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Abstract  

 

Purpose: Extraction of the aorto-femoral vascular trajectory is important to utilize computed 

tomography angiography (CTA) in an integrated workflow of the image-guided work-up prior 

to trans-catheter aortic valve replacement (TAVR). The aim of this study was to develop a new, 

fully-automated technique for the extraction of the entire arterial access route from the 

femoral artery to the sino-tubular junction. 

Methods: An automatic vessel tracking algorithm was first used to find the centerline that 

connected the femoral accessing points and the aortic valve. Subsequently, a deformable 3D-

model fitting method was used to delineate the lumen boundary of the vascular trajectory in 

the whole-body CTA dataset. A validation was carried out by comparing the automatically 

obtained results with semi-automatically obtained results from two experienced observers.  

Results:  The whole framework was validated on whole body CTA datasets of 36 patients. The 

average Dice similarity indexes between the segmentations of the automatic method and 

observer 1 for the left ilio-femoral artery, the right ilio-femoral artery and the aorta were 

0.977±0.030, 0.980±0.019, 0.982±0.016;the average Dice similarity indexes between the 

segmentations of the automatic method and  observer 2 were 0.950±0.040, 0.954±0.031 and 

0.965±0.019, respectively. The inter-observer variability resulted in a Dice similarity index of 

0.954±0.038, 0.952±0.031 and 0.969±0.018 for the left ilio-femoral artery, the right ilio-

femoral artery and the aorta. The average minimal luminal diameters of the ilio-femoral artery 

were 6.03±1.48 mm, 5.70±1.43 mm and 5.52±1.32 mm for the automatic method, observer 1 

and observer 2 respectively. The minimal luminal diameters of the aorta were 13.43±2.54 mm, 

12.40±2.93 mm and 12.08±2.40 mm for the automatic method, observer 1 and observer 2 

respectively. The automatic measurement overestimated the minimal luminal diameter 

slightly in the ilio-femoral artery at the average by 0.323 mm (SD= 0.49mm, p<0.001) 

compared to observer 1 and by 0.51mm (SD = 0.71mm, p<0.001) compared to observer 2. 

Conclusion: The proposed segmentation approach can automatically provide reliable 

measurements of the entire arterial accessing route that can be used to support TAVR 

procedures. To the best of our knowledges, this approach is the first fully automatic 

segmentation method of the whole aorto-femoral vessel trajectory in CTA images. 

International Journal of Cardiovascular Imaging.  

August 2016, Volume 32, Issue 8, pp 1311–1322. 
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3.1 Introduction  

    Aortic valve stenosis is a disease particularly prevalent among senior 
citizens over the age of 65 years (Nkomo et al. 2006). If left untreated, it 
is associated with a significant mortality. Historically surgical aortic valve 
replacement (SAVR) was used to treat this disease. Unfortunately, not all 
patients are suitable for such a procedure. Especially, SAVR may be 
associated with a high perioperative mortality risk in elderly patients 
(Nkomo et al. 2006; Schoenhagen, Hausleiter, et al. 2011). Trans-catheter 
Aortic Valve Replacement (TAVR) / Trans-catheter Aortic Valve 
Implantation (TAVI) has been developed as a therapeutic option during the 
last decade for the inoperable or very high-risk patients (Zajarias and 
Cribier 2009).  
   To minimize the procedure-related complications, special attention should 
be given to the selection procedure to decide which patients are suitable 
TAVR candidates. Computed tomography (CT) imaging has been proven to 
be able to predict vascular complications among patients undergoing 
transfemoral transcather aortic valve replacement (TF-TAVR) 
(Krishnaswamy et al. 2014) . Evaluation of the size and tortuosity of the 
ilio-femoral arteries is required to determine the feasibility of a transfemoral 
(TF) approach (Agarwal et al. 2015; Schoenhagen, Kapadia, et al. 2011). 
Furthermore, the size of the entire aorta is also needed for proper device 
selection in TAVR (Achenbach et al. 2012; Leipsic et al. 2011). To integrate 
such measurements seamlessly and conveniently into the TAVR clinical 
workflow, a fully automatic framework was developed, allowing detection 
of the femoral/aorta access route and the vessel sizes based on 3D contour 
detection approaches.  
    In the literature, several approaches have been described for the 
detection of the arterial contours in CTA data sets. David Lesage et al 
(Lesage et al. 2009) reviewed the state-of-the-art on vascular 
segmentation in multi-modality images. The model-based vascular 
segmentation approach is commonly used. In our study, the vessel surface 
was modeled by a centerline curve with a generalized cylinder. This cross-
section model with prior shape information can reduce the complexity of 
the contour detection procedure (Kitslaar et al. 2015). 
    The approach that we have taken consists of 2 steps (Fig 3.1), firstly, a 
centerline extraction from the femoral arteries to the aortic root (Gao et al. 
2014); and secondly, a 3D contour detection approach using a subdivision 
surface model fitting method to accurately delineate the vascular access 
route (Kitslaar et al. 2015). Validation of this study was realized on 36 CTA 
datasets which were acquired during routine clinical practice prior to the 
TAVR procedures. 
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Fig 3.1. The general pipeline of trajectory contour detection, including two 

steps: centerline extraction and contour detection. 

3.2 Methods  

Centerline extraction                  

     Since the details of the fully automatic centerline extraction algorithm 
were published in (Gao et al. 2014), we briefly summarize the steps below.  

The CTA datasets were resampled at first to reduce the computation 
time. The centerline extraction step was executed on the resampled images. 
A wave-propagation algorithm was used, starting from the aortic arch which 
is detected automatically. To detect the aorta arch, prior knowledge about 
aorta diameter from clinical research (Mao et al. 2008) was integrated into 
a Gaussian probabilistic distribution model (Metz et al. 2009). After 
calculating the probabilistic model, a probability map was generated. From 
a point in the aorta arch, the algorithm propagated in two directions. One 
side propagated into the aortic root, and the other side propagated into the 
femoral arteries. After the wave propagation, the result image was used as 
a weight image for the Dijkstra shortest path algorithm. The Dijkstra 
algorithm was executed twice. First, to extract the centerline from the left 
femoral artery end to the aortic root. Second, to extract the centerline from 
the right femoral artery end to the aortic root. After these two centerlines 
were found, the bifurcation point of the two centerlines was detected. 
Finally, the centerlines were split into 3 parts: the centerline in the aorta, 
in the left ilio-femoral artery and in the right ilio-femoral artery.  
      Next, the centerlines in the femoral arteries were improved by a 
centerline refinement step. For this, a multi-scale medialness response 
based wave-propagation scheme (Gülsün and Tek 2008) was used. First, 
multi planar reconstruction (MPR) transversal image slice stacks were 
generated according to the initial centerline along the femoral artery. Next, 
the medialness response was computed from a circle centered at the initial 
centerline point, with multi-scale radius. This response was constructed as 
to give high values inside the center of the lumen and lower values inside 
calcifications. The response was used as the speed function for the wave 
propagation and back tracking method to generate the final refined 
centerline. Fig 3.2 shows an example of the comparison of the automatic 
extracted centerline and the refined centerline. 
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Fig 3.2. Result of centerline refinement step. The red crosses are the original 
centerline points; the blue crosses are the refined centerline points. The blue points 

avoid the calcium, and are better located in the middle of the cross-section of the 
artery lumen compared to the red points. 

Contour detection 
    The vascular trajectory was segmented by a deformable model fitting 
method (Kitslaar et al. 2015). The deformable model was constructed from 
a coarse surface mesh representation created from the obtained 
centerlines. From this coarse mesh a smooth higher resolution surface mesh 
was created using a standard subdivision refinement scheme. This higher 
resolution subdivision surface was next deformed by iteratively updating 
the coarse mesh description by fitting to the lumen edge information in the 
CT scans. In (Kitslaar et al. 2015), this model was applied in CTA images of 
the carotid artery including bifurcations, and provided good results. A big 
advantage of the subdivision surface approach is that it is able to model the 
bifurcation of the iliac arteries.  
Pre-processing 

      In our study, whole-body CTA datasets were used. In these images 
different kinds of anatomic tissues can be distinguished. The surrounding 
background of the contrast-filled vessels is quite complex and may confuse 
the subdivision surface fitting. For our purposes, we distinguished two 
background categories: high intensity tissue (calcifications, bones, and 
metal artifacts), and low intensity tissue (muscles, fat, liver etc.). We 
masked out the surrounding background by an adaptive threshold method 
similar to Shahzad et al (Shahzad et al. 2013).  
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Fig 3.3. Intensity profile along the centerline (yellow curve), polynomial curves (green). 
Yellow curve: intensity values in HU of the voxels along the centerline (in mm). Green 

curves: 2nd order polynomial fit (b) of the intensity values with standard deviation 
margin above (a) and below (c). 

 

   This method is based on the assumption that the HU value (intensity) 
along the artery should be a smooth gradual decreasing curve when this 
artery is without the presence of calcium (Steigner et al. 2010).  
      Based on this, an intensity profile of the voxels along our initially 
extracted centerline was extracted (Fig 3.3). Next, a 2nd order polynomial 
curve was fitted through the intensity profile data; this curve simulated the 
ideal case without calcium. Curve “b” in Fig3. shows this polynomial fit 
curve. Also shown is curve “a” which is an upward shifted version of curve 
“b” obtained by adding a constant value proportional to the standard 
deviation of the intensities in the profile. The values on curve “a” were used 
as the intensity threshold values for the high intensity structures (e.g 
calcium) on the corresponding image slices along the vessel centerline. A 
similar method was used to find the tissue with lower intensity than the 
contrast-filled lumen using curve “c” which is a  downward shifted version 
of curve “b”. Fig 3.4 shows examples of the original and mask slices in the 
CTA data using this method. 
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Fig 3.4. Examples of pre-processed slices. (a). original femoral artery image (b) 

processed femoral artery image (c) original aorta image (d) processed aorta image. 
The purple arrows in (a) and (b) indicate low intensity tissue that has been removed in 

processed image, other arrows indicate the processed high intensity tissue. 
 

Model fitting 

    The deformable model was initialized from the centerline curves as a 
generalized cylinder with local diameter information obtained during the 
centerline extraction step (Gao et al. 2014). At the bifurcation a dedicated 
model was used to best describe the current bifurcation configuration. After 
initialization, the complete surface model was subdivided using the Loop 
subdivision scheme to generate a smoother surface model (Loop 1987). The 
subdivision surface model fitting was next performed on the processed 
intensity image. The fitting of the surface was based on the iterative 
movement of the control points according to the computed image forces.  
    During the deformation iterations, a re-initialization step was used 
(Kitslaar et al. 2015). During this re-initialization, a new subdivision surface 
model is generated based on the current fitted surface. For this, new 
centerline and diameter information was extracted from the current 
deformed subdivision surface and used to initialize the new surface model. 
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The re-initialization allows adapting the surface mesh model to various 
vessel radii in the vessel trajectory.  

 

 

    Fig 3.5. a, self-intersection in 2d cross-section contour b. 3D surface with self-
intersection c.d. 2D cross section contour and 3D surface with no self- intersection 

when using a non-self-intersection force. 
 

    To prevent unwanted deformations during the fitting, a non-self-
intersection force was used, similar to the method in (Park et al. 2001) (see 
Fig 3.5).  
   The whole algorithm pipeline was implemented in C++ and Python using 

the MeVisLab environment (version 2.7, Bremen, Germany).  
VALIDATIONS 

Segmentation evaluation 
  To evaluate the automatic segmentation method two experienced 

observers independently corrected the automatic segmentation result. This 
was done using a dedicated editing tool in which the automatically obtained 
surface model could interactively be deformed. 
     To compare the different segmentation results to obtained 3D surface 
models where resliced along the centerlines to obtain planar 2D contours. 
From these contours the cross sectional area and the minimal diameter 
were calculated as clinical parameters and compared between the different 
segmentation results. Also the Dice similarity index (or coefficient) was 
calculated between the contours from the different segmentation results. 



 

31 

 To investigate the influence of image quality, also the mean and 
standard deviation of the HU values in the descending aorta were measured 
for each subject. 
Statistical analysis 

The results of the clinical parameters from the automatic segmentations 
were compared with the results from the semi-automatic segmentations 
of the observers by the paired t-test. The Bland-Altman plots were 
calculated to quantify the mean error and the standard deviation (SD). 
The correlations were estimated by Pearson’s correlation coefficient.  

The statistical analyses were conducted with SPSS (version 20.0, SPSS 
Inc, Chicago, IL, USA) and MedCalc (version 15.6, Ostend, Belgium).      

3.3 Results   

Data acquisition protocols 
 This is a retrospective study; the datasets were acquired before this 

research project started as part of routine clinical care protocols. Only 

anonymous routine clinical datasets were used. 

 A total of 38 patients underwent pre-operative CTA scanning for TAVR. 

The baseline characteristics of these patients are listed in Table 3.1. Two 

patients were excluded for the following reasons: one patient did not have 

a whole-body CTA dataset, whereas in the other patient the contrast in the 

aorto-femoral vessel trajectory was very low.  

 The datasets were acquired in two hospitals: Leiden University Medical 

Center (LUMC) in Leiden, the Netherlands, and Fuwai Hospital in Beijing, 

China. The CTA datasets from LUMC were collected on a 320-row CT scanner 

(Aquilion ONE, Toshiba Medical System, Japan) by using a helical scan 

protocol. A bi-phasic injection protocol with intravenous contrast was used: 

70ml contrast (5ml/sec) and 50ml saline (5ml/sec) (de Graaf, Schuijf, van 

Velzen, Boogers, et al. 2010). The datasets from Fuwai Hospital were 

acquired on a dual source CT scanner (SOMATOM Definition FLASH, 

Siemens, Germany) by using a helical scan protocol. A single-phasic 

injection protocol was used: 350mgI/ml (3-4ml/s).The axial image size of 

the whole-body CTA image was 512×512. In each patient, there were 

approximately 1000 image slices in the z axis. 

Centerline evaluation      

As was described in (Gao et al. 2014), in all the 36 patients (100%) the 
centerlines were extracted successfully from the common femoral arteries 
to the sino-tubular junction, inside the lumen of the vessel. The average 
root mean square error between the automatic and manual corrected 
centerlines was 2.55±0.70mm and the average mean error was 1.63 ± 
0.40mm.   
Contour evaluation      
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Table 3.1 Baseline characteristics 
 

Table 3.2 shows the Dice similarity results comparisons between the 
automatic and the observer corrected segmentations for the different parts 
of the segmented trajectory. 

The average Dice similarity indexes between the automatic method and 
the first observer were 0.977±0.030, 0.980±0.019, 0.982±0.016 for the 
left ilio-femoral artery, the right ilio-femoral artery and the aorta, 
respectively; the average Dice similarity indexes between the automatic 
method and the second observer were 0.950±0.040, 0.954±0.031 and 
0.965±0.019, for the left ilio-femoral artery, the right ilio-femoral artery 
and the aorta, respectively. The inter-observer variability resulted in a Dice 
similarity index of 0.954±0.038, 0.952±0.031 and 0.969±0.018 for the left 
ilio-femoral artery, the right ilio-femoral artery and the aorta, respectively 
(Table 3.2). 
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Table 3.2 Performance of automatic segmentation comparing to each of the 
observers and the observers to each other. 

 

To find if there is any correlation between the contour detection and the 
quality of the datasets, the mean and standard deviation of the HU value 
within the descending aorta of each patient were measured and plotted 
together with the Dice similarity index of the aorta between the automatic 
system and observer 1 (Fig 3.6). 
Clinical evaluation      
     The most important clinical parameter for the vascular access route is the 
minimal luminal diameter (MLD). In this study we separated the vascular 
access route into 3 segments: the two ilio-femoral arteries and the aorta. 
The cross-sectional diameter was calculated at every point along each 
centerline segment to build a diameter curve.  

  
Fig 3.6. The image qualities and the contour detection evaluation of the datasets: the 

blue line is the mean of HU value of the descending aorta, the red is the standard 
deviation (left vertical axis) and the green is the Dice index (right vertical axis). 

 
For the ilio-femoral access, the diameter and area measurements were 

taken along the centerline bilaterally with the minimum luminal 
measurement in both left and right side, including common iliac 
artery(CIA), external iliac artery(EIA), and common femoral artery(CFA) 
(Krishnaswamy et al. 2014; Kurra et al. 2009; Leipsic et al. 2011; Okuyama 
et al. 2014) . For the aorta, the diameter measurements were taken along 
the centerline from the abdominal aorta until the sino-tubular junction, 
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including abdominal aorta, descending aorta and ascending aorta 
(Achenbach et al. 2012).  

The mean value, standard deviation and 95% confidence interval of the 
parameters are shown in Table 3.3. The correlation and Bland-Altman bias 
are shown in Table 4. The correlations between automatic group and 
observer groups were 0.81- 0.94, with p-values smaller than 0.001. With 
the commonly used significance level value 0.05, the correlations can be 
called statistically significant.  

 

Table 3.3. Results of minimal luminal diameter and area measurements from 
automatic, the observer 1 and the observer 2 measurement. 

 

 

Table 3.4. Results of minimal luminal diameter and area measurements: comparing 
the automatic to observer 1 and observer 2, and the observers to each other. 

 

The Bland-Altman plots of the minimal ilio-femoral luminal lumen 
diameter and area are shown in Fig 3.7. The mean and SD of the difference 
between the minimal luminal diameters (MLD) of the automatic 
segmentation and the observer1 segmentation were 0.32mm and 0.49mm, 
respectively, and for the minimal luminal area (MLA) 2.53mm2 and 
5.23mm2. The mean and SD of the difference between the MLD of automatic 
segmentation and the observer2 segmentation were 0.51mm and 0.71mm, 
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respectively, and for the MLA 6.19mm2 and 7.58mm2. The mean and SD of 
the difference between the MLD of the observer1 segmentation and the 
observer2 segmentation were 0.18mm and 0.71mm, respectively, and for 
the MLA 3.66mm2 and 6.89mm2. 
   The Bland-Altman plots of the aorta minimal luminal diameter are shown 
in Fig 3.8. The mean and stand deviation of the difference between the MLD 
of the automatic segmentation and the observer1 segmentation were 
1.03mm and 1.41mm. The mean and stand deviation of the difference 
between the MLD of the automatic segmentation and the observer2 
segmentation were 1.35mm and 1.00mm. The mean and stand deviation 
of the difference between the MLD of the observer1 and the observer2 
segmentation were 0.32mm and 1.28mm. 

3.4 Discussion  

   Over the past few years, the development of TAVR pre-operative planning 
applications has been driven by the increasing need for proper access route 
selections and prosthesis size selection during TAVR, and prediction of post-
TAVR vascular complications. Computed tomography has received a lot of 
interest because of its 3D imaging specifications as compared to 2D 
angiography’s limited information (Okuyama et al. 2014). With multiplanar 
reformatting (MPR) images, the arterial lumen can be measured accurately 
in each cross-section, appreciating the elliptical nature of the artery 
(Delgado et al. 2010; Goenka et al. 2014; Krishnaswamy et al. 2014). 
However, such a manual detection procedure will require too much time 
and will introduce variabilities. An automatic procedure will be able to 
reduce the effort and support both inexperienced and experienced 
observers. 

In this paper, a 3D method was introduced for the automatic 
segmentation of the vessel trajectory for TAVR pre-operative planning in 
whole-body CTA images. To our knowledge, this is the first solution which 
can automatically segment the whole vessel trajectory from femoral artery, 
iliac artery, abdominal aorta, descending aorta up to the ascending aorta in 
a whole-body CTA image data set published in articles.  

   The whole procedure only requires about 90 seconds on a computer 
with Core i7 3770 and 8GB RAM with 4 CPU threads, and can be further 
optimized. In our procedure, the quantification of the entire aorta-femoral 
trajectory is implemented, including the ilio-femoral arteries, the thoracic 
and abdominal aorta. In previous studies on aortic aneurysms, aortic 
measurement have also been implemented. In the work by Müller-Eschner 
et al it took 2.5-5.7 minutes with purely manually measurement on axial 
slices, and 4.6- 9.3 minutes on MPR images on the thoracic aorta; with a 
semi-automatic centerline extraction method, the analysis time was 3.5-9.3 
minutes (Müller-Eschner et al. 2013). In the study by Kaufmann et al, the 
mean time to only detect the maximal diameter of the abdominal aorta 
aneurysm manually was 104.7±24.9 s with double-oblique images and 
175.2±100.9s to segment semi-automatically the abdominal aorta 
aneurysm to achieve maximal diameter (Kauffmann et al. 2011). 
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   In our fully automatic segmentation procedure, a deformable 
subdivision surface model fitting was used. The deformable subdivision 
surface model is a new 3D model which processes the entire 3D data set 
instead of detecting the 2D transversal contour separately in each 2D image 
slice or detecting the 2D longitudinal contour on stretched MPR image. The 
control points on the subdivision surface are always searching in 3D space 
for the target boundary of artery. Another method which is similar to our 
method is the 3D deformable cylindrical Non-Uniform Rational B-Spline 
(NURBS) model fitting (van’t Klooster et al. 2012). However, the 
advantages of deformable subdivision surface model fitting are that it is 
able to deal with objects with complex topology such as artery bifurcations 
and it is flexible to deal with complex shapes in the ilio-femoral luminal 
areas. However, when the model is too flexible, there might be self-
intersection of surface. In this study, therefore, a non-self-intersection force 
was added to overcome this problem. In the future, we believe that the 
deformable subdivision surface model can also be used to segment other 
complex anatomical structures, such as the aortic root. 

  The ability to detect the minimal luminal diameter and area of the ilio-
femoral arteries in each patient is another important feature of this 
application. For the pre-operative planning of TF-TAVR, the minimal ilio-
femoral artery diameter decides the external sheath size. Post-operatively, 
vascular access site issues in TF-TAVR procedure are the most common 
companion disease (Toggweiler et al. 2013). It is the main complication in 
more than 15% of the patients undergoing TF-TAVR in (Krishnaswamy et 
al. 2014). Sheath-to-ilio-femoral artery ratio (SIFAR), defined as “sheath 
outer diameter divided by access-side vascular diameter” is known to be 
predictive of major vascular complications which have high correlation with 
higher mortality. Whether the TF-TAVR is acceptable will depend on the 
value of SIFAR (Okuyama et al. 2014). In (Krishnaswamy et al. 2014), the 
sheath to artery ratio was calculated by diameter and area, and the area’s 
result seems more reliable. In this study, both diameter and area of the ilio-
femoral arteries were calculated, making the patient selection procedure in 
TAVR pre-operative planning reliable.  

   Quantitative evaluations were performed in two stages. The first stage 
was a comparison of the automatic contours with the manually corrected 
contours. The dice similarity index in our study was found to be at least 
0.95. 

   In Fig 6, the measurement of the Hounsfield units of the contrast in the 
descending aorta was shown. This provides the indication on the quality of 
the datasets, which are the amount and the standard deviation of contrast 
in the aorta. It is apparent that if there is less contrast in the aorta and the 
contrast is inhomogeneous, the extraction of the aorta will be more difficult. 
But however, in our procedure, the automatic segmentation results of 
different datasets were always good according to dice similarity index. This 
proves the robustness of our method.  

   The second stage was the comparison of clinical parameters from 
automatic and manually-corrected segmentation. The correlation between 
the automatic method and the first observer was much higher than the 
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inter-observer variability, and the correlation between the automatic 
method and the second observer was similar to the inter-observer 
variability. The result indicates that the automatic method is trustful 
compared to the manual corrected method. The automatic method 
overestimated the lumen area and diameter in the ilio-femoral arteries 
comparing to the results from both observers slightly by around 1 pixel. The 
variabilities between the observers of clinical parameters are much higher 
than the variabilities between automatic measurement and observer 1; the 
variabilities between the observers of clinical parameters are similar to the 
variabilities between automatic measurement and observer 2. This means 
that our technique is more reproducible than between the observers.  
        In research, CTA-based semi-automatic segmentation software was 
used to measure minimal luminal diameter for TF-TAVR. The result was 
evaluated by manual results on projection angiography (XA). The difference 
in minimal luminal diameter between the software and the ground truth was 
higher than 1.2 mm in the ilio-femoral artery segments. In our study, the 
automatic measurement overestimated the MLA only by 0.323 mm 
compared to observer1, and by 0.51mm compared to observer2, similar to 
the size of one pixel in the images we used. 

   In three cases the automatic procedure showed segmentation issue, 
this can be explained as follows. During the subdivision surface model fitting 
step, the strongest edge in the intensity image was searched for within 
certain distance range. This search range was the same for both tiny vessel 
(such as femoral artery) and larger vessel such as the aorta. Making the 
search ranges variable for the different vessel sizes should improve the 
framework and prevent these issues in the future. 

3.5 Conclusions  

   In conclusion, this automatic TAVR pre-operative application has 
demonstrated to be able to accurately segment the whole vascular access 
and measure minimal lumen of the vascular access for TAVR planning in 
CTA data set. 
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Fig 3.7. Bland-Altman plot of minimal ilio-femoral luminal lumen comparing automatic 
measurement, the observer1 and the observer2 
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Fig 3.8 Bland-Altman plots comparing minimal aorta luminal diameter measurements 

between automatic, observer 1 and observer 2. 
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