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Chapter

General introduction and outline

Adapted from:

Targeting white, brown and perivascular adipose tissue

in atherosclerosis development.

Eur J Pharmacol 2017; in press

Immune modulation of brown(ing) adipose tissue in obesity.  

Endocr Rev 2017; 38: 46-68
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OBESITY, ETHNICITY AND RISK OF METABOLIC 
DISORDERS

According to the World Health Organization, the worldwide prevalence of obesity, defined 
as a body mass index (BMI) > 30 kg/m2, has nearly doubled since 1980 and at least 2.8 
million people die each year as a result of obesity. This number is expected to further 
increase over the next decade. Obesity has a great impact on public health as it leads to 
disorders such as type 2 diabetes and cardiovascular disease (1, 2). It has become evident 
that besides BMI, ethnicity determines the risk of developing both type 2 diabetes (3-5) and 
cardiovascular disease (6-9). South Asians, who originate from the Indian subcontinent and 
compose 20% of the world population, have a higher risk of developing these pathologies 
compared to white Caucasians. Despite the presence of predisposing classical risk factors 
such as central obesity, insulin resistance and dyslipidemia in this population (10, 11), the 
high prevalence of type 2 diabetes and cardiovascular disease in South Asians cannot be 
explained by these factors alone (9, 12). This suggests that other, non-classical, risk factors 
underlie their increased susceptibility (13).

LIPID METABOLISM

Obesity develops as a result of a long-term positive energy balance and storage of lipids in 
several tissues. The most abundant lipid types in our diet are triglycerides and cholesterol. 
Triglycerides are the storage form of the main source of energy for the body, i.e. fatty acids. 
Fatty acids are burnt by the heart and muscle to generate adenosine triphosphate (ATP), 
a molecule that carries energy in the form of a covalent bond holding a phosphate group. 
ATP is required for many cellular and metabolic processes such as muscle contraction (14). 
Brown adipose tissue (BAT) uses fatty acids to generate heat rather than ATP (15) (Fig. 1). 
When intake of energy exceeds the body’s needs, fatty acids are stored as triglycerides 
in white adipose tissue (WAT), a process that also uses glucose to generate the glycerol 
backbone to which fatty acids are esterified (16). For humans, cholesterol does not provide 
energy, but is an essential component of cell membranes and a precursor for synthesis 
of steroid hormones, vitamin D, and bile acids. Interestingly, cholesterol from the host is 
also used by certain bacteria such as Mycobacterium bovis as energy source when they 
colonize a host (17, 18).

Lipids are hydrophobic and thus insoluble in blood, for which they are transported in 
lipoprotein particles. Lipoprotein particles exist of a lipid-rich core containing triglycerides 
and cholesteryl esters, the storage forms of fatty acids and cholesterol, respectively, 
surrounded by an amphipathic monolayer of phospholipids and unesterified cholesterol 
in which specific proteins (i.e. apolipoproteins) are embedded. Upon a meal, dietary 
triglycerides and cholesterol are taken up by intestinal cells, which assemble the lipids into 
triglyceride-rich lipoproteins carrying apolipoprotein B (apoB) named chylomicrons, that 
subsequently travel via the lymph to the blood. From the blood, they can provide tissues 
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with fatty acids. The liver secretes triglyceride-rich lipoprotein particles, named very-low 
density lipoproteins (VLDL), into the blood to supply tissues for their energy demand as 
well, which is crucial especially during times of fasting. Chylomicrons and VLDL deliver 
fatty acids mainly to heart, muscle and adipose tissues as these tissues express lipoprotein 
lipase (LPL), an enzyme essential for lipolysis of triglycerides within these lipoproteins. 
Subsequent uptake of the disengaged fatty acids is mediated by expression of cell surface 
receptors such as CD36. During lipolysis, the triglyceride-rich lipoproteins become 
enriched with apolipoprotein E (ApoE). ApoE binds the low density lipoprotein receptor 
(LDLR) or LDL-related protein (LRP) on the liver, ensuring hepatic clearance of the remnant 
particles (14, 19).

Figure 1. Schematic representation of triglyceride-rich lipoprotein metabolism. See text for explanation. 
ATP, adenosine triphosphate; B, apolipoprotein B; BAT, brown adipose tissue; E, apolipoprotein E; LDLR, 
low density lipoprotein receptor; LPL, lipoprotein lipase; LRP, low density lipoprotein-related protein; TRL, 
triglyceride-rich lipoprotein; VLDL, very low density lipoprotein; WAT, white adipose tissue.
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ADIPOSE TISSUE TYPES

Adipose tissue is the main site for energy storage during obesity. WAT is the most abundant 
adipose tissue type, found throughout the body in different subcutaneous and visceral 
depots (20). WAT is a major participant in energy regulation of the body, not only by storing 
excess ingested glucose and fatty acids in the form of triglycerides in the adipocytes but 
also by releasing fatty acids as a result of intracellular lipolysis to meet the energy needs of 
other organs. In addition, WAT is an endocrine organ. It responds to hormonal signals and 
signals from the nervous system and it expresses and releases endocrine factors including 
leptin, adiponectin, cytokines, chemokines and components of the complement system. 
This endocrine function of WAT influences essential metabolic processes, including lipid 
and glucose homeostasis (21). The spherical adipocytes within WAT characteristically 
contain a single large lipid droplet and a few mitochondria that are dispersed in a thin 
surrounding layer of cytoplasm.

Another type of adipose tissue is BAT. This tissue is found in the neck, above the 
clavicles and around the spine in humans (22-24). In contrast to WAT, which stores energy, 
BAT combusts fatty acids to generate heat and maintain body temperature, a process that 
is defined as non-shivering thermogenesis. Hence brown adipocytes, that are smaller 
than white adipocytes, contain many mitochondria and typically hold multiple small lipid 
droplets (20). Thermogenesis is induced by catecholamine signaling. Catecholamines 
signal via all types of adrenergic receptors including β1, β2, β3, α1 and α2, although not 
all of these have stimulatory effects on thermogenesis. Expression of the stimulatory β3-
adrenergic receptor on brown adipocytes is likely the most specific and relevant for heat 
production (25). Apart from adrenergic receptor expression, thermogenesis is dependent 
on intracellular lipolysis and the presence of uncoupling protein 1 (UCP1). Intracellular 
lipolysis of triglycerides yields fatty acids, which are used as substrates for heat production 
and can directly activate UCP1. UCP1 resides in the inner mitochondrial membrane and, 
upon activation, facilitates proton leak, which disturbs the proton gradient that is generated 
by oxidative phosphorylation resulting from fatty acid oxidation. This “uncouples” electron 
transport from synthesis of ATP and leads to production of heat (25, 26). From rodent 
studies, it is known that besides classical brown adipocytes with high UCP1 expression, 
brown-like cells with very low basal but highly inducible UCP1 expression exist. These cells 
usually reside in WAT and are called beige adipocytes, and considerable evidence suggests 
that human BAT is mainly composed of beige adipocytes (27-29).

In addition to adipocytes, adipose tissue is composed of pre‐adipocytes, endothelial 
cells, fibroblasts, nerve tissue and immune cells. This contributes to the complexity and 
metabolic and endocrine functions of adipose tissue. Adipose tissue not only responds 
to hormonal and neural signaling, it also expresses and secretes a range of factors named 
adipokines. These factors include cytokines, chemokines and complement components 
(21). The secretion of adipokines accounts for the role of adipose tissue in systemic signaling 
pathways, such as regulation of energy balance and inflammation (30, 31). Differences exist 
in the complexity and endocrine functions of adipose tissue depots. For example, BAT is 
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more densely vascularized and innervated than WAT (20) whereas the transcript levels of 
inflammatory genes in BAT are generally lower than in WAT (32, 33).

WHITE ADIPOSE TISSUE INFLAMMATION IN OBESITY

Increased storage of lipids in WAT during obesity leads to hypertrophy of adipocytes, 
hypoxia, and eventually cell death, causing adipose tissue dysfunction and fibrosis. 
Dysfunctional and dying adipocytes change the local microenvironment by leakage of fatty 
acids and other products. The altered microenvironment causes release of adipokines (e.g. 
IL-6, TNF, CCL2) and recruitment of inflammatory cells by WAT (31, 34).

In WAT of lean mice, 10-15% of the cells are macrophages, whereas WAT of obese 
mice contains 45-60% macrophages (35). Resident macrophages in lean WAT have a 
predominant anti-inflammatory or M2 phenotype. In obesity, inflammatory monocytes are 
recruited to WAT, where they differentiate, acquire a pro-inflammatory or M1 phenotype 
and form the majority of macrophages (35, 36). Other myeloid cells that play a role in WAT 
include neutrophils and eosinophils. Neutrophils are very short-lived cells that infiltrate the 
WAT within 3 days after exposure to a high-fat diet (37, 38). The amount of eosinophils is 
inversely correlated with adiposity, and depletion of eosinophils in mice results in obesity 
and insulin resistance (39).

The repertoire of immune cells found in WAT also comprises lymphoid cells. More 
specifically, 10% of the stromal vascular fraction of lean WAT consists of T cells. During 
obesity, the total amount of T cells, CD8+ cytotoxic T cells and CD4+ effector T cells in 
WAT increase, whereas CD4+ Tregs decrease (40). Furthermore, pro-inflammatory Th1 T 
cells increase while more anti-inflammatory Th2 T cells decrease, altogether resulting in 
increased inflammation in obese WAT (39, 41-43). The chronic low-grade inflammation in 
obese WAT includes the recruitment of B cells, natural killer cells and mast cells (44, 45). 
Overall, a variety of immune cells infiltrate WAT during obesity, inducing a switch from a 
homeostatic anti-inflammatory environment to a state of chronic low-grade inflammation.

Due to the extensive communication between adipocytes and immune cells, chronic 
inflammation as occurs in obesity disturbs insulin signalling in the tissue (34, 46) thereby 
contributing to development of type 2 diabetes as will be further described below.

IMMUNE MODULATION OF BROWN AND BEIGE ADIPOSE 
TISSUE

In contrast to the well-established presence of different immune cell types in WAT, the 
presence and role of the immune system in the development, function and activity of BAT 
is still largely unknown. Interestingly, many factors that modulate energy expenditure, 
the hallmark of BAT activity, affect inflammation too, all in all suggesting that the immune 
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system is involved in BAT function. These factors include environmental temperature (47, 
48), the biological clock (49, 50), hormones (51, 52) and food intake (53).

Macrophages, the most abundant immune cells in WAT, are present in BAT as 
demonstrated by flow cytometry and qPCR (54). Evaluation of gene networks in BAT shows 
that immune cell trafficking is upregulated upon high-fat diet feeding (55). Furthermore, like 
WAT, BAT secretes adipokines (e.g. IL-6). Although the transcript levels of pro-inflammatory 
cytokines in BAT are lower compared to WAT, augmented expression of pro-inflammatory 
cytokines has been found in obese compared to lean BAT. These pro-inflammatory factors 
are thought to diminish BAT function (30).

The limited research that has been done into the role of immune cells in BAT may suggest 
that macrophages play a role in non-shivering thermogenesis. Cold exposure increases M2 
macrophages in both WAT and BAT, which release the catecholamine noradrenaline that in 
turn activates BAT and induces browning of WAT (54, 56). Eosinophils indirectly contribute 
to thermogenesis by promoting activation of M2 macrophages within adipose tissue (56, 
57). Besides macrophages, type 2 innate lymphoid cells are important mediators of beiging 
of WAT (58). So, although knowledge about the role of immune cells in BAT and beiging WAT 
lags behind, inflammation is probably an important player in brown adipocyte function as 
well.

INFLAMMATION SIGNIFICANTLY CONTRIBUTES TO TYPE 2 
DIABETES AND CARDIOVASCULAR DISEASE

A key mechanism by which inflammation leads to insulin resistance is inhibition of insulin 
signaling pathways in several metabolic tissues (59). After a meal, insulin is released by 
the pancreas and acts on its target tissues including muscle, liver and adipose tissues. 
Stimulation of the insulin receptor induces the uptake of glucose by these tissues (60, 61). 
The inflammatory cytokines TNF and IL-6, and the acute phase protein C-reactive protein 
(CRP) can directly inhibit the insulin pathway and thereby induce insulin resistance (62-
64). Moreover, inflammation activates a number of intracellular serine/threonine kinases 
such as c-Jun N-terminal kinases (JNKs) and IκB kinase (IKK) which inhibit insulin signaling. 
Inhibition of insulin signaling leads to peripheral insulin resistance and subsequent 
hyperglycemia, which can result in development of type 2 diabetes (59). On top of that, 
since insulin normally reduces VLDL production, decreased insulin sensitivity in the liver 
leads to enhanced production of VLDL and thereby to hyperlipidemia (65).

Atherosclerosis is the pathology underlying cardiovascular disease, and the main risk 
factor for the development of atherosclerosis is hypercholesterolemia. Atherosclerosis 
development is initiated by retention of low-density lipoproteins (LDL) and very-low-
density lipoprotein (VLDL) remnant particles in the vessel wall. In response, the vessel wall 
releases oxidative and pro-inflammatory factors that modify these particles, for example 
by oxidation, resulting in oxidized LDL (oxLDL) (66, 67). LDL is also modified by hydrolyzing 
enzymes that are present in the lesions (68, 69). Immune cells, mainly monocytes, are 
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recruited from the circulation upon the expression of chemoattractants like tumor necrosis 
factor (TNF) (70) and monocyte chemoattractant protein-1 (MCP-1) in the lesions (71). 
Locally produced factors, such as monocyte-colony stimulating factor (M-CSF) (72), 
promote the differentiation of monocytes into macrophages. Macrophages scavenge the 
accumulating and modified lipoproteins thereby developing into foam cells. Foam cells 
augment the inflammatory response, resulting in additional recruitment of immune cells 

Figure 2. The proposed role of white and brown adipose tissue in the development of insulin resistance 
and atherosclerosis during obesity. In obesity, both energy storage and fatty acid release are enhanced 
in white adipose tissue (WAT). Immune cells infiltrate the WAT, causing systemic inflammation. Brown 
adipose tissue (BAT) displays a whitened phenotype in obesity, resulting in decreased combustion of fatty 
acids. Therapeutic strategies to reduce insulin resistance and atherosclerosis should on the one hand 
focus on activation of brown adipocytes and beiging of white adipocytes to reduce circulating triglyceride-
rich lipoproteins, and on the other hand on reducing adipose tissue and systemic inflammation. BAT, brown 
adipose tissue; FA, fatty acid; TRL, triglyceride-rich lipoprotein; WAT, white adipose tissue.
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into the atherosclerotic plaque (66, 67). Ultimately, plaques can rupture and/or occlude the 
vessel, leading to a cardiovascular event in e.g. the heart (myocardial infarction) or brain 
(stroke) (71). In many cell types that are involved in buildup of the atherosclerotic plaque, 
intracellular inflammatory pathways (e.g. JNK and IKK) and transcription factors (e.g. nuclear 
factor κ-light-chain-enhancer of activated B cells; NFκB) control the expression of adhesion 
molecules and inflammatory chemokines and cytokines. Besides local inflammation in the 
vasculature, other peripheral sources of inflammation can augment the development of 
atherosclerosis, including chronic infection (73, 74) and obese liver and WAT (75).

Taken together, inflammation is an important factor in the development of both type 2 
diabetes and cardiovascular disease. Together with therapeutic interventions that activate 
BAT or induce browning, resulting in enhanced nutrient combustion, strategies that reduce 
inflammation may help to mitigate these pathologies (Fig. 2).

OUTLINE OF THIS THESIS

As is evident from this chapter (chapter 1) of this thesis, inflammation plays an important 
role in the development of insulin resistance and atherosclerosis by disturbing both WAT 
and BAT, and targeting inflammation may thus hold therapeutic potential. Although widely 
used compounds to treat type 2 diabetes and cardiovascular disease, such as respectively 
metformin and statins, have pleiotropic anti-inflammatory effects (76-78), no strategies 
currently exist that primarily target inflammation in the treatment of these disorders. A better 
understanding of the interaction between inflammatory pathways in metabolic tissues and 
metabolic derangements is a prerequisite for the development of novel compounds that 
dampen inflammation to treat individuals with these pathologies.

The research described in this thesis was performed to address three key objectives: 
1) gain more insight into the role of the immune system in obesity, insulin resistance, 
dyslipidemia and atherosclerosis, 2) study inflammation in a human population with a 
particularly high risk to develop type 2 diabetes and cardiovascular disease, and 3) study 
the therapeutic potential of reducing inflammation by pharmacological strategies on 
obesity and glucose and lipid metabolism in pre-clinical models, with emphasis on BAT and 
WAT.

To address the first key objective, we studied the effect of a potent inflammatory 
trigger on lipid metabolism and atherosclerosis. Bacille-Calmette-Guérin (BCG), prepared 
from attenuated live Mycobacterium bovis, is the only licensed and widely used vaccine 
against tuberculosis and modulates atherosclerosis development via immunomodulatory 
mechanisms. However, previous studies are conflicting with regards to whether  BCG 
protects against or enhances atherosclerosis and did not take into account the effect 
of  BCG on metabolism of cholesterol, the main driver of atherosclerosis. The aim of 
chapter 2 therefore was to elucidate the effect of  BCG on cholesterol metabolism and 
atherosclerosis development. In the next chapter, we switched our focus from immune 
modulation of lipid metabolism and atherosclerosis to glucose metabolism and type 
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2 diabetes. During the development of obesity, B cells accumulate in WAT and produce 
pathogenic IgG antibodies, which contribute to the development of glucose intolerance. 
IgG antibodies signal by binding to Fcγ receptors (FcγR) and by activating the complement 
system. In chapter 3, the purpose was to investigate whether activation of FcγR and/or 
complement pathway mediate the development of glucose intolerance in WAT.

To meet our second key objective, we performed a human study in which we compared 
Dutch South Asians and Dutch white Caucasians. These ethnic groups were selected 
because of the strikingly elevated risk of developing type 2 diabetes that South Asians 
have when compared to white Caucasians. Even though their increased risk of type 2 
diabetes is well-established and inflammation is known to contribute to the development 
of this disease, inflammatory pathways in South Asians have not been extensively studied 
previously. The intent in chapter 4 was therefore to investigate the inflammatory state of 
blood and metabolic tissues in Dutch South Asians compared to Dutch white Caucasians.

In the final part of this thesis, studies are described that focus on the treatment of 
metabolic inflammation and disease by targeting BAT and WAT (key objective 3). Salsalate 
is an anti-inflammatory drug that improves glucose intolerance and dyslipidemia in type 
2 diabetic patients, but the mechanisms behind these effects are unclear. The research 
in chapter 5 was designed to unravel these mechanisms. We assessed the effects of 
salsalate on lipid metabolism and adipose tissue inflammation in vivo, and investigated the 
molecular pathways mediating direct effects of salsalate on brown adipocytes in vitro. We 
then aspired to assess the therapeutic potential of targeting GPR120, a fatty acid receptor 
that mediates anti-inflammatory and insulin-sensitizing effects. Interestingly, cold exposure 
markedly increases the expression of GPR120 in BAT and WAT. These immunomodulatory 
and fat-related properties of GPR120 prompted us to investigate the effects of GPR120 
deficiency and treatment with a GPR120 agonist on obesity and lipid metabolism in chapter 
6.

Finally, the results from these studies and their implications for the development of 
therapeutic strategies are discussed in chapter 7.
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