fragments 

were transformed to the recipient strain JC1.5, the 5´flank-phleo and 3’flank-phleo fragments 

were transformed to the recipient strain JN29.2, and the 5´flank-nicB and 3’flank-nicB

fragments were transformed to the recipient strain MA323.1. Putative gaaX disruption strains 

were purified by two consecutive single colony streaks. Genomic DNA was isolated as 

described (Arentshorst et al. 2012) and Southern blot hybridizations, using PCR-amplified 

fragments generated with primers listed in Table S1 as probes, were performed to confirm 

proper deletion and to exclude additional integrations. 

Bioreactor cultivation 

Controlled bioreactor cultivations for A. niger MA234.1 and JN123.1 were performed in 6.6-

L BioFlo3000 bioreactors (New Brunswick Scientific) as previously described (Jørgensen et 

al. 2010). Briefly, autoclaved bioreactor vessels were filled with 5 L of sterile MM with 

0.75% fructose. During cultivation at 30°C, the controller was set to maintain pH 3 by 

addition of titrants (2 M NaOH or 1 M HCl). Sterile air was supplied at a rate of 1 L min−1.

Prior to inoculation, 1.5 ml of 10% (w/v) filter-sterilized yeast extract was added to enhance 

conidial germination. Cultures were inoculated with freshly harvested spores at a 

concentration of 7,0 x 108 conidia per liter. To reduce the loss of hydrophobic conidia during 

germination, the stirrer speed was set to 250 rpm and the culture was aerated via the 

headspace during the first six hours after inoculation. Subsequently, the stirrer speed was 

increased to 750 rpm, 0.5 ml of polypropyleneglycol P2000 was added as an antifoam agent 

and air was supplied via the sparger. Cultures broth was harvested at regular intervals from 

batch cultures and mycelial biomass was retained by vacuum filtration using glass microfiber 

filters (Whatman). Both biomass and filtrate were quickly frozen in liquid nitrogen and 
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subsequently stored at -80°C. Dry biomass concentrations were gravimetrically determined 

from lyophilized mycelia originating from a known mass of culture broth.

Transcriptome analysis

Mycelia grown in bioreactors to mid-exponential phase were used to isolate RNA using 

TRIzol® reagent (Invitrogen) and purified with NucleoSpin RNA Clean-up kit (Macherey-

Nagel) with DNase treatment. Quantity and quality of the RNA samples were determined 

with a NanoDrop-2000 spectrophotometer and by RNA gel electrophoresis, respectively. 

RNA sequencing was conducted by Genome scan (Leiden, the Netherlands). Briefly, mRNA 

was isolated from the total RNA using NEBNext Ultra Directional RNA Library Prep Kit for 

Illumina according to the manufacturer’s protocol. After fragmentation of the mRNA, cDNA 

was synthesized using random primers; and after a second strand cDNA synthesis reaction, 

fragments were ligated to the sequencing adapters. Clustering and DNA sequencing was 

performed using the Illumina NextSeq 500 SR75. Throughout the manuscript we will refer to 

A. niger Gene IDs based on the most up to date and accurate annotation of the A. niger

NRRL3 genome (http://genome.fungalgenomics.ca/). The RNA-Seq reads were cleaned by 

correcting sequencing errors with Rcorrector (Song and Florea 2015), trimming sequencing 

adapters and low quality sequences with Skewer (Jiang et al. 2014), and removing ribosomal 

RNA with SortMeRNA (Kopylova et al. 2012). The cleaned reads were mapped to NRRL3 

transcripts and counted with Salmon (Patro et al. 2016), and the read counts were analyzed for 

differences in transcript expression between genotypes with DESeq2 (Love et al. 2014). 

Construction of strains expressing GaaX-GFP or GFP-GaaX fusion proteins

To construct fusions of GFP to the N-terminus or C-terminus of GaaX,

PgaaX_GFP::GaaX_TgaaX and PgaaX_GaaX::GFP_TgaaX constructs were generated using 

a fusion-PCR approach in which N402 genomic DNA as well as plasmid PagsA_eGFP_TtrpC 

(Damveld et al. 2008) were used as template DNA. For constructing the 

PgaaX_GFP::GaaX_TgaaX construct, the promoter region of gaaX was PCR amplified using 

primers PgaaX_P7f-NotI and PgaaX_P11r, GFP was PCR amplified from plasmid 

PagsA_eGFP_TtrpC using primers GFP_P1f and GFP_P3r, gaaX and the terminator region of 

gaaX was PCR amplified using primers gaaX_P12f and TgaaX_P10r-NotI, and the three 

fragments were combined together in a two-step fusion PCR. Two amino acids (Gly-Ala) 

were introduced as spacer between GFP and GaaX. Subsequently, the fusion fragment was 
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cloned into vector pJet1.2 to give plasmid pJN34. For the PgaaX_GaaX::GFP_TgaaX 

construct, gaaX with the promoter region of gaaX was PCR amplified using primers 

PgaaX_P7f-NotI and gaaX_P8r, GFP was PCR amplified using primers GFP_P1f and 

GFP_P2r, the terminator region of gaaX was PCR amplified using primers gaaX_P9f and 

TgaaX_P10r-NotI, and the three fragments were combined together in a two-step fusion PCR. 

Again, a Gly-Ala spacer was introduced between GaaX and GFP. Subsequently, the fusion 

fragment was cloned into vector pJet1.2 to give plasmid pJN35.

Plasmids pJN34 and pJN35 were digested by NotI, and the fragments containing 

PgaaX_GFP::GaaX_TgaaX and PgaaX_GaaX::GFP_TgaaX were cloned into pMA334 

(Arentshorst et al. 2015) to generate pJN36 and pJN37, respectively. The pMA334 plasmid 

has been designed such that the reporter constructs are targeted to the pyrG locus. Plasmids 

pJN36 and pJN37 were linearized by AscI digestion and purified from gel before 

transformation to A. niger strain JN125.1. Proper integration of the 

PgaaX_GFP::GaaX_TgaaX or PgaaX::GaaX_GFP_TgaaX fragments at the pyrG locus was 

confirmed by Southern blot using PCR-amplified fragments generated with primers listed in 

Table S1 as probes. 

Microscopy

For microscopic analysis, conidia of strains MA323.1, JN125.1, JN126.2 and JN127.3 were 

inoculated on coverslips in Petri dishes. Liquid minimal medium (MM) supplemented with 50 

mM GA or 50 mM fructose as the carbon source was used. After incubation at 30℃ for 16 h, 

the coverslips with adherent germlings were mounted upside down on glass slides and 

observed under a confocal laser scanning microscope (Zeiss Imager, Zeiss, Jena, Germany), 

equipped with a LSM 5 exciter using 63x objectives. Images were processed by ImageJ with 

the exact same brightness and contrast adjustments and the median filter (radius 1.0).

Data availability

Strains are listed in Table 1 and are available upon request. Table S2 contains SNPs and 

indels detected in genomes of mutants. Table S3A contains TPM values of NRRL3 gene 

models in wild type and the gaaX mutant, and Table S3B contains their DEseq2 analysis. The 

DNA reads described in this study are deposited in the Short Read Archive under accession

number SRP078415. The RNA reads described in this study are deposited in the Short Read
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Archive under accession number SRP078485. The authors state that all data for confirming 

the conclusions presented in this article are represented fully within the article.

Results

Mutants constitutively expressing genes related to galacturonic acid utilization

To identify mutants that constitutively express genes related to PGA degradation and GA 

utilization in A. niger, we designed a forward screening procedure using a reporter strain 

containing a PpgaX-amdS reporter construct for positive selection of the desired mutants. We 

recently showed that the pgaX gene is specifically induced by GA, PGA and pectin, allowing 

the reporter PpgaX-amdS strain to grow on acetamide as a nitrogen source when GA, PGA or 

pectin is present as a carbon source (Niu et al. 2015). We also showed that deletion of the 

CCR protein (CreA) did not result in growth of the PpgaX-reporter strain on glucose, 

indicating that derepression via creA deletion was not sufficient to drive PpgaX-amdS

expression to sustain growth. For the mutant screen, we used the PpgaX-amdS reporter strain 

in the ΔcreA background (JN29.2) to prevent interference with possible CreA pathway-related 

repression mechanisms. Spores of A. niger strain JN29.2 were UV-mutagenized and surviving 

spores (80%) were plated on MM-glucose-acetamide plates. After mutagenesis, 59 mutants 

were isolated based on growth on acetamide. In addition to UV-generated mutants, 14 

spontaneous mutants were isolated, resulting in a total of 73 mutants that could grow on 

glucose/acetamide plates. 

To determine whether mutations were cis- or trans-acting, mutants were cultured in 

glucose medium for 36 h and the medium was analyzed for polygalacturonase activity. Initial 

experiments showed that cultivation of JN29.2 in glucose medium resulted in very low 

polygalacturonase levels and no halo was formed on Congo Red stained PGA plates when 

culture medium was spotted on a PGA plate (Figure 1A). We reasoned that if the mutation is 

trans-acting, the medium should contain increased levels of both exo- and endo-

polygalacturonases leading to the formation of a halo. On the other hand, if the mutation is 

cis-acting, thereby only affecting the PpgaX-amdS reporter construct, it would not result in a 

halo on a PGA plate. Based on this assay, we concluded that the mutations of 65 out of the 73 

mutants are trans-acting, while the remaining eight mutants carry presumed cis-acting 

mutations.
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Figure 1. Enzymatic and RNA blot analysis of mutants with constitutive expression of genes involved in 
polygalacturonic acid utilization. A) 10 µl Supernatant from glucose-grown cultures of reference strains N402 
and JN29.2, eleven UV mutants and two spontaneous mutants were spotted on polygalacturonic acid agarose 
medium to detect polygalacturonase activity. B) Northern blot analysis of selected GA-responsive genes in the 
reference strains N402 and JN29.2, eleven UV mutants and two spontaneous mutants. 

To further demonstrate that the presumed trans-acting mutations indeed affected 

expression of multiple genes related to GA utilization and belonging to the GA-induced genes 

(Martens-Uzunova et al. 2008; Niu et al. 2015; Alazi et al. 2016), the expression of three GA-

induced genes (pgaX, gatA, gaaB) was examined by northern blot analysis in a subset of 

mutants after growth on glucose. The pgaX, gatA and gaaB genes encode an exo-

polygalacturonase, a GA-specific transporter, and the L-galactonic acid dehydratase involved 

in the GA release from PGA, the uptake of GA, and subsequent metabolism of GA, 

respectively. As shown in Figure 1B, expression of these genes was not detected in the wild-

type (N402) and the parent JN29.2 (ΔcreA, PpgaX-amdS) strains whereas these genes were 

expressed in the constitutive mutants that displayed increased polygalacturonase activity. The 

presumed cis-acting mutants from the plate assay (UV2, UV7, UV9, UV10, UV11 and S2) 

did not constitutively express pgaX, gatA and gaaB, and showed a small halo on PGA plates, 

indicating the halo assay can be used to discriminate between cis- and trans-acting mutants. 

To determine whether a cis-acting mutation in the pgaX promoter in front of the amdS gene 

was responsible for the ability of this class of mutants to grow on acetamide, the pgaX

promoter in front of the amdS gene of all eight cis-acting mutants was PCR amplified using 

pyrG and amdS specific primers (Table S1). This analysis revealed no mutations in the pgaX

promoter region of any of the eight presumed cis-acting mutants. Hence, the nature of the 
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mutation(s) in these strains which allow growth on acetamide remains unknown. A possibility 

could be the activation of expression of endogenous amdS genes, as at least four amdS-like 

genes are present in the genome of A. niger.

Identification of mutations responsible for the constitutive expression of the galacturonic 

acid utilization genes

A possible explanation for the constitutive expression of GA utilization genes in the mutants 

is that they carry mutations in the recently identified GaaR transcriptional activator (Alazi et 

al. 2016). We therefore PCR amplified and sequenced the gaaR locus of eight constitutive 

mutants obtained after UV mutagenesis (UV1, UV3, UV4, UV5, UV6, UV8, UV12 and 

UV13) and three spontaneous mutants (S1, S5 and S7). The gaaR coding regions as well as 

300 bp flanking regions were sequenced, but no mutation in the gaaR gene in any of these 

eleven mutants was found (data not shown). 

To determine whether the constitutive expression of GA-induced genes in these mutants 

involves a functioning GaaR transcription factor, we deleted the gaaR gene in seven of the 

constitutive mutants (UV1, UV3, UV4, UV5, UV6, UV8 and S1) and analysed constitutive 

expression using the PpgaX-amdS reporter. All seven mutants were unable to grow on 

glucose/acetamide plates (data not shown), indicating that the constitutive expression of the 

GA-induced genes requires a functional gaaR gene. 

To identify mutation(s) in the gene(s) responsible for the constitutive phenotype, the 

genomes of five mutants (UV1, UV8, S1, S5 and S7) and the parental strain JN29.2 were 

sequenced. Table 2 summarizes the number of SNPs and indels detected in the five mutant 

strains and Table S2 lists positions and type of all SNPs and indels detected. Spontaneous 

mutant S7 contains only eleven SNPs or indels, of which ten are located in intergenic regions 

and only one SNP mutated a gene, NRRL3_08194. Remarkably, in all four other mutants a 

mutation was found in the same gene. Two of the mutants carry nonsense mutations (UV1 

and S5) and one a frame-shift mutation (S3), all leading to premature stop codons and 

predicted to result in truncated proteins (Table 2). Mutants S7 and UV8 have missense 

mutations in the C-terminal part of the protein. These results strongly suggest that the 

constitutive expression of genes encoding pectin-degrading enzymes in the five mutants is 

caused by a loss of function of the protein encoded by NRRL3_08194. 
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Deletion of NRRL3_08194 results in the constitutive expression of genes required for 

PGA breakdown and GA-catabolism 

To determine whether the constitutive expression of the target genes of the GaaR 

transcriptional activator (Alazi et al. 2016) is caused by a loss-of-function mutation in 

NRRL3_08194, we deleted this gene in the pgaX-amdS reporter strains JC5.1 and JN29.2 

(ΔcreA), as well in a parental background without reporter constructs (MA323.1) (Table 1). 

The deletion mutants were purified and deletion of NRRL3_08194 was confirmed by Southern 

blot analysis for JC5.1, JN29.2 and MA323.1 (Figure S1 and S2). The verified deletion mutants 

were tested for growth on acetamide plates containing different carbon sources (Figure 2) as 

well as for constitutive expression of polygalacturonases (see below). Figure 2 shows that 

deletion of NRRL3_08194 in the ΔcreA background (JN122) resulted in the ability to grow on 

glucose/acetamide, fructose/acetamide and sorbitol/acetamide. The colony size on all three 

different carbon sources was similar, indicating that the amdS gene was expressed regardless of 

the carbon source used. However, deletion of NRRL3_08194 in the JC1.5 reporter strain 

(JN123) resulted in similar growth on fructose/acetamide and sorbitol/acetamide plates as 

JN122, but reduced growth on glucose. This indicates that glucose-mediated carbon catabolite 

repression repressed PpgaX driven amdS expression even in the absence of NRRL3_08194. 

The ability of the ΔNRRL3_08194 strain to grow on acetamide plates strongly suggests that a 

loss of function of NRRL3_08194 results in constitutive expression of pgaX and other 

pectinolytic genes. Furthermore, deletion of gaaX did not result in an altered growth behavior 

on GA, PGA, apple pectin, glucose, fructose, sorbitol, xylose and arabinose) (data not shown). 

These results are most easily explained by proposing that NRRL3_08194 encodes a repressor 

protein, which we name GaaX, that represses the activity of the GaaR transcription factor in the 

absence of GA. Interestingly, GaaX shows sequence similarity to a previously identified 

repressor protein, QutR (Grant et al., 1988). Moreover, the transcriptional activator (GaaR, 

NRRL3_08195) and the repressor (GaaX, NRRL3_08194) are clustered in the genome, similar 

to the quinic acid utilization transcriptional activator (QutA/Qa-1F) and repressor (QutR/Qa-

1S) in Aspergillus nidulans and Neurospora crassa, respectively (Geever et al. 1989; Levesley 

et al. 1996).
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Figure 2. Regulation of the pgaX expression is controlled by GaaX and by CreA-mediated glucose repression. 
Growth of pgaX-amdS reporter strains in gaaX deletion and their parental strains was examined on various carbon 
sources. Parental strains and corresponding deletion strains were grown on MM-acetamide supplemented with 50 
mM glucose, galacturonic acid (GA), fructose or sorbitol. All strains carry the PpgaX-amdS reporter construct. 
Strain JC1.5 is the parent of three independent transformants (JN123.1, JN123.2 and JN123.3) that contain a 
deletion in the gaaX gene. Strain JN29.2 carries the ΔcreA marker and is the parent of three independent 
transformants (JN122.1, JN122.2 and JN122.3) that contain a deletion in the gaaX gene. 

The GaaR-GaaX target gene regulon

We posit that the regulation of GA-responsive genes is likely to be negatively controlled by 

the repressor protein GaaX. A possible mode of action is that the repressor GaaX inhibits the 

activity of the transcriptional activator GaaR in the absence of an inducer. This would imply 

that deletion of the repressor or activation of the transcription factor by growth on GA would 

result in activation of the same set of genes. To show that the loss of function of the repressor 

activates the GA regulon and to identify the genes repressed by GaaX under non-inducing 

conditions, RNA-seq profiles of the ΔgaaX and its parental strain (MA234.1) were compared 

after growth on fructose, a non-repressing carbon source. Controlled cultivations in 

bioreactors showed that the growth rates (μmax parental strain 0.214 ± 0.007 g dry weight kg-1

h-1 (n=3); μmax ∆gaaX 0.223 ± 0.004 g dry weight kg-1 h-1 (n=2)) as well as biomass yields 

(Ymax parental strain 4.15 ± 0.13 g dry weight kg-1 (n=3); Ymax ΔgaaX 4.29 ± 0.19 g dry 

weight kg-1 (n=2)) of the two strains were highly comparable, indicating the gaaX deletion did 

not result in major physiological changes affecting the growth and biomass yield. 
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To identify differentially expressed genes in the ΔgaaX strain as compared to its parental 

strain, RNA-seq was performed on RNA isolated from exponentially growing cells at the time 

point at which about 75% to 80% of the maximum biomass yield was reached. RNA-seq 

reads were mapped to the NRRL3/N400 genome as this is the parent of the laboratory strain 

N402 and derivatives used in this study. Transcript per million (TPM) values were calculated 

using Salmon (Patro et al, 2016) (Table S3). Analysis of differential gene expression, based 

on a stringent False Discovery Rate (FDR)-value of <0.001 and a Fold Change (FC) >4.0, 

identified 37 upregulated genes (Table 3). Gene Ontology (GO) enrichment analysis using 

FetGOat (Nitsche et al. 2012) and manual inspection of the genes up-regulated in the ΔgaaX

mutant indicated that genes involved in pectin catabolism were highly enriched. Of the 37 

genes, sixteen are predicted to encode extracellular enzymes acting on the GA-backbone of 

pectin or acting on pectin side chains (Table 3). Nine genes in the group of 37 up-regulated 

genes in the ΔgaaX strain are predicted to encode intracellular proteins. Four of these nine 

genes (gaaA-gaaD) are required for the conversion of GA into pyruvate and glycerol 

(Martens-Uzunova and Schaap 2008). The exact role of the other five genes and their possible 

role in GA catabolism is currently unknown. The group of 37 up-regulated genes also 

includes seven genes predicted to encode sugar transporter proteins. Of these seven 

transporter-encoding genes, only GatA has been studied in detail and shown to be able to 

transport GA (Sloothaak et al. 2014). Apart from the genes encoding extracellular enzymes 

(16), transporters (7) and enzymes possibly involved in GA catabolism (9), the remaining five 

genes in this group encode proteins with unknown functions or with similarities to known 

proteins that for now cannot be directly linked to GA metabolism. The deletion of gaaX has 

the most profound effect on the transcript levels of the genes encoding the first three steps of 

the GA-utilization pathway (gaaA, gaaB and gaaC) and on the expression of gatA. Deletion 

of gaaX resulted in a 1.24-fold (P value 0.000035) increase in gaaR gene activity. Since the 

up-regulation of gaaR in the ΔgaaX mutant is modest, it is likely that the repressing activity

of GaaX is mediated at the protein level (e.g. by interacting with GaaR) rather than by 

transcriptional control of gaaR. Seventeen of the 37 genes up-regulated in the ΔgaaX mutant 

were previously identified as part of the GA regulon (Martens-Uzunova and Schaap 2008; 

Alazi et al. 2016) (Table 3, Figure 3). Sixteen of the 17 genes found in common with previous 

studies are predicted or demonstrated to encode extracellular pectin-degrading enzymes. 

These results indicate that loss of function of gaaX affects the expression of the GA regulon 

The other 20 genes were identified as significantly up-regulated in the gaaX mutant, but these 
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were not identified previously as being part of the GA regulon (Table 3, Figure 3). A re-

examination of the expression of these twenty genes in the RNA-seq data published earlier 

(Alazi et al. 2016) indicated that 10 of the genes (indicated in Table 3 by the asterisk, Table 

S4) were also GA induced or GaaR dependent for induction in this previous study. On the 

other hand, 15 genes identified to be GA-induced in a GaaR-dependent manner in the 

previous study (Alazi et al. 2016) were not significantly up-regulated in the gaaX deletion 

strain (Figure 3). These results therefore suggest that full induction of GA-inducible genes 

requires more than the loss of GaaX activity, and that an additional induction mechanism 

plays a role. 

An additional GA-induced gene identified in the study of Martens-Uzunova and Schaap 

(2008) but missing in the GaaR study is gaaX itself. Expression of gaaX was not examined in 

the Alazi et al. (2016) study as its function was not yet directly linked to GA utilization. 

However, re-evaluation of the dataset revealed that the induced expression of gaaX on GA is 

dependent on GaaR (fold change of WT vs ΔgaaR: 18.7; P-value 0.003; Table S4). 

Combining the expression data of the ΔgaaX mutant (this study), the ΔgaaR mutant (Alazi et 

al. 2016) and the genes induced on GA (Martens-Uzunova and Schaap 2008), we propose a 

panregulon of 53 GaaR-GaaX controlled genes and a core GaaR-GaaX regulon of at least 27 

genes (Figure 3, Table 3 and Table S4). These 27 genes include eleven genes present in the 

intersection of all three data sets, six genes present in the intersection of the ΔgaaX data and 

the ΔgaaR data (Alazi et al. 2016), nine genes identified by examining the gaaX dataset with 

supporting evidence from previous studies and gaaX (Figure 3). Of these 27 genes, all except 

NRRL3_00660 (carboxyesterase), NRRL3_10865 (alpha-N-arabinofuranosidase), 

NRRL3_03342 (short-chain dehydrogenase/reductase), NRRL3_08833 (hypothetical protein), 

and NRRL3_02479 (beta-galactosidase), have at least one predicted GARE motif in the 

upstream regions of the coding region (Table 3). It is interesting to note that among the genes 

listed in Figure 3 and Table 3 that are up-regulated in the ΔgaaX some of them 

(NRRL3_00957 and NRRL3_00958; NRRL3_09862 and NRRL3_09863; NRRL3_03291 

and NRRL3_03292) are clustered. Except for NRRL3_00958, which encodes a GA-specific 

transporter (Sloothaak et al. 2014), the possible role of these genes in pectin degradation is 

currently unknown.
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Figure 3. Venn diagram showing the overlaps between up-regulated genes in the wt_glucose versus wt_GA
study (Martens-Uzunova and Schaap 2008), the up-regulated genes between ΔgaaR-GA versus wt-GA (Alazi et 
al. 2016), and the up-regulated genes in wt_fructose vs ΔgaaX-fructose (this study) to identify the GA-regulon. 
The 27 genes defining the GaaR-GaaX core regulon are indicated in bold.

GaaX is induced on galacturonic acid and localized in the cytosol

GaaX was previously identified as a GA-induced gene with unknown function (Martens-

Uzunova and Schaap 2008). To monitor the induction of GaaX and to localize the GaaX 

protein in the cell, GaaX was fused to GFP at either the N- or C-terminal part of GaaX and 

expressed from the endogenous GaaX promoter. Fusion constructs were targeted to the pyrG

locus of A. niger in a strain lacking endogenous gaaX (JN125.1) to be able to test 

complementation of the GFP-GaaX and GaaX-GFP fusion proteins (Figure S3). As shown in 

Figure 4A, JN125.1 (ΔgaaX::nicB) constitutively expressed pectinases indicated by the halo 

on PGA plates, while both the C-terminally tagged as well as the N-terminally tagged 

versions of GaaX (JN126.2 and JN127.3 respectively) complemented the constitutive 

expression phenotype, indicating that both fusion proteins are functional. Confocal 

fluorescent microscopy was performed on GFP-tagged strains to localize GaaX (Figure 4B). 

Spores were germinated either on GA or on fructose (a non-repressing carbon source) and a 
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fluorescent signal was only detectable in the GFP-labeled strains after growth on GA. This 

observation confirms the results from the expression data that indicate that GaaX is lowly 

expressed under non-inducing conditions and is induced on GA. The expression of GaaX is 

low on fructose and no GFP signal above the background level was detected on fructose. 

Based on the fluorescent pictures, GaaX is likely to be localized in the cytosol. 

Figure 4. A) Complementation analysis of GaaX-GFP fusions. Polygalacturonase activities of gaaX deletion 
strains, gaaX-GFP and GFP-gaaX complementation strains, and their parental strains were detected by spotting 
50 µl supernatant from fructose-grown cultures on polygalacturonic acid agarose. B) Subcellular localization of 
GaaX–GFP and GFP-GaaX in A. niger germlings. Strains were grown on coverslips in Petri dishes with minimal 
medium (pH 5.8) supplemented with either galacturonic acid or fructose as carbon source. Scale bar: 10µm.

Discussion

The forward genetic screen with a positive selection strategy for the isolation of A. niger

mutants with constitutive expression of genes involved in PGA degradation resulted in the 

identification of a repressor protein (NRRL3_08194) which we named GaaX. Both the 

genome sequencing of five independently obtained mutants as well as the analysis of a 

targeted deletion mutant (ΔgaaX), showed that the loss of function of gaaX leads to 

constitutive expression of genes previously identified as GA-induced genes (Martens-

Uzunova and Schaap 2008) and genes encoding pectinolytic enzymes that are activated via 

the transcription factor GaaR (Alazi et al. 2016). Deletion of gaaX did not result in a growth 

alteration on any carbon source tested (Figure 2 and data not shown). Transcriptome analysis 

(Tables S3) strongly suggests that deletion of gaaX only affects the expression of genes 

related to the degradation and metabolism of (poly)galacturonic acid. Genes encoding 

14980 - J-Niu_BNW.indd   157 19-09-17   11:27



Chapter 6 GaaX is required for galacturonic acid utilization

158

enzymes involved in the hydrolysis of non-pectin polysaccharides are not differentially 

regulated in ΔgaaX. In addition, GO enrichment analysis of ΔgaaX transcriptome shows a 

strong correlation only between the activity of GaaX and the expression of GA-induced 

genes. In agreement with these observations, the phenotype of the gaaR deletion mutant was 

specific for (poly)galacturonic acid with no growth defect observed on other substrates tested 

(glucuronic acid, rhamnose, xylose, arabinose) (Alazi et al. 2016). Taken together, these 

findings indicate the GaaR and GaaX are specifically involved in the regulation of pectin 

catabolism.

Interestingly, the gaaX gene is located next to the recently identified GA-specific 

transcriptional activator gaaR (NRRL3_08195). The GaaR transcriptional activator is 

conserved in 19 out of the 20 Aspergillus species for which genomic sequences are available 

via AspGD and only absent in A. glaucus (Alazi et al. 2016), which corresponds with the 

inability of A. glaucus to grow on GA (http://www.fung-growth.org/). In all nineteen 

Aspergillus species containing GaaR, a GaaX ortholog could be identified adjacent to GaaR. 

Only in A. fumigatus (Figure 5) and A. wentii (data not shown) were ORFs predicted to be 

present in between gaaX and gaaR. The ORFs between gaaX and gaaR in A. fumigatus are 

Afu4g06430 and Afu4g06450. Afu4g06430 is predicted to encode a 128 aa long protein 

which has no ortholog in other aspergilli. According to available expression data (Lind et al. 

2015) this gene is not expressed. Whether this predicted gene actually encodes a protein is 

questionable. Afu4g06450 is predicted to encode a Tan1-related transposase of the DDE 

family. This type of transposase is found in both A. nidulans and A. niger as well as in many 

other organisms. This transposase is lowly expressed in A. fumigatus (Lind et al. 2015).

Like gaaR, gaaX is also missing in A. glaucus. BLASTP and synteny analysis between A. 

niger and A. glaucus revealed that the GaaR/GaaX encoding genes have been excised, as 

surrounding genes are conserved. Despite the loss of GaaX and GaaR, A. glaucus still 

possesses the GA-specific catabolic genes gaaA (Aspgl1_0124049), gaaB (Aspgl1_0091535)

and gaaC (Aspgl1_0065497).
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Figure 5. Schematic overview of the conservation of the gaaX-gaaR gene pair in 17 Pezizomycotina species. 
GaaX orthologs (green), GaaR orthologs (yellow) and ORFs between gaaX and gaaR (gray) are indicated. 
Arrow heads indicate the direction of transcription.
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The GaaR transcriptional activator has previously been reported to be conserved in other 

Ascomycetes belonging to the Pezizomycotina subdivision, including members of the 

Eurotiomycetes (Penicillium, Talaromyces spp), Leotiomycetes (Botrytis, Oidiodendron), 

Sordariomycetes (Neurospora, Myceliophthora, Magnaporthe, Trichoderma and Fusarium

spp.) and Dothideomycetes (Zymoseptoria (Mycosphaerella), Aureobasidium and 

Cochliobolus spp.) (Zhang et al. 2016). Synteny analysis of 17 species belonging to four 

classes of Pezizomycetes (Eurotiomycetes, Leotiomycetes, Sordariomycetes and 

Dothideomycetes) revealed a strong conservation of the genomic clustering of gaaR and gaaX

orthologs (Figure 5 and Table S5). For most fungal species analysed, gaaR and gaaX are next 

to each other on the chromosome or close to each other and separated by one to five genes 

(Figure 5). The head to tail orientation of gaaR-gaaX driving expression of gaaR and gaaX

from different promoters is conserved in all species except in Oidiodendron maius. Like 

GaaR, GaaX was found only in the Pezizomycotina and not in ascomycete yeasts, 

zygomycetes or basidiomycetes.

The strategy to identify the responsible mutation by sequencing five independently 

obtained mutants has been successful and efficient. Clearly, sequencing only a limited number 

of mutants leads only to successful identification when the mutants isolated in the screen all 

belong to a single complementation group. If more complementation groups are involved, 

more mutants would need to be sequenced. It is interesting to note that in addition to 

mutations in gaaX which were present in all five mutants, we noticed that two mutants (S1 

and UV1) also contained allelic mutations in NRRL3_06175 (Table S2). The protein encoded 

by this gene is predicted to encode a cocaine esterase and belongs to a protein subfamily of 

hydrolases that included cocaine esterase (CocE), several glutaryl-7-ACA acylases, and the 

putative diester hydrolase NonD of Streptomyces griseus. This family shows extensive, low-

level similarity to a family of Xaa-Pro dipeptidyl-peptidases. Whether this gene also 

contributes to the constitutive expression of GA-dependent genes remains to be determined, 

but this is unlikely as mutants without mutations in this gene display essentially the same 

constitutive phenotype.

Previous studies have identified genes specifically induced by GA (Martens-Uzunova and 

Schaap 2008) and pectinolytic genes that were dependent on the GaaR transcriptional 

activator for induction by GA (Alazi et al. 2016). Eleven of the fifteen GA-induced genes 

identified by Martens-Uzunova and Schaap were up-regulated in the gaaX mutant (Table 3 

and Figure 3). The three genes that are considered GA-inducible but not detected as 
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differentially expressed in the gaaX mutant are predicted to encode a transporter 

(NRRL3_04281), an exo-polygalacturonase (NRRL3_09810, pgxA) and a pectin lyase 

(NRRL3_00965, pelA). These three genes were not classified as differentially expressed 

according to the stringent statistical settings in our current study. The fourth gene induced on 

GA in the study of Martens-Uzunova and Schaap (2008) but missing in our study is gaaX 

itself. 

In our recent study on the GaaR transcriptional activator, we identified 32 pectinolytic 

genes whose expression on GA was dependent on GaaR (Alazi et al. 2016). These genes 

overlap largely with the previously identified GA-responsive genes (Martens-Uzunova and 

Schaap 2008) (Table 3, Figure 3), but also include eighteen new potential GaaR target genes. 

Six of these genes (including NRRL3_02479 (lacB), NRRL3_05252 (pmeC), NRRL3_08325 

(pmeA), NRRL3_07470 (pmeB), NRRL3_10559 (rgxC) and NRRL3_01237 (pelD) were also 

found to be significantly up-regulated in ΔgaaX (Table 3 and Figure 3) and are therefore 

considered to be part of the core GA-regulon. The remaining twelve genes identified as being 

GaaR dependent for induction on GA (Alazi et al. 2016) were not identified as differentially 

expressed based on the stringent settings in this study. Whether these genes are indeed 

directly controlled by GaaR and GaaX, and therefore part of the core GA regulon, awaits 

further study.

The GaaX protein is predicted to be 697 amino acids long and displays significant 

similarity to the last three domains in the C-terminal half of the AROM protein. AROM is a 

large (1586 amino acids in A. niger) pentafunctional protein composed of five domains and 

the individual domains are involved in five different enzymatic steps representing the 

prechorismate shikimate pathway, which is required for aromatic amino acid biosynthesis 

(Duncan et al. 1987; Hawkins and Smith 1991). The last three domains of the AROM protein 

encode the shikimate kinase (SK), 3-dehydroquinate dehydratase (DQ) and shikimate 

dehydrogenase (SDH) and are homologous to the respective bacterial enzymes (aroL, aroD 

and aroE) (Lamb et al, 1996). The AROM protein is present in fungi, including yeasts, and 

Euglena. The evolutionary origin of AROM is likely to be bacterial and it has been suggested 

that the AROM protein is the result of gene fusion events (Richards et al. 2006). Sequence 

alignment and BLASTP searches showed that the GaaX protein has significant sequence 

homology with the last three domains of the AROM protein. The observation of a 

transcriptional activator (GaaR) located next to a possible repressor protein (GaaX) that 

displays significant homology to AROM is analogous to the clustered transcriptional 
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activator/repressor module regulating quinic acid utilization (Geever et al. 1989; Lamb et al.

1990). Like GaaX, the quinate repressor protein shows significant sequence similarities with 

the last three C-terminal domains of AROM (Lamb et al. 1996). 

The regulation of metabolic enzymes required for quinic utilization has been a classical 

example of gene regulation both in N. crassa and A. nidulans (Geever et al. 1989; Leversley 

et al. 1996). In A. nidulans and N. crassa, the transcriptional activator and repressor are 

located in a gene cluster which consists of the activator and repressor and other genes 

involved in quinic acid catabolism and transport (Geever et al. 1989; Lamb et al. 1990). A. 

niger also has a quinic acid gene cluster that includes, besides the qutA gene (NRRL3_11038) 

and qutR gene (NRRL3_11039), a catabolic 3-dehydroquinase (NRRL3_11037) and a MFS 

transporter possibly involved in quinate uptake (NRRL3_11036). In contrast to the quinic acid 

gene cluster in which the regulatory genes (activator and repressor) are clustered with 

structural genes, no structural genes involved in GA ultilization were clustered with GaaR and 

GaaX. Deletion of the qutA transcription factor (NRRL3_11038) in A. niger results in a 

quinate non-utilizing mutant (M. Arentshorst and A.F.J. Ram, unpublished results). Both in A. 

nidulans and N. crassa, the regulation of genes involved in quinic acid metabolism has been 

studied in detail and is characterized by the presence of a transcriptional activator (named 

QutA in A. nidulans, and qa-1F in N. crassa) located next to a repressor protein (QutR in A. 

nidulans, and qa-1S in N. crassa). Loss of function of quinic acid repressor qutR or qa-1S in

A. nidulans and N. crassa, respectively, leads to constitutive expression of quinic acid 

utilization genes (Lamb et al. 1996; Giles et al. 1985), very similar to the effect observed for 

the loss of function of GaaX, resulting in constitutive expression of GA utilization genes. 

Based on the phenotype of the gaaX mutant and the analogy to the organization of the quinic 

acid utilization gene cluster, our current working hypothesis is that gaaX encodes a repressor 

protein which is required to keep the transcriptional activator GaaR in an inactive form in the 

absence of the inducer molecule. 

As noted earlier, gaaX (NRRL3_08194) was identified as a up-regulated gene when an A. 

niger culture pregrown for 18 h with 2 % fructose was transferred to a medium containing 1% 

GA as the sole carbon source (Martens-Uzunova and Schaap 2008). The expression of a 

functional GFP-tagged version of GaaX confirmed the induced expression and showed 

cytosolic localization of GaaX in the presence of GA (Figure 4). In the promoter region of 

gaaX, a GA-responsive element (GARE) was found, suggesting that activation of the 

transcription factor results in increased levels of repressor protein. Although this might seem 
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contradictory at the first glance, it could actually be an elegant mechanism to ensure that the 

expression of GA-induced genes is tightly controlled and quickly responds to the presence or 

absence of GA. The induction of the expression of the repressor is partially analogous the 

activation/repression system of the qa cluster in N. crassa. In N. crassa it has been shown that 

both the activator (qa-1F) and the repressor (qa-1S) are transcriptionally induced in the 

presence of quinic acid (Patel et al. 1981; Giles et al. 1991). In the GA regulation system of A. 

niger, only the repressor protein is induced and not the activator. It should be noted that in 

almost all of 17 species analysed, the gaaX and gaaR genes do not share the same promoter 

region (head to tail orientation; Figure 5), while the qa-1S and qa-1F genes of N. crassa share 

the same promoter region, which might function as a bidirectional promoter. 

As a working model (Figure 6), we postulate that in the presence of GA, the inducer 

molecule, which could be GA or a derivative of GA, binds in the cytosol to repressor protein 

GaaX. Binding of the inducer to the GaaX repressor is posited to result in the activation of the 

transcription factor GaaR. Active GaaR is expected to induce the expression of GA-

responsive genes involved in GA release, uptake and metabolism, but also induces the 

expression of repressor protein. As long as the inducer is present in sufficient amounts, the 

GaaX repressor is predicted to be inactive as a repressor and thereby the GaaR transcription 

factor remains active. When the concentration of inducer decreases, it is reasonable to suggest 

that repressor proteins lacking bound inducer could inactivate the GaaR transcriptional 

activator, thereby restraining the expression of GA-responsive genes. Thus, high expression 

of the repressor could serve as a sensitive system to ensure that, when intracellular GA levels 

decrease, the cell can tightly turn off expression of GA-responsive genes. Moreover, this 

mechanism also ensures the rapid response to the presence of GA as it does not require de 

novo synthesis of GaaR. Induction simply requires the binding of inducer to the repressor and 

subsequent activation of GaaR via post-translational mechanisms, as the expression of GaaR 

is not dramatically induced by GA (Alazi et al., 2016) or in the gaaX mutant (this study). The 

expression of GA-induced genes is also controlled via CreA mediated carbon catabolite 

repression (de Vries et al. 2002; Niu et al. 2015). The analysis of the PpgaX-amdS reporter 

strain (Figure 2) suggests that the expression of pgaX is carbon catabolite repressed even in 

the ΔgaaX strain. This suggests that CreA directly represses pgaX expression via CreA 

binding sites in the pgaX promoter, independent of GaaX repression (Figure 6). 

The proposed model for the mechanism by which GaaR and GaaX regulate gene 

expression resembles in some aspects the Gal3/Gal4/Gal80 module of S. cerevisiae, but 
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shows at least two important differences. Whereas the Gal4 regulatory system consists of 

three proteins (Gal4 as the transcriptional activator, Gal80 as the repressor and Gal3 as 

possible galactose sensor), we have identified two genes/proteins involved in GA regulation 

and no evidence for a third member. Also in the regulation of quinate metabolism, no third 

regulatory gene has been identified even though saturating mutant screens have been 

performed. These observations do not exclude the possibility that a third factor is involved in 

the GA or quinic acid regulation, but it is unlikely with the available evidence. Whereas the 

sensor (Gal3)/repressor (Gal80) function is mediated via two different proteins in the Gal 

regulatory system in S. cerevisiae, in the GA and quinic acid regulatory systems, the 

sensor/repressor function might well be performed by a single protein, GaaX and QutR, 

respectively. Another important difference is that GaaX and QutR do not show homology to

Gal80 or Gal3, nor do Gal80 or Gal3 display homology to AROM. Based on these 

observations, we suggest that the GAL repressor module has evolved independently from that 

of GaaX/QutR.
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Figure 6. Model for the regulation of GA-induced gene expression in A. niger. A) GA-induced gene expression, 

with pgaX as an example, is controlled via interaction of the transcriptional activator (GaaR) and transcriptional 

repressor (GaaX) in combination with CreA-mediated carbon catabolite repression. A) In the presence of 

fructose (a non-repressible, non-inducing carbon source) pgaX expression is prevented because GaaX inhibits 

GaaR's activation . The question mark indicates that the mechanism by which GaaX controls GaaR activity is 

unknown. B) In the presence of GA, GA itself or a derivative of GA is predicted to bind to GaaX. The binding of 

the inducer to GaaX is expected to activate GaaR. GaaX is induced and remains cytosolic but the presence of the 

inducer keeps GaaX inactive. C) In the ΔgaaX strain, GaaR is no longer kept inactive by GaaX and therefore is

constitutively active, resulting in constitutive expression of pgaX. D) In the ΔgaaX strain, the presence of 

glucose leads to CreA-mediated repression leading to reduced expression of pgaX and possibly other pectinolytic 

genes. E) Deletion of both gaaX and creA results in constitutive expression of pgaX even in the presence of 

glucose. The yellow triangles represent putative CreA binding sites. The green/blue circle represents a putative 

GaaR binding site. The red circle represents the postulated inducing sugar.

In addition to GaaX (NRRL3_08194) and QutR (NRRL3_11039), we identified two 

additional paralogues in the A. niger genome (NRRL3_08276 and NRRL3_07605). All four 

paralogues showed significant homology to the A. niger AROM protein as well as limited

homology towards each other. Both NRRL3_08276 and NRRL3_07605 are also located next 

to predicted Zn(II)2Cys6 domain transcription factors, NRRL3_08275 and NRRL3_07604, 

respectively. Whereas the function of the GaaR/GaaX and QutA/QutR modules are related to 

GA and quinic acid metabolism, respectively, the function of the two other pairs that are 

present in A. niger remains to be elucidated. The sequence similarity of NRRL3_08276 and 

NRRL3_07605 to QutR and GaaX and their genome clustering with predicted transcription 

factors suggest that the proposed activator/repressor modules observed for GaaR-GaaX and 

QutA-QutR is an evolutionarily conserved mechanism to control gene expression in 

filamentous ascomycete fungi. The number of similar activator/repressor modules varies 

among Pezizomycotina species (Figure S4 and S5). Most Pezizomycotina species contain the 

galacturonic acid and quinic acid related transcriptional activator/repressor modules. It is 

interesting to note that some fungi, e.g. Talaromyces stipitatus and B. cinerea, seem to have 

lost the quinic acid specific repressor, which suggests they might have lost the capacity to 

utilize quinic acid. The GaaR/GaaX and QutA/QutR activator/repressor modules and their 

variants are specific for Pezizomycotina and missing in ascomycete yeasts, zycomycetes and 

basidiomycetes. 
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General discussion

With the rapid advances of several high throughput technologies, a variety of functional 

genomics approaches have been developed and became available to study transcriptional 

regulation in A. niger. These approaches include: (i) those for genetic characterization of 

mutant genes from strains selected in forward genetic screens (e.g. via genetic linkage based 

methods in combination with next generation sequencing based methods), (ii) those for 

studying gene functions (e.g. efficient gene deletion approaches, CRISPR-Cas9 genome 

modification approaches), (iii) those for surveying transcriptomics (RNA-seq) and (iv) 

proteomics (LC-MS_MS) approaches data, and (v) those for identification of transcription 

factor binding sites (CHIP-seq). In the last twenty years these approaches have led to the 

identification of several transcription factors involved in the plant biomass degradation, both

in Neurospora crassa (Sun et al. 2012; Xiong et al. 2017) and several Aspergilli. Examples of

Aspergillus transcription factor involved in plant cell wall biomass deconstruction in include: 

XlnR responsible for xylan degradation and xylose utilization (Van Peij et al. 1998; Klaubauf

et al. 2014); RhaR which is responsible for L- rhamnose utilization (Gruben et al., 2014);

GalX/GalR which regulates the D-galactose utilization system in A. nidulans (Kowalczyk et 

al., 2015); and Clr-2/ClrB/ManR are involved in the cellulose utilization (Craig et al. 2015; 

Raulo et al. 2016). More information on additional transcription factors in A. niger as well as 

in other filamentous fungi can be found in a recent review by (Benocci et al. 2017).

As an important industrial enzyme producer, A. niger can secrete a variety of enzymes to 

degrade plant polysaccharides, such as starch, inulin, cellulose, hemicellulose (xylan and 

arabinan), galactomannan and pectin (De Vries and Visser 2001). The expression of the 

enzyme-encoding genes is subjected to tight regulatory mechanisms that involve an interplay 

between both inducing and repressing transcriptional factors (TFs) (Niu et al. 2015; Benocci

et al. 2017). In the introductionary Chapter of my Thesis, I have focused attention to XlnR,

which serves as a transcriptional activator of xylan and cellulose degrading enzymes (Van 

Peij et al. 1998), AmyR which is the transcriptional activator of starch degrading enzymes 

(Petersen et al. 1999), and CreA which acts as a carbon catabolite transcriptional repressor of 

enzymes involved in degradation of different carbon sources, including starch, xylan and 

pectin (De Vries et al. 2002; Tamayo et al. 2008; Ichinose et al. 2014). Despite all new and 

available tools and technologies, TFs related to polygalacturonic acids (PGA), the main 

substructure of pectin, were not identified when the research described in this thesis started.

14980 - J-Niu_BNW.indd   172 19-09-17   11:27



General discussion Chapter 7

 

173 
 

To identify TFs involved in the regulation of pectin degradation enzymes, both targeted 

and non-targeted approaches were used for screening. For the targeted approach, a large set of 

240 transcription factor mutants was screened for reduced growth on pectinolytic substrates

such as D-galacturonic acid (GA), polygalacturonic acid (PGA), and pectins (apple pectin and 

sugar beet pectin). In the non-targeted approach, we designed a forward genetic screen to 

isolate mutants with constitutive expression of enzymes related to PGA degradation. In

Chapter 2, we describe an approach which allows construction of gene deletion strains with 

high efficiency. This approach combines transformation of split marker fragments with non-

homologous end joining (NHEJ) mutants. Typically, a gene deletion construct comprises a 

selection marker flanked by 5’ and 3’ sequences of the gene of interest (GOI). In the split 

marker approach, the gene deletion construct is split into two parts, each containing a flanking 

region and a truncated form of the selection marker (Fairhead et al. 1996; Nielsen et al. 2006; 

Goswami 2012). This approach involves only two rounds of PCR and does not require 

subcloning (Goswami 2012), thus allowing for rapid assembly of deletion constructs. 

Moreover, as only transformants in which the two overlapping marker fragments are 

successfully recombined can grow in selective medium, this approach increases the efficiency 

of obtaining gene deletion mutants.

After the gene deletion construct is introduced into the fungi by PEG-mediated protoplast

transformation, targeted gene deletion is achieved by homologous recombination (HR) 

between the DNA sequences flanking the selection marker and target gene. However, as DNA 

recombination in filamentous fungi preferably happens via the NHEJ pathway, DNA will 

integrate randomly resulting in low HR frequencies and hence low efficiencies in getting 

targeted gene deletion mutants. Therefore, NHEJ mutants are used to improve the frequencies 

of HR. Combining the split marker approach with NHEJ mutants has proven to be able to 

greatly reduce time and effort for generation of gene deletion mutants. In principle, this 

approach is suitable to generate whole genome gene deletion collections. In our research, this 

method has been used in a pilot experiment to construct 240 TF mutants in A. niger (Mark 

Arentshorst, unpublished results). Whereas A. niger contains over 700 transcription factor

genes, only a subset of TF mutants was selected for this pilot. The collection of 240 TF 

mutants was screened for mutants with reduced growth on pectinolytic substrate. 

Unfortunately this effort did not lead to successful identification of TFs involved in pectin 

degradation. However, we showed that the approach is in principle suitable to generate whole 
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genome knockout collections and has provided an interesting collection of TF mutants which 

can be screened to identify TF related to other regulatory processes. 

As targeted deletion of the 240 transcription factors failed to identify a specific 

transcription factor involved in pectin degradation, one possibility is that the candidate TF is 

among the remaining 460 TFs present in the genome that have not been disrupted. 

Alternatively, since pectin is a complex polysaccharide composed of various different 

monosaccharides, several transcription factors with partially overlapping functions could be

involved in pectin degradation and that single deletion of one TF was not sufficient to reduce 

growth sufficiently to be detected by plate growth assays. Thus, deletion of multiple 

transcription factors could be required to generate a pectin degradation deficient mutant. In

Chapter 3, we construct a set of auxotrophic strains which allow an efficient way to create 

strains with multiple gene deletions. Four well–selectable auxotrophic markers (pyrG, nicB,

argB, and adeA) were used to make a quadruple auxotrophic strain. Except for the pyrG

marker, the other markers were introduced by targeted deletion. During this process, the pyrG

marker was reused as a selection marker for deletion of other markers. Since pyrG marker is a 

bidirectional marker, mutations or loss of pyrG prevents the conversion of 5’-fluoroorotic acid 

(5’FOA) into a toxic compound, making a fungal strain resistant to 5’FOA-plates. So a pyrG+

strain can be cured by growing on media containing 5’FOA. By introducing direct repeats 

around the pyrG selection marker, the pyrG gene is efficiently looped out during 5’FOA 

selection. In addition, two genes involved in colour pigmentation (fwnA and olvA) were 

combined with auxotrophic markers to construct isogenic strains which can be used to 

construct diploids for the isolation of haploid segregants from a diploid using the parasexual

cycle.

Since identification of transcription factors involved in pectin degradation using the 

targeted approach by constructing gene deletion mutants in selected transcription factors was 

not successful, a non-targeted approach was chosen. To identify mutants affected in the 

regulation of pectinolytic genes, a forward genetic screen to isolate mutants with constitutive 

expression of pectinases was designed. In Chapter 4, we selected five genes that were 

specifically induced by galacturonic acid (GA) based on available genome-wide expression 

profiles, to construct promoter-reporter strains for studying gene expression related to PGA 

degradation. These genes consist of three exo-polygalacturonases (pgaX, pgxB and pgxC), a 

GA transporter (gatA), and an intracellular enzyme involved in GA metabolism (gaaB), each 

containing a putative conserved galacturonic acid-responsive element (GARE; 5’-
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TCCNCCAAT-3’) in their promoter regions. In Chapter 4, we show experimentally that the 

GARE is indeed required for GA-mediated induction by promoter deletion studies and site-

directed mutagenesis.

To construct the promoter-reporter strains, the promoter regions of the five genes were

selected and fused to the amdS reporter gene. Because expression of the amdS gene renders 

the strain the ability to utilize acetamide as the nitrogen source, the ability to grow on 

acetamide can be used as a direct measurement of promoter activity. Growth analysis of the 

reporter strains indicated that the promoters of four genes (pgaX, pgxB, pgxC, and gatA) were 

specifically induced by GA. It also showed the activation of these four promoters is under the 

control of carbon catabolite repression by glucose in a glucose concentration-dependent way. 

The major transcriptional repressor is CreA for carbon catabolite repression in Aspergillus.

Except in the case of pgxC, deletion of creA in the other promoter-reporter strains abolished 

glucose repression. Deletion of creA in strain containing the PpgxC_amdS reporter was still 

repressed by glucose indicating an alternative repression mechanism for pgxC. For the other 

three reporter strains (PpgaX, PpgxB, and PpgxC) , in the creA mutant, GA was shown to be

required as an inducer to support growth on medium containing acetamide reporter strains. 

Thus these promoter-reporter strains in creA null background can be used to perform forward 

genetic screens for inducer-independent mutants, which may contain a mutation responsible 

for constitutive activation in a GA-specific transcription factor. Such mutants can guide the 

search for transcription factors involved in the activation of GA-responsive genes and in the

regulation of pectin-degrading enzymes in A. niger. The results in Chapter 4 has led us to 

propose a model, in which a GA-specific transcription factor upon activation by GA or a GA-

derivative could bind to the conserved motif GARE (possibly in combination with the HAP-

complex) and drive GA-specific gene expression. 

In Chapter 5, we identified a GA-specific transcription factor (GaaR) in A. niger by its 

homology to Botrytis cinerea GaaR (Zhang et al. 2016). GaaR in B. cinerea was identified via 

a yeast one hybrid (Y1H) screen using a GA-specific promoter containing the GA-motif and 

by expressing B. cinerea TF in S. cerevisiae (Zhang et al. 2016). For identification of 

transcription factors that can interact with a specific DNA sequence, the Y1H is widely 

recognized as a powerful and straightforward approach. The Y1H screening procedure relies 

on the interaction of a single protein (the prey) with a bait DNA sequence positioned upstream 

of a reporter gene. A cDNA library encoding prey proteins is needed for screening. The 

cDNA of the prey protein is fused to the sequence of a transcriptional activation domain. 
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Positive protein-DNA interactions result in recognition and binding of a transcription factor to 

the bait sequence, thereby activating downstream transcription of the reporter gene 

(Ouwerkerk and Meijer 2001; Ouwerkerk and Meijer 2011). In my study, we also used a 

different method and identified gaaX and gaaR as relevant regulatory factors by using a 

reporter strain to do forward genetic screening (Chapter 4 and 6). 

A. niger GaaR is about 50% identical to B. cinerea GaaR on the amino acid level. Deletion 

of gaaR in A. niger showed a strongly reduced growth on GA and PGA, and a little reduced 

growth on sugar beet pectin (SBP) compared to parental strain. The growth phenotype 

indicates that GaaR is required for the utilization and release of GA from pectin. Further 

transcriptomic analysis of the gaaR deletion strain by RNA sequencing showed genes 

encoding 25 pectinolytic enzymes, are not induced on GA in the ΔgaaR, indicating that GaaR 

is required for the induction of these genes on GA. Other genes involved in the degradation 

pectin side chains and involved in catabolism of L-rhamnose, L-arabinose, and D-xylose were 

still expressed in ΔgaaR, indicating that the degradation and metabolism of pectin sugars 

other than GA support the growth of ΔgaaR on SBP.   

GaaR is a member of the family of Zn(II)2Cys6 transcription factor. Both in A. niger and 

B. cinerea it controls expression of genes involved in GA utilization. The GaaR encoding 

gene in A. niger gaaR is 2476 bp long and contains 5 introns resulting in a 740-amino acid 

long protein. GaaR contains a fungal specific DNA-binding domain Zn(II)2Cys6 with the 

pattern of CX2CX6CX6CX2CX6C at the residues 26-56 and a fungal transcription factor 

regulatory middle homology region (fungal_TF_MHR) at residues 139-518. Orthologs of 

GaaR were found across all 20 Aspergillus except Aspergillus glaucus based on the 

information from the Aspergillus genome database (http://www.aspgd.org/). A.glaucus is not 

able to grow on medium with GA as single carbon source (http://www.fung-growth.org/) 

corresponding with the absence of gaaR in A. glaucus, in agreement with the fact that gaaR is 

responsible for the utilization of GA.   

In Chapter 6, the PpgaX-amdS reporter strain mentioned in Chapter 4 was used to screen 

for inducer-independent mutants with constitutive expression of pectinases. For selection of 

mutants showing inducer-independent activation, we performed UV mutagenesis of the 

reporter strain. Mutants which can grow on a non-inducing carbon source with acetamide 

plates were selected. Including also spontaneous mutants obtained on selective acetamide 

plates, a total of 73 mutants were isolated that could grow on non-inducing conditions. 
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Supernatants of these mutants grown on liquid non-inducing conditions were harvested and 

assayed on polygalacturonic acid plates to test pectinolytic activity. Finally, 65 out of the 73 

mutants showed constitutive pectinolytic activity and were considered to be trans-acting 

mutants. In Chapter 5, GaaR was shown to be the transcriptional factor which regulates the 

expression of genes involved in GA utilization. Considering many studies which showed that 

mutations in transcription factor can cause constitutive expression, we were wondering if the 

constitutive phenotype of these mutants could also be ascribed to mutations in gaaR.

Therefore, the gaaR gene of 15 constitutive mutants was sequenced. Unfortunately, there 

were no mutations found in gaaR of these 15 constitutive mutants, meaning that mutations in 

other genes were responsible for the constitutive phenotype. In order to find these other genes,

we selected five constitutive mutants, as well as parent strain to conduct whole genome 

sequencing. The sequencing results revealed allelic mutations in one particular gene encoding 

a previously uncharacterized protein (NRRL3_08194). The gene was named gaaX.

Sequencing of the remaining constitutive mutants showed that all but two of the mutants 

contain a mutation in gaaX. One mutant contains a mutation in GaaR causing the constitutive 

expression of pectinolytic genes and one mutant did not show mutation in either GaaR or 

GaaX. Both mutants will be characterized and studied in more detail in future studies.

Subsequently, we also performed targeted deletion and transcriptomic analysis of the 

mutant strain to study the function of gaaX. Growth assay showed that the ΔgaaX mutant 

grow normally on a variety of C-sources including GA, PGA and pectin. Deletion of gaaX

was also shown to result in constitutive pectinolytic activity in plates assay. RNAseq analysis 

revealed that 37 genes were upregulated in ΔgaaX mutant (FDR<0.001, FC>4.0). Gene 

Ontology (GO) enrichment analysis using FetGOat (Nitsche et al. 2012) and manual 

inspection of the genes upregulated in the ΔgaaX mutant indicated that genes involved in 

pectin catabolism were highly enriched. Of the 37 genes, 16 are predicted to encode 

extracellular enzymes acting on the GA backbone of pectin or acting on pectin side chains. 

Nine genes of the 37 upregulated genes are predicted to encode intracellular proteins. Four of 

these nine genes (gaaA–gaaD) are required for the conversion of GA into pyruvate and 

glycerol (Martens-Uzunova and Schaap 2008). The exact role of the other five genes and their 

possible role in pectin catabolism is currently unknown.

Genomic localization of gaaX (NRRL3_08194) showed the gaaX gene is next to the GA-

specific transcriptional factor gaaR (NRRL3_08195). Among the 19 Aspergillus species 

mentioned in Chapter 4, gaaR and gaaX orthologs showed a strongly conserved genomic 
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clustering pattern: either next to each other or separated by only one or a few genes. Like

gaaR, also gaaX are absent in A. glaucus. The A. niger GaaX protein is predicted to be 697 aa

long. Sequence alignment and BLASTP searches displayed similarity of GaaX to the last 

three domains in the C-terminal half of the AROM protein, which is a large (1586 aa in A. 

niger) pentafunctional protein composed of five domains involved in different enzymatic 

steps of the prechorismate shikimate pathway (Duncan et al. 1987; Hawkins and Smith 1991).

Like GaaX, the previously identified quinate repressor protein QutR is also highly similar to 

the last three C-terminal domains of AROM (Lamb et al. 1996a), Thus GaaX is homologous 

to the quinate repressor protein QutR (Grant et al. 1988). The genomic clustering of gaaX and 

gaaR is analogous to that of the quinic acid utilization transcriptional activator (QutA/Qa-1F) 

and repressor (QutR/ Qa-1S) in A. nidulans and N. crassa, respectively (Geever et al. 1989; 

Levesley et al. 1996). The amino acid homology to the quinate repressor, the similarity in 

chromosomal organization of gaaR/gaaX compared to the known activator/repressor genes 

qutA/qutR, and the constitutive phenotype of the isolated gaaX mutants point to the possibility 

that gaaX encodes a repressor protein that controls the activity of GaaR and keeps GaaR 

inactive under non-inducing conditions, similar as what was predicted for QutA/QutR (Lamb

et al. 1996b; Levett et al. 2000; Watts et al. 2002).

Recent evidence from our group has shown that the GA-metabolic pathway intermediate 

2-keto-3-deoxy-L-galactonate (2-KDG) is likely to act as the inducer (Alazi et al. 2017). We 

propose a model (Figure 1) in which it is postulated that under inducing conditions the

inducer, 2-KDG, will bind to repressor protein GaaX. We speculate that the interaction of the 

inducer with the repressor results in the release of active GaaR from GaaX. Whether this 

occurs in the cytosol or nucleus remains to be determined, but preliminary experiments 

suggests that GaaR is present in the nucleus under inducing and non-inducing conditions (E. 

Alazi, personal communication) suggesting that the interaction takes place in the nucleus. 

Active GaaR induces not only the expression of GA-responsive genes involved in GA release, 

uptake and metabolism, but also induces the expression of gaaX (Martens-Uzunova and 

Schaap 2008; Niu et al. 2017). Under inducing conditions, a sufficient amount of the inducer 

is likely to keep GaaX dissociated from GaaR and consequently the GaaR transcription factor 

will be active. When the concentration of inducer decreases (non-inducing conditions), the

amount of inducer is insufficient to bind to the repressor protein thereby allowing interaction 

between GaaR and the repressor GaaX to inactivate the GaaR transcriptional activator. The 

exact mechanism by which GaaX controls GaaR activity is unknown. However, such a 
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mechanism allows an elegant way which enables the cell to activate GA-induced expression 

when the inducer is present in the cell and allows to turn off expression of GA-responsible 

genes when inducer levels decrease. It also ensures the rapid response to the presence of GA 

as no de novo synthesis of GaaR is required. 

Figure 1. A) Model describing GaaR/GaaX controlled gene expression in response to galacturonic acid (GA).
Under inducing conditions (presence of (poly) galacturonic acid), the inducer 2-keto-3-deoxy-L-galactonate (red 
dot) is predicted to bind to GaaX. The binding of the inducer to GaaX is expected to cause dissociation of the
GaaX /GaaR complex resulting in non-GaaX-bound GaaR which can drive the expression of GA-responsive 
genes. These genes include: gaaX (Martens-Uzunova and Schaap 2008); other transcription factors unknown 
(Niu et al. 2017) (Supplementary Table 3, among the differentially expressed genes between WT and ΔgaaX ,
at least NRRL3_00899 and NRRL3_01451 are supposed to be fungal specific transcription factors); 25 
pectinolytic genes which involved in GA release (Alazi et al. 2016; Niu et al. 2017) ; GA specific transporters 
which take up GA into the cell; and GA intracellular metabolism genes gaaA, gaaB, gaaC, gaaD (Alazi et al.
2016; Niu et al. 2017). Under inducing condition, gaaX is induced but the presence of the inducer keeps GaaX
inactive. B) Under non-inducing conditions (absence of pectin or (poly)galacturonic acid), no inducer is present
to bind to the repressor protein thereby allowing interaction between the repressor GaaX and the transcription
activator GaaR to inactivate GaaR, preventing the expression of GA-responsible genes.
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The proposed model on how GaaR/GaaX regulate gene expression is not only similar to 

what is shown for QutR/Qa-1S) but also shows similarities to the well-known galactose 

regulatory system from S. cerevisiae. In this system, three proteins, Gal3p/Gal4p/Gal80p, are 

involved in the regulation of galactose utilization. Gal4p works as a transcriptional activator, 

Gal80p works as a transcriptional repressor, and Gal3p possibly works as a galactose sensor. 

Gal80p can bind to both of Gal4p and Gal3p. In the absence of galactose, Gal80p binds to 

Gal4p preventing GAL gene expression. In the presence of galactose, galactose triggers an 

association between Gal3p and Gal80p, by binding of galactose to Gal3p relieving Gal4p

from Gal80p (Platt et al. 2000; Timson et al. 2002; Diep et al. 2008; Jiang et al. 2009). The 

differences between the GA utilization system and Gal system are that in the GA case there 

are only two genes found to be involved in the GA utilization system so far. At this point we 

cannot exclude that there is a third gene involved in the GA utilization system. However, 

GaaX does not show homology to Gal80p or Gal3p making it unlikely that the two systems 

are evolutionary related. To further elucidate the regulation mechanism of the GA utilization 

system, future research should be aimed at understanding the biophysical and biochemical 

interactions between GaaR, GaaX and the inducer. Protein-protein interaction between GaaX 

and GaaR could be studies by co-immunoprecipitation experiments under inducing and non-

inducing condition or via biomolecular fluorescence complementation (BiFC). As we have 

shown that GaaX can be labeled with GFP at either the N- or the C-terminus and likewise 

GaaR can be labeled with GFP either at the N- or C-terminus resulting in functional proteins 

(Chapter 6, and E. Alazi, personal communication). Constructs to perform BiFC can be 

designed accordingly.

Another intriguing remaining question is the binding of GaaR and/or GaaX to DNA. 

Although GaaX does not contain known DNA binding motifs, DNA binding can not be 

excluded. GaaR is expected to bind to the GARE motive, but for A. niger this has not been 

experimentally confirmed. Chip-seq experiments could be performed to identify the promoter 

sequences that are actually directly bound by GaaR and/or GaaX. 

Finally, based on the knowledge available for the QutR/QutA regulatory system, it would 

be of interest to dissect the functional domains in both GaaX and GaaR involved in activation,

repression, protein-protein interactions, protein-inducer interactions, and DNA-protein 

interactions. 
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Summary

Aspergillus niger is a saprotrophic filamentous fungus feeding on dead plant material in 

Nature. To be able to utilize the carbon from plant material, the first determined step is to 

break down the plant polysaccharides, which apart from storage carbohydrates like starch and 

inulin, are mainly present in the cell wall of plants. Plant cell walls consist of complex 

polysaccharides, such as cellulose, hemicellulose and pectin. A. niger can produce hydrolytic 

enzymes, such as cellulases, beta-glucosidases, and cellobiohydrolases to degrade cellulose. 

Similarly, xylanases, xylosidases, and arabinofuranosidases are produced to degrade 

hemicellulose, and pectin degrading enzymes, such as exo-polygalacturonases, pectin lyase 

and pectin esterases are produced to breakdown pectin. After degradation of these polymers 

into monosaccharides, these monosaccharides can then be taken up by the cell for intracellular

utilization. Because of the attractive applications of the various hydrolytic enzymes, A. niger

is frequently used as host for the industrial production of these enzymes. These enzymes find

their application in various fields of the food, medical and textile industries. Based on its long 

history of safe use, A. niger enzymes have also acquired the socalled GRAS (generally 

regarded as safe) status. For these reasons high level production of enzymes in A. niger has 

obtained considerable scientific attention. Scientists have made much progress in improving 

enzyme production using a wide variety of approaches: such as screening for hyperproductive 

mutants, optimizing of production medium and optimizing culture conditions. From research 

related to the transcriptional regulation of plant cell wall degrading enzymes in the last 20 

years it has become clear that the expression of the genes encoding these enzymes are tightly 

regulated in filamentous fungi, including A. niger. These genes are under the control of 

substrate specific transcriptional activators and only highly express in response to the 

presence of a particular substrate. The starch regulator AmyR and the xylan regulator XlnR, 

were the first regulators identified using classical techniques. With the rapid development of 

modern functional genomics approaches, several new transcription factors involved in plant 

biomass degradation were identified in Aspergilli in the last few years. These include InuR 

(inulin utilization), Clr-2/ClrB/ManR (cellulose and mannan) utilization; GalX/R (galactose 

utilization); AraR (arabinose utilization), RhaR (rhamnose utilization). However, at the 

beginning of the research described in this thesis, the transcription factors involved in pectin 

degradation were not identified.

Therefore, in this thesis I have focused on the identification of transcription factors 

responsible for pectin degradation and on subsequent studies regarding its specific regulatory 
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mechanisms. The main constituent of pectin is the monosaccharide D-galacturonic acid (GA), 

and GA is the predominant product released from pectin degradation. Elucidation of the 

mechanism underlying the regulation of genes encoding pectin degrading enzymes is 

expected to contribute to improve industrial production of pectinases.

In Chapter 1, I give an introduction of filamentous fungi with a focus on A. niger, as well 

as their industrial application. It describes the impact of advances in next-generation 

sequencing technologies for fungal genetics and genomics. A variety of functional genomics 

approaches have been developed with the rapid advances of several high throughput 

technologies. These approaches include (i) genetic linkage based methods in combination 

with next generation sequencing to characterize mutant genes from strains selected in forward 

genetic screens; (ii) efficient gene deletion approaches like split marker approaches combined 

with NHEJ mutants and CRISPR-Cas9-based genome modification approaches and 

overexpression method for studying gene function; (iii) Microarray and RNA-seq for 

surveying transcriptomics data; and (iv) CHIP-seq for identification of transcription factor 

binding sites. All these methods together provide useful perspectives to understand gene 

regulation. This chapter also describes the major polysaccharides starch, xylan and 

polygalacturonic acid of plant biomass and their substrate specific transcription factors and 

corresponding regulation mechanisms for the expression of genes involved in the degradation 

of these polysaccharides. Chapter 2 describes a split marker approach in combination with 

NHEJ mutants for efficient targeted gene deletion. In Chapter 3, we constructed a set of 

isogenic auxotrophic strains by recycling pyrG marker. These auxotrophic strains can be used 

for constructing multiple gene deletion mutants to study more complex multi-gene families. In 

Chapter 4, we selected five galacturonic acid (GA) induced genes based on available 

genome-wide expression profiles to analyze the regulation of promoter activity of these genes 

in vivo by constructing promoter_amdS reporter strains. Using these strains, we show that 

induction and repression of GA-induced genes is differentially fine-tuned in response to 

inducing and repressing conditions. In Chapter 5, we identified the GA responsive 

transcription activator GaaR of A. niger by homology to BcGaaR of Botrytis cinerea.

Targeted deletion of gaaR and transcriptomic profiling studies of ΔgaaR showed that the A. 

niger GaaR ortholog is required for releasing and utilization of GA from pectin. In Chapter 6,

we describe the use of one of the reporter strains containing Ppgax_amdS construct to screen 

inducer independent mutants that constitutively express pectinolytic enzymes. In Chapter 6

full genome sequencing of five mutants out of totally 65 mutants showing constitutive 

pectinolytic activity revealed allelic mutations in one particular gene, we subsequently named
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gaaX. Targeted deletion of gaaX in combination with RNA-seq analysis of ΔgaaX showed 

that deletion of gaaX or mutations in gaaX cause constitutive expression of a large number of 

genes involved in releasing and utilization of GA. Chromosomal localization shows that gaaX

is syntenous to gaaR, which encodes the transcription activator for GA utilization identified in 

Chapter 5. In Chapter 6, evidence is provided that GaaX is likely to act as a transcription 

repressor which inhibits GaaR activity under non-inducing conditions. The newly discovered 

GA-specific activator/repressor module involved in pectin degradation represents a new and 

unexpected, yet conserved mechanism for controlling transcription in filamentous fungi. In 

the last Chapter (Chapter 7) we summarize and discuss the major conclusions of this thesis 

and propose some future directions to study the proposed interactions between GaaX, GaaR,

and the inducer to decipher further the regulatory mechanism of pectin degradation system in 

A. niger.
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Samenvatting

Aspergillus niger is een saprotrofe filamenteuze schimmel die zich van nature voedt met dood 

plantenmateriaal. Om de koolhydraten van het plantenmateriaal, welke, naast opslag-

koolhydraten zoals zetmeel en inuline, vooral bestaan uit celwand koolhydraten, te kunnen 

gebruiken moeten deze polysacchariden allereerst worden afgebroken tot monomeren. De 

celwanden bestaan uit complexe polysacchariden zoals cellulose, hemicellulose en pectine. A. 

niger kan hydrolytische enzymen zoals cellulases, beta-glucosidases en cellobiohydrolases 

produceren voor de afbraak van cellulose. Op dezelfde manier worden xylanases, xylosidases 

en arabinofuranosidases geproduceerd om hemicellulose af te breken, en pectine afbrekende 

enzymen zoals exo-polygalacturonases, pectine lyase en pectine esterases worden 

geproduceerd als A. niger op pectine wordt gekweekt. Wanneer deze polysacchariden zijn

afgebroken tot monomeren kunnen ze door de cel worden opgenomen en intracellulair

gebruikt. Vanwege de aantrekkelijke toepassingen van de verschillende hydrolytische 

enzymen wordt A. niger vaak gebruikt als gastheer voor de industriële productie van deze 

enzymen. De toepassingen van deze enzymen zijn te vinden in de medische, voedings- en 

textielindustrie. Gebaseerd op zijn lange geschiedenis van veilig gebruik heeft A. niger de

GRAS (Generally Regarded As Safe) status verkregen. 

De bovengenoemde aspecten hebben gezorgd voor veel wetenschappelijke aandacht voor 

het bereiken van hoge productieniveaus van enzymen in A. niger. Wetenschappers hebben 

veel vooruitgang geboekt met het verbeteren van enzymproductie, waarbij een breed scala aan 

methoden zijn gebruikt: het screenen van hyperproductieve mutanten, optimalisatie van 

productiemedium en van kweekcondities. Uit onderzoek van de laatste twintig jaar naar de 

transcriptionele regulatie van plantencelwand afbrekende enzymen is gebleken dat de 

expressie van de genen die coderen voor deze enzymen strikt wordt gereguleerd in 

filamenteuze schimmels, zoals A. niger. De genen staan onder controle van substraat 

specifieke transcriptionele activatoren en vertonen alleen hoge expressie in aanwezigheid van 

een specifiek substraat. De zetmeel regulator AmyR en de xylaan regulator XlnR zijn de 

eerste regulatoren die zijn geïdentificeerd met behulp van klassieke methoden. Door de snelle 

ontwikkeling van moderne “functional genomics” methoden zijn de laatste jaren verschillende 

nieuwe, bij de afbraak van biomassa van planten betrokken, transcriptiefactoren 

geïdentificeerd in Aspergillus soorten. Dit zijn onder andere InuR (inuline afbraak), Clr-

2/ClrB/ManR (cellulose en mannan), GalX/R (galactan), AraR (arabinan) en RhaR 
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(rhamnan). Echter, aan het begin van het onderzoek beschreven in dit proefschrift waren de 

transcriptiefactoren die betrokken zijn bij de afbraak van pectine nog niet geïdentificeerd.

In dit proefschrift heb ik me derhalve gericht op de identificatie van transcriptiefactoren 

die verantwoordelijk zijn voor de afbraak van pectine om vervolgens de specifieke 

regulerende mechanismen hiervan te bestuderen. Het hoofdbestanddeel van pectine is het 

suikerzuur D-galacturonzuur (GA), en na afbraak van pectine is GA dan ook het voornaamste 

afbraakproduct. De verwachting is dat het ophelderen van het mechanisme van regulatie van 

genen coderend voor pectine afbrekende enzymen zal bijdragen aan het verbeteren van de 

industriële productie van pectinases.

In Hoofdstuk 1 geef ik een introductie over filamenteuze schimmels, met nadruk op de 

regulatie van enzym productie in A. niger, en hun industriële toepassingen. Het hoofdstuk 

beschrijft het effect van de ontwikkelingen in next-generation sequencing technieken op 

schimmel-genetica en genomics. Een verscheidenheid aan functional genomics methoden is

ontwikkeld door de snelle vooruitgang van verschillende high throughput technologieën. Dit

zijn o.a. (i) methoden gebaseerd op klassieke genetica gecombineerd met next-generation 

sequencing om mutante genen te karakteriseren van stammen die geselecteerd zijn in een 

zogn. forward genetic screen; (ii) efficiënte gen-deletie methoden, zoals de Split Marker 

methode gecombineerd met NHEJ mutanten en CRISPR-Cas9 gebaseerde 

genoommodificaties, en over expressie methoden om daarmee de functie van genen te 

bestuderen; (iii) Micro-array en RNA-seq methoden om transcriptome analyse uit tevoren en 

(iv) CHIP-seq methodes voor het identificeren van de bindingsplaats van transcriptiefactoren

op het DNA. Deze methoden samen zorgen voor een bruikbare aanpak om genregulatie te 

begrijpen. Dit hoofdstuk beschrijft ook de voornaamste polysacchariden van biomassa van 

planten, nl. zetmeel, xylan, en polygalacturonzuur, en hun substraat specifieke 

transcriptiefactoren en de corresponderende regulatie mechanismen voor de expressie van 

genen die betrokken zijn bij de afbraak van deze polysacchariden. Hoofstuk 2 beschrijft een 

Split Marker methode gecombineerd met NHEJ mutanten, voor het efficiënt maken van 

gerichte gen-deleties. In Hoofdstuk 3 hebben we een set van isogene, auxotrofe stammen 

gemaakt door middel van het gebruik van de recycleerbare pyrG marker. Deze auxotrofe 

stammen kunnen gebruikt worden voor het maken van meervoudige gen-deleties voor het 

bestuderen van meer complexe multi-gen families. In Hoofdstuk 4 worden, gebaseerd op 

beschikbare genoom-brede gen-expressieprofielen, vijf genen geselecteerd die worden 

geïnduceerd op medium met galacturonzuur (GA), om de regulatie van de promoter activiteit 
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van deze genen in vivo te bestuderen d.m.v. het maken van stammen met de promoter_amdS

reporter. Met behulp van deze stammen tonen we aan dat de inductie en repressie van GA-

geïnduceerde genen op verschillende wijze wordt verfijnd in reactie op inducerende en 

represserende condities. In Hoofdstuk 5 hebben we de GA-reactieve transcriptionele activator 

GaaR geïdentificeerd d.m.v. homologie met de GA-transcriptie-activator BcGaaR uit Botrytis 

cinerea. Gerichte deletie van gaaR en transcriptomische profiling van een gaaR deletie stam 

(ΔgaaR) heeft aangetoond dat de GaaR ortholoog van A. niger noodzakelijk is voor het 

vrijkomen van GA vanuit pectine en het gebruik ervan. In Hoofdstuk 6 beschrijven we het 

gebruik van de reporter stam die het PpgaX-amdS construct bevat, om te screenen voor 

inductie onafhankelijke mutanten die pectinolytische enzymen constitutief tot expressie 

brengen. Sequentie-analyse van het volledige genoom van vijf van totaal 65 van deze 

mutanten, onthulde mutante allelen van één enkel gen, dat we gaaX hebben genoemd. 

Gerichte deletie van gaaX, gecombineerd met RNA-seq analyse van een gaaX deletie stam,

toonde aan dat deletie van gaaX (of mutaties in gaaX) constitutieve expressie veroorzaakt van 

een groot aantal genen die betrokken zijn bij het vrijmaken van GA uit pectine en het 

gebruiken van GA. Chromosomale localisatie toont aan dat gaaX gelegen is direct naast gaaR,

dat codeert voor de transcriptionele activator voor het gebruik van GA, zoals beschreven in 

Hoofdstuk 5. In Hoofdstuk 6 wordt experimenteel aannemelijk gemaakt dat GaaX werkt als 

een transcriptonele repressor, die GaaR activiteit onderdrukt tijdens niet-inducerende 

condities. Deze nieuw ontdekte GA-specifieke activator/repressor module, betrokken bij 

afbraak van pectine, vertegenwoordigt een nieuw en onverwacht, maar duidelijk

geconserveerd, mechanisme om transcriptie te controleren in filamenteuze schimmels. In het 

laatste Hoofdstuk (Hoofdstuk 7) vatten we de belangrijkste conclusies van dit proefschrift 

samen en bediscussiëren deze. Ook stellen we enkele toekomstige onderzoeksrichtingen voor 

om de voorgestelde interacties tussen GaaX, GaaR en de inducer te bestuderen om zo de 

regulatie mechanismen van het pectine afbrekende systeem in A. niger verder te ontcijferen.
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Stellingen 
 


Behorende bij het proefschrift 
 


Transcriptional control of pectin degrading enzymes 
 in Aspergillus niger 


 
• With the development of next generation sequencing techniques, forward 


genetic screens in combination with genome sequencing has become a 
powerful and affordable approach to identify novel elements of regulatory 
pathways. 
This thesis 
 


• The fact that in a forward genetic screen mutations in both gaaR and gaaX 
were identified that caused constitutive expression of pectin degrading 
enzymes could be explained by a physical interaction between these 
regulatory factors. 
This thesis 
 


• Different approaches to study the regulation of galacturonic acid-dependent 
gene expression identified only partially overlapped collection of genes, 
indicating that besides GaaR and GaaX, also other yet unknown 
(transcription) factors are involved in the regulation of galacturonic acid 
utilization. 
(Martens-Uzunova and Schaap 2008; Chapter 5 and Chapter 6) 
 


• Structural similarity between 2-keto-3-deoxy-L-galactonate and 
dehydroquinate, suggests that for the galacturonic acid pathway the inducer 
binds to the “dehydroquinase-like” domain of the GaaX repressor protein as 
was found for QutR in quinate pathway. 
(http://www.ebi.ac.uk/chebi/init.do; Giles et al. 2000; Levett et al. 2000; 
Chapter 6) 
 


• Carbon catabolite repression in filamentous fungi is normally mediated by 
the wide domain regulator CreA. However, our results show that the pgxC 
promoter is still repressed by glucose in the creA null background 
suggesting the presence of a role for an alternative repression mechanism.  
(Chapter 4) 
 







• Based on results for A. niger, LaeA is not only a regulator of classical 
secondary metabolism but also of the production of organic acids. 
(Bok and Keller 2004; Niu et al. 2016) 
 


• The CRISPR-Cas9 system is an adaptive immune system in bacteria 
protecting them from naturally occurring genome modifications caused by 
viral infections. Bacteria would be surprised to find that this natural system 
has evolved into a powerful tool for modifying their genome and the 
genome of many other species. 
 


• The current set-up of CRISPR-Cas9 system for gene targeting provides little 
benefit over the split marker approach combined with NHEJ mutants. 
(Weyda et al. 2017; Chapter 2)  
 


• Given the Dutch climate experience from a foreigners eye, the English 
expression for heavy rains perfectly explains why so many cats and dogs are 
seen everywhere in the Netherlands. 
 


• Experiencing the deadlines in the final stages of doing a PhD study gives a 
better understanding of the Chinese saying “an inch of gold will not buy an 
inch of time (寸金难买寸光阴)”.  
 







